Phantom XML

- If you look too hard it isn't there

Kristoffer H. Rose
Lionel Villard




Overview

= Motivation
= Phantomization
= XML Processing

= Experiments

= Conclusion & perspectives




Motivation

= A lot of heterogeneous data formats out there
— Relational, binary, semi-structured, structured, etc...
— All the formats can be converted to XML

= XML processing ubiquitous ...

= ... but XML syntax by itself is “inefficient”
— Verbose
— No indexes

= Sometimes access to actual XML data is only
through XPath

£ 7




Why XML (or a semi-structured format)?

= Why not relational?

— Difficult to represent some data in unordered indexed
tables

— Shredding is complex and in practice lossy (loss of
element order, loss of whitespace, etc..)

— Reconstructing original XML involves complex joins (that
the programmer needs to write!)

= Why not graph?
— No good way to serialize graphs

— No clear scoping




Existing solutions for XML conversion

= Batch conversion
— Good ...

— but legacy applications depending on the old format must
be rewritten...

— ...and converted data can be big!

= On the fly conversion
— Good too ...

— but the standard XML format requires significant overhead
for generating or parsing XML character sequences




Existing solutions for XML processing

= Batch processing
— Really good solutions for small documents,
— Highly optimized streaming processors exist,
— but need batch conversion of the input

= Embedded processing

— JXPath operates on custom in-memory object structures,

— DOMB3/JAXP compiles XPath for full in-memory XML data
model instances,

— but hard to minimize the memory use




Goals

= Execute XML processing programs without XML
materialization

— Convert “on-demand” to XML data model

— Do not even access parts of data not needed for
conversion

— Processing with XPath but also XSLT, XQuery, ...
— Allow creation and updates

= Allow such processing for any kind of structured
and semi-structured data

— Respect access/update pattern restrictions
— Exploit optimal access/update patterns

£ T2 5




Phantomization

“Just don't build the XML”




Virtualized XML Data Model: Focus

= Our implementation of the XQuery/XPath data
model

— XPath/XSLT 2.0 and XQuery defined on top of this (W3C
CR)

— One interface called Focus

= Cursor-based model
— The application never has a handle on the data!

— Enable smart conversion and memory management




Feature

= A feature allows one particular access or update
operation (or simple pattern) on the data

— Access node property (getName(), getValue(), getType(),
etc...)

— Navigation (toChildren(), toAttribute(), toParent(), etc...)
— Cursor management (duplicate(), free())
— Mutation (setValue(), addAttribute(), addElement(), etc...)

= Features are dynamic
— features()

— duplicate(requestedFeatures)




Profile

= A profile identifies a specific usage pattern and is
characterized by a set of features

— Streaming input: depth-first tree traversal (grammar)
— Forward-only: reserve axis (toParent(), ...) not allowed
— Full: all features allowed

— Streaming output: depth-first tree construction

— Forward-only output: only append




Forward only profile

= Define a window on the data

-

I




Dynamic profiles

= Profiles can be changed at any time




Processing

“Be lazy!”




XPath engine for virtual XML — Static time

= “Classic” XPath 2.0/XQuery 1.0 compiler
— Parsing => Normalizing (Core XQuery) => Optimizing

= [n the context on Phantom XML
— Minimize the number of features needed (rewriting)

— Determine which features are needed for processing a
given XPath (static analysis)

— Dynamically reduce the number of features needed

Assumptions: no cost model and huge (even infinite)
input documents




Minimizing needed features

= Based on rewriting techniques

= Example: Forward-only transformation
— Remove reverse axis => use the forward only profile

— Make explicit fragments of document which need to be cached
(variable)

— See “Compiling XPath into a State-less Forward-only Subset”

= Example: distinct-doc-order() function removal
— Avoid duplicates removal and sorting

— See “Optimizing Sorting and Duplicate Elimination in XQuery
Path Expressions”

= Schema-based rewriting




Schema rewriting

//(africaleurope)/@id

Schema: africa occurs only once and before europe

//simple-union(africa, europe)/@id




At runtime

= Pull processing: otherwise entire conversion is
done

= Lazy processing: minimize cursor duplications,
caching

= Determine which profile to use for each duplicate
— The XPath itself (static feature analysis)

— The requirements of the application




Runtime architecture

XML processing

Negotiation

Foi:us

Data model

Fixer




Experiment

v:parse(v.decode(
v:unzip('examples.sxw')/
zip/entry[@name eq 'content.xml']/bytes,
'UTF-8'
)
)/*Ibody[1]/h[3]/text()

<office:document-content
xmins:office="http://openoffice.org/2000/office" ...>

<office:body>
<office:h> My header </office:h>




Measurements

Tirme (1)

Performance Comparison - Body Variations

430 1
400

A

350

300

250

200

Size (Mb)

Time {Is)

Performance Comparison - Header Variations

450 1

Size (Mb)




Conclusion

= XPath/XQuery data model implementation
— Lightweight: cursor-based
— Adaptive: feature-based
— Easy integration of foreign data format: feature completion

= Efficient lazy XPath processor over any kind of data
= Allows dynamic optimizations ala JIT

= No inherent limit on document size

= Try it out on alphaworks:
www.alphaworks.ibm.com/tech/virtualxml




Some perspectives

= Richer feature set
= |dentifying more used profiles

= More native data formats
— DFDL: generic Data Format Description Language

— Relational database
— EXIF (JPEG, MPEG, etc...)

= Cost-model







Backup




Streaming input profile

Document ::= toChildren Sibling free

Sibling ::= getName? (getValue | Attributes Children)
Attributes ::= duplicate toAttributes (Attribute-traversal)? free
Attribute-traversal ::= (getName? getValue? toNext)+
Children ::= duplicate toChildren (Sibling-traversal)? free
Sibling-traversal ::= (Sibling toNext)+




Streaming output

Document ::= add-first-child-element Content free
Content ::= (add-attribute)* (First to-children (Following to-next)* to-parent)?
First ::= add-first-child-text
| add-first-child-comment
| add-first-child-processing-instruction
| add-first-child-element Content
Following ::= add-following-sibling-text
| add-following-sibling-comment
| add-following-sibling-processing-instruction
| add-following-sibling-element Content




