
Algorithms for Guided Tree AutomataMorten Biehl1, Nils Klarlund2, and Theis Rauhe11 BRICS, Department of Computer Science,University of Aarhus,Ny Munkegade, Aarhus, Denmarkfmbiehl,theisg@brics.dk2 AT&T Labs - Research600 Mountain Ave.,Murray Hill, NJ 07974klarlund@research.att.comAbstract. When reading an input tree, a bottom-up tree automaton is\unaware" of where it is relative to the root. This problem is importantto the e�cient implementation of decision procedures for the MonadicSecond-order Logic (M2L) on �nite trees. In [7], it is shown how ex-ponential state space blow-ups may occur in common situations. Theanalysis of the problem leads to the notion of guided tree automaton forcombatting such explosions. The guided automaton is equipped withseparate state spaces that are assigned by a top-down automaton, calledthe guide.In this paper, we explore the algorithmic and practical problems arisingfrom this relatively complicated automaton concept.Our solutions are based on a BDD representation of automata [4], whichallows the practical handling of automata on very large alphabets. Inaddition, we propose data structures for avoiding the quadratic size oftransition tables associated with tree automata.We formulate and analyze product, projection (subset construction), andminimization algorithms for guided tree automata. We show that ourproduct algorithm for certain languages are asymptotically faster thanthe usual algorithm that relies on transition tables.Also, we provide some preliminary experimental results on the use ofguided automata vs. standard tree automata.1 IntroductionTheMona tool [4] implements a decision procedure and counter model generatorfor a Monadic Second-order Logic on strings. This logic has �rst-order terms thatdenote positions in the string and limited arithmetic on such terms; in addition,second-order terms denote subsets of positions. The decision procedure followsthe classical method of associating a Deterministic Finite Automaton (DFA)to each formula in M2L such that the DFA accept the strings satisfying theformula. The main idea is the use of an extended input alphabet such thata string encodes the value of all free variables. Naturally, this encoding leads

to very large alphabets, whose representation becomes the major issue in thecomputational handling of such DFAs.An extension of Mona to binary trees is currently under development atBRICS in Aarhus. The traditional way of deciding formulas in the MonadicSecond-order Logic on Binary Trees is to associate a Deterministic Finite TreeAutomaton (DFTA) to each subformula. Each automaton represents the setof interpretations that make the subformula true. The automata are calculatedaccording to a simple correspondence between logical connectives and automata-theoretic operations. In [7], some sources of exponential and polynomial blow-ups in tree automata associated with M2L formulas are studied. It is shownthere that a common source of state space explosion for DFTAs is their lackof knowledge about the position relative to the root of the subtree read by theautomaton.Among the proposals in [7], the asymptotically best one is to factorize thestate space by a representation called a guided tree automaton. The factorizationis carried out by a top-down automaton, called the guide, which assigns statespace to the nodes of the input tree. The transition relation of the bottom-upautomaton is thereby split into many components.In [7], a high-level programming language Fido based on M2L and someconventional programming language concepts is proposed for the convenient ex-pression of properties of parse trees. The compilation of Fido into M2L isdescribed. Also, a concept of universe is proposed as an extension of M2L. Auniverse declaration de�nes a separate tree address space. In [7], it is arguedhow universes naturally arise from a Fido program and how they in turn giverise to guides that reduce state spaces.The algorithmic aspects of guided tree automata are involved and were notdiscussed in [7].In the present paper, we propose e�cient data structures and algorithmsfor BDD-represented guided tree automata. A main problem addressed is howto avoid the inherent quadratic blow-up in the representation of a transitionrelation. This blow-up hinges on the property that for an n-state automaton,there are n2 pairs for which a function from letters to new states have to bespeci�ed. With our solution, we can bound the running time of the productalgorithm in certain situations: the total time required is O(N 32), where N is thenumber of states of the product automaton, whereas a conventional algorithmwould use �(N2) time (and space).Our solution to the quadratic blow-up problem relies on observations thatwe make about the nature of transition relations occurring during the decisionprocedure for M2L. We argue that transition relations tend to be sparse, atleast for the important �rst-order fragment of M2L. Our representation usesessentially the same default idea as in [2], which in our case can be expressedas: for �xed left state q0, the largest class of right states q00 such that thatthe transition function is constant on (q0; q00) can be represented by a defaulttransition. All other q00 must be represented by explicit entries for (q0; q00). Ourcontribution is to solve a number of technical problems that must be overcome in2

order to use this idea e�ciently, that is, so that asymptotic and practical gainscan be achieved.The rest of the paper is organized as follows. In Section 2, we provide thede�nitions of guided tree automata and discuss their relation to usual tree au-tomata. In Section 3, we suggest e�cient data structures for the representationof guided tree automata. In Section 4, 5, and 6, we give detailed accounts of al-gorithms for product, projection (including determinization), and minimization.Finally, we report on some preliminary experimental results in Section 7.2 Guided tree automataLet � be an alphabet. The trees T� over � are denoted as follows. A leafis identi�ed with the empty tree ". Internal nodes are identi�ed with theirsubtrees, which are of the form �ht1; t2i, where � 2 � is the label of the nodeand t1; t2 2 T� are the left and right subtrees. Leaves do not have labels. ADeterministic Finite Tree Automaton (DFTA) is a tuple M = (Q;�; q0; F; �),where Q is the �nite set of states, F � Q is the �nal states, q0 2 Q is the initialstate and � is the transition function � : (Q � Q) ! (� ! Q). The labelingfunction �̂ : T� ! Q is de�ned inductively by�̂(") = q0�̂(�ht1; t2i) = �(�̂(t1); �̂(t2))(�)We say thatM accepts the input tree t if �̂(t) 2 F . Thus informally, the automa-ton traverses the tree bottom-up while associating a state to each subtree. Theset L(M) of all trees accepted is the language accepted by M . A tree languageis regular if and only if it is the language accepted by some DFTA.According to the de�nition above, the traversal of a subtree is independent ofwhere the subtree is positioned in the input tree. As argued in [7], it would oftenbe bene�cial to provide the automaton with \positional knowledge" indicatingwhat part of the input tree, relative to the root, the automaton is currentlytraversing.To see how such information may bring about a reduction in the state space,consider the tree language L consisting of all trees for which the number ofoccurrences of � 2 � in the left subtree is divisible by n and the number ofoccurrences of � 2 � in the right subtree is divisible by m. A DFTA recognizingL then requires n �m states (when n and m are relative primes). The languageis more e�ciently recognized by means of three separate automata : ML fortraversing the left subtree (n states), MR for traversing the right subtree (mstates) andMT for combining the results. The polynomial state space explosion(n � m) is avoided, because each automaton has \positional knowledge." Forexample,ML \knows" that it is traversing the left subtree, and thus it does notneed to keep track of occurrences of �.Technically, \positional knowledge" can be provided by a top-down automa-ton that identi�es regions of the input trees.3

De�nition 2.1. A guide G = (D;�; d0) consists ofD, a �nite set of state space IDs,� : D ! D �D, the guide function, andd0 2 D, the initial ID.The size
 of G is the cardinality of D.A simple guide that identi�es whether a node is a left child, a right child, orthe root of the input tree can be de�ned as G = (D;�; d0), whereD = ftop, left, rightg;d0 = top; and�(d) = (left, right); for any d 2 D.A guided tree automaton de�nes a state space for each state space ID and atransition function for each transition of the guide:De�nition 2.2. Let G = (D;�; d0) be a guide. A guided tree automaton (GTA)MG with guide G is of the form (fQdgd2D ; �; f�dgd2D; f�qdgd2D ; F). The com-ponents of MG are as follows.{ fQdgd2D is a family of disjoint �nite sets of states, one set for each statespace ID. We often abbreviate this family fQgD.{ � is the alphabet.{ f�dgd2D is a family of transition functions, one for each state space ID, suchthat if �(d) = (d0; d00) for some d; d0; d00 2 D, then �d is a transition functionof the form �d : (Qd0 � Qd00) ! (� ! Qd). We say that �d is of typed0 � d00 ! d, and call d0 the left ID of �d, d00 the right ID of �d and d thetarget ID of �d. Similarly, we refer to Qd0 as the left states of �d, Qd00 asthe right states of �d and Qd as the range states of �d. We often abbreviatethis family f�gD.{ f�qdgd2D is the family of initial states, one for each state space ID. We oftenabbreviate this family f�qgD.{ F � Qd0 is the set of �nal states.The size n of MG is the cardinality of the largest state space in MG.Note that if G = (D;�; d0) is a guide with jDj = 1, then any tree automatonguided by G is just an ordinary DFTA.We will rely on notational shortcuts to improve readability. States and setsof states are usually subscripted by the state space ID, denoted by d; d0; d00, etc.Where no confusion arises, we write q instead of qd, q0 instead of qd0 , q00 insteadof qd00 etc. Similar abbreviations are used for sets of states.The intuition behind guided tree automata is quite simple. First, the guidelabels each node in the tree with a state space ID (\positional knowledge").Second, each leaf is labeled with the initial state of the state space indicated bythe ID. Then in a bottom-up manner, every remaining internal node is labeled4

with a state of the space indicated by the ID according to the correspondingtransition function.To make these notions more precise, we let T(�1 ;�2) denote the set of treeswhose leaves belong to the alphabet �1 and for which all other nodes belongto the alphabet �2. The ID labeling function �̂ : T� ! T(f�g�D;��D) is nowde�ned by �̂(t) = ~�(t; d0), where~�("; d) = (�; d),~�(�ht0; t00i; d) = (�; d)h~�(t0; d0); ~�(t00; d00)i where �(d) = (d0; d00)and � is a symbol not in �. The state labeling function �̂ : T(f�g�D;��D) !SfQgD is de�ned by:�̂(�; d) = �qd and�̂((�; d)h(t0; d0); (t00; d00)i) = �d(�̂(t0; d0); �̂(t00; d00))(�),where �d is of type d0 � d00 ! d. Note that since �̂ attaches d0 to the root of atree t, we have �̂ � �̂(t) 2 Qd0 . A tree t 2 T� is said to be accepted by a guidedtree automataMG if �̂� �̂(t) 2 F , and the set of trees accepted byMG is denotedL(MG).The following proposition constructively shows how DFTAs can be simulatedby GTAs and vice versa.Proposition 2.3.(a) Let M = (Q;�; �; q0; F) be a DFTA of size n and G = (D;�; d0) a guide.Then there is a GTA MG = (fPgD; �; f
gD; f�pgD; E) of size n such thatL(M) = L(MG).(b) Let MG = (fQgD; �; f�gD; f�qgD; F) be a GTA of size n guided by G =(D;�; d0) of size
. Then there is a DFTA M = (P;�;
; p0; E) of size n
such that L(MG) = L(M).Proof. (Idea)(a) We de�neMG by making a copy of the state space and transition functionfor each d 2 D.(b) M simulates all the transition functions of MG in parallel.3 Data structures for guided automataDecision procedures and large alphabets The decision procedure for M2Lon strings associates a language over an alphabet of the form � = Bk (whereB = f0; 1g is the Booleans) to each formula �, see [11]. The idea is the following:for a wordw 2 (Bk)� of length `, each of the k components de�nes a bit pattern ortrack of length `. Each free variable of � is assigned to a track and is interpretedas the subset of positions in f0; : : : ; `� 1g for which the track contains a 1. Thelanguage de�ned for � is the set of strings that interpret � to be true. Since thenumber of free variables can be large, say 100, the resulting alphabets can be ofastronomical size, say 2100. 5

Shared BDD representation In the Mona implementation of automata on�nite strings [4], a shared multi-terminal BDD, called the �-BDD is used torepresent the transition function.BDDs were originally introduced in [1]. We use the variety de�ned as follows.Notation A Binary Decision Diagram (BDD) is a rooted, directed graph. Eachnode ! is either an internal node or a leaf. A leaf ! de�nes a leaf value in V ,where V is a �nite set. An internal node ! possesses an index together witha low successor and a high successor such that the index of both successors ishigher than the index of !. Each node ! represents a function Bk ! V for somek, and we use ! to denote both the node and the function it represents. Thus, if! is a root and b is a vector of k bits, then we denote the value of the functionon b by !(b).The kind of BDD de�ned above is sometimes called a multi-terminal BDD.A shared BDD is a BDD with multiple roots. In the algorithms in the followingsections, we use the apply and restrict operations described in [1], although weuse the term projection in place of restriction.If ! and !0 are roots, then we denote by ! � !0 the pairing of functions !and !0, that is, ! � !0(b) = (!(b); !0(b)). This function can be calculated by abinary BDD apply operation in time bounded by the product of the sizes of !and !0.In our automaton representation, each state of the automaton points to aBDD node, and each leaf value is a state. Given a letter � 2 Bk , we may �ndthe value of the transition function by following the BDD nodes according to �from the node pointed to by the state. The leaf reached contains the name ofthe next state. A Mona representation of a DFA is depicted in Figure 1.The BDD-based representation of automata on strings allows e�cient imple-mentation of standard operations on �nite automata (except for minimization,where our current algorithm is quadratic although its behavior in practice isbetter than quadratic).BDD-based tree automaton data structure We would like to use a similarrepresentation to gain e�cient algorithms for guided tree automata. Thus, weassume that a shared BDD is used for representing the alphabetic part of eachtransition relation, i.e. the part with signature � ! Q of �d : (Q0�Q00)! (� !Q). This BDD is called the �-BDD and we call the function � ! Q that itrepresents the �-behavior. We use
 to denote the nodes of the �-BDD.A na��ve approach for representing �d : (Q0 �Q00)! (� ! Q) is to create anentry for each pair hq0; q00i 2 Q0 � Q00. An entry de�nes a �-behavior as a BDDnode in a �-BDD. This approach leads to an unfortunate quadratic growth,since each of the jQ0j � jQ00j entries must be explicitly represented.An alternative approach is to de�ne a binary encoding of the state spaces Q0and Q00. Each state q00 2 Q00 has a unique identi�er in the range f0; : : : jQ00j�1g,which can be encoded by means of a vector of k = log(jQ00j) bits. Thus for each6

0
index

0
index

Accepting

States 0 1 2

truefalse

1
index

0 1 2

1
indexlo

lo hi
hi

hi

lo

-BDDΣ

false

hi

loFigure 1. Mona representation of DFA that accepts all strings over B2 with at leasttwo occurrences of the letter \11".q0 2 Q0, we can de�ne a binary functionfq0 (b0; : : : ; bk�1) = �d(q0; q00);where b0; : : : ; bk�1 is the binary encoding of q00. All these functions can nowbe represented in a shared BDD. Furthermore, we still use a shared BDD forrepresenting the �-behavior �d(q0; q00).For a �xed q0, this representation represents the functions �d(q0; q00), whereq00 ranges over all Q00, succinctly in the case that �d(q0; q00) has the same value,which we call a default �-behavior, for almost all q00. For instance, if 99% of allq00 lead to the same �-BDD node, then the state BDD for q0 has approximately0:01 �n nodes (when :01 �n >> logn). The total representation is then only onehundredth the size of a total transition table. Thus our notion of sparsity is thatfor any left state, very few right states are of interest|the rest all lead to thedefault behavior.An experimental version of the extended Mona system has been imple-mented based on this representation with acceptable, although not astonishingresults. Since the state encoding tends to be random, the compression occursonly for the situations just described. Also, there is a O(logn) penalty for look-ing up the transition function for a particular q00, since O(logn) BDD nodesmust be followed. Our experience is that this factor creeps into automata algo-rithms based on this representation. Therefore, we will pursue in this paper arepresentation without a logarithmic overhead.7

M2L decision procedure on trees Before we propose another representation,we review the decision procedure for M2L on trees in order to understand wheresparseness in transition tables may occur.In its most basic form, the M2L logic on �nite trees consists of formulas madeout of second-order variables P , logical connectives ^ and :, and the quanti�er9. Also, there are a unary, post�x function symbols �l and �r, and binary, in�xfunction symbols [and n (set di�erence). T � l, where T is a second-order term,is interpreted as the set of left successors of positions in T . Similarly, T � r isthe set of right successors of T . The interpretation of T [T 0 is the union of theinterpretations of T and T 0. The Boolean connections and 9 are interpreted inthe usual manner.Connectives like _, the quanti�er 8, the successor function for �rst-orderterms, and �rst-order variables can be reduced to expressions in the basic form.An important trick is that a �rst-order term can be simulated by a second-ordervariable that is restrained to be a singleton. (We omit a further discussion,which would become very technical.)We consider two kinds of semantics. The skeleton semantics de�nes themeaning of terms and formulas relative to a �nite, binary tree t, called theskeleton. Second-order quanti�cation is restricted to the skeleton, that is, asecond-order variable denotes a subset of the nodes of this tree. Consider aformula � with free variables P = fP1; � � � ; Pkg. A value assignment relative tot is a binary, labeled tree T that has the same shape as the skeleton and whereeach label determines set membership status of the variables in P. Thus, T canbe regarded as a mapping T : t ! Bk , which determines the value of Pi to bethe set of positions p 2 t such that the kth component of T (p) is 1. If � holdsunder the interpretation T , then we write T j=skel �. We let Lskel(�) denotethe language of satisfying interpretations. Also, by convention, the successorfunctions stutter at leaves, that is, the left or right successor of a leaf in t is theleaf itself.The natural semantics is that of WS2S, the weak-second order theory of twosuccesors, which also interprets second variables over only �nite subsets. Butquanti�cation is not restricted by a skeleton. Also, the successor functions donot stutter anywhere. This semantic interpretation is denoted j=nat . Note thatfor any interpretation of P, there will be in�nitely many trees T that describethe interpretation because of the padding property: any T can be padded withextra positions labeled (0; : : : ; 0) while still denoting the same collection of �nitesubsets.The decision procedure works as for strings in both cases. By structuralinduction on formulas, we construct automata A�;P on alphabet Bk , where k =jPj, satisfying the correspondence:T j= � i� T 2 L(A�;P)Thus, A�;P accepts exactly the labeled trees T that make � true, that is, L(�).All formulas can be assumed to contain basic formulas (those that are notcomposed from Boolean connectives or quanti�ers) that are very simple, like8

P = Q � l or P = Q [R. This is because complex terms can be decomposedby the introduction of more variables. For such simple basic formulas, it isstraightforward to construct automata satisfying the correspondence. Also, it isnot hard to see that for the conjunction �^ , ifP corresponds to � and Q corre-sponds to , then the automaton product P�Q corresponds to �^ . Negationhas an automata-theoretic formulation as complementation, which is achievedby making �nal states non-�nal and vice versa. For the case of existential quan-ti�cation, a projection operation combined with the subset construction can beused under both semantics. Because of the padding property, however, the nat-ural semantics demands an additional automata-theoretic operation discussedin 5.Sparsity of M2L transition relations Typically, an arbitrary T would notmake sense relative to the original formula if it contained �rst-order variables.For example, if the second-order variable P is used in � to denote a single position(corresponding to the common case where quanti�cation is �rst-order), then � istrivially false if there are more than one position in the P -track containing a 1.Once a second such position is encountered by the automaton in its bottom-upparsing of the tree, it will go to a \reject-all state" (a graph-theoretic sink).So, intuitively, each state will contain information or assumptions specifying the\�rst-order status" of P , namely whether 0, 1, or more occurrences of a 1 havebeen encountered. Thus, if we consider a random left state q0 and a randomright state q00, then a transition to a state other than the \reject-all state" canhappen only if q0 and q00 for each variable make consistent assumptions aboutthe its status. For example, in the case of a second-order variable P modelinga �rst-order variable, the \reject-all state" will result from any scenario whereeach of q0 and q00 contains the �rst-order status assumption that a single 1 inthe P -track has already occurred. Therefore, given k �rst-order variables, thechance that a random pair of states q0 and q00 are consistent is �k, where � < 1.(Here, we have assumed a uniform probability distribution and that the �rst-order status information is not masked by other information; thus, the numberof states is also exponential in k.) This argument could be formalized so as toshow that sparsity occurs under some rather representative circumstances whenM2L is translated to tree automata.Our representation Our representation exploits the assumed existence of apreponderant equivalence class by storing it implicitly in a manner similar tothe incompletely speci�ed transition functions of [2].To make notions more precise, consider a transition function �d of type d0 �d00! d. A state q0 2 Q0 induces an equivalence relation �q0;�d on Q00 de�ned byq001 �q0;�d q002 i� �d(q0; q001)(�) = �d(q0; q002)(�) for all � 2 �:Sparsity means that one equivalence classes of �q0 ;�d contains almost all ofQ00, whereas the other equivalence classes only contain a few elements of Q009

each. An equivalence class that contains at least as many elements as any otherequivalence class is referred to as a largest equivalence class.In our representation, we store in an array the following information for eachof the left states q0 2 Q0:{ a node in the �-BDD, named q0.defaultd, denoting the default behavior, and{ a set of pairs (q00; !) 2 Q00 �
, named q0.explicitd.The subscript d indicates that the associations are with respect to the transitionfunction with target ID d, i.e. the above associations are made for each transitionfunction. Note that this representation is asymmetric in the sense that defaultdand explicitd are de�ned only for left states. (The choice of left is arbitrary.)We represent a largest equivalence class [q00�] of �q0 ;�d implicitly by settingq0.defaultd = �d(q0; q00�). For all q00 62 [q00�], the pair (q00; �d(q0; q00)) is stored inq0.explicitd. Thus for arbitrary q00 2 Q00 and � 2 �, we have�d(q0; q00)(�) = �!(�) if (q00; !) 2 q0:explicitd for some !q0.defaultd(�) otherwiseThus determining �d(q0; q00) amounts to a set lookup. The representation of atransition function is depicted in Figure 2.
Σ "α " -BDD

q Q

ω

q’’

q’

q’.explicit

Q’

q’.defaultd

d

Figure 2. Representation of a transition function �d of type d0 � d00 ! d.Representing the whole GTA A GTA MG = (fQgD; �;�; f�qgD; F) is im-plemented by a structure as described above for each transition function. We use10

a single BDD, shared among all transition functions, to encode �. In addition,the implementation has a bit vector of size jQd0 j to represent F .4 ProductLet P = (fPgD; �; f
gD; f�pgD; E) and Q = (fQgD; �; f�gD; f�qgD; F) be treeautomata guided by G = (D;�; d0). The product automaton of P and Q is thenR = (fRgD; �; f�gD; f�rgD;H), whereRd = Pd �Qd�d =
d � �d : ((P 0d0 �Q0d0)� (P 00d00 � Q00d00))! (� ! (Pd � Qd));where
d � �d(hp0; q0i; hp00; q00i)(�) = h
d(p0; p00)(�); �d(q0; q00)(�)i�rd = h�pd; �qdiH = E � FA relatively simple approachWe begin by describing a simple approach of performing a product of two guidedtree automata. This approach does not construct the whole product spacesPd �Qd; instead, only reachable pairs of states are calculated.The algorithm maintains two sets for each d 2 D:{ Rd now denotes subset of Pd � Qd that consists of all pairs encountered sofar during the computation. The set is initialized to fh�pd; �qdig.{ unprocessedd is the subset of the reached pairs Rd for which the transitionfunction has not been calculated. Initially, unprocessedd is also the singletonset fh�pd; �qdig.The transition function to be calculated of type d0 � d00 ! d is representedby explicit sets of the form hp0; q0i.explicitd and default values hp0; q0i.defaultd.Consider a pair hp̂; q̂i from some set unprocessed d̂ . For every transition func-tion �d of type d̂�d00 ! d, we must calculate all transitions involving hp̂; q̂i. Wesay that we process hp̂; q̂i under the left view. Speci�cally for each hp00; q00i 2 Rd00 ,we calculate ! =
d(p̂; p00) � �d(q̂; q00)by performing a binary BDD apply. Since ! equals �d(hp̂; q̂i; hp00; q00i), we canextend �d for this value by inserting (hp00; q00i; !) in hp̂; q̂i:explicitd.We also have to process under the right view: for transition functions of typed0 � d̂! d, we compute for each pair hp0; q0i 2 Rd0! =
d(p0; p̂) � �d(q0; q̂)and insert (hp̂; q̂i; !) into hp0; q0i:explicitd.After all transitions where hp̂; q̂i occurs have been considered, hp̂; q̂i is re-moved from unprocessedd. 11

During computation of each BDD apply, all pairs that occur as BDD leafvalues and that have not been encountered before are inserted into unprocesseddand Rd.The algorithm continues until every set unprocessedd is empty. It is easy toverify that the algorithm maintains the processed invariant:For all d 2 D, the transition functions �d are totally de�ned for (Rd0 nunprocessedd0) � (Rd00 n unprocessedd00).Hence upon termination, all transition functions are de�ned (through the setsexplicitd) for all reachable pairs.To compress the representation of the state part of the transition relation,an extra sweep upon termination is necessary to adjust the defaultd values.Alternatively, this can be done on-line by keeping track of the frequency of BDDnodes inserted in the explicitd sets. In this way, space cost is decreased.To analyze the above algorithm, assume for simplicity that the number ofreachable states in any state space of the resulting automaton is bounded by N ,i.e. jRdj � N for all d. The time used per state in the resulting automaton isO(N), and hence in total the algorithm uses time O(N2). (In this paper, weignore the size of the �-BDDs in our complexity estimates.)A more e�cient approachThe algorithm we propose in this paper is designed to take advantage of thedefaultd values of the automata P and Q. In certain cases, this method makesit possible to obtain an O(N 32) time bound in contrast to the quadratic boundabove.The main idea explained for the left view is: when processing a pair hp̂; q̂ifor a transition function �d of type d̂� d00 ! d, we can often avoid consideringall pairs hp00; q00i of state space Rd00 . This is accomplished by tentatively lettinghp̂; q̂i:default equal p̂:defaultd � q̂:defaultd. Ifeither p00 2 p̂:explicitd or q00 2 q̂:explicitd; (1)then we do have to consider hp00; q00i; otherwise, when (1) does not hold, it is thecase that �d(hp̂; q̂i; hp00; q00i) = hp̂; q̂i:default, and hence we do not need to inserthp00; q00i into the set hp̂; q̂i:explicitd.Similarly, under the right view, for transition function �d of type d0� d̂! d,we need to insert hp̂; q̂i in hp0; q0i:explicitd only ifeither p̂ 2 p0:explicitd or q̂ 2 q0:explicitd. (2)Since the purpose of the e�cient approach is to avoid considering data im-plied by the default behaviors, we need to introduce additional data structuresin which the pairs that need consideration can be explicitly looked up.To do this, we need to precompute some information for each transitionfunction � of type d0 � d00! d. For automaton P, the following is computed:12

{ To each state p0 2 Pd0 , we de�ne the setp0 ! expld = fp00 j (p00; !) 2 p0:explicitg:These sets are calculated in order to maintain an explicit representation ofthe pairs that satisfy (1).{ To each state p00 2 Pd00 we letp00 expld = fp0 j (p00; !) 2 p0:explicitg:These sets are for the computational handling of requirement (2).Note that p00 2 p0 ! expld if and only if p0 2 p00 expld. Similar informationis calculated for Q. These calculations can be carried out in linear time of thesize of the representation.In addition to the sets of reachable pairs Rd and the sets unprocessed, thealgorithm maintains critical pairs sets, which are subsets of the reachable pairssets. For automaton P, these sets are{ Rjp0!expld = fhp00; q00i 2 Rd00 j p00 2 p0 ! expldg and{ Rjp00 expld = fhp0; q0i 2 Rd0 j p0 2 p00 expldgfor all p0 2 Pd0 and p00 2 Pd00 where �(d) = (d0; d00). Similar sets are de�ned forautomatonQ. The critical pairs invariant is that the data structures represent-ing the critical pairs sets satisfy these de�nitions.The sets Rjp0!expld determine whether a pair hp00; q00i belongs to the explicitlist of hp̂; q̂i under the left view according to (1): if hp00; q00i 2 Rjp̂!expld [Rjq̂!expld , then p00 is found in p̂:explicitd or q00 is found in q̂:explicitd. In eithercase, the explicit set for hp̂; q̂i must contain hp00; q00i (unless the �-behavior of(hp̂; q̂i; hp00; q00i) happens to be the default p̂:defaultd � q̂:defaultd). On the otherhand, if hp00; q00i =2 Rjp̂!expld [Rjq̂!expld , then the value of �d(hp̂; q̂i; hp00; q00i) isthe default behavior. Thus processing of pair hp̂; q̂i under the left view need toinvolve only right states hp00; q00i 2 Rjp̂!expld [Rjq̂!expld .The sets Rjp00 expld play a similar role for the processing under the rightview.If we assume that all p ! expld, p expld, q ! expld, and q expld setshave been pre-computed, then Figure 3 shows how the unprocessed sets and thevarious versions of the sets of reachable states are extended as a result of newpairs that are generated during an apply operation:Figure 4 summarizes how the main part of the product algorithm works. Thecorrectness of the algorithms is argued below.After the product automaton has been calculated, the product algorithmmust also ensure that the default transition in each case corresponds to anequivalence class of maximal size. If not, a maximal equivalence class will beconverted from an explicit representation to a default representation and theformer default representation is made explicit. These calculations can be carriedout in time linear to the size of the product automaton.13

fun apply and extend(!1; !2; d̂) =use the BDD apply operation to calculate ! = !1 � !2for each hp̂; q̂i encountered (during the apply)that is not already in Rd̂ doadd hp̂; q̂i to Rd̂ and to unprocessed d̂for d̂� d00 ! d for some d; d00 doadd hp̂; q̂i to Rjp00 expld for each p00 2 p̂! expldadd hp̂; q̂i to Rjq00 expld for each q00 2 q̂ ! expldodfor d0 � d̂! d for some d; d0 doadd hp̂; q̂i to Rjp0!expld for each p0 2 p̂ expldadd hp̂; q̂i to Rjq0!expld for each q0 2 q̂ expldododreturn !Figure 3. Algorithm for auxiliary function apply and extend.Correctness It can be seen that apply and extend satis�es both the processedinvariant and the critical pairs invariant (the details of this argument are left tothe reader).The �rst for-loop in Figure 4 initializes the critical pairs set so that thecritical pairs invariant holds. Also, since Rd = unprocessedd , the processedinvariant is trivially true.Let us consider the apply operations that are executed after a pair hp̂; q̂i isremoved from unprocessed d̂ under the left view (d̂� d00! d). After these applyoperations, it holds that �d is de�ned correctly for all (hp̂; q̂i; hp00; q00i) in Rcritical.But Rcritical contains all hp00; q00i in Rd00 (as evaluated before the operations)that are not known to induce the default behavior for hp̂; q̂i. In particular, �d isde�ned for all (hp̂; q̂i; hp00; q00i), where hp00; q00i 2 Rd00nunprocessedd 00 , where Rd00and unprocessedd 00 stand for the sets before the apply operations (and after hp̂; q̂ihas been removed from unprocessedd 00). This property also holds if d̂ = d00. SinceRd00nunprocessedd 00 remains constant during apply and extend, the property alsoholds after the operations, and it can be seen that it is su�cient for guaranteeingthe processed invariant. The critical pairs invariant also holds throughout theapply operations, and it is not a�ected by the removal of a product state fromthe unprocessed set.Analysis We analyze the e�ect of the default representation here. So assumethat there is only one state space ID d and that the spaces of P and Q arebounded by n. In addition, let t(n) be a function of n that bounds the number14

Rd, unprocessedd = fh�pd; �qdig for all d 2 Dfor each d̂, let hp̂; q̂i be the state in Rd̂ and dofor d̂� d00 ! d for some d; d00 doadd hp̂; q̂i to Rjp00 expld for each p00 2 p̂! expldadd hp̂; q̂i to Rjq00 expld for each q00 2 q̂ ! expldodfor d0 � d̂! d for some d; d0 doadd hp̂; q̂i to Rjp0!expld for each p0 2 p̂ expldadd hp̂; q̂i to Rjq0!expld for each q0 2 q̂ expldododwhile unprocessedd̂ 6= ; for some d̂ 2 D doremove a pair hp̂; q̂i from unprocessedd̂for d̂� d00 ! d for some d; d00 doRcritical = Rjp̂!expld [Rjq̂!expldhp̂; q̂i:defaultd = apply and extend(p̂:defaultd ; q̂:defaultd ;d)for all hp00; q00i 2 Rcritical do! = apply and extend(
d(p̂;p00); �d(q̂; q 00);d)if ! 6= hp̂; q̂i:defaultd thenadd (hp00; q00i; !) to hp̂; q̂i:explicitd�ododfor d0 � d̂! d for some d; d0 doRcritical = Rjp̂ expld [Rjq̂ expldfor all hp0; q0i 2 Rcritical dohp0; q0i:defaultd = apply and extend(p0:defaultd ; q 0:defaultd ;d)! = apply and extend(
d(p0; p̂); �d(q 0; q̂);d)if ! 6= hp0; q0i:defaultd thenadd (hp̂; q̂i; !) to hp0; q0i:explicitd�odod Figure 4. Algorithm for product construction for GTAs.of elements in any of the sets p! expld, p expld, q ! expld, q expld.We then claim that our algorithm uses at most timeO(t(n)n) per state in theproduct automaton R. Consider the pair hp̂; q̂i. The transition function �d oftype d̂�d00 ! d is extended under the left view for only those pairs hp00; q00i fromRd00 for which either p00 2 p̂:explicitd or q00 2 q̂:explicitd. The number of suchpairs is bounded by jp̂:explicitdj � jQd00j+ jq̂:explicitdj � jPd00j = O(t(n) �n). (Similarconsiderations apply to the calculations done under the right view.) It can be15

argued that updating the critical pairs sets can be done within time O(t(n)+n)per product state. Thus in total, the algorithm spends time O(t(n) � n) perproduct state.In contrast, the simple algorithm visits all reachable pairs, so it uses timeO(n2) per product automaton state when all states are reachable. Hence fort(n) < o(n), our time of O(n � t(n)) is asymptotically better.To put this in a sharper light, assume t(n) = O(1). The resulting productautomata could have size N = n2, and the simple algorithm would be of timecomplexity O(N2); in contrast, our algorithm uses time O(t(n) � n) per state ofthe resulting automata, e.g. it uses total time O(n � t(n) �n2) = O(n3) = O(N 32).5 Projection and determinizationExistential quanti�cation in M2L corresponds to the automata-theoretic opera-tion of projecting the transition relation on a new alphabet where the quanti�edvariable is no longer described. The resulting nondeterministic automaton mustthen be determinized by a subset construction.Let �i denote the tuple projection on component i, that is, �i(b̂), whereb̂ 2 Bk , is the tuple b with the ith component removed (1 � i � k). Intuitively,automaton projection on component i is the process of converting a guided treeautomaton Q recognizing a language L over Bk to a nondeterministic guidedtree automaton Q0 over Bk�1 by removing track i. Thus, L(Q0) consists of alltrees over Bk�1 that are the projections on component i of trees in L, ie., thatare gotten from trees in L by applying tuple projection on i to each label. Thislanguage is denoted �i(L).It can then be shown that Lskel (9Pi : �) = �i(Lskel (�)), which derives ourinterest in the projection operation. (Later, we shall look at the modi�cationsnecessary to accommodate the natural semantics.)The automaton Q0 is constructed by applying the BDD projection operation� on the �-BDD associated with each transition function. Applied to a �-BDD!, the projection operation results in a BDD !� representing the function!�(b) = f!(b̂) j �i(b̂) = bg;Note that for each b, there are exactly two b̂s that satisfy the criterion above.Thus the leaves of �(!) are sets with one or two elements. The nondeterministicautomaton represented by the projection BDDs must then be determinized sothat it can later be minimized. We will describe an operation that simultaneouslycarries out the projection and determinization of Q. If the automatonQ denotesa language L, then our projection and determinization construction results inan automaton that represents the projected language �i(L).To be more precise, consider a GTA Q = (fQgD; �; f�gD; pD; F) guidedby G = (D;�; d0), where � = Bk . The i-projected power set automaton is theautomaton (P(Qd); �;
d; ffpdggD; ffQ j Q \ Fd 6= ;ggD), where
d is de�ned16

as
d(Q0; Q00)(b) =Sf�d(q0; q00)(b̂) j �i(b̂) = bgIn practice, we are of course interested in only calculating the transition functionfor the reachable subsets.Algorithmically,
 can be calculated as follows. Consider d0 � d00 ! d, asubset Q0 of Qd0 , and a subset Q00 of Qd00 . Then,
d(Q0; Q00) is the value of[� f�(�(q0; q00)) j q0 2 Q0 and q00 2 Q00gwhere [� , the union apply operation, calculates for a collection of BDDs thatmap into sets the BDD that maps each b to the union of the sets mapped to bythe collection.Adapting the product algorithmTo take advantage of the default representation, we adapt the techniques de-veloped for the product algorithm. For a transition � of type d0 � d00 ! d, weintroduce critical subset sets, which are similar to the critical pairs sets of Sec-tion 4. The set Rjq0!expld denotes the critical subsets Q00 such that q0 occur inq00.explicitd for some q00 2 Q00.Rjq0!expld = fQ00 2 Rd00 j Q00 \ q0 ! expld 6= ;gSimilarly, Rjq00 expld denotes the subsets Q0, where q00 occur in q0.explicitd forsome q0 2 Q0. Rjq00 expld = fQ0 2 Rd0 j Q0 \ q00 expld 6= ;gWe assume that we have at our disposal a binary version of [� , which \unions"together the leaves of two BDDs. The subset construction can be implemented asshown in Figure 5 and Figure 6. This algorithm is a straightforward adaptationof the product algorithm. For example, the default subset state for a subsetstate Q0 is the union apply of the projections of the default behaviors of statesin Q0.ImprovementsA major expense in the algorithm just outlined is the repeated calculationsof BDDs of the form [� f��(q0; q00) j q0 2 Q0; q00 2 Q00g, where ��(q0; q00) =�(�d(q0; q00)) for some appropriate d. We also denote this calculation as[� f��(Q0; Q00)g. It can be seen by an inductive argument that if a subsetsuch as Q0 is reachable, then there are subsets Q01; : : : ; Q0̀ , ` � 2, such thatQ0 = Q01 [� � � [Q0̀ and each Q0i is a singleton or is reachable [3]. (It is unfor-tunately the case that a set fq1; q2g may be reachable without fq1g and fq2g17

fun apply extend(fw1; : : : ; wkg; d̂) =calculate ! = !1 [� !2 [� � � � [� !k (in some order)for each new subset of states Q̂ not already in Rd̂ obtained asthe value of a leaf in the last apply operation above doinsert Q̂ into Rd̂ and unprocessed d̂for d̂� d00 ! d for some d; d00 doadd Q̂ to Rjq00 expld for each q00 2 q̂ ! expld for some q̂ 2 Q̂odfor d0 � d̂! d for some d; d0 doadd Q̂ to Rjq0!expld for each q0 2 q̂ expld for some q̂ 2 Q̂ododreturn the BDD for ! Figure 5.being reachable; this may happen, for example, if the set fq1; q2g is a leaf of aprojection operation from the initial state.) For simplicity, we assume next that` = 2 and we say that Q01 and Q002 form a binary decomposition of Q0.As a further simpli�cation, assume that jQ0j = jQ00j = n = 2N . Also, assumethat each Q0 has a binary decomposition into disjoint sets Q01 and Q02 and thata similar property holds for Q00 sets.Then the value of [� f��(Q0; Q00)g can be calculated as ��(Q01; Q001) [���(Q01; Q002) [���(Q02; Q002) [���(Q02; Q002). Thus, if �(N) is the total number of ap-ply operations for sets of size 2N , then �(N) = 4 � �(N � 1) + 3, which hasthe solution �(N) = 4N � 1. In contrast, the direct calculation involves (2N)2projection applys and (2N)2�1 union applys, in total 2�4N�1 apply operations.Therefore, the decomposition method requires approximately half as many applyoperations for N � 3 or n � 8.Further bene�ts of decomposition It can be seen that there are 7 ways ofarranging the three union applys in a calculation of [� f��Q0; Q00g assuming abinary decomposition. Some are better than others if we assume that the twocomponents of any reachable set are also reachable. For example, if!1 = ��(Q01; Q001) [� ��(Q01; Q002) and!2 = ��(Q02; Q001) [� ��(Q02; Q002)then [� f��(Q0; Q00)g = !1 [� !2. The point is that both !1 and !2 are resultsof transition function calculations involving reachable sets. Thus, the extra cost18

Rd;unprocessedd = ffqdgg for all d 2 Dfor each d̂, let Q̂ be the subset in Rd̂ and dofor d̂� d00 ! d for some d; d00 doadd Q̂ to Rjq00 expld for each q00 2 q̂ ! expld for some q̂ 2 Q̂odfor d0 � d̂! d for some d; d0 doadd Q̂ to Rjq0!expld for each q0 2 q̂ expld for some q̂ 2 Q̂ododwhile unprocessed d̂ 6= ; for some d̂ 2 D doremove a set Q̂ from unprocessed d̂for d̂� d00 ! d for some d; d00 doQ̂.defaultd = apply extend(f�(q̂.defaultd) j q̂ 2 Q̂ g, d)Rcritical = Sq̂2Q̂Rjq̂!expldfor all Q00 2 Rcritical do! = apply extend(f�(�d(q̂; q00)) j q̂ 2 Q̂; q00 2 Q00g; d)if ! 6= Q̂:defaultd thenadd (Q00; !) to Q̂.explicitdendifododfor d0 � d̂! d for some d; d0 doRcritical = Sq̂2Q̂Rjq̂ expldfor all Q0 2 Rcritical doQ0.defaultd = apply extend(f�(q0.defaultd) j q0 2 Q0g, d)! = apply extend(f�(�d(q0; q̂)) j q̂ 2 Q̂; q0 2 Q0g; d)if ! 6= Q0.defaultd thenadd (Q̂; !) to Q0.explicitdendifododod Figure 6. Algorithm for projection of GTAs.of calculating [� f�(�Q0; Q00)g is only one apply operation if all such results arecached.In practice, we have chosen to work with only the binary decomposition.Subsets that have a decomposition with more than two subsets are forced into aform consisting of several binary decompositions. Consequently, the subsets forwhich we calculate transition functions are generally not reachable.19

The quotient operationUnder the natural semantics, the automaton for � 9Pi : � cannot be obtainedby the project and determinize operation just described. The problem is that asatisfying interpretation T of could be \smaller" than a witness T̂ satisfying�. This happens when the domain of T is properly included in the domain of T̂ ,which could be an interpretation that assigns elements to Pi outside T . Moreformally, we solve this problem as follows.Let LnL0 = fT 00 j for some T and some T 01 2 L0; : : : ; T 0n 2 L0,T 00 = T (T 01; : : : ; T 0n) 2 L gbe the quotient of L by L0, where if T has n leaves (canonically ordered accordingto some principle), then T (T 01; : : : ; T 0n) is the tree that is gotten by inserting T 0i atleaf i in T . Also, let Li consist of all trees that are labeled with 0 in componentsdi�erent from i. Then, it can be seen that Lnat() = �i(Lnat(�)nLi) [10].In practice, the quotient operation L(�)nLi is quite easy handled. It suf-�ces to replace the initial subset states fqdg with Id, where Id are states thatare reachable along paths labeled with letters that are 0 everywhere except incomponent i, see Figure 5.procedure zero path states (!; j)return f!(0m); !(0i�110m�i)gprocedure quotient((fQgD;�; f�gD; f�qg; F); i)unprocessedd; Id = f�qdg for all d 2 Dwhile unprocessedd̂ is not empty for some d̂ dopick (and remove) a state q̂ from unprocessedd̂let d be such that d̂� d00 ! dfor q00 2 Id00 dounprocessedd = unprocessedd [(zero path states(�(q̂; q00); i) n Id)Id = Id[zero path states (�(q̂; q00); i)odlet d be such that d0 � d̂! dfor q0 2 Id0 dounprocessedd = unprocessedd [(zero path states(�(q0; q̂); i) n Id)Id = Id[zero path states (�(q0; q̂); i)ododreturn (fQgD ;�; f�gD; fIgD; F)Figure 7. Algorithm for the quotient operation.20

6 MinimizationMinimizing guided tree automata is a rather complex task compared to theminimization of ordinary tree automata (which is already a non-trivial a�air thatas far as we know has not been described in the literature from an algorithmicpoint of view; but see [8] for an elegant proof that a minimumautomaton exists).Before discussing the minimization process, we extend the notation provided by[9]:Notation A partition P of a �nite set U is a set of disjoint subsets of U suchthat the union of these sets is all of U . The elements of a partition are called itsblocks. A re�nement Q of P is a partition such that any block of Q is a subsetof a block of P. We let [q]P denote the block of the partition P containing theelement q, and when no confusion arises, we drop the subscript.Let MG = (fQgD; �; f�gD; f�qgD; F) be a GTA guided by G = (D;�; d0),and let fPdgd2D be a family of partitions such that Pd is a partition of Qd. Weextend the shorthand notation introduced in the previous sections, and we writeP for the partition Pd, P 0 for Pd0 etc. when no confusion occurs. Let fQgD bea re�nement of fPgD, i.e. Qd is a re�nement of Pd for all d 2 D. Let �d 2 f�gDbe a transition function of type d0 � d00 ! d.A block B0 of Q0 �d-respects Pd if8q01; q02 2 B0; 8q00 2 Q00; 8� 2 � : [�d(q01; q00)(�)]Pd = [�d(q02; q00)(�)]PdSimilarly a block B00 of Q00 �d-respects Pd if8q001 ; q002 2 B00; 8q0 2 Q0; 8� 2 � : [�d(q0; q001)(�)]Pd = [�d(q0; q002)(�)]PdThus B0 �d-respects Pd if �d cannot distinguish between the elements in B0relative to Pd. A partition Q0 �d-respects Pd if every block of Q0 �d-respects Pd,and a family of partitions fQgD �d-respects Pd if Q0 and Q00 �d-respects Pd. Afamily of partitions fQgD respects the family of partitions fPgD if fQgD �d-respects Pd for all transition functions �d 2 f�gD, where �d is of type d0�d00 ! d.A family of partitions is stable if it respects itself. The coarsest, stable family ofpartitions QD respecting PD is a unique family of partitions such that any otherstable family of partitions respecting PD is a re�nement of QD.The minimization algorithm works by gradually re�ning a current familyof partitions so that each step of the algorithm ensures that the re�nement �d-respects the current family of partitions for some transition function �d. We �rstshow how to split a current family of partitions with respect to a single transitionfunction, and later how this is used to minimize a guided tree automata. Weassume for the rest of this section that our representation is symmetric, thatthis, the sets explicitd and the default behaviors defaultd are also present forright states. It is straightforward to precompute these values from the explicitdand defaultd information of the left states (this is the information calculated bythe product and project algorithms). 21

Splitting with respect to �d of type d0�d00 ! d Let Q, Q0 and Q00 denotethe current partition of Q, Q0 and Q00 respectively and assume that the currentfamily of partitions does not �d-respect Q. We now show how to compute thecoarsest partition which �d-respects the current partition.1. Replace the leaf-values in the �-BDD by canonical representatives accordingto Q and reduce it. This induces a partition of the nodes in the �-BDDdenoted S.2. Re�ne Q0 to P 0 such that q01 �P0 q02 i� q01 �Q0 q02 and8q00 2 Q00, �d(q01; q00) �S �d(q02; q00)3. Re�ne Q00 to P 00 such that q001 �P00 q002 i� q001 �Q00 q002 and8q0 2 Q0, �d(q0; q001) �S �d(q0q002)Step 1 ensures ! �S !0 i� 8� 2 � !(�) �Q !0(�). For the partitioncalculated in step 2 we have q01 �P0 q02 i� �d(q01; q00) �S �d(q02; q00) for all q00 2 Q00,i.e. 8q00 2 Q00; 8� 2 �; �d(q01; q00)(�) �Q �d(q02; q00)(�). Thus all blocks of P 0�d-respect Q. Similarly, step 3 ensures that all blocks of P 00 �d-respect Q.The re�nement operation in step 2 is performed by assigning to each elementq0 2 Q0 a canonical representative for its block in the new partition P 0 respectingQ. Similar representatives are calculated for q00 2 Q00 in step 3. For a �-BDDnode !, we denote its canonical representative with respect to S by !̂.We now address the problem of calculating the canonical representativesin step 2. (Step 3 is symmetric.) Consider a state q0 2 Q0. The problemis to calculate in linear time a unique characterization of the function q00 7![�d(q0; q00)]. We must deal with the default representation while making sure thatthe characterization remains unique. The following techniques allow a defaultbased representation, where the default case is used only when its uniquenesscan be assured.Let �q0 = q0:defaultd and let �̂q0 be its representative according to S. Bytraversing the states in q0:explicitd, we calculate the set:Mq0 = f(q00; !̂) j (q00; !) 2 q0:explicitd and !̂ 6= �̂q0g:If jMq0 j < 12 jQ00j, then �̂q0 is a default behavior that applies to more thanhalf the states in Q00. Otherwise, jMq0 j � 12 jQ00j and we �nd a �̂ 0q0 minimizingthe size of f(q00; !̂) j (q00; !) 2 Q00 �
; ! = �d(q0; q00) and !̂ 6= �̂ 0q0g;by another linear traversal. Rede�ne Mq0 to be this set, and �̂q0 to be �̂ 0q0 . If thesize of jMq0 j still is larger than 12 jQ00j, then there is no way of characterizing thedefault behavior uniquely by means of the class that contains more than halfthe states. Thus in this case, we rede�ne Mq0 once more to be:f(q00; !̂) j (q00; !) 2 Q00 �
, ! = �d(q0; q00)g;by utilizing all states in Q00 and rede�ne �̂q0 to be a �xed value ? di�erent fromany representative !̂. We remember the old values of Mq0 and �̂q0 and denote22

these as M?q0 and �̂?q0 respectively. It is now not di�cult to show that the tuple(Mq0 ; �̂q0) is a canonical representative for the block in P 0 containing q0, i.e.q01 �P0 q02 i� (Mq01 ; �̂q1) = (Mq02 ; �̂q2). Also, it can be seen that the calculation ofthe representative is linear in the size of q0:explicitd. We note that in practicewe would additionally need to calculate a canonical index (an integer) from thecanonical representative using some hashing approach.In total, calculating the canonical representative for a state q0 in step 2 takestime O(jq0:explicitdj) given that the representatives with respect to S have beencalculated. Hence in total step 2 and step 3 take time proportional to therepresentation of the transition relation �d.Minimizing a guided tree automaton With the splitting operation of theprevious section, minimization of a guided tree automaton is now an easy task.Consider a GTA MG = (fQgD; �;�; f�qgD; F) guided by G = (D;�; d0) andlet NG = (fPgD; �; f�gD; f�rgD;H) denote the resulting automaton. Now letd be a state space ID with �(d) = (d0; d00) and assume we have just done a�d-split. If the left partition became strictly �ner, then we say that a left-splitoccurred. In that case, we must also carry out a �d0 -split operation. Similarconsiderations apply for a right-split and a subsequent �d00 -split operation. Thisprocess is repeated until no more split operations need to be done, i.e. until a�xed point has been found.The algorithm is speci�ed in some more detail in Figure 8.In the �rst phase, it performs the split operations according to a set calledcandidates, where ID d 2 candidates if a �d-split must be carried out. The setcandidates is updated with respect to the left-splits and right-splits that occur.The �rst phase of the algorithm terminates when candidates = ;. The functionsplit called with parameter � performs a split operation with respect to � asdescribed in the previous section. It returns a pair of Booleans (lsplit,rsplit) thatindicates whether a left-split (right-split respectively) occurred. The resultingfamily of partitions, QD, is the coarsest, stable family of partitions respectingthe initial family of partitions.In the �nal phase, the algorithm builds the minimized guided tree automatonfrom the family of partitions QD.Analysis Since each split operation is linear in the total size of the GTA repre-sentation and since each operation (except for the last) results in a �ner partition,the total running time is O(n �m), where n is the total number of states and mis the total representation size.Note that the selection of the next transition function to use for a splitoperation is arbitrary. It would be interesting to study whether more judiciouschoices could entail asymptotic gains.It is possible to minimize BDD-represented automata on �nite strings in timeO(m � logm) [5], but it is an open question whether this result can be extendedto tree automata. 23

Initial family of partitions :Qd = �fF;Qd0 n Fg if d = d0fQdg otherwisecandidates = fd0gwhile candidates 6= ; doremove a state space ID d from candidates(d0; d00) = �(d)(lsplit,rsplit) = split(�d)if lsplit thenadd d0 to candidates�if rsplit thenadd d00 to candidates�odReplace the values in the leaves of the �-BDD by canonical representativesaccording to QD and reduce it. The induced partition of�-BDD nodes is denoted S.for each �d of type d0 � d00 ! d dofor each [q0] 2 Q0 with canonical representative (Mq0 ; �̂q0) doadd [q0] as a state to P 0if �̂q0 =? then[q0]:defaultd = �̂?q0[q0]:explicitd =M?q0else [q0]:defaultd = �̂q0[q0]:explicitd =Mq0�odfor each [q00] 2 Q00 with canonical representative (Mq00 ; �̂q00) doadd [q00] as a state to P 00if �̂q00 =? then[q00]:defaultd = �̂?q00[q00]:explicitd =M?q00else [q00]:defaultd = �̂q00[q00]:explicitd =Mq00�odod Figure 8. Algorithm for minimizing GTAs.7 Experimental resultsThe current Mona tool supports guided tree automata, but does not yet usethe representation of the transitions functions presented in this paper. Instead24

the implementation uses the BDD encoding of the state spaces mentioned inSection 3. Nevertheless, we have had some successful experimental results withthis implementation.A major goal of the implementation was to provide the means for makingFido [7] a tractable programming language for expressing regular constraintson parse trees. From a Fido program, a M2L formula is generated. By pro-cessing this formula, Mona calculates an automaton, which can be viewed asan attribute grammar for the speci�ed grammar satisfying the syntactic sideconstraints. The grammar example from [7] and an additional HTML grammarexample are processed by Fido and Mona in approximately half a minute ona Sparc Station 1000. In both examples, the M2l formulas generated by Fidoare several (dense) pages long. Our current tool was also used to compute thearchitectural software constraints in [6].Our experience is that for most of these examples, the intermediate and �nalautomatons exhibit the property of sparse transition functions. Thus, we ex-pect that the proposed algorithms together with successful attempts of speedingup the current BDD-package will give rise to a signi�cant speed-up in futureimplementations of the GTA operations.We have experimented with the guide to determine its practical importance.For the HTML example, we experienced that with a guide with three statespaces, Mona could process the example in 40 seconds, with intermediate au-tomata reaching at most 70 states. With a one-state guide (i.e. with an ordinaryDFTA),Mona generates an intermediate automaton with a state space of morethan 7000 states|which the subsequent project operation is unable to handle.References1. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEETransactions on Computers, C-35(8):677{691, Aug 1986.2. A. Cardon and M. Crochemore. Partitioning a graph in O(jAj log2 jV j). TCS,19:85{98, 1982.3. Rowan Davis. Personal communication. 1995.4. J.G. Henriksen, J. Jensen, M. J�rgensen, N. Klarlund, B. Paige, T. Rauhe,and A. Sandholm. Mona: Monadic second-order logic in practice. In Toolsand Algorithms for the Construction and Analysis of Systems, First Inter-national Workshop, TACAS '95, LNCS 1019, 1996. Also available throughhttp://www.brics.dk/�klarlund/MonaFido/papers.html.5. N. Klarlund. An n log n algorithm for online BDD re�nement. Technical report,BRICS, Aarhus, Denmark. http://www.brics.dk/�klarlund/MonaFido/papers,1996.6. N. Klarlund, J. Koistinen, and M. Schwartzbach. Formal design constraints. InProc. OOPSLA '96, 1996. to appear.7. N. Klarlund and M. Schwartzbach. Regularity = logic + recursive data types.Technical report, BRICS, 1997. To appear.8. D. Kozen. On the Myhill-Nerode theorem for trees. EATCS Bulletin, 47, 1992.9. R. Paige and R. Tarjan. Three e�cient algorithms based on partition re�nement.SIAM Journal of Computing, 16(6), 1987.25

10. J.W. Thatcher and J.B. Wright. Generalized �nite automata with an applicationto a decision problem of second-order logic. Math. Systems Theory, 2:57{82, 1968.11. W. Thomas. Automata on in�nite objects. In J. van Leeuwen, editor, Handbookof Theoretical Computer Science, volume B, pages 133{191. MIT Press/Elsevier,1990.

26

