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NON-STANDARD REDUCTIONS AND CATEGORICAL 

MODELS IN TYPED LAMBDA-CALCULUS 
 

Abstract. We consider the problem of incorporation of new 

computational rules in lambda calculus with inductive types and 

recursion. We consider the extensions of standard reduction systems by 

certain new reductions preserving strong normalization and Church-

Rosser property with possible applications to proof assistants and 

computer algebra systems. 

 

1.Introduction.  
 Computational power of untyped lambda-calculus is sufficient to 

represent any partial recursive function. One of obvious drawbacks is 

that some basic questions (like termination) are undecidable. Nowadays 

more and more attention is paid to various systems of typed lambda-

calculi since typing provides greater safety. In “non-pathological” 

systems, computation represented by well-typed term always  

terminates.  

 Another positive aspect of typed calculi in comparison with 

untyped case is due to so called “proofs as programs paradigm”. The 

type of a term can be considered as logical formula and the term 

represents its proof. At the same time it can be considered as a program. 

This explains why typed lambda-calculi are often used in modern 

proof-assistants. In perspective, this is one of possible ways to 

unification of proof and computation. 

 Of course, typing doesn’t resolve all the difficulties. One of them is 

that the representation of real computations in lambda-calculus 

including only the fundamental term and type constructors (application 

and abstraction for terms, functional arrow for types) is very indirect, it 

is in fact complex coding, satisfactory for theoretical results but lacking 

directness and transparency required for efficient applications. 

Extensions of typed systems with “real-life” inductive types like natural 

numbers, lists, trees and corresponding functional constants and 

recursion operators are helpful but not sufficient. Mathematics 

computations are seldom represented in the form of recursive functions 

even if they are fully constructive. 

 Symbolic  computations, for example, often include the 

transformations of symbolic expressions that were never studied from 



the point of view of  properties of corresponding rewriting system. The 

importance of the problem of certified computation, symbolic or 

numerical  (i.e., computation that is completed with the proof of its 

correctness) was emphasized several years ago in [4] but it was studied 

since in very limited number of cases. 

 The possibility usually provided by proof-assistants based on type 

theory is to obtain a proof-term that represents the proof of equality of 

two terms representing computations. This term should be carried 

everywhere the equality should be used, and this turns out to be very 

heavy and inefficient. 

 One of the reasons is that the system of reductions of terms 

incorporated in the underlying typed lambda-calculus is very restrictive.  

Because of this even very simple equalities used routinely very often 

require the proof-term corresponding to this equality to be carried 

around. It may require quite complex manipulations if the equality is 

used within another computation.  

 The approach we are studying in this paper is based on extension of 

the systems of reductions preserving good properties of the reduction 

system as a whole. Such properties as Strong Normalization (SN) and 

Church-Rosser property, or confluence (CR) need to be proved only 

once. Afterwards the use of the lambda-calculus may follow similar 

schema: some equalities are proved by reduction (this is much more 

efficient) and for some others we need to find a proof-term, but the 

classes of these “intensional” and “extensional” equalities are different, 

we have more “intensional” equalities. As result the transparency and 

efficiency of a system may be improved.  

 In this paper we consider several model cases of extensions of 

reduction systems in the calculus that doesn’t contain the type Prop and 

terms representing proofs, i.e., we concentrate on the computational 

part. This permits to simplify the technical side of the presentation. The 

calculus under consideration is simply typed lambda-calculus with 

inductive types. 

 Three cases are considered:  

 - the notion of a copy of inductive type and the reductions 

necessary to make it an isomorphism (it is not an isomorphism w.r.t. 

standard system of reductions and this complicates a lot the handling of 

copies of inductive types); 

 - the reductions to incorporate into lambda-calculus certain 

algebraic structures, such as groups of permutations; 



 - functoriality of the schema of inductive type (a schema of 

parameterized inductive type, like List(A), does not represent a functor 

w.r.t. standard reductions). 

 The aim of this paper is to present an approach that would help to 

bring closer proof and computation. The results concerning 

functoriality are completely new, the results concerning copy and 

groups of permutations were partly published (see [5], [9]).  

  

2. Simply-typed lambda-calculus with inductive types. 

We  will consider infinite sets of constructor name (Const), term 

variables (Var) and type variables (Tvar), with Const∩Var = 

Const∩Tvar = Var∩Tvar = ∅. We will reserve the letters x, y and z for 

term variables, α and β for type variables, r, s, t and u for arbitrary 

terms, ρ and τ for arbitrary types, and κ for constructor schemas. The 

letters i, j, k, l will only be used for indexes and, respectively, n, m, p, q 

for their upper bound. Finally, constructor names will be denoted either 

by c1, c2, …, c’1, c’2… or by the generic name in. Definitions will be 

introduced by the symbol =def  , as in id =def λxτ .x. Terms and types 

will be considered up to α-congruence (that is, the names of bound 

variables are meaningless) and this last relation will be denoted ≡ , thus 

one has  λx
τ
.x ≡λy:τ .y. Sequences of types or terms (ti)i=1,n  will be 

written as t1÷n. Using this notation we will sometimes write ρρρρ1÷n→τ to 

mean  ρ1→…→ρn→τ, associated to the right. Furthermore, s∈t1÷n will 

mean that there is an i such that s≡ti, and ti÷n∈S will mean that all the ti’ 

s belong to the set S. Finally, if some indexes depend on other ones, we 

shall write j(i), and tj(1÷n) will stand for tj(1),…, tj(n). We will also need 

the notion of “curried” composition: for given lambda-terms f: ρρρρ1÷n→τ 

and g:τ→υ, gοf will be defined as λz1÷n:ρρρρ1÷n.g(fz1÷n), with z1÷n∉∉∉∉FV(g) 

and z1÷n∉∉∉∉FV(f). We shall also use the following notation, provided of 

course that f and g are of suitable types: g•f≡ gοf if f and g are 

composable, gf if they are not, but g can be applied to f.  

 

Definition 1. (Prototypes.) The grammar of prototypes  is defined as 

follows: 

 τ::=α|τ→τ|µαααα(c1÷n:τ1÷n), with αααα∈Tvar. 

 

Definition 2. (Types). We define simultaneously: 

 

The set Ty of types: 



υ∈Tvar       ρ,τ∈Ty c1÷n ∈Const;αααα∈Tvar;κκκκ1111÷÷÷÷n∈Sch(α) 

υ∈Ty       ρ→τ∈Ty           µα(c1÷n:κκκκ1÷n)∈Ty 

 

and the set Sch(α)of constructor schemas over type variable α : 

 

____ρ1÷m,σ1,1÷j(1),… ,σ n÷j(n)∈Ty________________ 

ρρρρ1111÷÷÷÷m→(σσσσ1,1÷j(1)→α)→…→(σσσσn,1÷j(n)→α)→α∈Sch(α) 

 

As usual, constructor names can only belong to one inductive type. 

Thus, an inductive type is also defined by names of its constructors. 

 Remarks: 

 An inductive type is a recursive type built from a sequence of 

(constructor) schemas. 

 Every schema κk over α is of the form 

ρρρρ1111÷÷÷÷m→(σσσσ1,1÷j(1)→α)→…→(σσσσn,1÷j(n)→α)→α and each premise is called 

an operator over α. The number of operators in a schema is denoted 

ar(κk) (arity). We write nb
P
(κk)=m for the number of ρ’s and nb

R
(κk )=n 

for the number of operators (σσσσi,1÷j(i)→α), thus we have ar(κk) = nbP(κk) 

+ nbR(κk ) = n+m. 

 The ρ’s and σ’ s are in Ty, which implies they don’t contain any 

free type variable. They are called parameter types. The occurrences 

belonging to ρρρρ1111÷÷÷÷m  are called covariant and to σσσσ1,1÷j(1) ,…, σσσσn,1÷j(n) 

contravariant. The fact that they don’t contain any free type variable 

implies also that the only occurrences of  α  are those explicitly shown 

and α occurs only strictly positively in the operators of the schema. The 

operators containing α are recursive (correspond to “recursive calls”). 

If the list σσσσi,1÷j(i)  is empty , such operator is called 0-recursive otherwise 

1-recursive (by analogy with the functionals of types 0 and 1 in Godel’s 

system T). By definition of schemas, parameter types can only occur at 

the beginning of the schema: this restriction is useful for technical 

reasons, most notably for the typing of recursors and the definition of 

their computation rules. It will be clear to the reader that this is a minor 

restriction which does not impair the system at all. 

 

Example 1. With the rules for inductive types described above, it is 

possible to define the types of natural numbers, of  Brouwer’s ordinals 

and of lists of natural numbers: 

 

Nat =def µα[0:α, succ:α→α] 

 



Ord =def µα[0ord:α, succord:α→α, lim: (Nat→α)→α] 

 

List(Nat) =def µα[nil:α,  cons: Nat→α→α] 

 

Note that every inductive type τ generates a recursor (or structural-

recursion operator) to any type µ. This is explained below. 

 

Definition 3. (Terms). The set of terms is generated by the following 

grammar (with x∈ Var, k∈N\{0} and τ, µ∈Ty ):  

 t::= x | λxτ t | (t t ) | ink
µ | (| t1÷n |)

µ,τ 

Here ink
µ   is the k-th constructor of the inductive type µ (in practice, 

we actually have constructor names c∈Const) and (|t1÷n |)
µ,τ

 is a recursor 

(or structural recursion operator) from µ to another type τ. 

 

Definition 4. (Step type.) Given inductive type(s) µ ≡ µα(c1÷n:κκκκ1÷n) and 

a result type τ, we define for every 

 κk  ≡ ρρρρ1111÷÷÷÷m→(σσσσ1,1÷j(1)→α)→…→(σσσσn,1÷j(n)→α)→α in Sch(α)  

the step type 

 δµ,τ 

≡ ρρρρ1111÷÷÷÷m→(σσσσ1,1÷j(1)→µ)→…→(σσσσn,1÷j(n)→µ) →(σσσσ1,1÷j(1)→τ)→…→(σσσσn,1÷j(n)

→τ)→τ 
 

Definition 5. (Typing) We define the following typing rules of the 

calculus: 

 

_____________  (Var) 

   Γ, x:τ |− x:τ  

 

   Γ, x:ρ |− t:τ                                Γ    |− t:ρ→τ  Γ|−  u:ρ                          

 (Lambda)              (App) 

Γ |− λx:ρ.t:ρ→τ                                   Γ |− (t u ):τ 
 

   c∈Const  Γ |− t1÷n : δ1÷n 
µ,τ 

 (In)    (Rec) 

Γ |−  ck : κk[µ]  Γ |− (|t1÷n |)
µ,τ:µ→τ 

 

 Sometimes for typographical reasons we shall write types of 

variables as superscripts 

 



 Reduction. We take most of our terminology and notation in [2]. 

Given a binary relation R on a set A, we will denote the induced rewrite 

relation →R, but shall sometimes write R for  →R and vice-versa. We 

will respectively write →*R, →+
R, and =R for its transitive, reflexive-

transitive and reflexive-symmetric-transitive closures. Sometimes we 

may write R*, R+ and R=. We say that a term t rewrites to u if there is a 

term u such that t→R u and it reduces to u if there is a derivation t→R
+ 

u. The union R∪S of binary relations on the same set will be denoted 

RS. We also write R;S for the set {(r,s) | ∃t. rRt∧tSs}. A term is in 

normal form if it is not rewriteable. A rewrite relation R is strongly 

normalizing (terminating) is there is no infinite derivation t1→R
 t2 

→R…, for any term t1. 

 Given two rewrite relations R and S: R commutes with S if 

*←S;→*R⊆ →*R; *←S, R commutes strictly locally over S if ←S;→R⊆ 

→R; ←S. 

 This definition is made in [8], and by R. Di Cosmo in [9] to state 

Akama- Di Cosmo’s lemma under the name of (DPG) condition (see 

lemma 1 below). 

 A relation R is confluent (resp. locally confluent) if it commutes 

(resp. commutes locally) with itself. A strongly normalizing and 

confluent relation is said convergent. We will also write R/S to 

represent the quotient of a relation R by the reflexive-symmetric-

transitive closure of S. 

 The usual notion of substitution is written t{u/x} to mean that u 

replaces every free occurrence of x in t, avoiding capture. Finally, as 

usual in this kind of work, we will consider contexts, written C[], that 

is, terms with a “hole” inside which can  be filled (giving for example 

C[(λx
τ
.p)q]. 

 Definition 6. (β-conversion) We define the relation of  β-

conversion by the following rule: (β).(λxτ.t)u→β t{u/x}. 

 Definition 7. (η-conversion). We define η-conversion by the 

following rule (η) t→η λx
τ.
tx if t of type τ→υ is not in applicative 

position, does not begin with λ and x ∉FV(t).  

 (This rule is also called η-expansion and is known to be more 

convenient for categorical applications than η−reduction oriented in 

opposite way.) 

 Definition 8. (ι-conversion). Let µ≡µα(c1÷n:κκκκ1÷n), and  



κk≡ ρρρρ1111÷÷÷÷m→(σσσσ1,1÷j(1)→α)→…→(σσσσn,1÷j(n)→α)→α over α in µ. Let 

v1÷m:ρρρρ1111÷÷÷÷m and u1÷n with  ui
R: σσσσi,1÷j(i)→µ for any 1≤ i ≤n. Then, we define 

ι-reduction by the rule  

 

 (ι) (| t |)µ,τ
in

µ
k (v1÷m , u1÷n) →ι tk (v1÷m, u1÷n , ((| t1÷p |)

µ,τ
 • u1÷n)). 

 

 Remark 1. Recall that g•f is just an abbreviation. Hence, we may 

describe ι-reductions as  (|t1÷p |)
µ,τ

in
µ

k (v1÷m , u1÷n)→ι tk (v1÷m, u1÷n , ∆∆∆∆ 1÷n 

(u1÷n))  where 

 

∆i(ui) ≡≡≡≡ (|t1÷p |)
µ,τ ui

  if   ui
R

 :µ (i.e., ui
R is 0-recursive), and  ∆i(ui) ≡≡≡≡ (|t1÷p 

|)µ,τ ο ui
   if   ui : σσσσi,1÷j(i)→µ  (i.e., ui is 1-recursive). 

 

 Example 2. If we take the type of Brouwer’s ordinals, Ord =def 

µα[0ord:α, succord:α→α, lim: (Nat→α)→α], then, given some type τ 

(the type of result), the step types corresponding to 0ord, succord and lim 

will be respectively τ, Ord→τ→τ and (Nat→Ord)→(Nat→τ) → τ, the 

recursor will be of the form (|t1,t2,t3|) with t1:τ, t2:Ord→τ→τ, 

t3:(Nat→Ord)→(Nat→τ) → τ and the ι-reduction will take the 

following forms:  

 

(|t1,t2,t3|) 0ord →ι t1,  (|t1,t2,t3|) succord(u1)  →ι (t2 u1)((|t1,t2,t3|)u1),  

 

(|t1,t2,t3|) lim (u2) →ι (t3 u2) ((|t1,t2,t3|) ο u2) ≡ (t3 u2) 

(λxNat.((|t1,t2,t3|)(u2x
Nat)) 

 

(here u1:Ord, u2:Nat → Ord ). 

 

 The λ-calculus thus defined, together with βηι-conversion, is called 

βηι. 
 In the rest of this paper, we will often omit type indications, except 

for abstracted variables, to lighten the notation.  

 

3. Main results 

3.1. Copy 

 Let us consider the type µ ≡ µα[c1:σ1,1÷j(1)→ α, ... cp: σp,1÷j(p) → α] 

 An exact copy of this type differs only by names of introduction 

operators, e.g., µ ' with introduction operators c'1÷p. It is faithful or 



isomorphic copy of  µ  if some of the parameters π are replaced by 

isomorphic types π'. 

 Remark 2. The types  π and  π ' are isomorphic if there exist f:  π  

→ π'  and f':  π'→ π such that f of' and f'of can be reduced to idπ, idπ' 

respectively. In this case we write f:π ↔ π': f' 

 In general we call “copy” of  µ  any type µ ' that differs by names of 

introduction operators and some parameters  π  are replaced by  π' with 

f:  π  → π'  and f':  π'→π, but it is no more required that f, f' were 

mutually inverse. 

 Let one occurrence of  π into µ' ≡ µα[ c1:σ1,1÷j(1)→ α, ... cp: σp,1÷j(p)→ 

α] be fixed and µ' be a copy of  µ  such that the occurrence of  π is 

replaced by π' (other changes concern only the names of introduction 

operators). We shall consider only the case when  π occurs as a 

parameter type.  Assume that it is given f: π →π' when the occurrence 

is covariant  and f: π'→ π it is contravaiant. The function  Cp(f): µ→µ' 

is defined as (| t1÷p|) where the terms t1,..., tp are defined in the following 

way. 

 We shall note by f r the application fr if r:π or  r:π' corresponds to 

an occurrence to be replaced and r otherwise. Similarly, we shall write 

g o f  for g o f if g has π or  π' as its domain and for g otherwise. 

 Let us consider the introduction operator ci :σi,i÷j(i)→ µ. We may 

assume that σi,i÷j(i)→ µ ≡ π1÷k →µ→...→µ→(π1,1÷n(1) → µ)→...→ 

(πm,1÷n(m) →µ)→µ (with l premises of the form µ). 
 We define: 

 ti ≡ λx1÷k: π1÷k.λy1÷l:µ.λz1÷m: π1÷m,1÷n(1÷m) →µ.λu1÷l:µ’. λv1÷m: π1÷m,1÷n(1÷m) 

→τ.ci'(f x)r(s o f'). 

 

 Example 3. Take again the type of Brouwer’s ordinals and let f: 

Nat’→ Nat. We have Cp(f) ≡ (| t1÷3|), t1 ≡ 0’ord, t2 ≡ λy
Ord

. λu
Ord’ 

.succ’ord(u), t3 ≡ λz Nat→Ord .λv Nat→Ord’ .lim’(v o f). 

 

 When f is an isomorphism with inverse f-1, the function Cp(f) is an 

extensional isomorphism in the sense that for every canonical element e 

of type µ (constant term containing only c1,..., cp)  Cp(f-1 )(Cp(f) e)→ βηι 

e. One of main motivations to study non-standard reductions and their 

properties was for us the fact that within standard system of reductions 

βηι many equalities are only extensional, for example Cp(f
-1

 ) o Cp(f) 

does not reduce to idµ    or, equivalently, Cp(f-1 )(Cp(f) x) does not 

reduce to x if x is a variable, so, in practice, we have either to carry 



everywhere proof-term or we cannot verify the equalities before some 

constant value is called. 

 This will be the case even if we take f to be identity. For example, 

the composition of Cp(id) for Ord ≡ µα[0ord:α, succord:α→α, lim: 

(Nat→α)→α] and Ord’≡µα[0’ord:α, succ’ord:α→α, lim’: (Nat→α)→α] 

will not be reducible to idOrd≡ λx
Ord

.x. In fact the term (| t’1÷3|) ((| t1÷3|)x) 

will be βηι−normal. 

 Meanwhile, as the results below show, reductions can be added to 

βηι to make  the resulting system SN and CR. 

 

 Definition 9. (χ-reduction). Let f be an isomorphism and f
-1

 its 

inverse. The χ-rewriting rule is defined by 

 (χ1)  Cp(f-1)(Cp(f)r)→χ r 

 (χ2)  Cp(f
-1

)(Cp(f)r)→χ r, 

where it is supposed that f and f-1 act at the same occurrence of 

parameter of some inductive type µ and its faithful copy µ’, r is 

arbitrary term.The χ-reduction is its contextual closure. 

 

 For lambda-calculus with inductive types considered in this paper 

the following theorem holds: 

 

 Theorem 1. The βηιχ reduction is SN and CR. 

 

 The detailed proof of this theorem may be found in [5]. Here we 

rather would like to discuss in more concrete way than before the 

specifics of the proofs of SN and CR for the extensions of reduction 

systems of the type we consider in this paper, both its technical and 

conceptual aspect. 

  

 The proof of SN for βηιχ reduction uses some standard lemmas, 

first of all, the Akama-Di Cosmo Lemma: 

 

 Lemma 1. Let R and S be two convergent relations, such that R 

preserves S-normal forms. Then RS is convergent if R commutes 

strictly locally over S. [1, 8]. 

 

 Standard techniques are sufficient to prove convergence of βηι part. 

To prove SN property in theorem 1 we need some more definitions and 

lemmas. 



 Definition 10. (Adjournment.) Given two binary relations R and S, 

S is adjournable w.r.t. R if S; R ⊆ R, (RS)*. 

 

 Lemma 2. (Adjournment lemma.) Given two strongly normalizing 

relations R and S, RS is strongly normalizing if S is adjournable w.r.t. 

R. 

 Proofs of (variants of) this lemma can be found in literature [1, 3, 7, 

8]. A subtle point in the proof of SN for βηιχ is that there are cases 

when the adjournment lemma can be used only on condition that certain 

1-recursive arguments of  ι-redex are η-expanded. The idea is therefore 

to insert suitable η-expansions in a term before χ-conversion, so that 

the adjournment remains possible. 

 Definition 11. (Conditional adjournment.) Let R and S be some 

reduction relations and P be a predicate on terms. Then S is adjournable 

w.r.t. R under condition P if ∀t∀t’∀t’’. P(t)∧ t →S t’∧ t’→R t’’ ⇒ ∃ u. 

t→R u →*RS t’’. 

 Definition 12. (Realization.) Let T be a reduction relation, P be a 

predicate on terms and t some term. Then T realize P for t if ∃ t’. t→*T 

t’∧ P(t’). It will be said that T realizes P if this is true for every term t. 

 Definition 13. (Insertability.) Let U, T be two reduction relations 

and Q a binary relation on terms. Then T is insertable in U w.r.t. S if: 

 - T⊂ U, 

 - If t1 Q t2 and t1→{U\T}t1’ then there exists t2’ such that t2→
+

U t2’ and 

t1’ Q t2’, 

 - If t1 Q t2 and t1→Tt1’ then there exists t2’ such that t2→
*
U t2’ and t1’ 

Q t2’ 

 

 Lemma 3. (Insertion). Let U, T be two reduction relations and Q a 

binary relation such that: 

 - T is insertable in U w.r.t. Q, 

 - T is SN, 

Then for every infinite sequence of U-reductions u beginning at the 

term t, and every T-reduction t→T t’ such that t’ Q t there exists an 

infinite sequence of U-reductions that has as its first step t→T t’. 

 The principal idea of insertion and insertion lemma is that we can 

add necessary reductions and preserve infinite sequences of reductions 

if they exist. This is useful for the proofs of strong normalization “ad 

absurdum”. In the proof of theorem 1 this lemma is used with η-

expansions as T, the whole βηιχ as U, and the relation of η-reduction 

inverse to η-expansion as Q. 



 Lemma 4. (Pre-adjusted adjournment.) Let R, S, T be reduction 

relations, Q a binary relation and P a predicate on terms such that: 

 - T⊂ R, 

 - R is SN, 

 - S is SN, 

 - T realizes P, 

 - S is adjournable w.r.t. R under condition P, 

 - T is insertable into RS w.r.t. Q. 

Then RS is SN. 

 This lemma is used in the setting similar to lemma 3, with P(t) 

meaning that the term t is in η-expanded form. T corresponds to η-

expansion. 

 These lemmas are sufficient to prove SN property. 

 The proof of CR property (confluence) is based on routine check of 

possible critical pairs. 

 The following example shows how the notion of copy may be used 

to define easily interesting data structure. 

 Example 4. In type theory the (easily defined) embeddings of Nat 

into Nat are used to define even and odd numbers. In the definition of 

even numbers 0 is mapped to 0, 1 to 2 etc., and in case of odd numbers 

0 is mapped to 1, 1 to 3... In fact, to make this definition “clean” the 

copies of Nat should be used. Let us note these copies by Nat’, Nat’’. 

Let E: Nat’→Nat and O: Nat’’→ Nat be corresponding embeddings. 

We have also Cp’: Nat→Nat’ and Cp’’: Nat→Nat’’ (there is no change 

of parameter, so there is no parameter f in Cp’, Cp’’). Combining E, O, 

Cp’ and Cp’’ we can now iterate the whole construction: 

 

 

                           E          Cp’         E 

        Nat  ←  Nat’ ←  Nat ← ... 

           Cp’’ O↑      Cp’↑        O↑ 

  → Nat → Nat’’      Nat← 

   ↑           ↑ Cp’’    ↑    

                →Nat 

                 ↑ 

and within this structure define all subtypes of Nat defined via 

divisibility by 2
n
. 

 

3.2 Algebraic Structures. 



 In this part we consider the extensions of reduction systems used to 

provide good representation of algebraic structures on finite types. 

 Finite set |n| = {1,..., n} will be represented by the type n = def 

µα(cn1:α,..., cnn:α) (of course many representations that differ only by 

the names of the constructors are possible). 

 To every function f: |n|→ |m| corresponds a term f:n→ m of the 

form  (|cmf(1),..., cmf(n) |) where m is µα(cm1:α,..., cmm:α). Note that the 

terms f are normal.  

 We considered two problems concerning finite types and terms f : 

(a) What categorical structure can be introduced on this calculus and (b) 

what ca be done to represent symmetric group using finite types and 

corresponding representation of permutations. 

 The difficulty in type theory as usual is that w.r.t. standard 

reductions one doesn’t for example have g(f r) =βηι (g o f) r for arbitrary 

term r. 

 Definition 14. We define υ-rewriting by  

 g(f r) →υ (g o f) r 

and υ-reduction as its contextual closure. 

 The υ-reduction is thus defined for all recursors in normal form 

representing the applications f: |n|→ |m|, g: |m|→ |p|. It is supposed, of 

course, that “externally” the functions f and g are known. 

 Theorem 2.  The βηιυ reduction is SN and CR. 

 The proof of this theorem uses essentially the same lemmas as in 

case of copy (the details may be found in [5], cf. also [6, 9]). 

  

 Categorical structure. As soon as the υ-reduction is integrated 

in the calculus, it becomes possible to define categorical structure on 

this calculus, in the following way:  

 - the objects are the types representing |n| for all n∈N (let us recall 

that there is infinitely many of them because the names of the 

constructors may be different); 

 - the arrows between n and m are the equivalence classes modulo 

βηιυ of the recursors f : n→m for every f: |n|→|m|. 

 

 One may consider idn,=def (|cn1,..., cnn |), one of many 

representations (associated with n ) of the identity map on |n|. Let us 

recall that one has also idn ≡ λx
n
.x . This term doesn’t belong obviously 

to the categorical structure described above. It may be noticed that the 

reduction of idn, to idn is not necessary for the categorical construction 

described above because it would lead us outside this categorical 



structure and, moreover, one already has f o idn ↔* f ↔* idn o f. This 

is a case when in certain categorical structures within λ-calculus the 

term chosen to represent identity is not necessarily of the form λx.x . 

 

 Interaction with the copies. The results concerning υ-reduction 

presented above didn’t take into account copies and χ-reduction. In fact 

when the χ-reduction is added, the identification of  idn and idn ≡ λxn
.x  

may be necessary, since with χ-reduction the following critical pair 

appears. Let us take Cp: n→n’ and Cp’:n’→n  (the copy map without 

change of parameter). We’ll have: 

idnx υ← Cp’(Cp x) →χ x 

To avoid non-confluence one can add the following new reduction rule. 

 Definition 14. ( ω-reduction) The ω–rewriting relation is defined 

by: 

 idnr→ω r  for every n∈ N and term r 

and ω–reduction relation is its contextual closure. 

 Theorem 3. The βηιυχ reduction is SN and CR.  

 

 Group structure. Now we consider only the case of f: |n|→|n| 

associated term representation f: n→n. The set of (equivalence classes 

of) these terms, in presence of υ-reduction, may be considered as a 

representation of symmetric group, i.e., the group of permutations of 

the set {1,..., n}. But the groups are often defined in mathematics using 

generators and relations, and it is natural to ask, if there is any 

connection between this definition and the notion of normal form used 

in lambda-calculus. The normal forms w.r.t. βηιυ−reduction have little 

to do with generators-and-relations representation of symmetric group. 

But instead of υ-reduction we may consider reductions going in 

opposite direction, i.e., “splitting” f into composition.  

 It is well known that every permutation f: |n|→|n| can be 

represented as a product of disjoint cycles. 

 More precisely, f is called cycle if there exists some subset {i1,..., 

ik}∈ {1,..., n} such that f(i1) = i2,..., f(ik-1) = ik, f(ik) = i1 and f(i) = i if 

i∉{i1,..., ik}. 

 Two cycles are disjoint if the corresponding sets {i1,..., ik} and 

{j1,..., jl} have no common elements. 

 Product in Sn is represented by functional composition of 

permutations. 



 If f: |n|→|n| then f = f1 o ... fm where f1,..., fm are disjoints cycles and 

the cycles that appear in the product are unique. 

 Product (composition) of disjoint cycles is commutative but it is 

possible to order cycles (for example, lexicographically) and to have for 

every f unique decomposition f = f1 o ... fm with f1≤... ≤ fm . This 

suggests to study the conversion f r → f1 ( ... (fm r)..) instead of →υ 

where f : |n| → |n|  and f1,..., fm are disjoints cycles of the unique 

decomposition of f.  

 Definition 15. The υ’-rewriting is defined by  

 f r → f1 ( ... (fm r)..) 

for every permutation f : |n|→ |n|, with n≥ 2, where f is decompose in 

m≥2 pairwise disjoint cycles. The υ’-reduction is defined as its 

contextual closure. 

 Theorem 4. βηιυ reduction is SN and CR. 

 (See [5], [9]) 

 

3.3 Functoriality of schemas. 

 In this part we consider most recent results obtained by Freiric 

Barral. These results concern more general categorical structures in 

lambda-calculus with inductive types. 

 When a schema of inductive type µ ≡ µα[in1:σ1,1÷j(1)→ α, ... inp: 

σp,1÷j(p) → α] is given, to everybody familiar with category theory it 

suggests the question of functoriality of this schema w. r. t. its 

parameters. Assume that for every choice of parameters the names of 

introduction operators are fixed. The choice of parameters may be 

limited in advance by some set of possible values.  

 In fact, since many categorical structures (with types as objects) 

were considered on the fragments of lambda-calculus, it may be the set 

of objects of one of such syntactic categories. 

 For example, it could be certain set of types of the form n.  

 It may be also that only some functions f: π→π’ are admitted (are 

considered as morphisms of the underlying category. 

 If we want to define a functor using the schema of inductive type, it 

is natural to take as its values on objects the types corresponding to the 

values of parameter. For simplicity we shall assume that only one 

occurrence of parameter is modified. 

 For example, we may consider 

 List(π) =def µα[nilπ:α,  consπ: π→α→α] 

(we added the index π to show that the names of introduction operators 

are different for different values of parameter). 



 Or we may consider 

 Ord =def µα[0ord(ν):α, succord(ν):α→α, limν: (ν→α)→α] 

where ν is taking only copies of Nat as values. 

 Notice that in the first case we have covariant occurrence of the 

parameter and in another contravariant. 

 The function Cp(f) may be suggested now as the value on 

morphism f: π→π’. Indeed, if we shall denote by µ(π), µ(π’) the types 

corresponding to the values π, π’  of parameter, we shall have Cp(f): 

µ(π) →µ(π’) for covariant occurrence and Cp(f): µ(π’) →µ(π) for the 

contravariant. 

 The problem will be that the equalities required in category theory: 

Cp(f) o Cp(g) = Cp(f o g) for  covariant occurrence and Cp(f) o Cp(g) = 

Cp(g o f) for contravariant, and Cp(idπ) = idµ(π) will not hold. It turns 

out that this problem can be solved by appropriate extension of the 

system of reductions. 

 Definition 16.  The θ-rewriting is defined by  

 Cp(g)(Cp(f) r)→θ Cp( (f o g)*) r 

in case of covariant occurrence of a parameter, and 

 Cp(g)(Cp(f) r)→θ Cp( (g o f)*) r 

in case of contravariant one. Here it is assumed that f, g act on the same 

occurrence of a parameter, and (f o g)* denotes the βηι-normal form of 

(f o g).  The θ-reduction is defined as its contextual closure. 

 The main reason to consider this reduction is to obtain new 

categorical structures from already defined ones together with a functor 

given by the schema of inductive type. It should be noted that in 

general one may have difficulties with the proof of SN and CR for the 

calculus extended by θ-reduction but since the underlying categorical 

structure doesn’t necessarily include all the functions f: π→π’ definable 

in our calculus it is natural to consider certain restrictions on the 

structure of term representing f. 

 Theorem 5. Let in the definition of θ-reduction the following 

additional constraint be satisfied: f and g should be of the form λxπ.x, 

of the form (| t1÷n |) (or expansions of such terms) where  t1÷n do not 

contain free variables. Then the βηιθ reduction is SN and CR. 

 The proof of this theorem is more complex than in previous cases, 

especially in the part SN. The proof uses again conditional adjournment 

(in principal case →θ of followed by →ι), but in addition we need to 

prove that in a special case β-reduction is inserable. (In general of 

course it is not, because, for example, when the term contains a redex 

of the form the term s can disappear because of β-reduction, and 



original infinite sequence may originate from s.) The inserability proof 

uses parallel construction of several partly defined insertion operators 

and the proof that at least one will indeed produce an infinite sequence 

of reductions if input sequence was infinite. This is used to obtain a 

contradiction with SN for βηι reduction. 

 The constraints we had to impose on the structure of f and g in θ-

reduction were necessary for the proof of confluence. 

 It should be noted that this variant of constraint is not the only 

possible constraint that will provide the “good behavior” of  extended 

system of reductions. The fact that there are other possibilities is 

demonstrated by the following example. 

 We may take as the only object of underlying category the object 

Nat and as morphisms the functions succ, succ o succ, ... , succ o succ 

... o succ: Nat→ Nat. If we shall restrict θ-reduction to the case when f 

and g are of this form only, the  βηιθ reduction will be SN and CR. 

 At the moment we work on more general description of possible 

constraints to be imposed on θ−reduction.  

 

4. Conclusion. 

 Probably one of the main reasons why the “Types” community 

didn’t yet study   actively the extensions of standard reduction systems 

is that very little success and a lot of technical difficulties was expected. 

There are some exceptions [10], and hopefully more and more. Another 

reason is that there is still too much separation between groups working 

on theoretical aspects of formal methods and their applications, and 

between different approaches. One may mention two European research 

projects: “Types” and “Calculemus”. While the people working on 

theoretical analysis of formal systems possess necessary methods and 

could prove useful innovative results, they are often satisfied with much 

less innovative solutions of standard problems. Within the class of 

problems we consider here it might be standard βη normalizability for 

slightly modified calculus. 

 The groups working on practical aspects and implementation of 

theorem provers, proof assistants and alike, leave fundamental 

questions unanswered, or provide makeshift answers that, in long term, 

cannot satisfy competent user. One example cited above is the problem 

of extensional versus intensional equality. It is difficult to imagine a 

user, if only this user does not consider the answer provided by 

“scientifically approved” proof assistant as an oracle, who would accept 

that, for example, that the multiplication by 2 followed by (integer) 



division by 2 does not define identity on Nat. But with respect to 

intentional equality is not identity function.  

 Our methods permit to introduce simple extension of reduction 

system where it will be identity function. 

 In general the properties of extensions of reduction systems are not 

always easily proved, and there is many cases when they do not have 

good properties with respect to reduction at all. 

 One example “close at hand” would be the isomorphism between 

Nat and Nat × Nat. It holds extensionally because Nat × Nat can be 

enumerated, but the attempt to add “supporting” reductions, following 

χ-reduction as a model, fails (one doesn’t obtain SN and CR system). 

 The point is that in many cases extensions with good properties can 

be successfully obtained. Moreover, this is true for some cases that are 

conceptually important, as with copies.  

 One may note that the Cp(f) permits to obtain new isomorphisms 

from already existing. The isomorphisms already have important role in 

applications, for example, for invertible transformations of data, so 

called “middleware”, data search etc. 

 The same potential to generate new categorical structures from 

already existing within lambda-calculus has the theorem about 

functoriality of the schemas of inductive types w.r.t their parameters in 

an extension of standard reduction system that still has good properties, 

i.e., is convergent. 
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