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Large software systems are often built on system plat-
forms that support or enforce specific characteristics of the
source code or actual design. These characteristics are ei-
ther captured informally in design guideline documents or
in specialized design and implementation languages.

In our view, both approaches are unsatisfactory. Infor-
mal descriptions do not allow automated analysis and lead
to vague constraint descriptions. The language-based ap-
proach leads to different languages for different platforms
or even for different versions of the same platform.

Our approach is to describe and name the constraints sep-
arately in a design constraint language called CDI, which is
based on an extraordinarily concise logic of parse trees. De-
signs are then annotated with the names of the constraints
they are supposed to satisfy. We discuss how the design
constraint language is integrated into a design language
environment. We exhibit industrial and experimental evi-
dence that our choice of design constraint language allows
us to formalize naturally and succinctly common design
characteristics.

1. Introduction

Companies building large systems are commonly us-
ing their own system platforms. These platforms sup-
port the building of applications with specific charac-
teristics. As an example, telecommunication compa-
nies build platforms supporting signaling, error recov-
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ery, flexible service execution, and other functionality
needed in most telecommunications applications. The
characteristics of a platform and an application archi-
tecture are expressed as a set of general design con-
straints. In order to use these platforms in efficient or
even correct ways, the programmer must ensure that
design constraints are satisfied.
Examples of design constraints are:

Classes with persistent instances should in-
herit only from other classes with persistent in-
stances and should not provide asynchronous
operations.

Classes abstracting hardware
should provide asynchronous operations and re-

spond through an event channel.

resources

Such constraints can be discovered in many specifica-
tions and architectural documents. As an example, con-
sider the typed push model of OMG Event Services [19].
It requires that the event consumer and the event sup-
plier must have an interface of operations that do not
return values and that do not have out or inout parame-
ters. This is an example of a design constraint that can
not be defined in the OMG interface definition language
itself [18].

Design constraints are often described informally in
design guideline documents. For larger systems, spe-
cialized languages may be developed that by their def-
inition enforce the design rules.
significant disadvantages. Informal descriptions are of-
ten incomplete and ambiguous. They are also difficult
to check, since this can only be done through manual
reviews.

Both solutions have
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In contrast, specialized design languages are formal
and allow automatic checking. Their disadvantage is
that the language must evolve with the platform and
the different applications. Unfortunately, proprietary
platforms usually evolve rapidly—leading to situations
where several versions of the platform are used simul-
taneously for different applications.

1.1 Contributions of this paper

In this paper, we propose a language, called Cate-
gory Description Language (CDL), for the explicit de-
scription of architectural aspects of platforms and soft-
ware applications in a clear and unambiguous way. By
the architecture of a system, we mean the structure as
expressed in terms of formal components such as ob-
ject and object type declarations; method invocations;
name, variable, and interface use; etc. Following Perry
and Wolf [20], we consider an architecture to be spe-
cific to a particular system. In contrast, an architec-
tural style captures commonalities among several archi-
tectures. In a sense, architectural styles define equiva-
lence classes for architectures.

CDL allows us to formalize an architectural style as a
set of design constraints. Each design constraint limits
the way the concrete syntax of the design or implemen-
tation language can be used. A constraint enforces or
disallows certain language constructs depending on the
context.

CDL is based on newly developed decision proce-
dures for logics on parse trees [11]. These logics, which
are variations on first-order logic (predicate logic), can
express quantification over nodes in a parse tree (and
are thus of very high computational complexity). Con-
sequently, informal constraints on parse tree can often
be transliterated directly into CDL. In fact, we provide
experimental evidence that design constraints found in
practice can be expressed very concisely in CDL—while
still being computable by the decision procedure. Thus
CDL offers substantial advantages of ease-of-use and
readability compared to e.g. attributed grammars or re-
cursive functions on parse trees.

We show how CDL design constraints can be trans-
lated to attributed grammars from the output of the
decision procedure. Any proposed design can then be
held up against the attribute grammars to check that
all constraints are satisfied.

CDL [13] originates from work on languages and plat-
forms for large software systems at the telecommunica-
tions company Ericsson. CDL was evaluated at Erics-
son for the development of distributed object-oriented
systems, expressed in the DELOS [3] design language on
a proprietary platform with a CorBa-like [18] architec-
ture.

The architectural style for the proprietary platform
was initially formulated informally by Ericsson design-

2 THEORY AND PRACTICE OF OBJECT SYSTEMS—1997

ers working in telecommunications applications. (Such
styles and the Delos language have been used for real
applications.) There were on the order of 50 constraints,
and approximately 85-95% of these were readily ex-
pressible in CDL (and a few, when formalized, were
found to be unnecessary). Each constraint is specified
in a couple of lines like the examples we present in this
paper. Some of these constraints are described in detail
in the evaluation study [15].

By incorporating CDL as a part of the Delos lan-
guage we allow systems architects to tailor Delos ac-
cording to their own general design considerations.

In this paper, we provide examples of constraints for
designs expressed in both DELos and OMG-IDL [18],
although we have primarily been using CDL with DE-
LOS.

1.2 An Introductory Example

Next, we will illustrate our approach with a small ex-
ample. Assume we want to use DELOS to design appli-
cations for an OMG/CoRBA compliant object request
broker. DELOS provides functionality not available in
OMG-IDL. Therefore appropriate constraints on DE-
L0S descriptions must be imposed so that a design will
satisfy the requirements of the CorBA platform. One
such constraint is that CORBA interfaces cannot pass
objects as operation arguments—only references to ob-
jects can be passed.

Design constraints are imposed in two phases:

¢ The constraints are named and described in CDL.
A named set of constraints is called a category. A
set of categories is called a CDL style, which con-
stitutes our attempt at formulating the notion of
an architectural constraint.

¢ The source code of the actual design is annotated
with the appropriate category names.

The first phase is the responsibility of a systems ar-
chitect. Let us for a moment assume that the architect
has already defined a category corba, and let us take the
role of a programmer, who in the second phase writes an
example in DELOS source code. Specifically, we declare
an object type called subscriber:

OBJECT TYPE corba : subscriber IS
ATTRIBUTES
id : INTEGER
OPERATIONS
addService(s : REFERENCE TO service);
setStatus(st : status);
END

Here, the object type has one public attribute and two
public operations. The first operation addService takes
an argument that is a reference to an instance of the ob-



ject type service. The second operation setStatus takes
an object of type status as argument and passes it as
a value. Both status and service are object types that
are declared elsewhere. In the first line of the example,
we have annotated subscriber so as to enforce the corba
category.

Let us now take the role of the system architect, who
already in the first phase formalizes the constraints of
the corba category. For simplicity, let us look only at
the constraint that operation arguments of corba inter-
faces cannot denote object values. We formulate con-
straints in terms of parse trees for the concrete syntax.
(Our constraints could also be formulated in terms of
abstract syntax trees.) Each node in a parse tree cor-
responds to a syntax production. The non-terminal on
the left-hand side of the production is called the type of
the node. For example by “operation argument node,”
we refer to a node denoting an instance of the syntax
production for operation arguments; technically, it has
type Argument, if we assume that the grammar has a
single non-terminal Argument defining operation argu-
ments.

In parse trees, nodes corresponding to non-terminals
have subnodes (children) corresponding to the right
hand side of the production. Informally, our object
value constraint is:

If x is an operation argument node in the syntax
tree of a corba object type, then the node y below
denoting its type cannot represent an object type.

To use Delos appropriately for design on CORBA, the
system architect has formalized this constraint in CDL
as

CATEGORY corba FOR
Object TypeSpecification IS
Y x: Argument. root < x = Jy: Type.
xay A= OT(y),
END

Here, ObjectTypeSpecification, Argument, and Type are
DELos syntax [3] production names and OT(y) is a DE-
L0s specific predicate—defined in CDL—that evaluates
to true if y is a node that denotes an object type. The
expression root denotes the node of type ObjectType-
Specification to which the category applies, and x <y
holds when node x is the parent of node y. Thus, the
category CORBA declaration allows the programmer to
annotate object type specifications in the source code
with “corba:”. For each such annotated specification,
the constraint states that if x and y are the subnodes of
the object type specification node such that x 1s an ar-
gument node and that y is the node declaring the type
of the argument x, then y must not represent a object
type.

Does the object type subscriber satisfy the category
corba? No, since the name status used in the operation

setStatus above is an object type name, the constraint
of the category is violated. Thus, the definition of sub-
scriber would be rejected as a CORBA interface.

1.3 The Design Cycle

From the example above, we see that the use of CDL
involves the following steps:

o Architectural style design.

— A systems architect defines the appropriate
set of categories and general constraints.

— He (or she) uses the CDL decision procedure
to verify that the style is internally consistent,
e.g. that the constraints are consistent with
the syntax and not mutually contradictory.

o Application design.

— The application developer selects the appro-
priate architectural style for the applications
and development platform that is used.

— He (or she) annotates the design with the cat-
egories of the style.

— He (or she) requests automatic checks of the
design against the style to determine whether
the design satisfies all categories.

Tool support The systems architect may use a design
editor tool to define models in graphical and textual
representations. In addition to defining classes and their
interrelationship, the system architect may also use the
tool to define interfaces in more detail. In particular,
the architect may adorn each design entity with the
categories that it should satisfy.

Figure 1 shows a screen from a DELOS tool. The tool
is used to describe high-level decomposition of systems
into multi-class modules (rectangles) and the interfaces
used and provided by modules. Modules are annotated
with names of CDL categories. DELOS category names
are placed before the entity name, separated by a colon.
The categories SE, SA, DefG, and SWILIB used in this
example stem from an architectural style for telecom-
munications.

This is a high-level architectural style that defines
how modules can be composed into larger systems and
what categories of interfaces they provide and use. Such
constraints forces designers and implementors to main-
tain high-level architectural invariants for systems that
evolve for long-periods of time—sometimes decades. It
also simplifies maintenance by helping developers iden-
tify where in an architecture particular kinds of func-
tionality can be located.

In addition to the commands usually applicable in
design editors, the proposed extension of this tool will
provide two additional menu commands:

¢ Load architectural style.
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FIG. 1.

e Check for satisfaction.

The first menu alternative shown is used to load a
style, 1.e. a set of categories. The style loader is also a
style compiler so that any syntactic errors in the style
are detected and appropriate error messages are dis-
played. The style consistency checker might be part of
this command or it could be a separate tool or menu
alternative.

The check command is used when the architect or
application designer wants to control that one particu-
lar CDL satisfies the current style. In a more sophis-
ticated tool, the satisfaction check could be performed
incrementally as the design is constructed.

We have already prototyped the most difficult as-

pects of integrating CDL support into a design tool,
including:

¢ dynamic loading and checking of style with respect
to a particular design; and

¢ consistency checking of a style.

We report in Section 4 on the technically most chal-
lenging aspect, namely to translate styles into a format
usable by a constraint checker.

1.4 Related Work

A CDL description defines formally a set of architec-
tural concepts that we call categories. The description
does not represent any particular architecture, rather it
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An example of a tool supporting CDL

defines what can be called a design style or an architec-
tural style [20].

The book on software architectures by Shaw and
Garlan [23] is an important advance in understanding
software architectures. Shaw and Garlan formulate a
very general notion of style:

an architectural style defines a vocabulary of
components and connector types, and a set of
constraints on how they can be combined.

According to Shaw and Garlan, UNiX-like pipe-and-
filter mechanisms constitute a style; similarly, object-
oriented organization of software is a style. Tools like
AEsOP [6] can be used to describe such high-level styles
and to support building systems according to them.

In contrast, CDL is used to define styles for systems
designed or implemented using a particular source lan-
guage. Thus, if we design with an object-oriented lan-
guage, then CDL is used to define specialized styles
within the boundaries of the object-oriented paradigm.

In [17], a comprehensive approach to specifying regu-
larities in large software systems is outlined. These reg-
ularities are called laws of the system. They encompass
both dynamic and static properties. Dynamic proper-
ties are checked or enforced during runtime.

Static properties are enforced during compilation
time by viewing the system under development as a col-
lection of objects. When an object is changed, rules for-
mulated in a logic programming language are invoked.
Thus as with our approach, the environment provides
the enforcement of design constraints. The part of the



method in [17] that deals with source code constraints
does not make explicit how syntactic constraints like
the ones we consider should be modeled.

Meyers et al. [16] describe a language called CCEL
for defining constraints on C4++ programs. C++ pro-
grams can be statically checked to satisfy associated
CCEL constraints. CCEL has C++ specific predicates—
such as the is_friend predicate—and is therefore in prin-
ciple only applicable to C++ programs. However, the
ideas of CCEL and parts of its implementation can be
used for other languages than C+4. It is not clear if
CCEL allows any consistency checks or how the checking
of constraints is implemented. In CCEL, constraints are
imposed within a certain scope such as a file, class, or
member function. This is quite different from CDL,
where syntactic elements are adorned with category
names.

In recent years, design patterns [5] have become a
popular way of describing solutions to common design
and implementation problems. Usually, a design pat-
tern describes a problem, outlines a solution, and has
certain consequences. Gamma et al. [5] define design
patterns as describing

...communicating objects and classes that are
customized to solve a general design problem in
a particular context.

Unfortunately, the general term of design patterns is
commonly used for these specific kinds of general de-
sign solutions described by Gamma et al. and others.
While a design pattern is intended to propose a solu-
tion in a limited context, a CDL style is intended to
enforce certain design invariants on a complete system
or a significant portion of a system. Moreover, design
patterns are described informally by means of examples
in some selected implementation language; a CDL style
is a formal description of categories that can be assigned
to design elements such as interface definitions, classes,
and coarse-grained modules. In addition, a CDL style
is defined relative to a particular formal design or pro-
gramming language. Thus, according to the way the
term design pattern i1s generally used, a CDL style is
not a design pattern.

The Demeter Method [14] offers techniques for
adapting and reusing object-oriented program code for
new requirements and problems. It does so by provid-
ing higher level abstractions —class dictionaries and
propagation patterns—for building programs.

A class dictionary is an abstract representation of
classes and their relationships. Demeter presents differ-
ent kinds of relationships on which different kinds of op-
erations can be performed. Relationships are declared
among parts or method calls.

A propagation pattern is a description of a program
that traverses a class structure and adds computational
descriptions. A Demeter tool takes a class dictionary
and a propagation pattern as input and generates pro-

gramming language code. Thus, propagation patterns
and class dictionaries are together used to describe com-
plete programs.

CDL does not by itself allow the specification of com-
plete programs. Rather, CDL is used to specify and
apply constraints of languages that are used to describe
programs. Both Demeter and CDL use tree structures
as a basis. CDL descriptions are currently tightly knit
to the syntactical appearance of the language to which
CDL is applied. Demeter uses class dictionaries as a
more abstract representation of trees that allows prop-
agation patterns to be independent of programming lan-
guage syntax.

Possibly, CDL constraints could be applied to Deme-
ter class dictionaries. Such as combination would make
CDL constraints less syntax dependent, and it would
allow the use of CDL for Demeter programs.

The Unified Modeling Language [2] (UML) intro-
duces stereotypes. Stereotypes are similar to CDL cat-
egories in that they can be used to add semantic anno-
tations to designs. However, UML does not provide a
precise semantics for stereotypes. Neither does it pro-
vide analysis or checking mechanisms.

Superficially, our aims are similar to those of meta-
object protocols (MOP), which also specialize object
types [8]. However, a MOP specializes through pro-
grammed extensions of the behavior of object creations
and message sends. In contrast, we never change the
run-time semantics of objects. Our specializations are
only imposed through more or less intricate syntactic
restrictions.

CDL 1s an application of the FIDO programming
language for expressing regular (finite-state recogniz-
able) sets of labeled trees. FIDO is introduced in [11]
as a high-level notation for the Monadic Second-order
Logic (M2L) on finite trees, see [24]. While the M2L
has been known to be decidable since the 1960s, it is
only recently that practical implementations have been
available, largely due to the adaptation of BDD tech-
niques [4]. In [12], the translation techniques for M2L
on strings of [7] are extended to trees along with com-
binatorial techniques and data structures for avoiding
state space explosions. FIDO is also used in [9] for
the behavioral description of distributed programs and
their verification. M2L has also been applied to hard-
ware verification [1].

In a technical sense, the most closely related work
is in formal linguistics, where recent work has fo-
cused on constraint-based formalisms. Here the classi-
cal rewriting mechanisms of context-free grammars are
augmented with formalized constraints on parse trees.
Such constraints make it possible to avoid combinatorial
explosions in grammars, for example those that occur
when modeling agreement. James Rogers in his the-
sis [22] develops a theory of the use of formalisms based
on M2L for expressing parse tree constraints. QOur use
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of constraints is similar in that 1t avoids multiplication
of syntactic categories for parse trees of programs.

2. Applying Constraints to OMG-IDL

In this section, we introduce the category definition
language in some more detail, and we provide some re-
alistic examples. To illustrate that CDL is generally
applicable; we have here chosen to use OMG-IDL as
the specification language instead of DELOS. Thus, we
will use CDL to define design constraints for IDL spec-
ifications. To allow category annotations in IDL defini-
tions we have extended IDL slightly. We believe making
an explicit extension of IDL is preferred over so called
structured comments.

2.1 The Constraint Language

CDL is based on predicate logic where first-order
terms denote nodes in a parse tree over which a for-
mula is interpreted. The logical connectives A, V, =,
etc. have the same meaning as in conventional predicate
logic. In addition, CDL provides operators that express
relations among tree nodes as follows.

If x and y are variables denoting nodes, then the for-
mula x <y states that y is a descendant of x, i.e. it is in
the subtree rooted by x; whereas the formula x < y states
that y is a direct descendant of x. Furthermore, if x is a
node, then x.i is its ¢’th child in the syntax tree, counted
from left to right. The quantifiers V and 3 range over
nodes in the syntax tree, possibly restricted to a subset
of the non-terminals. Finally, the predicate x=t holds
when the node x is labeled with the terminal symbol t.

The example below shows a simple grammar and a
possible syntax tree where each node is labeled with its
type, a non-terminal symbol.

(A)

= BA|BC|BD @ Q

g::: !d|C
5 = il © ® ©

Consider now these three formulas:

Vx A dy: B.xay
—3dx A Jy:B Iz C(x<y)A(x<2)
Vx: Cdy:D.x<y

The first formula states that for all nodes x of type A
there exists a direct child of type B; for our grammar
this formulais trivially valid, since it holds for all syntax
trees. The second formula states that no subtree with
a root of type A may contain both a node of type C and
one of type B; this formula holds for only some syntax
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trees. The third formula states that any node of type
C must have a child of type Dj; this is an absurdity that
holds for no syntax tree.

A category consists of a named set of constraints and
a designation of the language construct to which it ap-
plies. The following category is named O, and it is
applicable to nodes of type A:

CATEGORY O FOR A IS
Jdy: B. root qy;
3z: C. root < z;

END

This particular category states that every node of type
A annotated with the category name O must have a
direct child of type B and some subnode of type C. The
name root denotes the node of type A to which we apply
the category.

The category concept is a grouping and naming
mechanism that maps into tree logic expressions. The
first constraint of the category above can be mapped to
the formula

¥ root: A. O(root) = Jy: B.root ay

In addition to grouping of contraints, categories bind
names to these groups. These names are essential, since
they are used in the decoration of parse trees.

2.2 A Subset of OMG-IDL

We need a syntax for IDL, and we need to extend
the syntax in order to allow category annotations in
IDL specifications, specifically for interface definitions.
Below, we have included parts of the OMG-IDL syn-
tax [18] with our extensions underlined.

<specification> <definition>*
<definition> = <type_dck> ;"
| <constdck> ;"
| <except_dch> ;"
|  <interface> ";"
| <module> ;"

<interface> ;= <interface_dcb>

<interface_dcl> ::= <interface_header>
"{" <interface_body> " }"
<interface_header> ::= "interface” <identifier>
[<category_dcls>*]
[<inheritance_spec>]

<interface_body> ::= <export>*

<export> 1= <type_dcb> ;"
| <constdck> ;"
| <except_dch> ;"
| <attrdek> 7"
| <op-dck>";"

<const_dcl> ::= "const” <const_type>
<identifier> "=" <const_exp>
<attr_dcb> ::= [readonly_dcl] "attribute”
<param_type_spec>



<simple_declarator>
""" <simple_declarator>*

<readonly_dcl> ::= "readonly”

<op-_dcb> = [<op-attribute>]
<op_type_spec> <identifier>
<parameter_dcls>
[<raises_expr>]
[<context_expr>]

<op_attribute> ;1= <oneway_dcb>
<oneway_dcb> ;.= "oneway”
<category _dcls> n="1" ddentifier>

{",” <identifier>}* "I"

<inheritance_spec> 1= ":" <identifier>
{7 <identifier> }*

The following is a simple OMG-IDL interface:

interface node !catName! {
void addChild(in node c);
void setParent(in node p);

+;

Note that the category annotation (lcatName!) is one of
our slight extensions to IDL. Below, we show a partial
syntax tree, where nodes in the tree are labeled by the
corresponding node types:

interface_dcl

interface_body

op_dcl
op_type_spec | parameter_dcls

identifier op_del

op_type_spec | parameter_dcls

identifier

The following subsections provides some examples of
possible design constraints for IDL interfaces. Our ex-
amples are limited to a few categories although, in our
experience, a realistic style consists of between 5 and
20 categories with each category containing up to 10
separate constraints.

2.3 Peer-to-Peer Interfaces

Our first example will demonstrate how we formally
can introduce for a peer-to-peer communication model
between objects specified in IDL. By annotating object
interface definitions with the peer category, we can en-
sure that the communication adheres to certain funda-

mental principles. In addition, the annotations allows
us to more easily understand how individual objects
communicate on a higher level of abstraction.

The communication model we want to introduce is
derived from the standardized Remote Operation Spec-
ification (ROS) [21] model. In the ROS model, we may
have two peer interfaces exchanging asynchronous mes-
sages, thus we have no pure client server model. We use
OMG-IDL one-way operations to denote asynchronous
message passing. Interfaces that represent a peer are
expected to be annotated with the peer category, which
informally expresses:

All nodes x that are subnodes of an interface
declaration node and represent operation decla-
rations should have a subnode that is a one-way
declaration.

The underlying constraint is that peer interfaces should
only provide operations with asynchronous semantics.
IDL one-ways declarations imply that operations have
asynchronous semantics. Therefore, we require that all
operations of peer interfaces are one-way operations.
Formally we define this constrains as:

CATEGORY peer FOR interface_dcl IS
YV x: op_dcl.root < x =
Jy: oneway_dcl. x qvy;
END

We also want to add that an interface clustering a set
of one-way operations should not reveal any concrete
state. Exposing concrete state is avoided by not having
publicly available attributes. Some (abstract) state in-
formation can still be revealed through operation calls.
This constraint leads us to refine the peer category as
follows:

CATEGORY peer FOR interface_dcl IS
YV x: op_dcl.root < x =
Jy: one-way_dcl. x < y;
V z: attr_dcl. —=(root < z);
END

This constraint disallows attributes in interfaces of cat-
egory peer by prohibiting any subnodes of type attr_dcl.

The following is an example of two collaborating peer
interfaces, one representing a player resource for a tele-
phony application and the other representing a player
resource client which we call the controller.

interface controller !peer! {
one-way void done();
one-way void error();

+;

interface player !peer! {
one-way void play();
one-way void rewind();
one-way void stop();
one-way void pause();

THEORY AND PRACTICE OF OBJECT SYSTEMS—1997 7



+;

A controller may start, stop, rewind, or pause the
player without waiting for the previous operation to ter-
minate. When an operation such as play terminates, it
calls the done operation on the controller. For simplic-
ity, we have omitted any arguments the operations may
convey in this example.

The example illustrates the type of problems where
peer interfaces and their characteristics are applicable.
In particular, the asynchronous semantics and encapsu-
lation of state is of vital importance. If attributes or
non-one-way operations are introduced, then the inter-
face would no longer satisfy the constraints of the peer
category.

By enforcing certain constraints on peer interfaces,
we are able to ensure the characteristics of a peer-to-
peer communication model. For instance, since we are
guaranteed that the communication between peers is
asynchronous, we need not worry about peers mutually
blocking while calling each other. Furthermore, a par-
ticular implementation mechanism—that supports ROS
effectively—can be used for this particular communica-
tion link.

By introducing explicit categories, we have also ex-
tended our design language with the peer concept and
consequently included explicit design level support for
the ROS communication model.

2.4  Services and Resources

In this example, we introduce several categories. The
resulting CDL style captures a systems architecture
that allows telephony services and resources to be more
easily introduced and changed. This is achieved by
clearly separating the user services from the resources.
Services and resources communicate in a way that al-
lows a loose coupling and an asynchronous communica-
tion model. In addition, the constraints allow us to use
implementation mechanisms well-suited for these cate-
gories of objects. These mechanisms support dynamic
run-time installation and upgrade.

Observe that IDL does not fully support the needs
of software design. Therefore, our example is limited
to what can be expressed by IDL specifications. Other
languages, such as DELOS, allows the expression of a
more complete design model.

For the purpose of this style we have identified the
following architectural concepts: service, resource, plain,
and factory.

A service object would represent a user level ser-
vice, such as call, voice mail, etc. Service objects can
be mapped to specific mechanisms in the platform on
which it is implemented. These mechanisms simplify
upgrade and change of service in run-time. Service ob-
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jects use a specific model for communication with re-
sources and other services.

The resource objects model resources that are shared
among multiple instances of the same or different ser-
vices. Examples of such are speech recognition, tone
sender, secondary storage, etc.

A plain object is neither considered a service nor a
resource from an architectural point of view. Rather
it is an object that is used to implement a service or
resource abstractions without itself being one from the
high-level architecture perspective. In addition, plain
objects can be implemented using standard language
mechanisms without any special platform support.

Finally, we want to adopt the object factory concept
in order to decouple the usage and creation of objects.

CDL allows us to specify formally what characterizes
the interfaces that correspond to each of these concepts.
Each concept will be represented by one CDL category.

Objects of category service should have a single one-
way operation called execute. This operation represents
the main flow of the service. Having a convention for
the name also simplifies service management since all
services have the same static interface signature.

We define the service category, where we use 3! x: to
denote that “there exists exactly one value of x such
that ...,” as:

CATEGORY service FOR interface_dcl IS
3! x: op_dcl.3 y: identifier.3 z: one-way_dcl.
root < x 4y A y="execute” A x < z;
YV z: attr_dcl. —root < z;
END

Because of the uniform and simple interface of ser-
vice objects a code generator can map it on an execution
mechanism that allows dynamic upgrade of services. In
addition, we architecturally enforce each service to be
defined as a separate object which will will enable fine-
grained reuse and upgrade. It is these kinds of consid-
erations that lead architects to identify service as an
design concept.

In our model, resources typically provide many one-
way operations commonly called by services. Services
are notified about the results through a separate event
service. It could also provide a concrete state, but only
for reads. Resource interfaces should only inherit from
other resource interfaces. We define the resource cate-
gory below.

CATEGORY resource FOR interface_dcl
IS
YV x: op_dcl. root < x =
Jy: one-way_dcl. x < y;
¥ x: inheritance_spec.V y: identifier.
root < x 4y = resource(y);
V x: attr_dcl. root < x =

Jy: readonly_dcl. x qvy;
END



The communication model for services and resources al-
lows them to be loosely coupled. This means resources
do not know about the services that call them and ser-
vices are not blocked calling resources. Since the model
1s essential for overall system qualities it is captured as
concepts in the architectural style. Figure 2 illustrates
the relationships between these concepts. Solid ar-
rows represents operation calls and dotted arrows event
sends.

Plain interfaces represent auxiliary objects rather
than abstractions that are important from an high-level
application architecture point of view. Plain interfaces
should be restricted so as not to provide one-way opera-
tions. This restriction limits the degree of asynchronous
message passing, thereby simplifying debugging. Also,
plain interfaces should be restricted so as to only inherit
from other plain interfaces

CATEGORY plain FOR interface_dcl IS
=3 x: one-way_dcl. root < x;
¥ x: inheritance_spec.V y: identifier.
root < x <y = plain(y);
END

Finally, for interfaces representing object factories, we
wish to enforce a naming convention and make the fac-
tory concept more explicit than an informal convention.

CATEGORY factory FOR interface_dcl
IS
3! x: op_dcl.3 y: identifier.
x a4y A y="getObj";
END

Below, we outline a small example where categories
have been used to annotate an OMG-IDL interfaces.
The annotations enable us to more readily identify the
architectural role of each interface. Since categories are
described formally, we can automatically ensure that
the interfaces satisfy the associated constraints.

interface wakeUpCall Iservice! {
void setTime(time t);
one-way void execute() raises (not_avail);

interface toneSender !resource! {
interface linelnterfaceCtl !resource! {

interface licFactory !factory! {
linelnterfaceCtl getObj(licnr In);

event service

03
y \\\\\

service DN

AN
AN
O AN
/
/
resource —

FIG. 2.

Services call resources that sends events

Consistency The style given above is obviously con-
sistent, since we have just sketched an example of a legal
design. However, suppose that we stupidly added the
following constraint:

V x: interface_dcl. resource(x) A plain(x)

which states that all interfaces must be both of cate-
gory plain and resource. Unfortunately, the added con-
straint has the implication that no design can possi-
bly be legal—a fact a consistency check would discover.
Without such a check, we could perhaps enter a costly
and frustrating cycle of trying to complete a design. For
a large and complicated design style developed simulta-
neously by several architects, the risk of inconsistency
is very real.

The following section will discuss the theoretical ba-
sis for our constraint language and the possibilities it
provides.

3. Theoretical Basis

The CDL formalism is based on the Monadic
Second-order Logic on finite binary trees. In M2L, the
universe of discourse is the nodes of a binary tree. There
are basic predicates for relating the positions of nodes.
Second-order terms are monadic relations, 1.e. sets of
nodes. There are the usual logical connectives and both
first- and second-order quantifiers.

Each formula in M2L denotes a set of trees: those
for which the formula holds. These sets coincide with
regular tree sets. The fundamental difference between
the two representations is that a formula may be non-
elementary more succinct than the corresponding au-
tomaton. Thus an extremely complicated automaton
may be described by a brief and elegant formula.

CDL is essentially the first-order fragment of M2L;
however, the full logic is needed to correctly model the
underlying syntax trees of a given grammar. Since reg-
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ular tree sets need not be sufficient, we also extend the
logic with externally computed unary predicates. In the
translation these are represented simply as free second-
order variables.

For the satisfaction problem, a CDL formula is trans-
lated into the underlying tree automaton, which is es-
sentially a simplistic attribute grammar, as discussed in
the following section. It is now a straightforward task
to see if a given syntax tree is accepted.

For the consistency problem, we must decide if some
constraints Cy, Co, ..., C, are mutually contradictory.
Thus we construct the automaton for the combined for-
mula C; A Co A ... A C,.
consistent if this automaton accepts any trees at all,
which can be determined through a simple depth-first
search.

The constraints are now

The M2L formalism is known to be a very ambi-
tious compromise between expressibility and decidabil-
ity. Almost any extension leads to an undecidable logic.
Thus, we can rest assured that CDL is as strong as it
can possibly be for expressing regularity. For example,
regular expressions with negation and conjunction op-
erators can be translated into M2L with only a linear
increase in size.

CDL cannot express all properties that one might
want to use as design constraints. For example, we can-
not express that two positions in the parse tree contains
the same, but unknown, string. This deficiency could
be remedied by embedding CDL into a more general
computing notation.

4. Implementation

The translation of CDL into tree automata by means
of the Fipo compiler and MoNa decision procedure [11]
is reasonably quick. For example, each formula in Sec-
tion 2.4 is translated in about 15 seconds (on a Sparc
1000). The consistency check is potentially costly, since
it considers several formulas at the same time; for the
style in Section 2.4, it lasts several minutes. New ver-
sions of these tools are under development and they
will run at least an order of magnitude faster due to an
improved BDD package [10].

We illustrate with an example how tree automata are
represented as attribute grammars. Recall this simple
grammar:

A == BA|BC|BD

B :=id]|C
C .= id
D = id

Consider the constraint that for every node of type A
there must below be a node of type D for which the
external predicate P holds:

Vx: A Jy: D.x<yAP(y)
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We now describe in detail the attribute grammar that
is generated. All attributes are synthesized, and the
attribute values are simply integers. A rule looks like:

T:[my,... mg]—=nif Py,—Ps,. ..

The meaning is: if we are at a given node of type T and
the 7’th subnode has synthesized the value m; and the
external predicate Py is true, P4 is false, etc., then we
synthesize the value n. A given syntax tree is accepted
if a bottom-up run yields an accepting attribute value.
The full attribute grammar is as follows:

attributes 0,1,2
accepting 0,1

:[0,0] — 2
[01] = 1
1 [0,2] = 2
J—0
([0]—0
J—0
[J—0if-P
[J—=1ifP

(e a v eRlvol- i

The claimed succinctness of formulas 1s not apparent
from this trivial example. However, the full resource
category generates 9 attribute values and several dozen
intricate rules; in comparison, the resource constraints
are rather intuitive, completely modular, and easy to
maintain.

The generated attribute grammars are guaranteed
to be munimal, since they are generated from uniquely
minimized tree automata. Thus, the design architect
need not be concerned with efficiency of the particular
phrasing of a given constraint.

In the new version of CDL under development, the
compiled automata are actually more complicated than
just explained. They are factorized according to the
principles explained in [12] so that the automata corre-
spond to grammars that have both inherited and syn-
thesized attributes.

We have not yet completed the integration with a de-
sign tool for DELOS or any other language. Note, how-
ever, that attribute grammars corresponding to design
constraints can be expected to be as simple as above.
Thus existing programming environments can easily be
extended to deal very efficiently with design constraint
checking.

5. Concluding remarks

Our proposed design constraint language CDL arose
from our experiences in developing design languages and
tools for object-oriented systems. Our approach to ar-
chitectural styles allows a formal treatment of design
constraints without forcing them to be built into the
design languages.



The main practical advantages of CDL are:

¢ we identify and formalize important architectural
concepts in named categories; and

¢ a design can be annotated with category names,
and we can automatically verify that a design sat-
isfies the stated constraints.

Our industrial experience and the examples pre-
sented here make us confident that the expressive power
of CDL is well-balanced, since it allows interesting con-
straints to be expressed concisely and precisely, while
allowing automated support by a decision procedure.

In this paper we have applied CDL to textual lan-
guages. There are, however, no hindrance to the appli-
cation of CDL to graphical languages with an underly-
ing tree structure. The only—general—prerequisite is
that the language has a well-defined syntax and that
syntactic entities can be annotated with categories.
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