
Formal Design Constraints*Nils KlarlundyAT&T Labs{Research, klarlund@research.att.comJari KoistinenzHewlett-Packard Laboratories, jari@hpl.hp.comMichael I. SchwartzbachBRICS, University of Aarhus, mis@brics.dkKeywords: software architecture, architectural style, software evolution, parse tree, design constraints, tree logicLarge software systems are often built on system plat-forms that support or enforce speci�c characteristics of thesource code or actual design. These characteristics are ei-ther captured informally in design guideline documents orin specialized design and implementation languages.In our view, both approaches are unsatisfactory. Infor-mal descriptions do not allow automated analysis and leadto vague constraint descriptions. The language-based ap-proach leads to di�erent languages for di�erent platformsor even for di�erent versions of the same platform.Our approach is to describe and name the constraints sep-arately in a design constraint language called CDL, which isbased on an extraordinarily concise logic of parse trees. De-signs are then annotated with the names of the constraintsthey are supposed to satisfy. We discuss how the designconstraint language is integrated into a design languageenvironment. We exhibit industrial and experimental evi-dence that our choice of design constraint language allowsus to formalize naturally and succinctly common designcharacteristics.1. IntroductionCompanies building large systems are commonly us-ing their own system platforms. These platforms sup-port the building of applications with speci�c charac-teristics. As an example, telecommunication compa-nies build platforms supporting signaling, error recov-Received March 05, 1997*This article appeared in a preliminary version in Proceed-ings of Object-Oriented Programming Systems, Languages, andApplications, October 1996.yThis work was done while the author was with BRICS, Uni-versity of Aarhus, Denmark.zThis work was done while the author was with the EricssonTelecommunication Systems Laboratories.c
 1997 John Wiley & Sons, Inc.

ery,
exible service execution, and other functionalityneeded in most telecommunications applications. Thecharacteristics of a platform and an application archi-tecture are expressed as a set of general design con-straints. In order to use these platforms in e�cient oreven correct ways, the programmer must ensure thatdesign constraints are satis�ed.Examples of design constraints are:Classes with persistent instances should in-herit only from other classes with persistent in-stances and should not provide asynchronousoperations.Classes abstracting hardware resourcesshould provide asynchronous operations and re-spond through an event channel.Such constraints can be discovered in many speci�ca-tions and architectural documents. As an example, con-sider the typed push model of OMG Event Services [19].It requires that the event consumer and the event sup-plier must have an interface of operations that do notreturn values and that do not have out or inout parame-ters. This is an example of a design constraint that cannot be de�ned in the OMG interface de�nition languageitself [18].Design constraints are often described informally indesign guideline documents. For larger systems, spe-cialized languages may be developed that by their def-inition enforce the design rules. Both solutions havesigni�cant disadvantages. Informal descriptions are of-ten incomplete and ambiguous. They are also di�cultto check, since this can only be done through manualreviews.THEORY AND PRACTICE OF OBJECT SYSTEMS, Vol. (), 1 11 1997 CCC1042-98329/94/020253-18

In contrast, specialized design languages are formaland allow automatic checking. Their disadvantage isthat the language must evolve with the platform andthe di�erent applications. Unfortunately, proprietaryplatforms usually evolve rapidly|leading to situationswhere several versions of the platform are used simul-taneously for di�erent applications.1.1 Contributions of this paperIn this paper, we propose a language, called Cate-gory Description Language (CDL), for the explicit de-scription of architectural aspects of platforms and soft-ware applications in a clear and unambiguous way. Bythe architecture of a system, we mean the structure asexpressed in terms of formal components such as ob-ject and object type declarations; method invocations;name, variable, and interface use; etc. Following Perryand Wolf [20], we consider an architecture to be spe-ci�c to a particular system. In contrast, an architec-tural style captures commonalities among several archi-tectures. In a sense, architectural styles de�ne equiva-lence classes for architectures.CDL allows us to formalize an architectural style as aset of design constraints. Each design constraint limitsthe way the concrete syntax of the design or implemen-tation language can be used. A constraint enforces ordisallows certain language constructs depending on thecontext.CDL is based on newly developed decision proce-dures for logics on parse trees [11]. These logics, whichare variations on �rst-order logic (predicate logic), canexpress quanti�cation over nodes in a parse tree (andare thus of very high computational complexity). Con-sequently, informal constraints on parse tree can oftenbe transliterated directly into CDL. In fact, we provideexperimental evidence that design constraints found inpractice can be expressed very concisely in CDL|whilestill being computable by the decision procedure. ThusCDL o�ers substantial advantages of ease-of-use andreadability compared to e.g. attributed grammars or re-cursive functions on parse trees.We show how CDL design constraints can be trans-lated to attributed grammars from the output of thedecision procedure. Any proposed design can then beheld up against the attribute grammars to check thatall constraints are satis�ed.CDL [13] originates fromwork on languages and plat-forms for large software systems at the telecommunica-tions company Ericsson. CDL was evaluated at Erics-son for the development of distributed object-orientedsystems, expressed in the Delos [3] design language ona proprietary platform with a Corba-like [18] architec-ture.The architectural style for the proprietary platformwas initially formulated informally by Ericsson design-

ers working in telecommunications applications. (Suchstyles and the Delos language have been used for realapplications.) There were on the order of 50 constraints,and approximately 85-95% of these were readily ex-pressible in CDL (and a few, when formalized, werefound to be unnecessary). Each constraint is speci�edin a couple of lines like the examples we present in thispaper. Some of these constraints are described in detailin the evaluation study [15].By incorporating CDL as a part of the Delos lan-guage we allow systems architects to tailor Delos ac-cording to their own general design considerations.In this paper, we provide examples of constraints fordesigns expressed in both Delos and OMG-IDL [18],although we have primarily been using CDL with De-los.1.2 An Introductory ExampleNext, we will illustrate our approach with a small ex-ample. Assume we want to use Delos to design appli-cations for an OMG/Corba compliant object requestbroker. Delos provides functionality not available inOMG-IDL. Therefore appropriate constraints on De-los descriptions must be imposed so that a design willsatisfy the requirements of the Corba platform. Onesuch constraint is that Corba interfaces cannot passobjects as operation arguments|only references to ob-jects can be passed.Design constraints are imposed in two phases:� The constraints are named and described in CDL.A named set of constraints is called a category. Aset of categories is called a CDL style, which con-stitutes our attempt at formulating the notion ofan architectural constraint.� The source code of the actual design is annotatedwith the appropriate category names.The �rst phase is the responsibility of a systems ar-chitect. Let us for a moment assume that the architecthas already de�ned a category corba, and let us take therole of a programmer, who in the second phase writes anexample in Delos source code. Speci�cally, we declarean object type called subscriber:OBJECT TYPE corba : subscriber ISATTRIBUTESid : INTEGEROPERATIONSaddService(s : REFERENCE TO service);setStatus(st : status);ENDHere, the object type has one public attribute and twopublic operations. The �rst operation addService takesan argument that is a reference to an instance of the ob-2 THEORY AND PRACTICE OF OBJECT SYSTEMS|1997

ject type service. The second operation setStatus takesan object of type status as argument and passes it asa value. Both status and service are object types thatare declared elsewhere. In the �rst line of the example,we have annotated subscriber so as to enforce the corbacategory.Let us now take the role of the system architect, whoalready in the �rst phase formalizes the constraints ofthe corba category. For simplicity, let us look only atthe constraint that operation arguments of corba inter-faces cannot denote object values. We formulate con-straints in terms of parse trees for the concrete syntax.(Our constraints could also be formulated in terms ofabstract syntax trees.) Each node in a parse tree cor-responds to a syntax production. The non-terminal onthe left-hand side of the production is called the type ofthe node. For example by \operation argument node,"we refer to a node denoting an instance of the syntaxproduction for operation arguments; technically, it hastype Argument, if we assume that the grammar has asingle non-terminal Argument de�ning operation argu-ments.In parse trees, nodes corresponding to non-terminalshave subnodes (children) corresponding to the righthand side of the production. Informally, our objectvalue constraint is:If x is an operation argument node in the syntaxtree of a corba object type, then the node y belowdenoting its type cannot represent an object type.To use Delos appropriately for design on Corba, thesystem architect has formalized this constraint in CDLasCATEGORY corba FORObjectTypeSpeci�cation IS8 x: Argument. root / x) 9 y: Type.x / y ^ : OT(y);ENDHere, ObjectTypeSpeci�cation, Argument, and Type areDelos syntax [3] production names and OT(y) is a De-los speci�c predicate|de�ned in CDL|that evaluatesto true if y is a node that denotes an object type. Theexpression root denotes the node of type ObjectType-Speci�cation to which the category applies, and x / yholds when node x is the parent of node y. Thus, thecategory corba declaration allows the programmer toannotate object type speci�cations in the source codewith \corba:". For each such annotated speci�cation,the constraint states that if x and y are the subnodes ofthe object type speci�cation node such that x is an ar-gument node and that y is the node declaring the typeof the argument x, then y must not represent a objecttype.Does the object type subscriber satisfy the categorycorba? No, since the name status used in the operation

setStatus above is an object type name, the constraintof the category is violated. Thus, the de�nition of sub-scriber would be rejected as a Corba interface.1.3 The Design CycleFrom the example above, we see that the use of CDLinvolves the following steps:� Architectural style design.{ A systems architect de�nes the appropriateset of categories and general constraints.{ He (or she) uses the CDL decision procedureto verify that the style is internally consistent,e.g. that the constraints are consistent withthe syntax and not mutually contradictory.� Application design.{ The application developer selects the appro-priate architectural style for the applicationsand development platform that is used.{ He (or she) annotates the design with the cat-egories of the style.{ He (or she) requests automatic checks of thedesign against the style to determine whetherthe design satis�es all categories.Tool support The systems architect may use a designeditor tool to de�ne models in graphical and textualrepresentations. In addition to de�ning classes and theirinterrelationship, the system architect may also use thetool to de�ne interfaces in more detail. In particular,the architect may adorn each design entity with thecategories that it should satisfy.Figure 1 shows a screen from a Delos tool. The toolis used to describe high-level decomposition of systemsinto multi-class modules (rectangles) and the interfacesused and provided by modules. Modules are annotatedwith names of CDL categories. Delos category namesare placed before the entity name, separated by a colon.The categories SE, SA, DefG, and SWILIB used in thisexample stem from an architectural style for telecom-munications.This is a high-level architectural style that de�neshow modules can be composed into larger systems andwhat categories of interfaces they provide and use. Suchconstraints forces designers and implementors to main-tain high-level architectural invariants for systems thatevolve for long-periods of time|sometimes decades. Italso simpli�es maintenance by helping developers iden-tify where in an architecture particular kinds of func-tionality can be located.In addition to the commands usually applicable indesign editors, the proposed extension of this tool willprovide two additional menu commands:� Load architectural style.THEORY AND PRACTICE OF OBJECT SYSTEMS|1997 3

FIG. 1. An example of a tool supporting CDL� Check for satisfaction.The �rst menu alternative shown is used to load astyle, i.e. a set of categories. The style loader is also astyle compiler so that any syntactic errors in the styleare detected and appropriate error messages are dis-played. The style consistency checker might be part ofthis command or it could be a separate tool or menualternative.The check command is used when the architect orapplication designer wants to control that one particu-lar CDL satis�es the current style. In a more sophis-ticated tool, the satisfaction check could be performedincrementally as the design is constructed.We have already prototyped the most di�cult as-pects of integrating CDL support into a design tool,including:� dynamic loading and checking of style with respectto a particular design; and� consistency checking of a style.We report in Section 4 on the technically most chal-lenging aspect, namely to translate styles into a formatusable by a constraint checker.1.4 Related WorkA CDL description de�nes formally a set of architec-tural concepts that we call categories. The descriptiondoes not represent any particular architecture, rather it

de�nes what can be called a design style or an architec-tural style [20].The book on software architectures by Shaw andGarlan [23] is an important advance in understandingsoftware architectures. Shaw and Garlan formulate avery general notion of style:an architectural style de�nes a vocabulary ofcomponents and connector types, and a set ofconstraints on how they can be combined.According to Shaw and Garlan, Unix-like pipe-and-�lter mechanisms constitute a style; similarly, object-oriented organization of software is a style. Tools likeAesop [6] can be used to describe such high-level stylesand to support building systems according to them.In contrast, CDL is used to de�ne styles for systemsdesigned or implemented using a particular source lan-guage. Thus, if we design with an object-oriented lan-guage, then CDL is used to de�ne specialized styleswithin the boundaries of the object-oriented paradigm.In [17], a comprehensive approach to specifying regu-larities in large software systems is outlined. These reg-ularities are called laws of the system. They encompassboth dynamic and static properties. Dynamic proper-ties are checked or enforced during runtime.Static properties are enforced during compilationtime by viewing the system under development as a col-lection of objects. When an object is changed, rules for-mulated in a logic programming language are invoked.Thus as with our approach, the environment providesthe enforcement of design constraints. The part of the4 THEORY AND PRACTICE OF OBJECT SYSTEMS|1997

method in [17] that deals with source code constraintsdoes not make explicit how syntactic constraints likethe ones we consider should be modeled.Meyers et al. [16] describe a language called CCELfor de�ning constraints on C++ programs. C++ pro-grams can be statically checked to satisfy associatedCCEL constraints. CCEL has C++ speci�c predicates|such as the is friend predicate|and is therefore in prin-ciple only applicable to C++ programs. However, theideas of CCEL and parts of its implementation can beused for other languages than C++. It is not clear ifCCEL allows any consistency checks or how the checkingof constraints is implemented. In CCEL, constraints areimposed within a certain scope such as a �le, class, ormember function. This is quite di�erent from CDL,where syntactic elements are adorned with categorynames.In recent years, design patterns [5] have become apopular way of describing solutions to common designand implementation problems. Usually, a design pat-tern describes a problem, outlines a solution, and hascertain consequences. Gamma et al. [5] de�ne designpatterns as describing. . . communicating objects and classes that arecustomized to solve a general design problem ina particular context.Unfortunately, the general term of design patterns iscommonly used for these speci�c kinds of general de-sign solutions described by Gamma et al. and others.While a design pattern is intended to propose a solu-tion in a limited context, a CDL style is intended toenforce certain design invariants on a complete systemor a signi�cant portion of a system. Moreover, designpatterns are described informally by means of examplesin some selected implementation language; a CDL styleis a formal description of categories that can be assignedto design elements such as interface de�nitions, classes,and coarse-grained modules. In addition, a CDL styleis de�ned relative to a particular formal design or pro-gramming language. Thus, according to the way theterm design pattern is generally used, a CDL style isnot a design pattern.The Demeter Method [14] o�ers techniques foradapting and reusing object-oriented program code fornew requirements and problems. It does so by provid-ing higher level abstractions |class dictionaries andpropagation patterns|for building programs.A class dictionary is an abstract representation ofclasses and their relationships. Demeter presents di�er-ent kinds of relationships on which di�erent kinds of op-erations can be performed. Relationships are declaredamong parts or method calls.A propagation pattern is a description of a programthat traverses a class structure and adds computationaldescriptions. A Demeter tool takes a class dictionaryand a propagation pattern as input and generates pro-

gramming language code. Thus, propagation patternsand class dictionaries are together used to describe com-plete programs.CDL does not by itself allow the speci�cation of com-plete programs. Rather, CDL is used to specify andapply constraints of languages that are used to describeprograms. Both Demeter and CDL use tree structuresas a basis. CDL descriptions are currently tightly knitto the syntactical appearance of the language to whichCDL is applied. Demeter uses class dictionaries as amore abstract representation of trees that allows prop-agation patterns to be independent of programming lan-guage syntax.Possibly, CDL constraints could be applied to Deme-ter class dictionaries. Such as combination would makeCDL constraints less syntax dependent, and it wouldallow the use of CDL for Demeter programs.The Uni�ed Modeling Language [2] (UML) intro-duces stereotypes. Stereotypes are similar to CDL cat-egories in that they can be used to add semantic anno-tations to designs. However, UML does not provide aprecise semantics for stereotypes. Neither does it pro-vide analysis or checking mechanisms.Super�cially, our aims are similar to those of meta-object protocols (MOP), which also specialize objecttypes [8]. However, a MOP specializes through pro-grammed extensions of the behavior of object creationsand message sends. In contrast, we never change therun-time semantics of objects. Our specializations areonly imposed through more or less intricate syntacticrestrictions.CDL is an application of the FIDO programminglanguage for expressing regular (�nite-state recogniz-able) sets of labeled trees. FIDO is introduced in [11]as a high-level notation for the Monadic Second-orderLogic (M2L) on �nite trees, see [24]. While the M2Lhas been known to be decidable since the 1960s, it isonly recently that practical implementations have beenavailable, largely due to the adaptation of BDD tech-niques [4]. In [12], the translation techniques for M2Lon strings of [7] are extended to trees along with com-binatorial techniques and data structures for avoidingstate space explosions. FIDO is also used in [9] forthe behavioral description of distributed programs andtheir veri�cation. M2L has also been applied to hard-ware veri�cation [1].In a technical sense, the most closely related workis in formal linguistics, where recent work has fo-cused on constraint-based formalisms. Here the classi-cal rewriting mechanisms of context-free grammars areaugmented with formalized constraints on parse trees.Such constraints make it possible to avoid combinatorialexplosions in grammars, for example those that occurwhen modeling agreement. James Rogers in his the-sis [22] develops a theory of the use of formalisms basedon M2L for expressing parse tree constraints. Our useTHEORY AND PRACTICE OF OBJECT SYSTEMS|1997 5

of constraints is similar in that it avoids multiplicationof syntactic categories for parse trees of programs.2. Applying Constraints to OMG-IDLIn this section, we introduce the category de�nitionlanguage in some more detail, and we provide some re-alistic examples. To illustrate that CDL is generallyapplicable, we have here chosen to use OMG-IDL asthe speci�cation language instead of Delos. Thus, wewill use CDL to de�ne design constraints for IDL spec-i�cations. To allow category annotations in IDL de�ni-tions we have extended IDL slightly. We believe makingan explicit extension of IDL is preferred over so calledstructured comments.2.1 The Constraint LanguageCDL is based on predicate logic where �rst-orderterms denote nodes in a parse tree over which a for-mula is interpreted. The logical connectives ^, _,),etc. have the same meaning as in conventional predicatelogic. In addition, CDL provides operators that expressrelations among tree nodes as follows.If x and y are variables denoting nodes, then the for-mula x � y states that y is a descendant of x, i.e. it is inthe subtree rooted by x; whereas the formula x / y statesthat y is a direct descendant of x. Furthermore, if x is anode, then x.i is its i'th child in the syntax tree, countedfrom left to right. The quanti�ers 8 and 9 range overnodes in the syntax tree, possibly restricted to a subsetof the non-terminals. Finally, the predicate x=t holdswhen the node x is labeled with the terminal symbol t.The example below shows a simple grammar and apossible syntax tree where each node is labeled with itstype, a non-terminal symbol.A ::= BA j BC j BDB ::= id j CC ::= idD ::= id �
���
���
���
���
�� �
��HHHH���� @@��AB AC B DConsider now these three formulas:8 x: A. 9 y: B. x / y: 9 x: A. 9 y: B. 9 z: C. (x � y) ^ (x � z)8 x: C. 9 y: D. x � yThe �rst formula states that for all nodes x of type Athere exists a direct child of type B; for our grammarthis formula is trivially valid, since it holds for all syntaxtrees. The second formula states that no subtree witha root of type A may contain both a node of type C andone of type B; this formula holds for only some syntax

trees. The third formula states that any node of typeC must have a child of type D; this is an absurdity thatholds for no syntax tree.A category consists of a named set of constraints anda designation of the language construct to which it ap-plies. The following category is named O, and it isapplicable to nodes of type A:CATEGORY O FOR A IS9 y: B. root / y;9 z: C. root � z;ENDThis particular category states that every node of typeA annotated with the category name O must have adirect child of type B and some subnode of type C. Thename root denotes the node of type A to which we applythe category.The category concept is a grouping and namingmechanism that maps into tree logic expressions. The�rst constraint of the category above can be mapped tothe formula8 root: A. O(root)) 9 y: B.root / yIn addition to grouping of contraints, categories bindnames to these groups. These names are essential, sincethey are used in the decoration of parse trees.2.2 A Subset of OMG-IDLWe need a syntax for IDL, and we need to extendthe syntax in order to allow category annotations inIDL speci�cations, speci�cally for interface de�nitions.Below, we have included parts of the OMG-IDL syn-tax [18] with our extensions underlined.<speci�cation> :: <de�nition>�<de�nition> ::= <type dcl> ";"j <const dcl> ";"j <except dcl> ";"j <interface> ";"j <module> ";"<interface> ::= <interface dcl><interface dcl> ::= <interface header>"f" <interface body> "g"<interface header> ::= "interface" <identi�er>[<category dcls>�][<inheritance spec>]<interface body> ::= <export>�<export> ::= <type dcl> ";"j <const dcl> ";"j <except dcl> ";"j <attr dcl> ";"j <op dcl> ";"<const dcl> ::= "const" <const type><identi�er> "=" <const exp><attr dcl> ::= [readonly dcl] "attribute"<param type spec>6 THEORY AND PRACTICE OF OBJECT SYSTEMS|1997

<simple declarator>"," <simple declarator>�<readonly dcl> ::= "readonly"<op dcl> ::= [<op attribute>]<op type spec> <identi�er><parameter dcls>[<raises expr>][<context expr>]<op attribute> ::= <oneway dcl><oneway dcl> ::= "oneway"<category dcls> ::= "!" <identi�er>f"," <identi�er>g� "!"<inheritance spec> ::= ":" <identi�er>f"," <identi�er> g�The following is a simple OMG-IDL interface:interface node !catName! fvoid addChild(in node c);void setParent(in node p);g;Note that the category annotation (!catName!) is one ofour slight extensions to IDL. Below, we show a partialsyntax tree, where nodes in the tree are labeled by thecorresponding node types:!!!! SSSSSSSaaaa!!!!aaaa!!!! interface bodyinterface dcl op dclop type spec parameter dclsidenti�erop dclop type spec parameter dclsidenti�erThe following subsections provides some examples ofpossible design constraints for IDL interfaces. Our ex-amples are limited to a few categories although, in ourexperience, a realistic style consists of between 5 and20 categories with each category containing up to 10separate constraints.2.3 Peer-to-Peer InterfacesOur �rst example will demonstrate how we formallycan introduce for a peer-to-peer communication modelbetween objects speci�ed in IDL. By annotating objectinterface de�nitions with the peer category, we can en-sure that the communication adheres to certain funda-

mental principles. In addition, the annotations allowsus to more easily understand how individual objectscommunicate on a higher level of abstraction.The communication model we want to introduce isderived from the standardized Remote Operation Spec-i�cation (ROS) [21] model. In the ROS model, we mayhave two peer interfaces exchanging asynchronous mes-sages, thus we have no pure client server model. We useOMG-IDL one-way operations to denote asynchronousmessage passing. Interfaces that represent a peer areexpected to be annotated with the peer category, whichinformally expresses:All nodes x that are subnodes of an interfacedeclaration node and represent operation decla-rations should have a subnode that is a one-waydeclaration.The underlying constraint is that peer interfaces shouldonly provide operations with asynchronous semantics.IDL one-ways declarations imply that operations haveasynchronous semantics. Therefore, we require that alloperations of peer interfaces are one-way operations.Formally we de�ne this constrains as:CATEGORY peer FOR interface dcl IS8 x: op dcl.root � x)9 y: oneway dcl. x / y;ENDWe also want to add that an interface clustering a setof one-way operations should not reveal any concretestate. Exposing concrete state is avoided by not havingpublicly available attributes. Some (abstract) state in-formation can still be revealed through operation calls.This constraint leads us to re�ne the peer category asfollows:CATEGORY peer FOR interface dcl IS8 x: op dcl.root � x)9 y: one-way dcl. x / y;8 z: attr dcl. :(root � z);ENDThis constraint disallows attributes in interfaces of cat-egory peer by prohibiting any subnodes of type attr dcl.The following is an example of two collaborating peerinterfaces, one representing a player resource for a tele-phony application and the other representing a playerresource client which we call the controller.interface controller !peer! fone-way void done();one-way void error();g;interface player !peer! fone-way void play();one-way void rewind();one-way void stop();one-way void pause();THEORY AND PRACTICE OF OBJECT SYSTEMS|1997 7

g; A controller may start, stop, rewind, or pause theplayer without waiting for the previous operation to ter-minate. When an operation such as play terminates, itcalls the done operation on the controller. For simplic-ity, we have omitted any arguments the operations mayconvey in this example.The example illustrates the type of problems wherepeer interfaces and their characteristics are applicable.In particular, the asynchronous semantics and encapsu-lation of state is of vital importance. If attributes ornon-one-way operations are introduced, then the inter-face would no longer satisfy the constraints of the peercategory.By enforcing certain constraints on peer interfaces,we are able to ensure the characteristics of a peer-to-peer communication model. For instance, since we areguaranteed that the communication between peers isasynchronous, we need not worry about peers mutuallyblocking while calling each other. Furthermore, a par-ticular implementationmechanism|that supports ROSe�ectively|can be used for this particular communica-tion link.By introducing explicit categories, we have also ex-tended our design language with the peer concept andconsequently included explicit design level support forthe ROS communication model.2.4 Services and ResourcesIn this example, we introduce several categories. Theresulting CDL style captures a systems architecturethat allows telephony services and resources to be moreeasily introduced and changed. This is achieved byclearly separating the user services from the resources.Services and resources communicate in a way that al-lows a loose coupling and an asynchronous communica-tion model. In addition, the constraints allow us to useimplementation mechanisms well-suited for these cate-gories of objects. These mechanisms support dynamicrun-time installation and upgrade.Observe that IDL does not fully support the needsof software design. Therefore, our example is limitedto what can be expressed by IDL speci�cations. Otherlanguages, such as Delos, allows the expression of amore complete design model.For the purpose of this style we have identi�ed thefollowing architectural concepts: service, resource, plain,and factory.A service object would represent a user level ser-vice, such as call, voice mail, etc. Service objects canbe mapped to speci�c mechanisms in the platform onwhich it is implemented. These mechanisms simplifyupgrade and change of service in run-time. Service ob-

jects use a speci�c model for communication with re-sources and other services.The resource objects model resources that are sharedamong multiple instances of the same or di�erent ser-vices. Examples of such are speech recognition, tonesender, secondary storage, etc.A plain object is neither considered a service nor aresource from an architectural point of view. Ratherit is an object that is used to implement a service orresource abstractions without itself being one from thehigh-level architecture perspective. In addition, plainobjects can be implemented using standard languagemechanisms without any special platform support.Finally, we want to adopt the object factory conceptin order to decouple the usage and creation of objects.CDL allows us to specify formally what characterizesthe interfaces that correspond to each of these concepts.Each concept will be represented by one CDL category.Objects of category service should have a single one-way operation called execute. This operation representsthe main
ow of the service. Having a convention forthe name also simpli�es service management since allservices have the same static interface signature.We de�ne the service category, where we use 9! x: todenote that \there exists exactly one value of x suchthat : : :," as:CATEGORY service FOR interface dcl IS9! x: op dcl.9 y: identi�er.9 z: one-way dcl.root � x / y ^ y="execute" ^ x / z;8 z: attr dcl. :root � z;ENDBecause of the uniform and simple interface of ser-vice objects a code generator can map it on an executionmechanism that allows dynamic upgrade of services. Inaddition, we architecturally enforce each service to bede�ned as a separate object which will will enable �ne-grained reuse and upgrade. It is these kinds of consid-erations that lead architects to identify service as andesign concept.In our model, resources typically provide many one-way operations commonly called by services. Servicesare noti�ed about the results through a separate eventservice. It could also provide a concrete state, but onlyfor reads. Resource interfaces should only inherit fromother resource interfaces. We de�ne the resource cate-gory below.CATEGORY resource FOR interface dclIS 8 x: op dcl. root � x)9 y: one-way dcl. x / y;8 x: inheritance spec.8 y: identi�er.root � x / y) resource(y);8 x: attr dcl. root � x)9 y: readonly dcl. x / y;END8 THEORY AND PRACTICE OF OBJECT SYSTEMS|1997

The communicationmodel for services and resources al-lows them to be loosely coupled. This means resourcesdo not know about the services that call them and ser-vices are not blocked calling resources. Since the modelis essential for overall system qualities it is captured asconcepts in the architectural style. Figure 2 illustratesthe relationships between these concepts. Solid ar-rows represents operation calls and dotted arrows eventsends.Plain interfaces represent auxiliary objects ratherthan abstractions that are important from an high-levelapplication architecture point of view. Plain interfacesshould be restricted so as not to provide one-way opera-tions. This restriction limits the degree of asynchronousmessage passing, thereby simplifying debugging. Also,plain interfaces should be restricted so as to only inheritfrom other plain interfacesCATEGORY plain FOR interface dcl IS:9 x: one-way dcl. root � x;8 x: inheritance spec.8 y: identi�er.root � x / y) plain(y);ENDFinally, for interfaces representing object factories, wewish to enforce a naming convention and make the fac-tory concept more explicit than an informal convention.CATEGORY factory FOR interface dclIS 9! x: op dcl.9 y: identi�er.x / y ^ y="getObj";ENDBelow, we outline a small example where categorieshave been used to annotate an OMG-IDL interfaces.The annotations enable us to more readily identify thearchitectural role of each interface. Since categories aredescribed formally, we can automatically ensure thatthe interfaces satisfy the associated constraints.interface wakeUpCall !service! fvoid setTime(time t);one-way void execute() raises (not avail);g;interface toneSender !resource! f. . .ginterface lineInterfaceCtl !resource! f. . .g;interface licFactory !factory! flineInterfaceCtl getObj(licnr ln);. . .g;

resource

service

event service

resourceFIG. 2. Services call resources that sends eventsConsistency The style given above is obviously con-sistent, since we have just sketched an example of a legaldesign. However, suppose that we stupidly added thefollowing constraint:8 x: interface dcl. resource(x) ^ plain(x)which states that all interfaces must be both of cate-gory plain and resource. Unfortunately, the added con-straint has the implication that no design can possi-bly be legal|a fact a consistency check would discover.Without such a check, we could perhaps enter a costlyand frustrating cycle of trying to complete a design. Fora large and complicated design style developed simulta-neously by several architects, the risk of inconsistencyis very real.The following section will discuss the theoretical ba-sis for our constraint language and the possibilities itprovides.3. Theoretical BasisThe CDL formalism is based on the MonadicSecond-order Logic on �nite binary trees. In M2L, theuniverse of discourse is the nodes of a binary tree. Thereare basic predicates for relating the positions of nodes.Second-order terms are monadic relations, i.e. sets ofnodes. There are the usual logical connectives and both�rst- and second-order quanti�ers.Each formula in M2L denotes a set of trees: thosefor which the formula holds. These sets coincide withregular tree sets. The fundamental di�erence betweenthe two representations is that a formula may be non-elementary more succinct than the corresponding au-tomaton. Thus an extremely complicated automatonmay be described by a brief and elegant formula.CDL is essentially the �rst-order fragment of M2L;however, the full logic is needed to correctly model theunderlying syntax trees of a given grammar. Since reg-THEORY AND PRACTICE OF OBJECT SYSTEMS|1997 9

ular tree sets need not be su�cient, we also extend thelogic with externally computed unary predicates. In thetranslation these are represented simply as free second-order variables.For the satisfaction problem, a CDL formula is trans-lated into the underlying tree automaton, which is es-sentially a simplistic attribute grammar, as discussed inthe following section. It is now a straightforward taskto see if a given syntax tree is accepted.For the consistency problem, we must decide if someconstraints C1, C2, . . . , Cn are mutually contradictory.Thus we construct the automaton for the combined for-mula C1 ^ C2 ^ . . .^ Cn. The constraints are nowconsistent if this automaton accepts any trees at all,which can be determined through a simple depth-�rstsearch.The M2L formalism is known to be a very ambi-tious compromise between expressibility and decidabil-ity. Almost any extension leads to an undecidable logic.Thus, we can rest assured that CDL is as strong as itcan possibly be for expressing regularity. For example,regular expressions with negation and conjunction op-erators can be translated into M2L with only a linearincrease in size.CDL cannot express all properties that one mightwant to use as design constraints. For example, we can-not express that two positions in the parse tree containsthe same, but unknown, string. This de�ciency couldbe remedied by embedding CDL into a more generalcomputing notation.4. ImplementationThe translation of CDL into tree automata by meansof the Fido compiler andMona decision procedure [11]is reasonably quick. For example, each formula in Sec-tion 2.4 is translated in about 15 seconds (on a Sparc1000). The consistency check is potentially costly, sinceit considers several formulas at the same time; for thestyle in Section 2.4, it lasts several minutes. New ver-sions of these tools are under development and theywill run at least an order of magnitude faster due to animproved BDD package [10].We illustrate with an example how tree automata arerepresented as attribute grammars. Recall this simplegrammar:A ::= BA j BC j BDB ::= id j CC ::= idD ::= idConsider the constraint that for every node of type Athere must below be a node of type D for which theexternal predicate P holds:8 x: A. 9 y: D. x � y ^ P(y)

We now describe in detail the attribute grammar thatis generated. All attributes are synthesized, and theattribute values are simply integers. A rule looks like:T : [m1,. . . ,mk] 7! n if P1,:P2,. . .The meaning is: if we are at a given node of type T andthe i'th subnode has synthesized the value mi and theexternal predicate P1 is true, P2 is false, etc., then wesynthesize the value n. A given syntax tree is acceptedif a bottom-up run yields an accepting attribute value.The full attribute grammar is as follows:attributes 0,1,2accepting 0,1A : [0,0] 7! 2A : [0,1] 7! 1A : [0,2] 7! 2B : [] 7! 0B : [0] 7! 0C : [] 7! 0D : [] 7! 0 if : PD : [] 7! 1 if PThe claimed succinctness of formulas is not apparentfrom this trivial example. However, the full resourcecategory generates 9 attribute values and several dozenintricate rules; in comparison, the resource constraintsare rather intuitive, completely modular, and easy tomaintain.The generated attribute grammars are guaranteedto be minimal, since they are generated from uniquelyminimized tree automata. Thus, the design architectneed not be concerned with e�ciency of the particularphrasing of a given constraint.In the new version of CDL under development, thecompiled automata are actually more complicated thanjust explained. They are factorized according to theprinciples explained in [12] so that the automata corre-spond to grammars that have both inherited and syn-thesized attributes.We have not yet completed the integration with a de-sign tool for Delos or any other language. Note, how-ever, that attribute grammars corresponding to designconstraints can be expected to be as simple as above.Thus existing programming environments can easily beextended to deal very e�ciently with design constraintchecking.5. Concluding remarksOur proposed design constraint language CDL arosefrom our experiences in developing design languages andtools for object-oriented systems. Our approach to ar-chitectural styles allows a formal treatment of designconstraints without forcing them to be built into thedesign languages.10 THEORY AND PRACTICE OF OBJECT SYSTEMS|1997

The main practical advantages of CDL are:� we identify and formalize important architecturalconcepts in named categories; and� a design can be annotated with category names,and we can automatically verify that a design sat-is�es the stated constraints.Our industrial experience and the examples pre-sented here make us con�dent that the expressive powerof CDL is well-balanced, since it allows interesting con-straints to be expressed concisely and precisely, whileallowing automated support by a decision procedure.In this paper we have applied CDL to textual lan-guages. There are, however, no hindrance to the appli-cation of CDL to graphical languages with an underly-ing tree structure. The only|general|prerequisite isthat the language has a well-de�ned syntax and thatsyntactic entities can be annotated with categories.AcknowledgmentsWe wish to thank anonymous reviewers for helpfulcomments on earlier versions of this paper.References1. D. Basin and N. Klarlund. Hardware veri�cation usingmonadic second-order logic. In Computer aided veri�cation :7th International Conference, CAV '95, LNCS 939, 1995.2. Grady Booch, Ivar Jacobson, and Jim Rumbaugh. Uni�edModeling Language Semantics. Rational Software Corpo-ration, Version 1.0, January 1997. Also available throughhttp://www.rational.com.3. Martin Bostr�om, Eui-Suk Chung, Jari Koistinen, and MatsSvensson. Delos 2.2 language description. Ellemtel Telecom-munication Systems Laboratories. December 1995.4. Randal E. Bryant. Graph-based algorithms for Boolean func-tion manipulation. IEEE Transactions on Computers, Au-gust 1986.5. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-sides. Design Patterns. Addison-Wesley, 1995.6. David Garlan, Robert Allen, and John Ockerbloom. Exploit-ing style in architectural design environments. SIGSOFT,(12), December 1994.7. J.G. Henriksen, J. Jensen, M. J�rgensen, N. Klarlund,B. Paige, T. Rauhe, and A. Sandholm. Mona: Monadicsecond-order logic in practice. InTools and Algorithms for theConstruction and Analysis of Systems, First InternationalWorkshop, TACAS '95, LNCS 1019, 1996. Also availablethrough http://www.brics.aau.dk/�klarlund.

8. Gregor Kiczales, Jim des Rivires, and Daniel G. Bobrow. TheArt of the Metaobject Protocol. MIT Press, 1991.9. N. Klarlund, M. Nielsen, and K. Sunesen. Automated logicalveri�cation based on trace abstraction. Technical Report RS-95-53, BRICS, 1995. To appear in Proceedings of PODC '96.10. Nils Klarlund and Theis Rauhe. BDD algorithms and cachemisses. Technical Report RS-96-05, BRICS, 1996. Submit-ted.11. Nils Klarlund and Michael I. Schwartzbach. A Domain-Speci�c Language for Regular Sets of Strings and Trees.USENIX Conference on Domain Speci�c Languages. Octo-ber 1997.12. Nils Klarlund and Michael I. Schwartzbach. E�cient compi-lation of a high-level symbolic language into tree automata.In preparation, 1997.13. Jari Koistinen. The Delos category de�nition language: Def-inition and rational. Ellemtel Telecommunication SystemsLaboratories. July 1995.14. Karl J. Lieberherr. Adaptive Object-Oriented Software: TheDemeter Method with Propagation Patterns. PWS Publish-ing Company, 1996.15. Johan Liseborn. The Delos Category De�nition Language: Auser's �rst impression. Ellemtel Telecommunication SystemsLaboratories.16. Scott Meyer, Carolyn K Duby, and Steven P. Reiss. Con-straining the structure and style of object-oriented programs.In First Workshop on Principles and Practice of ConstraintProgramming. Brown University Computer Science Techni-cal Report CS-93-12, April 1993.17. N. L. Minsky. Law-governed regularities in object systems;part 1: Principles. To be published in Theory and Prac-tice of Object Systems (TOPAS)). Also, available throughhttp://www.cs.rutgers.edu/�minsky/pubs.html., 199?18. Object Management Group. The Common Object RequestBroker: architecture and speci�cation, July 1995. revision2.0.19. Object Management Group. Common Object Services Speci-�cation, Volume 1, March 1994. OMG doc nr. 94-1-1, Revi-sion 1.0.20. Dewayne E. Perry and Alexander L. Wolf. Foundations forthe study of software architecture. ACM Software Engineer-ing Notes, 17(4), October 1992.21. ITU-T recommendationX.880. Remote operations: Concept,model, and notation. July 1994.22. James Rogers. Studies in the logic of trees with applicationsto grammar formalisms. PhD thesis, University of Delaware,1994.23. Mary Shaw and David Garlan. Software Architectures: Per-spectives on an Emerging Discipline. Prentice-Hall, 1996.24. W. Thomas. Automata on in�nite objects. In J. vanLeeuwen, editor, Handbook of Theoretical Computer Science,volume B, pages 133{191. MIT Press/Elsevier, 1990.
THEORY AND PRACTICE OF OBJECT SYSTEMS|1997 11

