Algorithms for Guided Tree Automata

Morten Biehl', Nils Klarlund?, and Theis Rauhe!

! BRICS, Department of Computer Science,
University of Aarhus,
Ny Munkegade, Aarhus, Denmark
{mbiehl,theis}@brics.dk

2 AT&T Labs - Research
600 Mountain Ave.,
Murray Hill, NJ 07974
klarlund@research.att.com

Abstract. When reading an input tree, a bottom-up tree automaton is
“unaware” of where it is relative to the root. This problem is important
to the efficient implementation of decision procedures for the Monadic
Second-order Logic (M2L) on finite trees. In [7], it is shown how ex-
ponential state space blow-ups may occur in common situations. The
analysis of the problem leads to the notion of guided tree automaton for
combatting such explosions. The guided automaton is equipped with
separate state spaces that are assigned by a top-down automaton, called
the guide.

In this paper, we explore the algorithmic and practical problems arising
from this relatively complicated automaton concept.

Our solutions are based on a BDD representation of automata [4], which
allows the practical handling of automata on very large alphabets. In
addition, we propose data structures for avoiding the quadratic size of
transition tables associated with tree automata.

We formulate and analyze product, projection (subset construction), and
minimization algorithms for guided tree automata. We show that our
product algorithm for certain languages are asymptotically faster than
the usual algorithm that relies on transition tables.

Also, we provide some preliminary experimental results on the use of
guided automata vs. standard tree automata.

1 Introduction

The Mona tool [4] implements a decision procedure and counter model generator
for a Monadic Second-order Logic on strings. This logic has first-order terms that
denote positions in the string and limited arithmetic on such terms; in addition,
second-order terms denote subsets of positions. The decision procedure follows
the classical method of associating a Deterministic Finite Automaton (DFA)
to each formula in M2L such that the DFA accept the strings satisfying the
formula. The main idea is the use of an extended input alphabet such that
a string encodes the value of all free variables. Naturally, this encoding leads

to very large alphabets, whose representation becomes the major issue in the
computational handling of such DFAs.

An extension of MONA to binary trees is currently under development at
BRICS in Aarhus. The traditional way of deciding formulas in the Monadic
Second-order Logic on Binary Trees is to associate a Determunistic Finite Tree
Automaton (DFTA) to each subformula. Each automaton represents the set
of interpretations that make the subformula true. The automata are calculated
according to a simple correspondence between logical connectives and automata-
theoretic operations. In [7], some sources of exponential and polynomial blow-
ups in tree automata associated with M2L formulas are studied. It is shown
there that a common source of state space explosion for DFTAs is their lack
of knowledge about the position relative to the root of the subtree read by the
automaton.

Among the proposals in [7], the asymptotically best one is to factorize the
state space by a representation called a guided tree automaton. The factorization
is carried out by a top-down automaton, called the guide, which assigns state
space to the nodes of the input tree. The transition relation of the bottom-up
automaton is thereby split into many components.

In [7], a high-level programming language FIiDo based on M2L and some
conventional programming language concepts is proposed for the convenient ex-
pression of properties of parse trees. The compilation of Fipo into M2L is
described. Also, a concept of universe is proposed as an extension of M2L. A
universe declaration defines a separate tree address space. In [7], it is argued
how universes naturally arise from a FIDO program and how they in turn give
rise to guides that reduce state spaces.

The algorithmic aspects of guided tree automata are involved and were not
discussed in [7].

In the present paper, we propose efficient data structures and algorithms
for BDD-represented guided tree automata. A main problem addressed is how
to avoid the inherent quadratic blow-up in the representation of a transition
relation. This blow-up hinges on the property that for an n-state automaton,
there are n? pairs for which a function from letters to new states have to be
specified. With our solution, we can bound the running time of the product
algorithm in certain situations: the total time required is O(N%), where N is the
number of states of the product automaton, whereas a conventional algorithm
would use ¢(N?) time (and space).

Our solution to the quadratic blow-up problem relies on observations that
we make about the nature of transition relations occurring during the decision
procedure for M2L. We argue that transition relations tend to be sparse, at
least for the important first-order fragment of M2L. Our representation uses
essentially the same default idea as in [2], which in our case can be expressed
as: for fixed left state ¢’, the largest class of right states ¢” such that that
the transition function is constant on (¢, ¢"’) can be represented by a default
transition. All other ¢’” must be represented by explicit entries for (¢, ¢’). Our
contribution is to solve a number of technical problems that must be overcome in

order to use this idea efficiently, that is, so that asymptotic and practical gains
can be achieved.

The rest of the paper is organized as follows. In Section 2, we provide the
definitions of guided tree automata and discuss their relation to usual tree au-
tomata. In Section 3, we suggest efficient data structures for the representation
of guided tree automata. In Section 4, 5, and 6, we give detailed accounts of al-
gorithms for product, projection (including determinization), and minimization.
Finally, we report on some preliminary experimental results in Section 7.

2 Guided tree automata

Let X be an alphabet. The trees T’ over X are denoted as follows. A leaf
is identified with the empty tree ¢. Internal nodes are identified with their
subtrees, which are of the form «a(t,ts), where o € X is the label of the node
and t1,ts € Ty are the left and right subtrees. Leaves do not have labels. A
Deterministic Finite Tree Automaton (DFTA) is a tuple M = (Q, X, q0, F, 9),
where () is the finite set of states, F' C @ is the final states, qg €) is the initial
state and d is the transition function § : (@ x @) = (¥ — @). The labeling
function & : Ty — @ 1s defined inductively by

5(5) = 4o
S(afty,ta)) = 6(5(t1), 8(t2))(ar)

We say that M accepts the input treet ifS(t) € F'. Thus informally, the automa-
ton traverses the tree bottom-up while associating a state to each subtree. The
set L(M) of all trees accepted is the language accepted by M. A tree language
is regular if and only if it is the language accepted by some DFTA.

According to the definition above, the traversal of a subtree is independent of
where the subtree is positioned in the input tree. As argued in [7], it would often
be beneficial to provide the automaton with “positional knowledge” indicating
what part of the input tree, relative to the root, the automaton is currently
traversing.

To see how such information may bring about a reduction in the state space,
consider the tree language L consisting of all trees for which the number of
occurrences of o € X in the left subtree i1s divisible by n and the number of
occurrences of § € X in the right subtree is divisible by m. A DFTA recognizing
L then requires n - m states (when n and m are relative primes). The language
i1s more efficiently recognized by means of three separate automata : My for
traversing the left subtree (n states), Mp for traversing the right subtree (m
states) and My for combining the results. The polynomial state space explosion
(n - m) is avoided, because each automaton has “positional knowledge.” TFor
example, My “knows” that it is traversing the left subtree, and thus it does not
need to keep track of occurrences of 3.

Technically, “positional knowledge” can be provided by a top-down automa-
ton that identifies regions of the input trees.

Definition 2.1. A guide G = (D, p, dp) consists of

D, a finite set of state space IDs,
1D — D x D, the guide function, and
do € D, the inttial ID.

The size v of GG is the cardinality of D.

A simple guide that identifies whether a node is a left child, a right child, or
the root of the input tree can be defined as GG = (D, p, dp), where

D = {iop, left, right},
dog = top, and
p(d) = (left, right), for any d € D.

A guided tree automaton defines a state space for each state space ID and a
transition function for each transition of the guide:

Definition 2.2. Let G = (D, u, dg) be a guide. A guided tree automaton (GTA)
Mg with guide G is of the form ({Qq}taep, X, {da}aep, {Ga}aep, F). The com-
ponents of Mq are as follows.

— {Qua}aep is a family of disjoint finite sets of states, one set for each state
space ID. We often abbreviate this family {Q}p.

— X is the alphabet.

— {d4}dep is a family of transition functions, one for each state space ID, such
that if u(d) = (d’, d"") for some d,d’,d” € D, then §4 is a transition function
of the form d; : (Qq x Qqv) — (X — Qq). We say that §g is of type
d x d” — d, and call d’ the left ID of &4, d’ the right ID of 64 and d the
target ID of é4. Similarly, we refer to Qg as the left states of o4, Qg as
the right states of §4 and Q4 as the range states of §;. We often abbreviate
this family {d}p.

— {qa}dep is the family of initial states, one for each state space ID. We often
abbreviate this family {¢}p.

— F C Qq, 1s the set of final states.

The size n of Mg is the cardinality of the largest state space in M¢.

Note that if G = (D, p, dp) is a guide with [D| = 1, then any tree automaton
guided by (' is just an ordinary DFTA.

We will rely on notational shortcuts to improve readability. States and sets
of states are usually subscripted by the state space ID, denoted by d,d’, d”, etc.
Where no confusion arises, we write ¢ instead of ¢4, ¢’ instead of g4, ¢ instead
of qq etc. Similar abbreviations are used for sets of states.

The intuition behind guided tree automata is quite simple. First, the guide
labels each node in the tree with a state space ID (“positional knowledge”).
Second, each leaf is labeled with the initial state of the state space indicated by
the ID. Then in a bottom-up manner, every remaining internal node is labeled

with a state of the space indicated by the ID according to the corresponding
transition function.

To make these notions more precise, we let T(x, »,) denote the set of trees
whose leaves belong to the alphabet X7 and for which all other nodes belong
to the alphabet Y. The ID labeling function i : Ty — Ti{s}xD,xxp) 18 NOW
defined by ji(t) = fi(t, dy), where

ﬁ(E’ d) = (.’ d),
ol 7). d) = (o,)" &), 71", d")) where u(d) = (&, ")

and e is a symbol not in Y. The state labeling function 5 Tite}xD,2xD) —
U{Q1}p is defined by:

d(e,d) = gq and A A
(e, d){(t', '), (1", d"))) = da(o(t', d'), 6(t", d"))(ev),

where 04 is of type d’ x d” — d. Note that since i attaches dy to the root of a
tree t, we have 5o f(t) € Qgy- A tree t € Ty is said to be accepted by a guided
tree automata Mq 1f Soﬂ(t) € F', and the set of trees accepted by M is denoted
L(Mg).

The following proposition constructively shows how DFTAs can be simulated
by GTAs and vice versa.

Proposition 2.3.

(a) Let M = (Q,X,0,q0, F) be a DFTA of size n and G = (D, ui,dy) a guide.
Then there is a GTA Mg = ({P}p, X, {v}p,{P}p, E) of size n such that
L(M) = L(Mg).

(b) Let Mg = ({Q}p, X, {6}p,{d}p, F) be a GTA of size n guided by G =
(D, pt,do) of size y. Then there is a DFTA M = (P, X,~,po, E) of size n”
such that L(Mg) = L(M).

Proof. (Idea)

(a) We define M by making a copy of the state space and transition function
for each d € D.

(b) M simulates all the transition functions of Mg in parallel.

3 Data structures for guided automata

Decision procedures and large alphabets The decision procedure for M21,
on strings associates a language over an alphabet of the form ¥ = B (where
B = {0, 1} is the Booleans) to each formula ¢, see [11]. The idea is the following:
for a word w € (B*)* of length ¢, each of the k components defines a bit pattern or
track of length £. Each free variable of ¢ is assigned to a track and is interpreted
as the subset of positions in {0,..., £ — 1} for which the track contains a 1. The
language defined for ¢ is the set of strings that interpret ¢ to be true. Since the
number of free variables can be large, say 100, the resulting alphabets can be of

astronomical size, say 21°°.

Shared BDD representation In the MoNA implementation of automata on
finite strings [4], a shared multi-terminal BDD, called the X-BDD is used to
represent the transition function.

BDDs were originally introduced in [1]. We use the variety defined as follows.

Notation A Binary Decision Diagram (BDD) is a rooted, directed graph. Each
node w is either an internal node or a leaf. A leaf w defines a leaf value in V,
where V is a finite set. An internal node w possesses an index together with
a low successor and a high successor such that the index of both successors is
higher than the index of w. Each node w represents a function B* — V for some
k, and we use w to denote both the node and the function it represents. Thus, if
w 18 a root and b is a vector of k bits, then we denote the value of the function
on b by w(b).

The kind of BDD defined above is sometimes called a multi-terminal BDD.
A shared BDD is a BDD with multiple roots. In the algorithms in the following
sections, we use the apply and restrict operations described in [1], although we
use the term projection in place of restriction.

If w and W’ are roots, then we denote by w x w’ the pairing of functions w
and ', that is, w x w'(b) = (w(b),w’(b)). This function can be calculated by a
binary BDD apply operation in time bounded by the product of the sizes of w
and w’.

In our automaton representation, each state of the automaton points to a
BDD node, and each leaf value is a state. Given a letter o € B, we may find
the value of the transition function by following the BDD nodes according to «
from the node pointed to by the state. The leaf reached contains the name of
the next state. A MONA representation of a DFA is depicted in Figure 1.

The BDD-based representation of automata on strings allows efficient imple-
mentation of standard operations on finite automata (except for minimization,
where our current algorithm is quadratic although its behavior in practice is
better than quadratic).

BDD-based tree automaton data structure We would like to use a similar
representation to gain efficient algorithms for guided tree automata. Thus, we
assume that a shared BDD is used for representing the alphabetic part of each
transition relation, i.e. the part with signature ¥ — @ of 64 : (@' x Q") = (¥ —
@)). This BDD is called the ¥-BDD and we call the function X — @ that it
represents the X-behavior. We use {2 to denote the nodes of the Y-BDD.

A naive approach for representing dq : (@' X Q") — (X — @) is to create an
entry for each pair (¢, ¢"”) € Q' x Q”. An entry defines a o-behavior as a BDD
node in a Y-BDD. This approach leads to an unfortunate quadratic growth,
since each of the |@’| x |@Q”| entries must be explicitly represented.

An alternative approach is to define a binary encoding of the state spaces @’
and Q”. Each state ¢” € @” has a unique identifier in the range {0,...|Q"|—1},
which can be encoded by means of a vector of k = log(|@"'|) bits. Thus for each

States 0 1 2
Accepting | fase | fase true

hi

Figure 1. MoNA representation of DFA that accepts all strings over B? with at least
two occurrences of the letter “117.

q' € @', we can define a binary function

fq/(bo, cey bk_l) = 6d(q/a q//)’

where bg,...,bg_1 is the binary encoding of ¢”. All these functions can now
be represented in a shared BDD. Furthermore, we still use a shared BDD for
representing the X-behavior §4(¢’, ¢'").

For a fixed ¢’, this representation represents the functions d4(¢’, ¢'), where
q'" ranges over all @, succinctly in the case that §4(¢’, ¢’") has the same value,
which we call a default X-behavior, for almost all ¢”. For instance, if 99% of all
q" lead to the same Y-BDD node, then the state BDD for ¢’ has approximately
0.01-n nodes (when .01 -n >> logn). The total representation is then only one
hundredth the size of a total transition table. Thus our notion of sparsity is that
for any left state, very few right states are of interest—the rest all lead to the
default behavior.

An experimental version of the extended MoNaA system has been imple-
mented based on this representation with acceptable; although not astonishing
results. Since the state encoding tends to be random, the compression occurs
only for the situations just described. Also, there is a O(logn) penalty for look-
ing up the transition function for a particular ¢”, since O(logn) BDD nodes
must be followed. Our experience is that this factor creeps into automata algo-
rithms based on this representation. Therefore, we will pursue in this paper a
representation without a logarithmic overhead.

M2L decision procedure on trees Before we propose another representation,
we review the decision procedure for M2L on trees in order to understand where
sparseness in transition tables may occur.

In its most basic form, the M2L logic on finite trees consists of formulas made
out of second-order variables P, logical connectives A and —, and the quantifier
3. Also, there are a unary, postfix function symbols -/ and -r, and binary, infix
function symbols U and \ (set difference). T -1, where T' is a second-order term,
is interpreted as the set of left successors of positions in 7. Similarly, T - r is
the set of right successors of T'. The interpretation of T'UT” is the union of the
interpretations of 7" and 7”. The Boolean connections and 3 are interpreted in
the usual manner.

Connectives like V, the quantifier V, the successor function for first-order
terms, and first-order variables can be reduced to expressions in the basic form.
An important trick is that a first-order term can be simulated by a second-order
variable that is restrained to be a singleton. (We omit a further discussion,
which would become very technical.)

We consider two kinds of semantics. The skeleton semantics defines the
meaning of terms and formulas relative to a finite, binary tree ¢, called the
skeleton. Second-order quantification is restricted to the skeleton, that is, a
second-order variable denotes a subset of the nodes of this tree. Consider a
formula ¢ with free variables P = {Py,---, Px}. A value assignment relative to
t is a binary, labeled tree T that has the same shape as the skeleton and where
each label determines set membership status of the variables in P. Thus, 7" can
be regarded as a mapping 7' : ¢ — B*, which determines the value of P; to be
the set of positions p € ¢ such that the kth component of T'(p) is 1. If ¢ holds
under the interpretation 7', then we write T Egrer ¢. We let Lypei(¢) denote
the language of satisfying interpretations. Also, by convention, the successor
functions stutter at leaves, that 1s, the left or right successor of a leaf in ¢ is the
leaf itself.

The natural semantics is that of WS2S, the weak-second order theory of two
succesors, which also interprets second variables over only finite subsets. But
quantification is not restricted by a skeleton. Also, the successor functions do
not stutter anywhere. This semantic interpretation is denoted [=,4;. Note that
for any interpretation of P, there will be infinitely many trees 7' that describe
the interpretation because of the padding property: any T can be padded with
extra positions labeled (0, ..., 0) while still denoting the same collection of finite
subsets.

The decision procedure works as for strings in both cases. By structural
induction on formulas, we construct automata A% % on alphabet B*, where &k =
|P|, satisfying the correspondence:

TE¢iff T e L(A®T)

Thus, A%% accepts exactly the labeled trees T' that make ¢ true, that is, L(¢).
All formulas can be assumed to contain basic formulas (those that are not
composed from Boolean connectives or quantifiers) that are very simple, like

P=@Q lor P=¢UR. This is because complex terms can be decomposed
by the introduction of more variables. For such simple basic formulas, it is
straightforward to construct automata satisfying the correspondence. Also, it is
not hard to see that for the conjunction ¢ A, if P corresponds to ¢ and £ corre-
sponds to ¥, then the automaton product 5 x £ corresponds to ¢ A . Negation
has an automata-theoretic formulation as complementation, which is achieved
by making final states non-final and vice versa. For the case of existential quan-
tification, a projection operation combined with the subset construction can be
used under both semantics. Because of the padding property, however, the nat-
ural semantics demands an additional automata-theoretic operation discussed
in b.

Sparsity of M2L transition relations Typically, an arbitrary T would not
make sense relative to the original formula if it contained first-order variables.
For example, if the second-order variable P is used in ¢ to denote a single position
(corresponding to the common case where quantification is first-order), then ¢ is
trivially false if there are more than one position in the P-track containing a 1.
Once a second such position is encountered by the automaton in its bottom-up
parsing of the tree, it will go to a “reject-all state” (a graph-theoretic sink).
So, intuitively, each state will contain information or assumptions specifying the
“first-order status” of P, namely whether 0, 1, or more occurrences of a 1 have
been encountered. Thus, if we consider a random left state ¢’ and a random
right state ¢”, then a transition to a state other than the “reject-all state” can
happen only if ¢’ and ¢’ for each variable make consistent assumptions about
the its status. For example, in the case of a second-order variable P modeling
a first-order variable, the “reject-all state” will result from any scenario where
each of ¢’ and ¢ contains the first-order status assumption that a single 1 in
the P-track has already occurred. Therefore, given k first-order variables, the
chance that a random pair of states ¢’ and ¢” are consistent is p*, where p < 1.
(Here, we have assumed a uniform probability distribution and that the first-
order status information is not masked by other information; thus, the number
of states is also exponential in k.) This argument could be formalized so as to
show that sparsity occurs under some rather representative circumstances when
M2L is translated to tree automata.

Our representation Our representation exploits the assumed existence of a
preponderant equivalence class by storing it implicitly in a manner similar to
the incompletely specified transition functions of [2].

To make notions more precise, consider a transition function dg of type d’ x
d”" — d. A state ¢’ € Q' induces an equivalence relation =g 5, on Q" defined by

¢ =q¢ 6095 U 8a(q’, ¢)) () =04(q, ¢4) () forall a € X

Sparsity means that one equivalence classes of =4 5, contains almost all of
Q", whereas the other equivalence classes only contain a few elements of Q"

each. An equivalence class that contains at least as many elements as any other
equivalence class is referred to as a largest equivalence class.

In our representation, we store in an array the following information for each
of the left states ¢’ € Q':

— amnode in the X-BDD, named ¢'.default 4, denoting the default behavior, and
— aset of pairs (¢",w) € Q" x £2, named ¢'.explicit,.

The subscript d indicates that the associations are with respect to the transition
function with target ID d, i.e. the above associations are made for each transition
function. Note that this representation is asymmetric in the sense that default
and ezplicit ; are defined only for left states. (The choice of left is arbitrary.)

We represent a largest equivalence class [¢)] of =4 5, implicitly by setting
q .default; = d4(¢',¢}). For all ¢ & [¢], the pair (¢”,d4(¢’, ¢"')) is stored in
q'.explicit;. Thus for arbitrary ¢ € Q" and « € X, we have

P _ Jw(e) if (¢",w) € ¢ .explicit, for some w
dalg’ ") (e) = {q’.defaultd(a) otherwise

Thus determining d4(q’, ¢"') amounts to a set lookup. The representation of a
transition function is depicted in Figure 2.

Q | A

g .explicit 4

o .default, ‘ ‘ q”‘ ‘

> -BDD "o

q Q

Figure 2. Representation of a transition function d4 of type d’ x d"" — d.

Representing the whole GTA A GTA Mg = ({Q}p, X, A {¢}p, F) is im-
plemented by a structure as described above for each transition function. We use

10

a single BDD, shared among all transition functions, to encode X. In addition,
the implementation has a bit vector of size |Qq4,| to represent F'.

4 Product

Let B = ({P}p, X, {v}p,{p}p. E) and Q = {Q}p, X, {6}p,{7}p, F) be tree
automata guided by G = (D, pt, dg). The product automaton of P and £ is then
M= ({R}p, X {6}p,{F}p, H), where

Rg = Pq x Qq

8a = va X da: ((Py x Q) x (P x Qi) = (X = (P4 X Qq)), where
va % ¢a((p'sd"), (P, 0")) (@) = (va(p', p")(a), ¢ald’, 4") ()

¥4 = (Pd, 4d)

H=FExF

A relatively simple approach

We begin by describing a simple approach of performing a product of two guided
tree automata. This approach does not construct the whole product spaces
P; x Qg; instead, only reachable pairs of states are calculated.

The algorithm maintains two sets for each d € D:

— R4 now denotes subset of Py x ()4 that consists of all pairs encountered so
far during the computation. The set is initialized to {{(p4, ¢a)}-

— unprocessed g 1s the subset of the reached pairs Ry for which the transition
function has not been calculated. Initially, unprocessedy is also the singleton

set {<]3d, (jd>}

The transition function to be calculated of type d’ x d’ — d is represented
by explicit sets of the form (p/, ¢').explicity and default values (p', ¢").default,.

Consider a pair (p, ¢) from some set unprocessed ;. For every transition func-
tion 84 of type d x d’ — d, we must calculate all transitions involving (P, §). We
say that we process (p, ¢) under the left view. Specifically for each {p"’, ¢"') € Ry,
we calculate

w =7a(p, p") * ¢a(d,q")

by performing a binary BDD apply. Since w equals d4((p, ¢), (¢, ¢"")), we can
extend d4 for this value by inserting ((p”', ¢''),w) in (p, §).explicit,.

We also have to process under the right view: for transition functions of type
d x d = d, we compute for each pair ', q¢) € Ry

w=7a(p,p) * $ald’, 7)
and insert ((p, §),w) into (p', ¢').explicit,.

After all transitions where (p, ¢) occurs have been considered, (p,¢) is re-
moved from unprocessed.

11

During computation of each BDD apply, all pairs that occur as BDD leaf
values and that have not been encountered before are inserted into unprocessed 4
and Ry.

The algorithm continues until every set unprocessedy is empty. It is easy to
verify that the algorithm maintains the processed invariant:

For all d € D, the transition functions d; are totally defined for (Rq \
unprocessedy) x (Rgr \ unprocessedy.).

Hence upon termination, all transition functions are defined (through the sets
explicity) for all reachable pairs.

To compress the representation of the state part of the transition relation,
an extra sweep upon termination is necessary to adjust the defaulty values.
Alternatively, this can be done on-line by keeping track of the frequency of BDD
nodes inserted in the explicity sets. In this way, space cost 1s decreased.

To analyze the above algorithm, assume for simplicity that the number of
reachable states in any state space of the resulting automaton is bounded by N,
i.e. |Rg| < N for all d. The time used per state in the resulting automaton is
O(N), and hence in total the algorithm uses time O(N?). (In this paper, we
ignore the size of the X-BDDs in our complexity estimates.)

A more efficient approach

The algorithm we propose in this paper is designed to take advantage of the
default ; values of the automata 5 and . In certain cases, this method makes
it possible to obtain an O(N%) time bound in contrast to the quadratic bound
above.

The main idea explained for the left view is: when processing a pair (p, ¢)
for a transition function d4 of type dxd — d, we can often avoid considering
all pairs (p”, ¢"") of state space Rgv. This is accomplished by tentatively letting
(P, §).default equal p.defaulty x §.default,. Tf

either p” € p.explicity or ¢ € §.explicity, (1)

then we do have to consider (p”, ¢"'}; otherwise, when (1) does not hold, it is the
case that §4((p, ¢), (p", ¢"")) = (P, §).default, and hence we do not need to insert
(p"”, ¢") into the set (p, §).explicit,.

Similarly, under the right view, for transition function d4 of type d’' x d— d,
we need to insert (p, ¢) in (p/, ¢').explicit; only if

either p € p’.explicit; or ¢ € ¢ .explicil,. (2)

Since the purpose of the efficient approach is to avoid considering data im-
plied by the default behaviors, we need to introduce additional data structures
in which the pairs that need consideration can be explicitly looked up.

To do this, we need to precompute some information for each transition
function § of type d’ x d” — d. For automaton 3, the following is computed:

12

— To each state p’ € Py, we define the set
p = exply = {p" | (p',w) € p.explicit}.

These sets are calculated in order to maintain an explicit representation of
the pairs that satisfy (1).
— To each state p”’ € Py we let

p’ < exply = {p' | (p',w) € p.explicit}.
These sets are for the computational handling of requirement (2).

Note that p” € p/ — exply if and only if p’ € p’ < exply. Similar information
is calculated for 3. These calculations can be carried out in linear time of the
size of the representation.

In addition to the sets of reachable pairs Ry and the sets unprocessed, the
algorithm maintains critical pairs sets, which are subsets of the reachable pairs
sets. For automaton ‘3, these sets are

— Rl eapr, = 10", ¢") € Ran [" € p" — eaply} and
= Rl cexpt, = {0 ¢) € Ra [P € eaply}

U

for all p’ € Py and p” € Pgv where pu(d) = (d’',d"”). Similar sets are defined for
automaton Q. The critical pairs invariant is that the data structures represent-
ing the critical pairs sets satisfy these definitions.

The sets R|p'—>empld determine whether a pair (p”, ¢"") belongs to the explicit

list of (p,¢) under the left view according to (1): if (p”,¢") € R|p—>e:ﬁpld U
R|q—>empld’ then p” is found in p.explicit, or ¢" is found in q.explicit;. In either
case, the explicit set for (p,¢) must contain (p”, ¢'") (unless the X-behavior of
(p, @), (P, ¢")) happens to be the default p.default; * ¢.default;). On the other
hand, if (p”, ¢"") ¢ R|p—>e:ﬁpld U R|q—>empld’ then the value of §4((p, ¢, (p”,¢"")) is
the default behavior. Thus processing of pair (p, ¢) under the left view need to
involve only right states (p”,¢") € R

The sets R|
view.

If we assume that all p — exply, p < expl;, ¢ — expl;, and q « expl; sets
have been pre-computed, then Figure 3 shows how the unprocessed sets and the
various versions of the sets of reachable states are extended as a result of new
pairs that are generated during an apply operation:

Figure 4 summarizes how the main part of the product algorithm works. The
correctness of the algorithms is argued below.

After the product automaton has been calculated, the product algorithm

p—expl, U R|q—>empld'

prreexpl, play a similar role for the processing under the right

must also ensure that the default transition in each case corresponds to an
equivalence class of maximal size. If not, a maximal equivalence class will be
converted from an explicit representation to a default representation and the
former default representation is made explicit. These calculations can be carried
out in time linear to the size of the product automaton.

13

fun apply_and_eztend (w1, w2, d) =
use the BDD apply operation to calculate w = w; * ws
for each (p, §) encountered (during the apply)
that is not already in ; do
add (p,q) to R; and to unprocessed
for d x d" — d for some d,d” do
add (p, §) to R'p"eexpld for each p” € p — eapl,
add <]5,ﬁ> to R'q”(—expld for each ¢ € § — eapl,
od
for d’ x d — d for some d,d’ do
add (p, §) to R|p 1, for each p’ € p + eapl,
add (p, §) to R|
od

' exp
o —eapl, for each ¢' € § « expl,
od

return w

Figure 3. Algorithm for auxiliary function apply_and_extend.

Correctness It can be seen that apply_and_extend satisfies both the processed
invariant and the critical pairs invariant (the details of this argument are left to
the reader).

The first for-loop in Figure 4 initializes the critical pairs set so that the
critical pairs invariant holds. Also, since Ry = unprocessed,, the processed
invariant is trivially true.

Let us consider the apply operations that are executed after a pair (p,) is
removed from unprocessed ; under the left view (ci x d" — d). After these apply
operations, it holds that d4 is defined correctly for all ({5, ¢), (p”, ¢"")) in Rertical-
But Reriticar contains all (p”, ¢’y in Ry (as evaluated before the operations)
that are not known to induce the default behavior for (p, ¢). In particular, é4 is
defined for all ((p, ¢}, (p", ¢"")), where (p",¢") € Ry \unprocessed j,, where Rgn
and unprocessed 4. stand for the sets before the apply operations (and after (p, ¢)
has been removed from unprocessed ;). This property also holds if d = d". Since
Ra\unprocessed 5, remains constant during apply_and_extend, the property also
holds after the operations, and it can be seen that 1t is sufficient for guaranteeing
the processed invariant. The critical pairs invariant also holds throughout the
apply operations, and it is not affected by the removal of a product state from
the unprocessed set.

Analysis We analyze the effect of the default representation here. So assume
that there is only one state space ID d and that the spaces of P and 2 are
bounded by n. In addition, let ¢(n) be a function of n that bounds the number

14

Ra, unprocessed; = {{pa,qa)} for all d € D
for each d, let (B, §) be the state in R; and do
for d x d" — d for some d,d” do
add {p, §) to R'p"eexpld for each p” € p — eapl,
add <]5, qA> to R'q”(—el‘pld for each ¢ € § — eapl,
od
for d' x d — d for some d,d’ do
add {p, §) to R|p’—)€l‘pld for each p’ € p + eapl,
add {p, §) to R'q'—wxpld for each ¢' € § « expl,
od
od
while unprocessed; # 0 for some de D do
remove a pair (p, §) from unprocessed;
for d x d" — d for some d,d" do
Reriticat = R'ﬁ—)Sl‘pld U R'q-wxpld
(P, §).default; = apply_and_extend(p.defaulty, §.default,, d)
for all (p”, q”> € Rcrltlcal do
w = apply_and _extend(v4(p, p"), dald, ¢"), d)
if w # (p, §).default, then
add ({(p",q"),w) to {p,§).explicit,
fi
od
od
for d' x d — d for some d,d’ do
Reriticat = R'ﬁ(—Sl‘pld U R|q<—expld
for all <p/, q/> € Rcrltlcal do
(', q').default, = apply_and_extend(p’.default;, q'.default,, d)
w = apply_and _extend(v4(p', p), dal(q’, 4), d)
if w# (p,q').default;, then
add ({(p, §),w) to (p',q').explicit,
fi
od
od

Figure 4. Algorithm for product construction for GTAs.

of elements in any of the sets p — exply, p « exply, ¢ — exply, q + expl,.

We then claim that our algorithm uses at most time O(t(n)n) per state in the
product automaton R. Consider the pair (p,§). The transition function §4 of
type dx d” — d is extended under the left view for only those pairs (", ¢") from
Rgr for which either p” € p.explicity or ¢ € q.explicit;. The number of such
pairs is bounded by |p.explicity| - |Qa|+|§.explicity| - |Pgn| = O(t(n)-n). (Similar
considerations apply to the calculations done under the right view.) Tt can be

15

argued that updating the critical pairs sets can be done within time O(¢(n)+n)
per product state. Thus in total, the algorithm spends time O(t(n) - n) per
product state.

In contrast, the simple algorithm visits all reachable pairs, so it uses time
O(n?) per product automaton state when all states are reachable. Hence for
t(n) < o(n), our time of O(n -#(n)) is asymptotically better.

To put this in a sharper light, assume t(n) = O(1). The resulting product
automata could have size N = n?, and the simple algorithm would be of time
complexity O(N?); in contrast, our algorithm uses time O(¢(n) - n) per state of

3

the resulting automata, e.g. it uses total time O(n -t(n)-n?) = O(n3) = O(N 2).

5 Projection and determinization

Existential quantification in M2L corresponds to the automata-theoretic opera-
tion of projecting the transition relation on a new alphabet where the quantified
variable is no longer described. The resulting nondeterministic automaton must
then be determinized by a subset construction.

Let m; denote the tuple projection on component i, that is, m(f)), where
be B*, is the tuple b with the ith component removed (1 <4< k). Intuitively,
automaton projection on component ¢ is the process of converting a guided tree
automaton £) recognizing a language L over B* to a nondeterministic guided
tree automaton £’ over B*~! by removing track i. Thus, L(LQ') consists of all
trees over B*~! that are the projections on component i of trees in L, ie., that
are gotten from trees in L by applying tuple projection on ¢ to each label. This
language is denoted m;(L).

It can then be shown that L (3P @ ¢) = m(Lsker(¢)), which derives our
interest in the projection operation. (Later, we shall look at the modifications
necessary to accommodate the natural semantics.)

The automaton £’ is constructed by applying the BDD projection operation
7 on the 2-BDD associated with each transition function. Applied to a 2-BDD
w, the projection operation results in a BDD w, representing the function

wr(b) = {w(b) | m(b) = b},

Note that for each b, there are exactly two bs that satisfy the criterion above.
Thus the leaves of m(w) are sets with one or two elements. The nondeterministic
automaton represented by the projection BDDs must then be determinized so
that it can later be minimized. We will describe an operation that simultaneously
carries out the projection and determinization of . If the automaton £ denotes
a language L, then our projection and determinization construction results in
an automaton that represents the projected language m;(L).

To be more precise, consider a GTA 2 = {@}p, X, {0}p,Pp, F) guided
by G = (D, i, do), where ¥ = BF. The i-projected power set automaton is the
automaton (P(Qq), X, va, ({Ps} o, {{Q@ | QN Fy # 0}}p), where 4 is defined

16

as
74(Q@, Q") (b) =)
U{da(q’, ¢")(b) | mi(b) = b}
In practice, we are of course interested in only calculating the transition function
for the reachable subsets.

Algorithmically, v can be calculated as follows. Consider d' x d’ — d, a
subset Q' of Qg , and a subset Q" of Qqv. Then, v4(Q’, Q") is the value of

*{m(d(¢',q") | ¢ € Q and ¢ € Q')

where # , the unton apply operation, calculates for a collection of BDDs that
map into sets the BDD that maps each b to the union of the sets mapped to by
the collection.

Adapting the product algorithm

To take advantage of the default representation, we adapt the techniques de-
veloped for the product algorithm. For a transition ¢ of type d’ x d”’ — d, we
introduce critical subset sets, which are similar to the critical pairs sets of Sec-
tion 4. The set R|ySewpr, denotes the critical subsets Q" such that ¢’ occur in
q".explicit; for some ¢ € Q.

Rlyserpts ={Q" € Ran | Q" N ¢" — exply # 0}

Similarly, R|grecopt, denotes the subsets @', where ¢” occur in ¢'.explicit; for
some q' € Q.

R|q”<—expld = {Q/ S Rd’ | Q/ N q// — 61’Pld 7& 0}

We assume that we have at our disposal a binary version of ¥ , which “unions”
together the leaves of two BDDs. The subset construction can be implemented as
shown in Figure 5 and Figure 6. This algorithm is a straightforward adaptation
of the product algorithm. For example, the default subset state for a subset
state ()’ is the union apply of the projections of the default behaviors of states

in Q.

Improvements

A major expense in the algorithm just outlined is the repeated calculations
of BDDs of the form Li{ﬂ'g(q’,q”) | ¢ € Q,¢" € Q"}, where 75(¢',¢") =
m(6q(q’,¢"")) for some appropriate d. We also denote this calculation as

i{ﬂé(Q/,Q//)}. It can be seen by an inductive argument that if a subset
such as ' is reachable, then there are subsets Qf,...,Q}, £ > 2, such that
Q' =Q1U---UQ), and each @} is a singleton or is reachable [3]. (It is unfor-
tunately the case that a set {q1,¢2} may be reachable without {1} and {¢2}

17

fun apply_extend({wy, ..., wr}, ci) =
calculate w = w; ng i gwk (in some order)
for each new subset of states Q not already in R j; obtained as
the value of a leaf in the last apply operation above do
insert Q into R; and unprocessed
for d x d" — d for some d,d” do
add Q to R|g1 epp, for each q" € § — ewply for some § € Q
od
for d’ x d — d for some d,d’ do
add Q to R|g Lenpr, for each q' € § < ewply for some G € Q
od
od
return the BDD for w

Figure 5.

being reachable; this may happen, for example, if the set {g1,¢2} is a leaf of a
projection operation from the initial state.) For simplicity, we assume next that
£ =2 and we say that @) and Q% form a binary decomposition of @’.

As a further simplification, assume that |Q’| = |Q"| = n = 2. Also, assume
that each @' has a binary decomposition into disjoint sets @) and Q% and that
a similar property holds for Q" sets.

Then the value of % {ms(Q',Q")} can be calculated as m5(Q}, QY) ¥
(@Y, QY) L»571'5(62’2, 9) Liﬂ'g(Q’Z, 7). Thus, if a(N) is the total number of ap-
ply operations for sets of size 2V, then a(N) = 4 - (N — 1) + 3, which has
the solution a(N) = 4 — 1. In contrast, the direct calculation involves (2V)?
projection applys and (2V)2—1 union applys, in total 2-4% —1 apply operations.
Therefore, the decomposition method requires approximately half as many apply
operations for N > 3 or n > 8.

Further benefits of decomposition It can be seen that there are 7 ways of

arranging the three union applys in a calculation of >LO<J{7T5Q/, Q"} assuming a
binary decomposition. Some are better than others if we assume that the two
components of any reachable set are also reachable. For example, if

w1 = 75(Q1, QY)
wy = 75(Q5, QY)

m5(Q7, @Y) and
7T5(Q/2’ /2/)

V]
*
V]
*

then i{ﬂ'é(Q/, Q") = w Liwz. The point is that both w; and ws are results
of transition function calculations involving reachable sets. Thus, the extra cost

18

Ra,unprocessedq = {{g,}} for all d € D
for each ci, let Q be the subset in R; and do
for d x d" — d for some d,d” do
add Q to R|g1 cqp, for each q" € § — ewply for some § € Q
od
for d' x d — d for some d,d’ do
add Q to R|g/yezpr, for each q' € 4 « exply for some G € Q
od
od
while unprocessed ; # 0 for some d e D do
remove a set Q from unprocessed ;
for d x d" — d for some d,d” do
Q.defaultd = apply_extend ({=(§.defaulty) | § € 0 1 d)
Reriticat = Ugeq Bla—seapty
for all Q" € Reriticat do
w = apply_extend({m(84(4,q")) | § € Q,q" € Q'Y d)
if w # Q.default, then
add (Q",w) to Q.explicz’td

endif
od
od
for d' x d — d for some d,d’ do
Reriticat = Ugeq Rlaeeapty

for all Q' € Reriticar do
Q' .defaulty = apply_extend({w(q' .defaulty) | ¢' € Q'}, d)
w = apply_extend({m(8a(q’,§)) | 4 € Q,q' €Q'},d)
if w # Q'.default; then

add (Q,w) to Q'.explicit,

endif

od

od
od

Figure 6. Algorithm for projection of GTAs.

of calculating ¥ {m(6Q',Q")} is only one apply operation if all such results are
cached.

In practice, we have chosen to work with only the binary decomposition.
Subsets that have a decomposition with more than two subsets are forced into a
form consisting of several binary decompositions. Consequently, the subsets for
which we calculate transition functions are generally not reachable.

19

The quotient operation

Under the natural semantics, the automaton for v = 3P; : ¢ cannot be obtained
by the project and determinize operation just described. The problem is that a
satisfying interpretation T of ¢ could be “smaller” than a witness T satisfying
¢. This happens when the domain of 7' is properly included in the domain of T,
which could be an interpretation that assigns elements to P; outside T'. More
formally, we solve this problem as follows.

Let

INL' = {T" | for some T and some T} € L', ..., T) € L'}
T =T(Tl,...,T!) € L

be the quotient of L by L', where if T' has n leaves (canonically ordered according
to some principle), then T'(77, ..., T}) is the tree that is gotten by inserting 77 at
leaf 2 in 7. Also, let L; consist of all trees that are labeled with 0 in components
different from ¢. Then, it can be seen that Lpq:(¢) = 75 (Lnae(é)\Ls) [10].

In practice, the quotient operation L(¢)\L; is quite easy handled. Tt suf-
fices to replace the initial subset states {g,;} with I;, where I; are states that
are reachable along paths labeled with letters that are 0 everywhere except in
component ¢, see Figure b.

procedure zero_path_states (w, j)
return {w(0™), w(0°"110™)}

procedure quotient(({Q}p, X, {6}p,{q}, F),1)
unprocessedq, lq = {ga} for alld € D
while unprocessed; is not empty for some d do
pick (and remove) a state ¢ from unprocessed
let d be such that d x d" — d
for ¢ € I, do
unprocessedq = unprocessedq U (zero_path_states(6(q,q"),1) \ 1)
Iy = I4U zero_path_states (6(4,q"),1)
od
let d be such that d’ x d — d
for ¢’ € Iy do
unprocessedg = unprocessedq U (zero_path_states(8(q’, §),) \ 1)
Iy = I4U zero_path_states (6(q',§),1)
od
od
return ({Q}p, 2. {6}p,{I}p, F)

Figure 7. Algorithm for the quotient operation.

20

6 Minimization

Minimizing guided tree automata is a rather complex task compared to the
minimization of ordinary tree automata (which is already a non-trivial affair that
as far as we know has not been described in the literature from an algorithmic
point of view; but see [8] for an elegant proof that a minimum automaton exists).
Before discussing the minimization process, we extend the notation provided by

[9):

Notation A partition P of a finite set U is a set of digjoint subsets of U such
that the union of these sets is all of /. The elements of a partition are called its
blocks. A refinement Q of P is a partition such that any block of Q is a subset
of a block of P. We let [¢]p denote the block of the partition P containing the
element ¢, and when no confusion arises, we drop the subscript.

Let Mg = ({Q}p, X, {6}p,{¢}p, F) be a GTA guided by G = (D, u, dp),
and let {Ps}qep be a family of partitions such that P, is a partition of Q4. We
extend the shorthand notation introduced in the previous sections, and we write
P for the partition Py, P’ for Py etc. when no confusion occurs. Let {Q}p be
a refinement of {P}p, i.e. Qg4 is a refinement of P, for all d € D. Let 64 € {§}p
be a transition function of type d’ x d’/ — d.

A block B’ of Q' §4-respects Py if

Yq1,95 € B Vg € Q" Va e X : [8a(qh, ¢")(@)]p, = [8alqz, ¢") ()],

Similarly a block B” of Q' §4-respects Py if
VgY,qy € B" V¢ € Q' Vo € X : [da(q’, 47) ()], = [6a(d’, 47)(@)]p,

Thus B’ §4-respects Py if d4 cannot distinguish between the elements in B’
relative to Py. A partition Q' §4-respects Py if every block of Q' §4-respects Py,
and a family of partitions {Q}p d4-respects Py if Q" and Q" §4-respects Py. A
family of partitions {Q}p respects the family of partitions {P}p if {Q}p d4-
respects Py for all transition functions §; € {§}p, where 64 is of type d' xd”" — d.
A family of partitions is stable if it respects itself. The coarsest, stable family of
partitions Qp respecting Pp 1s a unique family of partitions such that any other
stable family of partitions respecting Pp is a refinement of Qp.

The minimization algorithm works by gradually refining a current family
of partitions so that each step of the algorithm ensures that the refinement §4-
respects the current family of partitions for some transition function d;. We first
show how to split a current family of partitions with respect to a single transition
function, and later how this is used to minimize a guided tree automata. We
assume for the rest of this section that our representation is symmetric, that
this, the sets explicit; and the default behaviors default; are also present for
right states. It is straightforward to precompute these values from the explicit,
and default ; information of the left states (this is the information calculated by
the product and project algorithms).

21

Splitting with respect to 44 of type d’ x d’ — d Let Q, Q' and Q" denote
the current partition of (), ' and ()" respectively and assume that the current
family of partitions does not dg-respect @. We now show how to compute the
coarsest partition which d4-respects the current partition.

1. Replace the leaf-values in the X-BDD by canonical representatives according
to @ and reduce it. This induces a partition of the nodes in the X-BDD
denoted §.

2. Refine Q' to P’ such that ¢ =p/ ¢4 iff ¢ =0/ ¢4 and
Vq" € Q", daldh,q") =5 da(dh, ¢")

3. Refine Q" to P” such that ¢f =p» ¢4 iff ¢ =o» ¢4 and
Vq' € Q' dald qf) =s dald'qy)

Step 1 ensures w =g w' iff Va € ¥ w(a) =g w'(a). For the partition
calculated in step 2 we have ¢} =p/ ¢4 iff d4(q1, ¢") =s d4(qh, ¢) for all ¢ € Q"
le. Vg € Q' Yo € X, 54(¢},¢") () =0 64a(¢h, ¢"")(). Thus all blocks of P
dg-respect, Q. Similarly, step 3 ensures that all blocks of P §;-respect Q.

The refinement operation in step 2 is performed by assigning to each element
¢’ € @’ a canonical representative for its block in the new partition P’ respecting
Q. Similar representatives are calculated for ¢ € Q" in step 3. For a X-BDD
node w, we denote its canonical representative with respect to & by w.

We now address the problem of calculating the canonical representatives
in step 2. (Step 3 is symmetric.) Consider a state ¢’ € @'. The problem
Is to calculate in linear time a unique characterization of the function ¢ —
[0a(q’, ¢")]. We must deal with the default representation while making sure that
the characterization remains unique. The following techniques allow a default
based representation, where the default case is used only when its uniqueness
can be assured.

Let vy = ¢'.default; and let 0, be its representative according to S. By
traversing the states in ¢’.explicity, we calculate the set:

My ={(¢", @) | (¢",w) € ¢ .explicity and w # vy }.

If |My| < £]Q"], then vy is a default behavior that applies to more than
half the states in Q. Otherwise, [My| > 1]|Q"| and we find a v, minimizing
the size of

{(¢", @) [(¢",w) €Q" x 2, w=104(¢",q") and & # 1, },

by another linear traversal. Redefine M, to be this set, and 74 to be 19(/1,. If the

size of | M| still is larger than £|@Q"|, then there is no way of characterizing the
default behavior uniquely by means of the class that contains more than half
the states. Thus in this case, we redefine M, once more to be:

{(q“a(’:)) | (q//aw) S QH X Qa W = 6d(q/aq//)}a

by utilizing all states in)" and redefine 7y to be a fixed value — different from
any representative w. We remember the old values of M, and 7 and denote

22

these as M, and v, respectively. It is now not difficult to show that the tuple
(Mg, vq) is a canonical representative for the block in P’ containing ¢', i.e.
q1 =p q3 iff (Mg, Vg,) = (Mg, Vg,). Also, it can be seen that the calculation of
the representative is linear in the size of ¢'.explicity. We note that in practice
we would additionally need to calculate a canonical index (an integer) from the
canonical representative using some hashing approach.

In total, calculating the canonical representative for a state ¢’ in step 2 takes
time O(|¢’.explicit;|) given that the representatives with respect to § have been
calculated. Hence in total step 2 and step 3 take time proportional to the
representation of the transition relation dg4.

Minimizing a guided tree automaton With the splitting operation of the
previous section, minimization of a guided tree automaton is now an easy task.
Consider a GTA Mg = ({@}p, X, A {¢}p, F) guided by G = (D, u,dg) and
let No¢ = ({P}p, X, {¢}p,{F}p, H) denote the resulting automaton. Now let
d be a state space ID with u(d) = (d',d”) and assume we have just done a
dg-split. If the left partition became strictly finer, then we say that a left-split
occurred. In that case, we must also carry out a §g-split operation. Similar
considerations apply for a right-split and a subsequent §4/-split operation. This
process is repeated until no more split operations need to be done, 1.e. until a
fixed point has been found.

The algorithm is specified in some more detail in Figure 8.

In the first phase, it performs the split operations according to a set called
candidates, where ID d € candidates if a §4-split must be carried out. The set
candidates 1s updated with respect to the left-splits and right-splits that occur.
The first phase of the algorithm terminates when candidates = . The function
split called with parameter § performs a split operation with respect to § as
described in the previous section. It returns a pair of Booleans (Isplit,rsplit) that
indicates whether a left-split (right-split respectively) occurred. The resulting
family of partitions, Qp, is the coarsest, stable family of partitions respecting
the initial family of partitions.

In the final phase, the algorithm builds the minimized guided tree automaton
from the family of partitions Qp.

Analysis Since each split operation is linear in the total size of the GTA repre-
sentation and since each operation (except for the last) results in a finer partition,
the total running time is O(n - m), where n is the total number of states and m
1s the total representation size.

Note that the selection of the next transition function to use for a split
operation is arbitrary. It would be interesting to study whether more judicious
choices could entail asymptotic gains.

It is possible to minimize BDD-represented automata on finite strings in time
O(m -logm) [5], but it is an open question whether this result can be extended
to tree automata.

23

.. . .. AR Qu, \ F}if d=do
Initial family of partitions :Qq = {{Qd} otherwise
candidates = {do }
while candidates # ¢ do

remove a state space ID d from candidates
(d',d") = u(d)
(Isplit,rsplit) = split(dq)
if' Isplit then
add d’ to candidates
fi
if’ rsplit then
add d" to candidates
fi
od

Replace the values in the leaves of the 2-BDD by canonical representatives
according to @p and reduce it. The induced partition of

2)-BDD nodes is denoted S.

for each d4 of type d’ x d"’" — d do
for each [q:] € Q' with cano/nical representative (Mg, 0y) do
add [q'] as a state to P
if oy =1 then
[q']. default, = D
lq']- explicity = M7
else
lq']. defaulty = D,
lq']. explicit; = M,
fi
od
for each [¢""] € Q" with canonical representative (M, Pqn) do
add [¢"] as a state to P”
if l/)q// =1 then
lq"]. default; = Dy,
[q"]- explicity = M
else
lq¢"]. defaulty, = Dy
lq"]. explicity = My
fi
od
od

Figure 8. Algorithm for minimizing GTAs.

7 Experimental results

The current MONA tool supports guided tree automata, but does not yet use
the representation of the transitions functions presented in this paper. Instead

24

the implementation uses the BDD encoding of the state spaces mentioned in
Section 3. Nevertheless, we have had some successful experimental results with
this implementation.

A major goal of the implementation was to provide the means for making
Fipo [7] a tractable programming language for expressing regular constraints
on parse trees. From a FIDO program, a M2L formula is generated. By pro-
cessing this formula, MONA calculates an automaton, which can be viewed as
an attribute grammar for the specified grammar satisfying the syntactic side
constraints. The grammar example from [7] and an additional HTML grammar
example are processed by FIDoO and MoNA in approximately half a minute on
a Sparc Station 1000. In both examples, the M2l formulas generated by Fibo
are several (dense) pages long. Our current tool was also used to compute the
architectural software constraints in [6].

Our experience is that for most of these examples, the intermediate and final
automatons exhibit the property of sparse transition functions. Thus, we ex-
pect that the proposed algorithms together with successful attempts of speeding
up the current BDD-package will give rise to a significant speed-up in future
implementations of the GTA operations.

We have experimented with the guide to determine its practical importance.
For the HTML example, we experienced that with a guide with three state
spaces, MONA could process the example in 40 seconds, with intermediate au-
tomata reaching at most 70 states. With a one-state guide (i.e. with an ordinary
DFTA), MoNA generates an intermediate automaton with a state space of more
than 7000 states—which the subsequent project operation is unable to handle.

References

1. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEFE
Transactions on Computers, C-35(8):677-691, Aug 1986.

2. A. Cardon and M. Crochemore. Partitioning a graph in O(|A|log, |V]). TCS,
19:85-98, 1982.

3. Rowan Davis. Personal communication. 1995.

4. J.G. Henriksen, J. Jensen, M. Jgrgensen, N. Klarlund, B. Paige, T. Raubhe,
and A. Sandholm. Mona: Monadic second-order logic in practice. In Tools
and Algorithms for the Construction and Analysis of Systems, First Inter-
national Workshop, TACAS 95, LNCS 1019, 1996. Also available through
http://www.brics.dk/~klarlund/MonaFido/papers.html.

5. N. Klarlund. An nlogn algorithm for online BDD refinement. Technical report,
BRICS, Aarhus, Denmark. http://www.brics.dk/~klarlund/MonaFido/papers,
1996.

6. N. Klarlund, J. Koistinen, and M. Schwartzbach. Formal design constraints. In
Proc. OOPSLA ’96, 1996. to appear.

7. N. Klarlund and M. Schwartzbach. Regularity = logic 4 recursive data types.
Technical report, BRICS, 1997. To appear.

8. D. Kozen. On the Myhill-Nerode theorem for trees. EATCS Bulletin, 47, 1992.

9. R. Paige and R. Tarjan. Three efficient algorithms based on partition refinement.
SIAM Journal of Computing, 16(6), 1987.

25

10. J.W. Thatcher and J.B. Wright. Generalized finite automata with an application
to a decision problem of second-order logic. Math. Systems Theory, 2:57-82, 1968.

11. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, pages 133-191. MIT Press/Elsevier,
1990.

26

