
An n log n Algorithm forOnline BDD Re�nement?Nils KlarlundAT&T Labs Research600 Mountain Ave.Murray Hill, NJ 07974klarlund@research.att.comAbstract. Binary Decision Diagrams are in widespread use in veri�ca-tion systems for the canonical representation of �nite functions. Herewe consider multi-valued BDDs, which represent functions of the form' : B� ! L, where L is a �nite set of leaves.We study a rather natural online BDD re�nement problem: a partitionof the leaves of several shared BDDs is gradually re�ned, and the equiv-alence of the BDDs under the current partition must be maintained ina discriminator table. We show that it can be solved in O(n log n) if nbounds both the size of the BDDs and the total size of update operations.Our algorithm is based on an understanding of BDDs as the �xed pointsof an operator that in each step splits and gathers nodes.We apply our algorithm to show that automata with BDD-representedtransition functions can be minimized in time O(n � log n), where n isthe total number of BDD nodes representing the automaton. This re-sult is not an instance of Hopcroft's classical algorithm for automatonminimization, which breaks down for BDDs because of their path com-pression property.1 IntroductionBinary Decision Diagrams [3] form the backbone of many symbolic methods forveri�cation of hardware and software. BDDs are essentially acyclic automatawhose state spaces are shrunk by a technique called path compression. Moreprecisely, a BDD is an acyclic, rooted, directed graph that represents a function' : B� ! L from � Boolean variables to a �nite codomain L of leaves. (TheseBDDs are sometimes called Multi-Terminal BDDs to distinguish them from two-terminal BDDs that denote Boolean functions.)The ProblemWe consider the following problem, which is at the heart of the minimiza-tion problem for BDD-represented automata. We are given several functions? This work was carried out while the author was with BRICS, Department of Com-puter Science, Aarhus, Denmark. An abbreviated version of this article appeared inComputer Aided Veri�cation, 9th International Conference, '97, LNCS ???

�i : B� ! L. They can be represented by a shared BDD, which is an acyclic,directed graph with a distinguished root for each i, where each root induces asubgraph that constitutes a BDD for �i. Now given a partition of the leaves (orcodomain), we would like to calculate a function discriminator, which associatesa discriminator value R(i) to each i such that R(i) = R(j) if and only �i and�j are equivalent under the leaf partition, i.e., if for all u 2 B , �i(u) is equiv-alent to �j(u). Note that the leaf partition itself can also be represented by adiscriminator D such that v and v0 are equivalent if and only if D(v) = D(v0).The online version of this problem is to maintain the function discriminatorafter an online operation speci�es an update, which is a further re�nement of thecurrent leaf partition. Initially, the leaf partition consists of only one equivalenceclass, i.e., all functions �i are equivalent and D and R are a constant functions.A simple algorithm for the online BDD re�nement problem can be basedon the linear time reduction of BDDs [12]: after each re�nement operation, thewhole BDD structure can be reduced to a canonical BDD for the functions thatmap into equivalence classes. This strategy implies that each node is touchedpotentially as many times as the number of operations. Thus an O(n2) algorithmarises, if we assume n online operations.Our SolutionIn this paper, we formulate a more e�cient algorithm, which runs in timeO(nmin(k; logn) + k), where n is the number of nodes in the BDDs and kis the total size of all update operations. Thus, if n also bounds k, then thealgorithm is O(n logn).Unfortunately, no simple solution seems to achieve O(n logn). Instead, ouranalysis proceeds roughly as follows.For BDDs, the Split operation of partition re�nement algorithms such as [11]does not directly yield a partition re�ning the current one. Rather, the result ofa split operation, which we call a decision partition must be followed by a Growoperation that gathers all nodes equivalent under path compression. We showthat the canonical BDD representation of � can be obtained as the �xed pointof Grow � Split (even though this composed operator is not monotone). Thischaracterization is not surprising, since usual BDD algorithms are also able tocalculate a canonical representation in one sweep.The Grow operation cannot be used with Hopcroft's \process the lesser half"strategy [8], since all decision blocks must be grown as opposed to the situationin traditional partition re�nement algorithms, where the largest blocks createdcan be ignored.Fortunately, the canonical BDD can be calculated under weaker assumptionsabout the �xed point operator. The Grow operation can be weakened to anoperation, which we call CGrow since it allows certain blocks resulting fromthe normal Grow operation to be coalesced. As a result, information is lost.Curiously, it turns out that if a partition is a �xed point under Split and CGrow,then it is also a �xed point under Split and Grow.2

We use this property in our online algorithm to discard any large block thatarises during the iteration of the �xed point operator. The block is discarded bybeing coalesced with another, smaller block, while the expense of calculating itcan be attributed to a third block known also to be small.Consequences and Comparison to Previous WorkIt has been known for a long time [8] that deterministic �nite-state automatacan be minimized in time O(m � n logn), where n is the number of states andm is the size of the input alphabet. A recent variation on the standard methodyields a similar bound [2].BDDs allow automata with n states and 2n letters|each inducing a di�erentbehavior in the automaton|to be represented by graphs of polynomial sizein n; see [5, 7], where also O(n2) minimization algorithms are presented. Inthese representations, the BDD leaves designate states; each state is explicitlyrepresented; and the state is associated with a BDD node that represents thetransition function from it.(Another BDD-representation used much in practice codes the old state,the new state, and the letter into a vector of Booleans|allowing the transitionfunction to be represented by a single Boolean-valued BDD. Since there is nocanonical encoding of states, the minimization problem for this representationis not immediately well-de�ned.)The automaton representation in [5] allows symbolic calculations involvinginductive de�nitions of sequential circuits, whereas the representation in [7] isthe backbone of a practical implementation of Monadic Second-order Logic onStrings. For a comparison of these related representations, see [1].The O(n2) minimization algorithms are a potential bottleneck for the use ofBDD represented automata. In the Mona project at Aarhus (http:://www.brics.dk/�klarlund/MonaFido), we have observed that for big automata (with thou-sands of states), the time to minimize using the straightforward algorithm is anorder of magnitude larger than the time spent in constructing the automata.In this paper, we show that our online BDD re�nement algorithm allowsminimization to be carried out in only O(n�logn) steps, where n is the size of therepresentation. To our knowledge, the only other algorithm for large alphabetsthat reaches a similar bound is that of [4], where incompletely speci�ed transitionfunctions are considered. The compression possible with the BDD representationis exponentially greater.It should also be noted that when automata are represented with BDDs thatare not path compressed anO(n logn) algorithm follows easily by considering theautomaton as working on words over B . Path compression, however, seems to beof major practical signi�cance although the asymptotic gain is only slight [10].Finally, we mention that online minimization of automata on large, implic-itly represented state spaces (not alphabets) have been considered in [9]. Onlineminimization here refers to incremental exploration of the state space. This al-gorithm bears a super�cial resemblance to ours in that it also alternates betweenminimal and maximal �xed point iterations.3

OverviewIn Section 2, we de�ne the online BDD re�nement problem. We develop atheoretical framework for understanding BDDs as �xed points in Section 3. Weshow that a weak composed operator su�ces for generating the minimum �xedpoint. In Section 4, we provide a description of our online algorithm, which isbased on the weak operator. Section 5 discusses the application of our algorithmto automaton minimization.2 Online BDD Re�nementNotationAssume we are given a set x0; x1; : : : ; x��1 of Boolean variables. A truth assign-ment to these variables is a vector u 2 B� . An assignment pre�x u up to i is atruth assignment to variables x0; : : :xi. A Binary Decision Diagram or BDD 'is a rooted, directed graph with the following properties. The root is named ^'.Each node v in ' is either an internal node or a leaf. An internal node possessesan index denoted v:i. Also, it contains edges v � 0, which points to a node calledthe low successor of v, and v � 1, which points to the high successor. The indexof a successor of v is always greater than the index of v. A leaf has no successorsand no index. Let the set of leaves be L. The graph ' denotes a function, alsocalled ', from B� ! L. To calculate '(x), one starts at the root. If the root isa leaf, then the value '(x) is the root; otherwise, let i be the index of the root.If xi is 1 then go to the high successor, and if xi is 0 go to the low successor.Continue in this way until a leaf is reached. This leaf is the value of '(x). (Sincethere may be jumps greater than one in the index of some of the variables, someof the values in the assignment may be irrelevant.) In general, if v is a node ofindex i and u is a value assignment to xi; : : : ; xj, then v � u denotes the nodereached by following u from v.The BDD ' de�nes a partition �' of assignment pre�xes given by u �' u0if ^' � u = ^' �u0.We shall consider the case where the leaves are used to di�erentiate between�ner and �ner partitions of B� . The partition is given by a leaf discriminatorD : L ! N. Two assignments x and y are then equivalent if D�'(x) = D�'(y).BDDs may also be shared. For example, we use ' = '0; � � � ; 'n�1 to denotea directed graph with roots ^'i such that the nodes reachable from each rootconstitute a BDD. If D is a discriminator for the leaves, then we say that R :[n]! N is a function discriminator for D �' if D �'i = D �'j i� R(i) = R(j).Note that if D is a constant discriminator (i.e. if D is a constant function),then all D � 'i are equivalent.The ProblemThe BDD online re�nement problem is to maintain a function discriminator RforD�' when D is updated piecemeal. Each update operation speci�es a partial4

mapping E : L ! N, which de�nes the change to D. Thus, ifD0(v) = �D(v) if v =2 domain(E)E(v) if v 2 domain(E)then the new value of D is D0. In order for the new D to specify a partitionre�ning the one given by the current D, we require that the range of E is disjointfrom the range of the current D. The time requirements of our algorithm willprevent it from updating all values R(i) with each iteration. Thus, we requireas an additional output after each update operation the list of i for which R(i)has changed. The desired functionality can be summarized as follows.BDD Online Re�nement ProblemInput: n shared BDDs ' with leaves L and discriminator D,which is initially a constant function.Maintained : A functional discriminator R of length n.Update: A partial mappingE : L ! N such that range(E) doesnot intersect the current leaf discriminator. The leaf discrimina-tor D is updated according to E as explained above. After eachupdate operation, the contents of R discriminates D �'. The sizeof operation E is the size of domain(E).Output: A list of numbers i for which R(i) has changed.In Section 4, we prove:Theorem 1 Multiple BDD Online Re�nement can be solved in timeO(nmin(k;logn) + k), where n is the number of nodes in the BDDs and k is the total sizeof all operations. Thus, if n also bounds k, then the algorithm is O(n logn).3 A Theoretical Framework for BDDsThis section develops a theory of how BDDs arise as �xed points. The maininsight is the formulation of composed operators that re�ne partitions and thatcarry out path compression. We show that canonical BDDs arise as �xed pointsof such operators; in particular, a weak operator is exhibited that calculates theproper �xed point even as it seemingly loses information.The Canonical BDD We de�ne the canonical BDD for function : B� ! D,where D is �nite, as follows. A partial assignment u from i to j is a truthassignment to variables xi; : : : ; xj. The partial assignment u may be narrowedto a partial assignment from i0 to j0, where i � i0 � j0 � j. It is denoted u[i0::j0].If only a pre�x of u up to i0 � 1 is cut o�, we write u[i0::].Given an assignment pre�x u up to i, an extension v of u up to j is apartial assignment from i + 1 to j. A full extension is one that assigns up to��1. For any assignment pre�x u up to i, we may consider the residue function u : v0 7! (uv0), where v0 is a full extension. De�ne u � u0 if u = u0 . The5

equivalence class of u is denoted [u] . In particular, if u � u0 then u and u0are assignment pre�xes up to some i, which is called the index of the equivalenceclass [u] = [u0] .The equivalence classes of � correspond to the states of a canonical automa-ton that upon reading a value assignment is in a state designating the value of . The path compression of BDDs can now be understood as a least �xed pointcalculation that involves coalescing equivalence classes. If [u0] = [u1] , then[u] and [u0] = [u1] are coalesced. Note that if also [v0] = [v1] for somev, then this identity still holds after [u] and [u0] = [u1] are coalesced. Thusthere is a unique least �xed point reached by repeatedly coalescing � classes.The equivalence classes of the resulting partition � is the canonical BDD for .Each such new equivalence class M consists of a number of equivalence classesof � . When M contains internal nodes, the index M:i of M is de�ned as thehighest index of an old class. It can be seen that there is at most one old classinM of highest index. The high successor M:1, de�ned if the index is less than�, is the equivalence class of u � 1, where u is a pre�x of maximal length in M .The low successor is de�ned similarly.Lemma 1 Consider i and assignment pre�x u up to j < i. The following areequivalent:1. The residue function u�v is the same function for all extensions v up to i.2. u � u � v for all extensions v up to i.3. u � u � v for some extension v up to i.Proof By induction on the length of v. 2The equivalence �', which is derived from the BDD viewed as a graph,re�nes the equivalence �', which is derived from the function represented bythe BDD.Lemma 2 �' re�nes �'.Proof Assume u �' u0. If u and u0 have the same length, then u �' u0and thus u �' u0. Otherwise, if u assigns up to i and u0 up to j, with i < j,then the pre�x u00 of u0 up to i is also equivalent (modulo �') to u. Thus, bythe previous case, u �' u00. Also, all extensions v up to j make uv and u00vequivalent (modulo �') to u. In particular, all residue functions �u00v are thesame, hence by the preceding lemma, u00 �' u00v, where we in particular maychoose v to be the extension up to j such that u00v = u0. So, u00 �' u0, andtogether with u �' u00 established above, we conclude that u �' u0. 2Partitions of BDD Nodes A partition P of a BDD ' is a set of non-empty,disjoint subsets or blocks of nodes, whose union is the set of all nodes. Alter-natively, P may be viewed as an equivalence relation �P de�ned by v �P v0 i�9B 2 P : v; v0 2 B. Since any assignment pre�x u leads to a unique node ';�Pinduces an equivalence relation on assignment pre�xes that is also denoted �P .6

To simplify matters, we assume in the following that all partitions are overthe same BDD '. Also for simplicity, we shall often write P for �P .For a partition Q, we may we de�ne a discriminator labeling D of the leavesof ' such that for leaves v and v0, D(v) = D(v0) i� v �Q v0. The canonical BDDfor the function D � � is denoted �Q. Note that this BDD is dependent onlyon the partition of the leaves de�ned by Q|not the partition of internal nodes.These distinctions will be further elaborated on in the next section. Note herethat the partition of internal nodes may not even induce a BDD on equivalenceclasses. We usually regard the canonical BDD �Q as a partition of the nodes of'.Decision Partitions An important part of our algorithm is to work with par-titions that become re�nements of canonical partitions only after certain nodeshave been moved around.A node v is a decision node if it is a leaf or it has at least one successoroutside its own block. Any other node is redundant. A decision partitionM of apartition Q speci�es a partition of the decision nodes of each block B in Q intodecision blocks such that any decision block M either contains internal nodes ofthe same index or contains only leaves. If for each block B, all decision nodesof B are gathered in just one decision block, then M is said to be the stabledecision partition.The Split Operator We say that the behavior of an internal node v withrespect to a partition Q is the pair ([v � 0]Q; [v � 1]Q); the behavior of a leaf v isjust itself.Given Q, we can form a decision partition M = Split(Q) as follows. Forevery block B, put all decision nodes v with the same index and the samebehavior in the same decision block. All leaves in B are also put into a decisionblock. Formally,M is de�ned asfM 6= ; j 9B;B0; B1 2M : 9i :M = fv j v 2 B and v is a leafg orM = fv j v:i = i and v 2 B; v0 2 B0; and v1 2 B1ggPartition Q is stable if Split(Q) is the stable decision partition.Note that if Q is stable, then both successors of any internal decision nodeare outside its own block|for if some block B contained a decision node v withonly one successor not in B, then by following the other successor, we wouldreach another node in B (which may be a decision node or a redundant node);by continuing, we would eventually reach a decision node in B that is either aleaf or both of whose successors are outside B and in both cases, this node wouldhave a di�erent behavior than that of v, and that would contradict that Q isstable.Note also that �Q is stable. 7

The Grow Operator Let M be a decision partition for a partition Q. Forany node v in a block B and any extension u, there will be a �rst decisionnode w in some decision block M along the path induced by following nodesfrom v according to u. In this case, we say that extension u from v hits M . Inparticular, if v 2 M , then any extension hits M , since v is the �rst node in apath.If M is a decision block of B, then its closure, denoted Cl(Q;M), is theset of nodes in B all of whose extensions hit M . This set can also be de�nedinductively by growing the decision block: initially, let Cl(Q;M) be the decisionblock and add any node both of whose successors are in Cl(Q;M) until thereare no more such nodes. Note that if M and M 0 are di�erent decision blocks,then Cl(Q;M) and Cl(Q;M 0) are disjoint.For each block B, let the remainder, denoted Rem(Q;M; B), be de�ned asB minus all nodes in Cl(M), where M is contained in B, i.e. Rem(Q;M; B) =BnSM2M;M�B C l(Q;M). Then, all sets Cl(Q;M);M 2 M, together withRem(Q;M; B); B 2 Q, forma partition, calledGrow(Q;M). Since, Grow(Q;M)is gotten from Q by carving out closures of decision blocks, Grow(Q;M) re�nesQ. Note that Q is stable if and only if it is a �xed point under Grow � Split .Sometimes it is convenient to assume that Split(Q) really stands for (Q;Split(Q)). Then, we refer to the composed operator Grow � Split(Q) as anabbreviation of Grow(Q; Split(Q)).It is not necessarily the case that if P re�nes Q, then Grow�Split(P) re�nesGrow � Split(Q). This non-monotonicity can be illustrated by the followingexample, where the original partitions are shown in solid lines and the additionalsubdivisions introduced by the Grow � Split operator are shown in dotted lines:
Grow � Split(Q) Grow � Split(P)Q and P andHere, P re�nes Q, but the two top-most nodes are equivalent in Grow�Split(P),but not in Grow � Split(Q).Lemma 3 Let P be a stable partition and let v �P v0, where v is of index iand v0 of index j with i � j. Then for any extension u from v, v �u �P v0 �u[j::].Proof Let v; v0 2 B 2 P. We proceed by an inductive argument, where weassume that leaves have index �. If the decision nodes of the single decisionblock in B are leaves, then all extensions from nodes in B remain in B, sov � u �P v0 � u[j::]. 8

Otherwise, all decision nodes of B have the same index and have successorsthat point to blocks below B, so we assume by induction that the Lemma holdsfor all blocks below B. We must now show that it holds for v; v0 in B. Nowthere is an h such that v �u[::h] and v0 �u[j::h] are the �rst nodes outside B fromv and v0 along u and u[j::] (unless both v � u and v0 � u[j::] are in B, which is atrivial case). But by assumption that P is stablev � u[::h] �P v0 � u[j::h]:Thus, by inductive hypothesisv � u = v � u[::h] � u[h+ 1::] �P v0 �u[j::h] � u[h+ 1::] = v0 � u[j::]: 2Let M be a decision partition of Q. We say that P re�nes M if whenever vand v0 in are di�erent decision blocks of M, they are in di�erent blocks of P.Lemma 4 Let stable P re�ne Q and M, where M is a decision partition of Q.Then P re�nes Grow(Q;M).Proof Let Q0 = Grow (Q;M). We consider v; v0 2 B 2 Q with v �P v0, andwe must prove that v �Q0 v0. We establish this by proving that any extensionhits the same decision block inM whether followed from v or v0; for if this is thecase, then v and v0 belong to the same closure or they are both in the remainderof B.Assume now that i � j where i = v:i and j = v:i. Consider an extensionu from v such that v � u is the �rst decision node met along u. There are nowthree cases.Case 1. The node v � u is a leaf. Then v0 � u[j::] is a leaf. If they are indi�erent blocks ofM, then|since P re�nes M |they are in di�erent blocks ofP, but that contradicts Lemma 3.Case 2. No decision node is encountered along v0 � u[j::] and both v � u andv0 � u[j::] are not leaves. Now, since v � u is a decision node, either v � u � 0 orv � u � 1 is not in B. Thus, there is an extension u0 such that v � u � u0 is not inB while v0 � u[j::]u0 is the �rst decision node in B encountered from v0. Thusv �u �u0 and v0 � (u �u0)[j::] are in di�erent blocks of Q, which is a contradictionfor the same reason as above.Case 3. A decision node is encountered along v0 �u[j::] and v �u and v0 � [j::]are not leaves. Then reasoning similar to that of Case 2 applies. 2Lemma 5 If stable P re�nes Q, then P re�nes Split(Q).Proof There are three cases to consider.Case 1. Internal nodes v and v0 equivalent in Q can become inequivalent inSplit(Q) only when v � 0 and v0 � 0 or v � 1 and v0 � 1 are inequivalent in Q. But9

then v and v0 cannot be equivalent in P since P is assumed to be stable andassumed to re�ne Q.Case 2. An internal decision node v in Q and a leaf v0 cannot be equivalentin P, since P is stable.Case 3. Two leaves v and v0 become inequivalent in Split(Q) only if they arealready inequivalent in Q. 2Proposition 1 If stable P re�nes Q, then P re�nes Grow � Split(Q).Proof By Lemma 4 and by Lemma 5. 2Proposition 2 If Q = Grow � Split(Q), then Q re�nes �Q.Proof For v; v0 2 B 2 Q, we must prove that v �Q v0. We proceed by induction.If v and v0 are leaves, then certainly v �Q v0.If v and v0 are decision nodes of B, then by assumption that Q = Grow �Split(Q), they have the same index and behave similarly with respect to hittinglower classes of Q along their 0 and 1 successor. By inductive assumption, lowerclasses are contained in �Q classes. Thus, the mappings w 7! [v � w]�Q andw 7! [v0 �w]�Q are the same and, consequently, v �Q v0.If v is a redundant node of B at level j and all decision nodes of B are ofindex i in a block M of �Q, then w 7! [v � u � w]�Q is the same function forall extensions from v up to i, since v is contained in the closure of the decisionnodes of B by assumption that Q = Grow�Split(Q). Thus v 2M by Lemma 1.2Proposition 3 If �Q re�nes Q and if Q0 = (Grow � Split)i(Q) is stable, thenQ0 is �Q.Proof By Proposition 2, Q0 re�nes �Q. By repeated applications of Proposi-tion 1, it can be seen that �Q re�nes Q0, since �Q is stable. 2The CGrow Operator The CGrow operator is de�ned as Grow(Q;M) exceptthat for each block B of Q, Rem(Q;M; B) may or may not be coalesced withsome designated C l(Q;M), where M is a decision block in B. Thus the oper-ation is not fully speci�ed, but whether coalescing takes place or not and withwhich C l(Q;M) will be inconsequential for establishing the following generalproperties. Note that Grow � Split(Q) re�nes CGrow � Split(Q). Even thoughinformation is dropped by CGrow , a �xed point involving CGrow is also a �xedpoint involving Grow:Proposition 4 If CGrow � Split(Q) = Q, then Grow � Split(Q) = Q.Proof Assume CGrow � Split(Q) = Q. Let M = Split(Q). We prove thatfor each B 2 Q, Rem(Q;M; B) is empty. For a contradiction, assume thatv 2 Rem(Q;M; B). Then there are at least two decision blocks of M in B.10

Therefore, there is at least one decision block M such that C l(Q;M) is notcoalesced with Rem(Q;M; B). But this contradicts that CGrow�Split(Q) = Q.Since all remainder sets are empty, the e�ect of CGrow is the same as thatof Grow on Split(Q). Thus, Grow � Split(Q) = Q. 2Theorem 2 If �Q re�nes Q and if Q0 = (CGrow �Split)i(Q) is stable, then Q0is �Q.Proof By Proposition 1, �Q re�nes Grow � Split(Q), which re�nes CGrow �Split(Q). Repeated applications of Proposition 1 show that �Q re�nes Q0.On the other hand, Q0 is a �xed point for Grow � Split by the precedingProposition. So Q0 re�nes �Q by Proposition 2. 2Our concept of leaf partition can then be understood as a decision partitionE of the current canonical partition Q. The only non-trivial decision blocks ofa leaf partition are those that contain leaves. A canonical equivalence relation�E is de�ned as before for �Q.Theorem 2 then can be formulated:Theorem 20 If �E re�nes Q and if Q0 = CGrow � (Split � CGrow)i(Q; E) isstable, then Q0 is the canonical partition �E .4 Online AlgorithmThe online problem in Section 2 can be solved by maintaining the canonicalpartition by means of a node discriminator for all nodes, not only the roots.In this way, we may focus on the re�nement problem for a single BDD, sincemultiple BDDs can be embedded within a single one by introducing dummyvariables near the root. The modi�ed problem is:Single BDD Online Re�nement ProblemInput: A BDD ' with leaves L and constant discriminator D.Maintained : For each node v, the discriminator value D(v) ismaintained so that D expresses the canonical partition �E .Update: A partial mapping E : L ! N such that range(E) \range(D) = fg. E and the current partition of leaves determinea leaf partition E .Output: A list of nodes for which D(v) has changed.As an example, consider the BDD in Figure 1. The leaf partition at this stagehas been re�ned into two decision blocks. The canonical partition with respectto this decision partition is indicated by dotted lines. An update operation Emight split the two leaves in the left most block, and as a result, the four nodesin the left, bottom corner would each become a singleton equivalence class.The basic problem encountered when trying to construct a fast algorithmis that after nodes have been split, it is necessary to calculate equivalence un-der path compression|corresponding to our notion of growing decision blocks.11

11x1x3x2 10 1x0 1 00 10 100 010 0Figure 1. A canonical BDDThere is no evident way of carrying out the grow phase, which must proceedbottom-up, without touching nodes more than �(logn) times. Our notion ofcoalesced growth opens an escape hatch that allows the process to be halted atcertain critical moments.Our algorithm works as follows. The canonical partition �E induced bythe leaf partition E re�nes the current partition Q expressed by D. Therefore,according to Theorem 20, we can apply the combined operator Split � CGrowuntil a new �xed point Q0 is reached. Then, Q0 is the canonical partition �E .To make this abstract description into an algorithm, we must choose datastructures and explain how the split and grow operations are implemented. Wealso must explain how we choose the coalescing of blocks in CGrow .Each discriminator value d represents a block that we denote by d. Wemaintain a doubly-linked list L(d) of all v in d. A decision partition is speci�edfor a block dold by explicit decision blocks and a implicit decision block. They arecarved out of the block dold as follows. Each explicit decision block is representedby a discriminator value d, and all nodes in the decision block d are placed inthe list L(d), which is carved out of L(dold). Later, when the decision blocksare grown, these discriminator values will denote their closures. In addition, theimplicit decision block consists of all decision nodes in the block not appearingin an explicit decision block. The algorithm will in a gradual fashion convertthe implicit decision nodes to explicit ones carrying some distinct discriminatorvalue dimplicit reserved for the explicit version of the implicit block.The algorithm uses a mapping new(dold) that records the set of discriminatorvalues for the decision blocks in dold.Initially, we call the CGrow algorithm with decision blocks of leaves and newinitialized according to E.The CGrow phase is implemented for each decision block L(d) by adding thenodes in L(dold) for which both successors are already in L(d); such nodes areremoved from L(dold). To locate nodes that should be considered for inclusion12

in a closure, we assume that the BDD is equipped with a backwards pointerstructure such that the parents of any node can be sequentially accessed. Thisprocess of exploring parents is done in a tightly controlled manner according tothe sizes of the lists L(d) for d 2 new (dold). When a parent has been exploredfrom both the left and right successor, and both are in the same closure, then theparent is moved into this closure as well. The exploration of a closure �nisheswhen all parents of all nodes in the closure have been explored.The CGrow phase returns a list of all nodes possessing a successor whosediscriminator has changed. These nodes are the explicit decision nodes of thenext iteration.The Split algorithm calculates the new discriminator of the nodes in this listaccording to their behavior. It also calculates the value of new .Main IdeaThe main idea behind the CGrow phase is that all un�nished closures are grownin parallel steps, where each step consists of exploring yet another parent ofa node in the closure until either (a) a closure becomes too big, say half thesize of dold, or (b) until only one closure is un�nished or (c) until all closuresare �nished. In case (a) and (b), the closure in question is coalesced with theremainder by moving nodes back to dold. (If the conversion of implicit decisionnodes is not yet �nished, the step for the implicit block is simply to convertanother node to Ldimplicit . When all nodes have been converted, this decisionblock is treated as an ordinary one.) In case (a), all remaining closures are then�nished and they will all be small since a big one already was found. In case (b),all closures, possibly except the last one (if it was �nished), will by the absenceof the condition in case (a) be small.In case (a), the work involved in building the aborted closure can be chargedto a small, �nished closure. For this argument to be correct, it is crucial that thework done is the same (to within a constant factor) for all the closures grown inparallel.In case (b), there may be no small, �nished closure to charge the wasted workto. This situation occurs when there is only one decision block to begin with.In this case, the work involved will be proportional to the size of the decisionblock, and it can be assumed to be part of the work involved in building thedecision block. The algorithm makes sure that the original discriminating valuedold of the whole block is maintained despite a possible new value assigned tothe decision block. In this way, only blocks that are really split may result infurther splitting.In case (c), all blocks will be small. The work done in building a closure isnot proportional to the size of the closure, since each parallel step consists ofexploring a parent (of which there may be unboundedly many). But each parenthas only two successors, and so, the work of visiting the parent can be chargedto the closure of the child from which it is explored (unless the work is attributedto another block as a result of the abandonment of a closure calculation). Thus,every time a parent is explored from the same successor, it will be done when13

the resulting closure the successor resides in is at most half as big as the lasttime.Detailed DescriptionSplit(E) =new := [D(v) 7! fg j v 2 domain(E)] ;for all v in domain(E) dodold := D(v);dnew := E(v)move v from L(dold) to L(dnew);D(v) := dnew ;new(d) := new(dold) [fdnewg;CGrow (new); Figure 2. Init.The di�erent stages of the algorithm are shown in Figures 2 to 5.Initially, the stage Init in Figure 2 moves the nodes mentioned in E to newlists containing the explicit decision blocks of the leaf partition. The partial map-ping new describes for each old block that was a�ected what the discriminatorvalues of the explicit decision blocks are.The CGrow stage in Figure 4, which is invoked next, considers all blocks thatcontain explicit decision blocks. If all blocks contain only the implicit block,that is, if domain(new) = fg, then the partition is stable and the algorithmterminates.As each block dold is considered, parents of nodes that change discriminatorare gathered in �. These nodes will form the explicit decision blocks of the nextiteration.When implicit decision nodes are converted to explicit ones, it is importantthat these nodes can be accessed in constant time so that all parallel steps takethe same time to within a constant factor. To do this, we let the algorithmmaintain the list invariant that all decision nodes in a block d are in the frontof the list Ld. Thus, the remaining nodes in Ld are redundant nodes.Within CGrow, the lists that represent closures are used in a queue-likemanner: the exploration of parents start from the �rst node in the list, and whenthese parents have been processed, parents of the second node are explored,and so on. New nodes in the closure are added to the end. These nodes areredundant, so the list invariant is maintained.Some highlights of the calculations in Figure 4 are:l. 3 The total size oldsize of dold is calculated by adding together the sizes ofthe explicit decision blocks and of what remains in Ldold . (Sizes of lists14

CGrow (new) =1. � := fg;2. for each dold in domain(new)3. oldsize := jL(dold)j+�d2implicit(dold)jL(d)j;4. dimplicit := a new discriminating value;5. current:= fdimplicitg [new (dold);6. halfsize found := false;7. �nished dec nodes := false;8. while (jcurrentj � 2 and not halfsize found)9. or (jcurrentj � 1 and halfsize found) do10. for each d in current do11. if d = dimplicit then12. if not �nished dec nodes then13. if next node v in L(dold) is a decision node then14. move v to L(dimplicit)15. else16. �nished dec nodes := true;17. if d 6= dimplicit or �nished dec nodes then18. select new parent(d; vd; wd);19. if wd is de�ned then20. if D(wd �0) = d and D(wd �1) = d then21. move wd to end of L(d);22. if L(d) � oldsize=2 then (condition (a))23. move L(d) nodes L(dold);24. current:= currentnfdg;25. halfsize found := true;26. else27. current:= currentnfdg;28. if not halfsize found and jcurrentj = 1 then (condition (b))29. let d be such that fdg = current;30. move L(d) nodes L(dold);31. for each d 2 new(dold) [fdimplicitg and each vd in L(d) do32. for each wd in P (vd)33. if D(wd) 6= d then34. � := �+ fwdg;35. if Dwd = dold then36. move wd to front of L(dold);37. if � 6= fg then38. Split(�); Figure 3. CGrow.15

Select new parent(d; vd; wd)=if vd is not de�ned and L(d) is not empty thenvd := �rst node in L(d);if wd is not de�ned thenwd := �rst node in P (vd);else if wd is not last node in P (vd) thenwd := next node in P (vd);else if vd is not last node in L(d)vd := next node in L(d);wd := �rst node in P (vd);else wd := unde�ned;Figure 4. Select new parent.can be maintained explicitly so that this calculation can be done in timeproportional to the number of explicit decision blocks.)l. 5-6 The growing of closures is subject to the conditions (a), (b), and (c).Condition (a) is denoted by a
ag halfsize found . When it has occurred,the remaining blocks must be �nished. The set current consists of allthe closures that are not yet �nished, and it is used to calculate whether(b) has occurred. Initially, it contains all the discriminators of explicitdecision blocks, including the yet unconstructed explicit version of theimplicit decision block.l. 7 When all implicit decision nodes have been converted, the
ag �nisheddec nodes is set.l. 8-31 This loop carries out the parallel growing of closures as described inthe informal discussion above. The current node considered in the listL(d) is vd and the current parent under exploration is wd. The parentnodes are explored according to Figure 4. Note that when coalescingthe remainder of dold with an un�nished closure (in l. 22-25 or l. 29-30),the algorithm moves closure nodes back to Ldold . We here assume thatredundant nodes are moved to the end of Ldold and that decision nodesare moved to the front so that the invariant is maintained.l. 31-36 Decision nodes outside of dold may behave di�erently due to the changesto dold . Also, there may be redundant nodes inside dold that have turnedto decision nodes. Thus, the parents of all nodes that have changeddiscriminator are accumulated in � for treatment in the Split phase. Inaddition, parents inside dold that are now decision nodes are moved tothe beginning of dold so as to preserve the list invariant. The time spentin this part of the algorithm is proportional to the work already done16

in constructing the �nished closures, and can be ignored for complexityanalysis.The Split operation in Figure 5 is similar to the Init operation. It uses aperfect hash function h that is assumed not to collide with any previous dis-criminator value.Split(�) =new := [D(v) 7! ; j v 2 �] ;for all v in � dodold := D(v);dnew := h(v:i;D(v � 0); D(v � 1))move v from L(dold) to L(dnew);D(v) := dnew ;new(dold) := new(dold) [fdnewg;CGrow (new); Figure 5. Split.To help understanding the algorithm, let us consider an example where ablock B denoted by dold has been split according to a decision partition thathas placed all decision nodes of B into a list L(d). Thus new(dold) is fdg andthere are no decision nodes in L(dold). Before the �rst iteration, current hasbeen set to fdimplicit; dg. When dimplicit is selected to be grown, the algorithmdiscovers that there are no more decision nodes in L(dold), and the current nodevd cannot be de�ned, and as a result, dimplicit is removed from current. Whend is considered, the �rst node in L(d) is selected as vd and a �rst parent vd isselected as well. This parent may even be moved to L(d) if both of its successorsare in L(d). However, since current is now a singleton, there will be no moreiterations and the nodes in L(d) are moved to L(dold). Therefore, no parentsare thrown into � at the end of CGrow.To show that the algorithm terminates, it is su�cient to establish that when ablock has only one decision block, then the original discriminator is restored andno parents are placed in D. We have just analyzed this case above (it can be seenfrom the way new is constructed in Init and CGrow that if a block mentionedin new has only one decision block, then the decision block is explicit).To solve the BDD online problem, we also need to collect as output the nodeswhose discriminator change. We have not shown this code, which is trivial toadd.Complexity AnalysisThe total time spent initializing new before CGrow is called is O(k). The algo-rithm guarantees that any decision block that is fully grown is at most half the17

size of the containing block. Thus every time any current node or current parentis touched, then computation time is charged to a block, which is at most halfas big as the previous time. Thus the time spent on each node is O(logn). This�gure excludes time that is incurred when a block has only one decision block.In the case that the decision block is created during a Split phase, the time canbe charged to the creation of the decision block (since we have argued that nofurther calculations arise from such a block). In the case that the decision blockis created during initialization, the time (which is proportional to the length ofthe description of E pertaining to the block) can be attributed to the totallength of the input.Thus the total time is O(n logn+k). We do not achieve the nmin(k; logn)+k, unless we modify the algorithm: as long as the total size k of the updateoperations is less than logn, we use the straightforward method of reducingthe whole BDD with each update at a total cost of n � k. When k becomesgreater than logn, we use our online algorithm and initialize with the currentleaf partition.Theorem 10 The Single BDDOnline Problem can be solved in timeO(nmin(k;logn) + k), where n is the number of nodes in the BDDs and k is the total sizeof all operations. Thus, if n also bounds k, then the algorithm is O(n logn).Theorem 1 follows from Theorem 10.Avoiding Hashing In the Split step, a linear time bucket sort technique,see [12], can replace the use of hashing. The idea is to sort all triples h(v:i;D(v �0); D(v �1)) before new discriminating values are assigned. Thus our time boundsdo not depend on perfect hashing.5 Minimizing BDD Represented AutomataWe consider languages over the alphabet B� . Thus a letter u is a vectorx0; � � � ; x��1 of � bits. An automaton A over B� with state space [N], where[N] = f0 : : :N � 1g, is speci�ed as ('; F), where ' consists of N shared BDDs,[N] is the set of leaves of ' and F � [N] is the set of �nal states. State 0 is theinitial state. There is a transition i u! j i� 'i(u) = j. This representation is dis-cussed in detail in [7]. A similar, but slightly more complicated, representationis discussed in [5, 6].The minimization algorithm consists of �rst reducing ' with respect to initialleaf partition fF; [N]nFg and then repeatedly applying the update operation inorder to split states. The output of the update operation is conjoined withthe previous partition in order to de�ne the leaf partition of the next updateoperation. This process is continued until a �xed point is reached.If we assume that n bounds both N and the number of nodes in the sharedBDD representation, then the straightforward implementation [7] (or the corre-sponding algorithm in [5]) carries out each update operation in time O(n) and18

there are at most n iterations. With the BDD online algorithm, however, wecan do better than �(n2):Corollary 1 Minimization is O(n logn) for BDD-represented automata, wheren bounds the number of states and the number of BDD nodes.A similar bound can be obtained for the representation in [5, 6].AcknowledgmentsThanks to Robert Paige and Theis Rauhe for their careful reading of an earlier versionof this paper, for pointing out errors, and for exploring the possible existence of asimpler n log n BDD online re�nement algorithm. The example of non-monotonicityof the composed operator in Section 3 was suggested by Robert Paige to illustrate anerror in the earlier version. Michael Yannakakis kindly pointed out the reference [2].References1. D. Basin and N. Klarlund. Beyond the �nite in hardware veri�cation. Submitted.Extended version of: \Hardware veri�cation using monadic second-order logic,"CAV '95, LNCS 939, 1996.2. Norbert Blum. An o(n log n) implementation of the standard mothod for minimiz-ing n-state �nite automata. Information Processing Letters, 1996.3. R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision dia-grams. ACM Computing surveys, 24(3):293{318, September 1992.4. A. Cardon and M. Crochemore. Partitioning a graph in O(jAj log2 jV j). TCS,19:85{98, 1982.5. Aarti Gupta. Inductive Boolean function manipulation. PhD thesis, CarnegieMellon University, 1994. CMU-CS-94-208.6. Aarti Gupta and Allan L. Fisher. Representation and symbolic manipulation oflinearly inductive boolean functions. In Proceedings of the IEEE InternationalConference on Computer-Aided Design, pages 192{199. IEEE Computer SocietyPress, 1993.7. J.G. Henriksen, J. Jensen, M. J�rgensen, N. Klarlund, B. Paige, T. Rauhe,and A. Sandholm. Mona: Monadic second-order logic in practice. In Toolsand Algorithms for the Construction and Analysis of Systems, First Inter-national Workshop, TACAS '95, LNCS 1019, 1996. Also available throughhttp://www.brics.dk/�klarlund/MonaFido/papers.html.8. J. Hopcroft. An n log n algorithm for minimizing states in a �nite automaton.In Z. Kohavi and Paz A., editors, Theory of machines and computations, pages189{196. Academic Press, 1971.9. D. Lee and M. Yannakakis. Online minimization of transition systems. In Proc.STOC, pages 264{274. ACM, 1992.10. H-T. Liaw and C-S. Lin. On the OBDD-representation of general Boolean func-tions. IEEE Trans. on Computers, C-41(6):661{664, 1992.11. R. Paige and R. Tarjan. Three e�cient algorithms based on partition re�nement.SIAM Journal of Computing, 16(6), 1987.12. D. Sieling and I. Wegener. Reduction of OBDDs in linear time. IPL, 48:139{144,1993. 19

