
Mona: decidable arithmetic in practiceMorten Biehl1, Nils Klarlund2, and Theis Rauhe31 BRICS, University of Aarhus (mbiehl@brics.dk)2 AT&T Research (klarlund@research.att.com)3 BRICS, University of Aarhus (theis@brics.dk)Abstract. In this note, we describe how a fragment of arithmetic canbe decided in practice. We follow essentially the ideas of [8], which wehave embedded in the Mona tool.Mona is an implementation of Monadic Second-order Logic on �nitestrings (and trees). The previous semantics used in Mona is the oneprovided in current literature [7, 9], where the meaning of �rst-orderterms is restricted to being a position in the string over which the formulais interpreted.In this note, we describe our new semantics, where terms are interpretedrelative to all natural numbers. With this semantics Mona becomes adecision procedure for the calculus called WS1S, the Weak Second-ordertheory of 1 Successor.We also show how the Mona representation of automata subsumes arecent proposal for representing queues. We exploit the natural semanticsto carry out automated reasoning about queue operations.In practice, the fundamental concept of regularity (�nite-state acceptance ofstrings) is often exceedingly hard to express. For example, regular expressions(as used in text editors and UNIX shell programming) are elegant when express-ing simple patterns, but often unreadable for patterns of even modest complexity.The aim of the FIDO/Mona project pursued at the University of Aarhus isto devise new practical means of describing �nite-state systems in formal logicsthat naturally capture informal requirements.Mona is a tool that translates formulas to �nite-state automata. The formulasmay express search patterns, temporal properties of reactive systems, or parsetree constraints. Mona is based on Monadic Second-order Logic on �nite strings.(FIDO is a high-level language, incorporating logic and many usual programminglanguage concepts like recursive data types. A FIDO program is translated intoMona, which in turn is translated into an automaton.)In this paper, we discuss a new semantics for Mona that we have recentlyimplemented. We also show that a recently proposed data structure for rep-resenting queues [2] is but a special case of the BDD-represented automata ofMona.SomeMona applications The previousMona implementation for �nite stringsis described in [3]. We have applied Mona to hardware veri�cation [1], veri-�cation of complicated behavioral descriptions of distributed systems [5], and



design constraints in software engineering [4]. (In the latter application, we useda version of Mona for �nite trees.)In addition, we have built prototypes of tools for graphical representationof search patterns (speci�ed in an extension of regular expressions) and for theautomatic veri�cation of Hoare logic of pointers. (For publications, see our WEBpage http://www.brics.aau.dk/�mbiehl/Mona/main.html.) The largest for-mula that has been decided by Mona contains half a million characters. Thisformula is a transcription of a FIDO description of behaviors in distributedmemory systems [6, 5].Semantics The Weak Second-order theory of 1 Successor, WS1S, is a variationof predicate logic interpreted over the natural numbers. A �rst-order term iseither a variable p or of the form t+ 1, where t is a �rst-order term and +1 is afunction symbol interpreted as the successor function. A �rst-order term denotesa natural number. A second-order term is a set expression, made out of second-order variables and the usual set-theoretic operations (except complementation,but including di�erence). A second-order term denotes a �nite subset of thenatural numbers. Formulas relate �rst-order and second-order terms throughequality and membership. Formulas may be formed also through use of thestandard Boolean connectives and quanti�cation over both �rst-order and second-order variables.For example, if p is a �rst-order variable and Qe is a second-order variable,then the formula p 2 Qe ^ (81q0 : q0 2 Qe) q0 � p)expresses that p is in Qe and that all numbers in Qe are less or equal to p. ThisMona formula may be used to de�ne a predicate isLast by the de�nition:isLast(var1 p;var2 Q2) =p 2 Qe ^ (81q0 : q0 2 Qe) q0 � p)Decision procedure To explain the decision procedure, we review our earliersemantics, which is simpler to implement. Previously, we followed [7, 9] in de-�ning the meaning of a formula relative to a natural number n, called the length.Under this view, which we call the bounded semantics, all �rst-order terms takeon values in f0; : : : ; n�1g. Similarly, second-order terms may only denote subsetsof f0; : : : ; n� 1g. Consequently, all quanti�ers are bounded by n.This semantics makes for a strange arithmetic, but it is useful for manypurposes anyway. To see this, let us consider the formula � � :(P = Q). Forn = 3, a possible interpretation I for this formula consists of assigning, say,f0; 2g to P and f0; 1g to Q. Alternatively, I can be regarded as a string w oflength n = 3 over the alphabet B�B, where B = f0; 1g:0 1 2P 1 0 1Q 1 1 0



Here, the three letters in the string are numbered according to their position from0 to 2. The bit pattern 101 de�ned in the row marked P is called the track for P .The set it de�nes is the set of positions where the track contains a 1; in this casef0; 2g. Similarly,Q is de�ned by this string to be f0; 1g. Thus the interpretationI(w) denoted by w is identical to I above. Since this interpretation satis�es �,we write I(w) j= �:In general, assume that � has k free variables P1; : : : ; Pk. (It can be shownthat it is su�cient to consider second-order variables.) For each n, we mayconsider the strings of length n that satisfy a formula � with free variables amongP1; : : : ; Pk. The union of all such strings for all lengths n constitutes a languageL(�) over Bk. It can be shown by induction that for any formula the language ofsatisfying interpretations is accepted by a �nite-state deterministic automaton.For example, if we have calculated automata A� such that L(A�) = L(�) andA such that L(A ) = L( ), then we can construct an automaton A recognizingL(�^ ) by forming the cross product of A� and A . Similarly, it can be shownthat existential quanti�cation of a variable P in the formula 9P : � correspondsto the removal of the track P by a projection operation from the automatoncorresponding to �. The resulting automaton is non-deterministic and must bedeterminized by a subset construction.The natural semantics Under the natural semantics, we can also use �nitestrings to denote interpretations. But note that I(w), regarded as a functionfrom strings over Bk to assignments of �nite sets to P1; : : : ; Pk is not injective.The connectives of the logic are treated in the same way as before. There is onecomplication, however: existential quanti�cation. We proceed as follows.Let the right-quotient of a language L with L0, denoted by L=L0, be de�ned asfw j 9u 2 L0 : w �u 2 Lg. Let the projection operation Ei be de�ned by Ei(L) =fw j 9w0 2 L : w is obtained from w0 by deleting the Pi trackg. It can then beproven that if � has k variables, then L(9Pi : �) = Ei(L(�)=Li), where Li = fu 2Bk j j track is all 0 for j 6= ig. Fortunately, the right-quotient operation L 7!L=Li can be expressed as an e�cient automata-theoretic algorithm that runs inlinear time. The subsequent subset construction is potentially exponential. Butpreliminary evidence shows that just as for the bounded semantics this operationis usually benign|the new automaton being at most a couple of times biggerbefore minimization.An extended version of this paper will discuss the new algorithms for BDD-represented automata.A queue example In [2], BDD-like data structures, called QBDDs, are pro-posed to improve the representation of certain queues. For example, the set ofall queues consisting of ordered subsets of f1; : : : ; kg is shown to require ap-proximately k2 \nodes" with usual BDDs but only k \nodes" with the QBDDrepresentation (the \nodes" referred to here are really subgraphs of size k).
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