Mona: decidable arithmetic in practice

Morten Biehl', Nils Klarlund?, and Theis Rauhe?

' BRICS, University of Aarhus (mbiehl@brics.dk)
> AT&T Research (klarlund@research.att.com)
® BRICS, University of Aarhus (theis@brics.dk)

Abstract. In this note, we describe how a fragment of arithmetic can
be decided in practice. We follow essentially the ideas of [8], which we
have embedded in the MONA tool.

MonNA is an implementation of Monadic Second-order Logic on finite
strings (and trees). The previous semantics used in MONA is the one
provided in current literature [7, 9], where the meaning of first-order
terms is restricted to being a position in the string over which the formula
is interpreted.

In this note, we describe our new semantics, where terms are interpreted
relative to all natural numbers. With this semantics MONA becomes a
decision procedure for the calculus called WS1S, the Weak Second-order
theory of 1 Successor.

We also show how the MONA representation of automata subsumes a
recent proposal for representing queues. We exploit the natural semantics
to carry out, automated reasoning about queue operations.

Tn practice, the fundamental concept. of regularity (finite-state acceptance of
strings) is often exceedingly hard to express. For example, regular expressions
(as used in text editors and UNTX shell programming) are elegant when express-
ing simple patterns, but often unreadable for patterns of even modest complexity.

The aim of the FIDO/MonNa project pursued af, the University of Aarhus is
to devise new practical means of describing finite-state systems in formal logics
that naturally capture informal requirements.

Mona 1s a tool that translates formulas to finite-state automata. The formulas
may express search patterns, temporal properties of reactive systems, or parse
tree constraints. MoNa is based on Monadic Second-order Logic on finite strings.
(FTDO is a high-level language, incorporating logic and many usual programming
language concepts like recursive data types. A FIDO program is translated into
Mona, which in turn is translated into an automaton.)

In this paper, we discuss a new semantics for MoNA that we have recently
implemented. We also show that a recently proposed data structure for rep-
resenting queues [2] is but a special case of the BDD-represented automata of
MonNA.

Some Mona applications The previous MoNA implementation for finite strings
is described in  [3]. We have applied MoNa to hardware verification [1], veri-
fication of complicated behavioral descriptions of distributed systems [5], and



design constraints in software engineering [4]. (Tn the latter application, we used
a version of MoNa for finite trees.)

In addition, we have built prototypes of tools for graphical representation
of search patterns (specified in an extension of regular expressions) and for the
automatic verification of Hoare logic of pointers. (For publications, see our WEB
page http://www.brics.aau.dk/~mbiehl/Mona/main.html.) The largest for-
mula that has been decided by MoNaA contains half a million characters. This
formula is a transcription of a FIDO description of behaviors in distributed
memory systems [6, 5].

Semantics The Weak Second-order theory of 1 Successor, WS1S, is a variation
of predicate logic interpreted over the natural numbers. A first-order term 1s
either a variable p or of the form # + 1, where f is a first-order term and +1 is a
function symbol interpreted as the successor function. A first-order term denotes
a natural number. A second-order term is a set expression, made out of second-
order variables and the usual set-theoretic operations (except complementation,
but including difference). A second-order term denotes a finite subset of the
natural numbers. Formulas relate first-order and second-order terms through
equality and membership. Formulas may be formed also through use of the
standard Boolean connectives and quantification over both first-order and second-
order variables.

For example, if p is a first-order variable and Qe is a second-order variable,
then the formula

PEQen(Y'q ¢ € Qe= ¢ <p)

expresses that p i1sin Qe and that all numbers in Qe are less or equal to p. This
Mona formula may be used to define a predicate isLast by the definition:

isLast(varl p, var2 2) =
PEQeA(V'¢ ¢ € Qe=q' <p)

Decision procedure To explain the decision procedure, we review our earlier
semantics, which is simpler to implement. Previously, we followed [7, 9] in de-
fining the meaning of a formula relative to a natural number n, called the length.
Under this view, which we call the bounded semantics, all first-order terms take
on valuesin {0,...,n—1}. Similarly, second-order terms may only denote subsets
of {0,...,n —1}. Consequently, all quantifiers are bounded by n.

This semantics makes for a strange arithmetic, but it is useful for many
purposes anyway. To see this; let us consider the formula ¢ = ~(P = Q). For
n = 3, a possible interpretation 7 for this formula consists of assigning, say,
{0,2} to P and {0,1} to ). Alternatively, 7 can be regarded as a string w of
length n = 3 over the alphabet B x B, where B = {0, 1}:

01
1{0
11

2
1
0

P
Q




Here, the three lefters in the string are numbered according to their position from
0 to 2. The bit pattern 101 defined in the row marked P is called the frack for P.
The set it defines 1s the set of positions where the track contains a 1; in this case
{0,2}. Similarly, @ is defined by this string to be {0, 1}. Thus the interpretation
T (w) denoted by w is identical to Z above. Since this interpretation satisfies ¢,
we write

I(w) E ¢.

Tn general, assume that ¢ has k free variables Py,..., Py. (Tt can be shown
that it is sufficient to consider second-order variables.) For each n, we may
consider the strings of length n that satisfy a formula ¢ with free variables among
Py, ..., Ps. The union of all such strings for all lengths n constitutes a language
L($) over B”. Tt can be shown by induction that for any formula the language of
satisfying interpretations is accepted by a finite-state deferministic antomaton.
For example, if we have calculated antomata Ay such that L(Az) = L(¢) and
Ay such that T.(Ay) = L(v), then we can construct an automaton A recognizing
I.(¢ A ) by forming the cross product of Ay and Ay. Similarly, it can be shown
that existential quantification of a variable P in the formula 3P : ¢ corresponds
to the removal of the track P by a projection operation from the automaton
corresponding to ¢. The resulting automaton is non-deterministic and must be
determinized by a subset construction.

The natural semantics Under the natural semantics, we can also use finite
strings to denote interpretations. But note that Z(w), regarded as a function
from strings over B* to assignments of finite sets to Py, ..., Py 1s not injective.
The connectives of the logic are treated in the same way as before. There 1s one
complication, however: existential quantification. We proceed as follows.

Tet the right-quotient of a language I, with 1./, denoted by 1./ I/ be defined as
{w|3u e I’ :w-u & L}. Let the projection operation £’ be defined by F' (L) =
{w | Iw’ € I : wis obtained from w’ by deleting the P; track}. Tt can then be
proven that if ¢ has k variables, then L(3P; : ¢) = E'(L(¢)/1}), where I = {u €
B* | 7 track is all 0 for j # 4}. Fortunately, the right-quotient, operation . —
I/} can be expressed as an efficient antomata-theoretic algorithm that runs in
linear time. The subsequent subset construction is potentially exponential. But
preliminary evidence shows that just as for the bounded semantics this operation
is usually benign the new automaton being at most a couple of times bigger
before minimization.

An extended version of this paper will discuss the new algorithms for BDD-
represented automata.

A queue example In [2], BDD-like data structures, called QBDDs, are pro-
posed to improve the representation of certain queues. For example, the set of
all queues consisting of ordered subsets of {1,... k} is shown to require ap-
proximately k% “nodes” with usual BDDs but only k& “nodes” with the QBDD
representation (the “nodes” referred to here are really subgraphs of size k).



In our demonstration, we show how a straightforward logical description in
Mona of the set of queues for n = 4 yields the QBDD representation depicted
in Figure 6 of [2].

We also show how reasoning about such queues can be formulated with MoNa
using the natural semantics. Specifically, we show that the set of queues for n = 4
18 equivalent to the set of queues that arise from the lossy queue consisting of

0,1,2,3.

Other applications Presburger arithmetic is the first-order theory of natural
numbers; where the functional symbol is + (a dyadic function) and the only
relational symbol is =. Tt is not hard to see that with the natural semantics,
statements of Presburger arithmetic can now be translated into MONA.

We also believe that our new semantics will make reasoning about timing
behavior and hardware easier to formulate.

Our tool

The present, version of MoONA with natural semantics runs only on SUN Solaris
workstations. However, we expect to release a more universal version, written
fully in C and C++4, later this summer.

References

1. D. Basin and N. Klarlund. Hardware verification using monadic second-order logic.
In Computer aided verification : 7th International Conference, CAV ’95, LNCS 939,
1995.

2. P. Godefroid and D.E. L.ong. Symbolic protocol verification with Queue BDDs. In
Proc. ILTICS’ 96, 1996.

3. J.G. Henriksen, J. Jensen, M. Jgrgensen, N. Klarlund, B. Paige, T. Rauhe,
and A. Sandholm. Mona: Monadic second-order logic in practice. In Tools
and Algorithms for the Construction and Analysis of Systems, First Inter-
national Workshop, TACAS 95 LNCS 1019, 1996. Also available through
http://www brics.aan.dk /klarlund.

4. N. Klarlund, J. Koistinen, and M. Schwartzbach. Formal design constraints. In
Proc. OOPSLA 796, 1996. to appear.

5. N. Klarlund, M. Nielsen, and K. Sunesen. Automated logical verification based
on trace abstraction. Technical Report RS-95-53, BRICS, 1995. To appear in
Proceedings of PODC "96.

6. N. Klarlund, M. Nielsen, and K. Sunesen. A case study in automated verification
based on trace abstractions. Technical Report RS-96-7, BRICS, Aarhus University,
1996. In preparation. To appear in [.NCS proceedings on Dagstuhl workshop.

7. Howard Straubing.  Finite Automata, Formal lLogic, and Circuit Complexity.
Rirkhauser, 1994.

8. J.W. Thatcher and J.B. Wright. Generalized finite automata with an application to
a decision problem of second-order logic. Math. Systems Theory, 2:57 82, 1968.

9. W. Thomas. Automata on infinite objects. In J. van l.eeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 133 191. MIT Press/Flsevier, 1990.



