
The metafront System:
Extensible Parsing and Transformation

Claus Brabrand a,1, Michael I. Schwartzbach a,2,
and Mads Vanggaard a,3

a BRICS, Department of Computer Science, University of Aarhus
Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark

Abstract

We present the metafront tool for specifying flexible, safe, and efficient syntactic
transformations between languages defined by context-free grammars. The trans-
formations are guaranteed to terminate and to map grammatically legal input to
grammatically legal output.

We rely on a novel parser algorithm that is designed to support gradual extensions
of a grammar by allowing productions to remain in a natural style and by statically
reporting ambiguities and errors in terms of individual productions as they are being
added.

Our tool may be used as a parser generator in which the resulting parser auto-
matically supports a flexible, safe, and efficient macro processor, or as an extensible
lightweight compiler generator for domain-specific languages. We show substantial
examples of both kinds.

1 Introduction

We present the metafront tool for specifying safe, flexible, efficient, and ex-
tensible syntactic transformations between languages defined by context-free
grammars. Safety means that metafront statically guarantees that the trans-
formation of grammatically legal input will always terminate and produce
grammatically legal output. Flexibility means that the expressive power is
sufficient for realistic tasks and that both the source and target languages
may be extended with little overhead. Efficiency means that, given a gram-
mar and transformation, the parsing and transformation is linear in the size
of input and generated output. Extensibility means that post-hoc extensions

1 Email: brabrand@brics.dk
2 Email: mis@brics.dk
3 Email: mvj@brics.dk

Brabrand, Schwartzbach, and Vanggaard

of the source language are easily reflected in similar extensions of the trans-
formation.

We have two main usage scenarios in mind for this versatile tool. First,
metafront can be used for lightweight domain-specific compiler prototypes,
e.g. for translating Java programs into HTML documentation in the style of
JavaDoc. Second, if the source language is a small extension of the target
language, then the syntactic transformation is equivalent to a powerful macro
mechanism.

In all cases, the programmer may greatly benefit from the advantages that
metafront offers. Thus, our tool captures the niche where full-scale compiler
generators are too general and where simpler techniques for syntactic transfor-
mation are not expressive enough or do not offer sufficient safety guarantees.

1.1 Language Design

The metafront tool works with two kinds of files: definitions of languages
and definitions of transformations.

Languages are defined using fairly standard context-free grammars with
nonterminals, terminals, and productions. A simple module system allows
languages to be defined through a DAG of sublanguages that refer to each
other. Classes of terminals are defined by full regular expressions, including
intersection and complement.

A central part of such a tool is of course the parsing algorithm that is
employed. We have been led to develop a novel algorithm, called specificity
parsing, which is a scannerless top-down parser where ambiguities are resolved
through notions of specificity. At any stage, the remainder of the input string
is confronted with a set of candidates, which are sentential forms stemming
from different right-hand sides of productions. First each candidate suggests
what the next token should be, and the most specific one wins. The candidates
that can accept this token will then each suggest which action to take, and the
most specific action wins. This action is then performed and those candidates
that agreed on this choice survive to the next challenge round.

This method of parsing is tailored to our intended applications, where lan-
guages are extended by different programmers. This requires that the syntax
is written in a natural style and that errors and ambiguities can be explained
sensibly in terms of the individual productions that are being added. Since we
employ a top-down approach, we of course cannot handle left-recursive nonter-
minals but, apart from this restriction, productions may be written in a quite
intuitive manner. Also, when a new production is added we can statically
decide if it may cause ambiguities during subsequent parsing. Furthermore,
error messages are phrased locally in terms of the added production.

Transformations are specified relative to a source and a target language,
which are imported from other files. Each production in the source language
is instrumented with a transformation rule. The parse trees that correspond

2

Brabrand, Schwartzbach, and Vanggaard

to the nonterminals of the right-hand side are inductively subjected to trans-
formations before the results are inserted into a template that constructs a
parse tree of the target language. Transformation rules may accept parse
trees as arguments and produce parse trees as results. Since users often spec-
ify transformations from an extended language to a core language, each source
production has the identity as its default transformation rule.

There are three important characteristics of our notion of transformations.
First, they are designed to allow only elaborate well-founded induction, so
termination is ensured. Second, we can statically decide if a transformation is
guaranteed to map grammatically legal input to grammatically legal output.
Third, the rules are expressive enough to allow sophisticated transformations
that rearrange trees in a non-local manner.

The metafront tool accepts as arguments a transformation and a term
of the input language. It will then analyze the source and target grammars
and the transformation rules and provide error diagnostics or construct the
corresponding term of the target language.

1.2 Related Work

There are three main bodies of work that we must relate to: parser generators,
macro processors, and compiler generators.

We differ from all other parser generators, such as JavaCC or the Lex/Yacc
family in automatically instrumenting the generated parser with a powerful
syntactic macro processor similar to the one we have earlier hardwired for the
<bigwig> language [3]. Formally, our parsing algorithm is incomparable to
both LL(1) and LR(1) parsers; however, we claim that it has unique benefits as
outlined above. Traditional parser generators allow productions to be instru-
mented with action code, whereas we only allow inductive transformations.
This is the basis for the safety guarantees that we are able to provide. In any
case, action code can be emulated by performing a transformation into e.g.
Java code which must then be executed afterwards (without any guarantees
besides syntactic correctness, of course).

Regarding macro processors, we refer to the comprehensive survey that we
provide in [3]. Our present tool is unique in simultaneously being parame-
terized with the grammar of the host language and providing strong safety
guarantees.

Compiler generators, such as [9,1,7,11], have wider ambitions than our
work, supporting specifications of full-scale compilers including static and dy-
namic semantics. Invariably, this involves Turing-complete computations on
parse trees which of course precludes our level of safety guarantees.

The extensible grammars of [4] share our aims in many ways. The resulting
tool is a parser generator that allows subsequent extensions of the language
which must then be desugared into the original language. It offers safety
guarantees similar to ours, but does not handle arbitrary source and target

3

Brabrand, Schwartzbach, and Vanggaard

languages and provides less expressive transformations.

The system that most closely compares to metafront as a compiler genera-
tor is ASF+SDF [11]. It uses a scannerless generalized LR-parser to produce a
forest of parse trees which is continually filtered and transformed with respect
to a set of rewrite rules. The end result is hoped to be a single, normalized
parse tree. By imaginative use of rewriting of syntactic encodings, it is pos-
sible to construct complete compilers including symbol tables, type-checking,
and code generation. It is of course also possible to encode the kinds of trans-
formations that metafront supports. If S and T are the source and target
languages, then possible encodings are to define the transformations as rewrit-
ings on a combined language such as S∪T or S×T . While ASF+SDF statically
guarantees that each rewrite step will respect the given grammar, there are
two kinds of termination problems. First, the transformation may loop, which
cannot be statically determined since rewritings are Turing-complete. Second,
the transformation may terminate too soon, leaving unprocessed pieces of the
input language. Again, it is undecidable to determine if this problem may
occur.

The two parser algorithms also have different characteristics. Generally,
the ASF+SDF parser generates a forest of parse trees, and it is undecidable if
filtering results in a single tree. It is scannerless by processing each character as
a separate token, which results in some overhead. In comparison, we tokenize
the input string using ordinary DFAs that are selected dynamically based
on the parser context. Finally, the ASF+SDF parser has a running time
that depends on the number of parse trees being produced. Our parser is
guaranteed to run in linear time, but is of course restricted to a certain class
of grammars.

In summary, metafront is a domain-specific language focusing on syntactic
transformations as a subset of compiler generator applications and offering
advantages in terms of flexibility, safety and efficiency.

2 Parsing

As mentioned in the introduction, we place key emphasis on extensibility : we
want different kinds of users to be able to incrementally add new productions
and even new user-defined terminals and nonterminals.

To achieve this, language designers must read the grammar and find hooks
where new extensions and transformations may be attached. This requires the
grammar to be phrased in a natural style. Additionally, error messages should
only involve the part of the grammar written by the user. These requirements,
however, are not satisfied by other common parsing strategies.

The LR(k) family of bottom-up parsing algorithms is unable to provide lo-
calized error messages. Consider for example the Yacc version of the LALR(1)
grammar for Java, which contains the production:

GuardingStatement : SYNCHRONIZED ’(’ Expression ’)’ Statement;

4

Brabrand, Schwartzbach, and Vanggaard

If we clumsily tried to allow synchronization on multiple objects by adding
the production:

GuardingStatement : SYNCHRONIZED ’(’ Expression Expression ’)’ Statement;

then the Yacc tool reacts by producing 29 shift/reduce and 26 reduce/reduce
errors. None of those errors occur in the parser states corresponding to the
inserted production, but in seemingly arbitrary places involving nontermi-
nals such as e.g. NotJustName and ShiftExpression. The reason for this
avalanche of non-local errors is that LALR(1) parser errors arise in terms of
a table derived from the grammar, and not in terms of the grammar itself.

It is often also necessary to rewrite a grammar into a less natural style.
This is evident for the LL(k) family of top-down parsing algorithms, where
for example the productions:

Class : "class" Identifier ’{’ ... ’}’
| "class" Identifier "extends" Identifier ’{’ ... ’}’ ;

must be rewritten into the less intuitive form:

Class : "class" Identifier ExtendsOpt ’{’ ... ’}’ ;
ExtendsOpt : "extends" Identifier

| ;

which is also less susceptible to extension; there is no nonterminal where, for
instance, a concept of anonymous classes with a “class { ... }” syntax
may subsequently be added.

In contrast, Earley’s algorithm [6] and generalized LR(k) parsing [10] allow
any grammar, but sacrifice linear-time processing. Also, they ignore ambigu-
ities by constructing all parse trees, and choosing the right one at the end
requires non-local reasoning.

Our goal is to obtain an efficient parsing algorithm that allows productions
to be added incrementally and that locally and statically detects and reports
ambiguity errors.

2.1 Specificity Parsing

A specificity grammar is a five-tuple:

G = 〈Σ, T, N, s, π〉
where Σ is a finite set of symbols known as the alphabet; T ⊆ Reg(Σ) is a finite
set of regular languages over Σ known as the set of terminal languages ; N is a
finite set of nonterminals; s ∈ N is the start nonterminal; and π : N → P(E∗),
where E = T ∪ N , is the production function identifying the grammar rules
for each nonterminal.

This definition resembles the definition of context-free grammars, but with
an explicit notion of lexical structure described separately as the set of terminal
languages, T .

This separation plays a crucial role in specificity parsing that works on two

5

Brabrand, Schwartzbach, and Vanggaard

integrated levels, a lexical and a syntactic, each with its own notion of speci-
ficity for deterministic ambiguity resolution that is independent of definition
order.

The terminal languages induce a lexical specificity relation which is used
to deterministically select a terminal language and input tokenization in case
there are multiple choices. Specifically, the lexical specificity relation, vlex ⊆
〈T × Σ∗ × Σ∗〉 × 〈T × Σ∗ × Σ∗〉 (see Appendix C.1), is defined on termi-
nalizations which are triples comprised of terminal languages, concrete input
tokens, and remainder input. The lexical specificity ordering is defined as the
lexicographical composition of longest consumable token and terminal regular
language inclusion. We have hardwired the preference of longer tokens due to
a general consensus in programming languages as evident in scanner genera-
tors such as Lex. For simplicity, terminals are in the following assumed not
to include the empty string, ε; this can be amended with minor modifications
to the algorithm.

Given a lexical layer, the rest of the parser handles syntactic aspects using
a notion of head-sets (see Appendix B.2) which resemble first-sets, but are
sets of terminal languages and nonterminals; in contrast, a first-set is a subset
of Σ∗. A special terminal, 2, represents the end of a sentential form and is
included in a head-set if there is a token-less path to it.

Head-sets induce a syntactic specificity relation on sentential forms which
is used to deterministically pick a production among multiple choices. Specif-
ically, two syntactic specificity relations, vE ⊆ E × E and vsyn ⊆ E∗ × E∗

(see Appendix C.2), are defined in terms of head-set inclusion. The nonter-
minals are present in the head-sets in order to define this relation and are
used later to guide parsing towards nonterminal gaps (introduced in Section
3). As a consequence, two nonterminals are only ordered if they are related
by a token-less path from one to the other (i.e. not if they happen to have
related head terminals).

2.1.1 The Specificity Parsing Algorithm

We now present our Specificity Parsing algorithm and evaluate it in Sec-
tion 2.2. Algorithm 1 depicts the nine steps of a so-called specificity parsing
challenge round in which a set of sentential forms, A, is confronted with an
input string, ω. The algorithm parses as much input as possible and returns
the remainder input.

Steps 1-4 work on a lexical level in defining a context-sensitive scanner that
determines the terminalization which is comprised of the terminal language,
x, the actual input token, ω1, and the remainder input, ω2, when this token
is consumed:

1. We calculate the union of the head-sets of the sentential forms (as
defined in Appendix B.2). This set, H , corresponds to looking for terminals

6

Brabrand, Schwartzbach, and Vanggaard

Algorithm 1 The specificity parsing algorithm:

parse (A, ω) : P(E∗) × Σ∗ → Σ∗

1. H =
⋃ {head-set(α) | α ∈ A} find head-sets: H ⊆ E ∪ {2};

2. X = {〈x, ω1, ω2〉 | x∈H, ω = ω1ω2, ω1∈x} find possible terminalizations;
3. if X = ∅ then if no terminalizations:
3a. if ε ∈ A then return ω return, if an option;
3b. if 2 /∈ H then error(H) issue error message;
3c. else 〈x, ω1, ω2〉 = 〈2, ε, ω〉 select sent. form end, 2;
4. else 〈x, ω1, ω2〉 = most-specific-terminal(X)select best terminalization;

5. Y = {α ∈ A | x ∈ head-set(α)} find applicable sent. forms;
6. e = most-specific-entity(Y) select best head entity: e ∈ E;
7. case e of parse winner entity, e:
7a. t ∈ T : ω′ = ω2 consume input token, ω1;
7b. n ∈ N : ω′ = parse(π(n), ω) parse n recursively;

8. A′ =
⋃ {advance(α, e) | α ∈ A} tails of those with head e;

9. return parse(A′, ω′) parse next challenge round.

in all directions from the current parsing context. This is context-sensitive in
that only terminals “visible” from the current parsing context are considered.

2. Based on the set of visible terminals, H , we now determine the set, X,
of terminals applicable to the current input string (along with what they are
capable of consuming and what input remains).

3. In case there were no applicable terminals (X = ∅) there are three
cases:

3a. if the empty sentential form is an option (ε ∈ A), we stop parsing and
return to the previous challenge round parse;

3b. otherwise, if we cannot get to the end of a sentential form, 2, the
parser is stuck and we generate an error message containing precisely the set
of terminals, H , expected at the current position in the parser.

3c. otherwise we select 〈2, ε, ω〉 as the terminalization, so that we are
guided towards the end of a sentential form, 2.

4. If the set of possible terminalizations, X, is non-empty, we select the
most specific terminalization according to lexical specificity (see Appendix C.1);
uniqueness of a most specific choice is statically ensured in Section 2.2.2.

Steps 5-7 work on a syntactic level and are responsible for parsing this chal-
lenge round by determining the entity to parse in this round and by reacting
appropriately to it. The rest of input to parse is left in ω′.

5. We determine the non-empty set, Y , of sentential forms capable of

7

Brabrand, Schwartzbach, and Vanggaard

consuming the winner terminal, x.

6. From the set of applicable sentential forms, Y , we select the most
specific ones according to syntactic specificity (see Appendix C.2) which is
defined in terms of inclusion of sentential form head-sets. There may be many
different sentential forms with the same head-set, but their head element is
unique and is extracted into e; uniqueness is statically ensured in Section 2.2.2.

7. We are now ready to parse the winner head entity which is either a
terminal or a nonterminal:

7a. if the winner entity is a terminal, we consume the input token by
assigning the remainder input to the rest of input to parse, ω′. Since x ∈
head-set(tβ) (cf. step 5), we know that x = t.

7b. if the winner entity is a nonterminal, n, we recursively parse its
production “right-hand sides”, π(n).

Steps 8-9 prepare for and parse the next challenge round:

8. We advance the parser (see Appendix B.3) by extracting the tails of
all sentential forms that have the winner entity as head; the resulting set, A′,
may have one or more elements.

9. We recursively parse the next challenge round with the surviving set of
sentential form tails.

2.2 Evaluation

We now evaluate the specificity parsing algorithm with respect to flexibility,
safety, and efficiency.

2.2.1 Flexibility

The most important advantage of specificity parsing is extensibility. Both
lexical and syntactic specificity are deterministic disambiguation mechanisms
that provide local conflict resolution; extensions have local effect and any er-
rors are guaranteed to involve only locally the extended parts of the grammar.
Also, the specificity selection is independent of definition-order so that lan-
guage composition is symmetric and language modules may be loaded in any
order. These properties permit incremental and modular grammar design with
grammar-level parsing, reasoning, and disambiguation.

Since the specificity parser operates relative to a set of sentential forms,
syntax can be conveniently overloaded by the addition of syntactic variants
(as with the anonymous classes in Section 2).

Specificity parsing is scannerless in that the scanner is implicitly synthe-
sized from the grammar. This alleviates many tedious and error-prone tasks
of manually keeping a state correspondence between the scanner and parser;
in Lex, this correspondence is often emulated via a notion of start-conditions.
Having a truly context-sensitive scanner avoids keywordification meaning that
keywords are not necessarily global; different parts of a program may have dif-

8

Brabrand, Schwartzbach, and Vanggaard

ferent keywords. This is good for languages with many different constituent
DSLs, such as <bigwig> [2]. As previously mentioned, our scanner may be
extended to cope with terminals containing the empty string.

2.2.2 Safety

We perform three static analyses on grammars: WNLR, intercepts left-recursion;
WDER, checks that all nonterminals have (finite) derivations; and WUSW, en-
sures that lexical and syntactic specificity always have unique final winners.
These three specificity grammar wellformedness safety checks are formalized
in Appendix D.

The no-left-recursion wellformedness check, WNLR, ensures termination of
the parsing strategy by essentially making sure that the parser is unable to
occillate between nonterminals without consuming input. Termination is then
obtained from the fact that the grammar and input is finite. The derivability
check, WDER, has no implications on safety; it is just included as a convenient
sanity check. The unique-specificity-winner check, WUSW, guarantees that the
parser is deterministic in its choice of terminals and productions.

2.2.3 Efficiency

Given a grammar, the algorithm as presented above parses the input in linear
time without any backtracking. In Section 2.4, we show how to add controlled
backtracking without compromising this time bound. Also, since every chal-
lenge round has a unique winner (in step 6) the parser commits to one entity
without any state explosion.

All head-set unions (in step 1) can be statically precomputed for all the
finitely many challenge round parser positions. This information can then
be used to statically factor out all dynamic syntactic specificity checks by
topologically sorting all productions according to this partial ordering. At
parse-time, the algorithm may then test them in this sequence and dispatch
on the first applicable entity.

Although scannerless, the parser retains all efficiency benefits of a scanner-
full approach in employing minimized deterministic finite automata, DFAs, for
deciding regular language membership. In fact, all the regular expressions may
be compiled into one big DFA whose accepting states are annotated with a set
of applicable terminal languages. Given a head-set of terminals visible from
the current parser context, the scanner may run the big automaton on the
input and determine whether current states are accepting as the intersection
of the two terminal sets. These terminal sets may be represented as bit-vectors
topologically ordered according to precomputed regular expression language
inclusion. Intersection is then bitwise disjunction; DFA acceptance, numeric
non-zero; and most-specific terminal, the position of the first 1 in the bit-
vector.

Also, since recursive parser calls in step 7b do not consume input nor
increase head-sets, the terminalization steps 1-4 may be cached as the same

9

Brabrand, Schwartzbach, and Vanggaard

terminal wins again.

Finally, global analysis of the grammar may lead to further optimization
like inlining of nonterminals.

2.3 Comments and Whitespace

Comments and whitespace are handled through a special terminal, omit , that
may be assigned a regular expression of tokens to omit. Since different parts of
a program may have different omit structure, omits do not have global effect,
but are instead bound to all subsequently defined nonterminals and implicitly
added between all entities in their sentential forms.

terminal {
WhiteSpace = { [\t\n\r]+ }
MultiLineComment = { "/*" .. "*/" }
EndOfLineComment = { "//" .. \n }
omit = { (<WhiteSpace> | <MultiLineComment> | <EndOfLineComment>)+ }

}

This fragment defines a Java-like omit structure, discarding standard white-
space, multi-line comments, and end-of-line comments. The binary infix reg-
ular expression operator “R..S” is a convenient from-to construction, de-
fined as R(Σ∗SΣ∗)cS; it can be added to metafront through self-application.
The omit construction defaults to the regular expression WhiteSpace defined
above.

2.3.1 Example: The Lambda Calculus

We first use simple extensions of the untyped lambda-calculus to show the
complete contents of metafront files. The basic syntax is defined as:

language Lambda {
terminal Id = { [a-z]+ }
nonterminal Exp;

Exp[id] --> <Id> ;
[lambda] --> \\ <Id> . <Exp> ;
[apply] --> (<Exp> <Exp>) ;

}

Next we extend this base language with numerals by simply adding the re-
quired productions:

language LambdaNum extends Lambda {
Exp[zero] --> 0 ;

[succ] --> succ <Exp> ;
[pred] --> pred <Exp> ;

}

2.4 Attractors

Consider the following subset of the Java grammar:

10

Brabrand, Schwartzbach, and Vanggaard

language JavaSubset {
Statement[decl] --> <Declaration> ;

[exp] --> <Expression> ";" ;
Declaration[var] --> <Identifier> <Identifier> ";" ;
Expression[id] --> <Identifier> ;

}

This language is statically intercepted by WUSW (see Appendix D.3) which
produces the following error:

*** specificity clash: Statement[decl vs. exp] round #1 on <Identifier>

The reason is that we cannot discern Statement[decl] from Statement[exp]

by looking at the terminal <Identifier> only. To solve this without rear-
ranging the grammar and introducing phony nonterminals, we introduce a
limited form of lookahead through a concept of attractors. Their syntax is
either <?t?> where t is a terminal language or <?n:k?> where n is a nonter-
minal and k is an integer constant. Attractors are placed on the right-hand
sides of productions, as in the example:

Statement[decl] --> <?Declaration:2?> <Declaration> ;

which solves our problem. If the parser can successfully consume the specified
prefix of the input string, in this case the two first tokens of a Declaration,
then it backtracks and continues with the rest of this sentential form, dis-
regarding all other candidates. If the attractor fails, then the candidate is
removed. We statically check that all attractors correspond to disjoint pre-
fixes, so no ambiguity can be introduced (see Appendix E).

The notation <?Declaration:2?> is preferable to the more explicit alter-
native <? <Identifier> <Identifier> ?> because updates of the grammar
are automatically reflected. Attractors can be evaluated efficiently by run-
ning the ordinary parsing algorithm while maintaining a counter of tokens
consumed. Note that the complete parsing algorithm remains constant-time,
since the lookahead is bounded by the constant k.

2.4.1 Traps

When computing head-sets of sentential forms including attractors, we use the
rule that head-set(<?n:k?>β) = head-setE(n). This allows us to use attractors
as traps. To illustrate this, consider the standard Java grammar which causes
a problem for our parsing algorithm. The operator & is a prefix of the operator
&& but has a higher precedence. This means that an expression such as x && y

will never be parsed correctly, since exp[and] will “steal” one ampersand and
we will get a parse error. The solution is to add a conjunction attractor:

terminal AndAndTrap = { && }
AndExpressionRest[andandtrap] --> <?AndAndTrap?> ;

which forces AndExpressionRest to consume only the empty string. A dif-
ferent situation arises with switch statements, where the parsing of a branch

11

Brabrand, Schwartzbach, and Vanggaard

should terminate at the following case construct:

Statement[switch] --> switch (<Expression>) { <SwitchBody> } ;
Statements[none] --> ;

[more] --> <Statement> <Statements> ;
SwitchBody[one] --> <Case> ;

[more] --> <Case> <SwitchBody> ;
Case[case] --> case <Expression> : <Statements> ;

This will not happen, however, since case is recognized as an identifier which
belongs to the head-set of statements. The solution is to apply another trap:

terminal CaseTrap = { case }
Statements[casetrap] --> <?CaseTrap?> ;

This mechanism can also be used to exclude keywords from identifiers in spe-
cific parts of the grammar.

3 Transformation

Transformations are typed with input and output languages and transform
syntactically legal input terms to syntactically legal output terms. For each
input term, three steps are performed: first, it is parsed to produce a syntax
tree of the input language; secondly, this input tree is subjected to a syntax
tree transformer, producing a syntax tree of the output language; and finally,
this output tree is unparsed (see Section 3.4) according to the output syntax
to produce the output term.

The actual transformer is thus run on parse-trees of the input language;
each production kind dispatches a corresponding rule of the syntax tree trans-
former which names immediate constituent parse-trees, inductively applies
transformers on them, and reassembles the transformed results into a result-
ing output syntax tree.

In order to specify result syntax trees as output terms augmented with
place-holder gaps for inductively transformed terms, we extend Algorithm 1
to parse relative to a gap environment (as formalized in Appendix F). A gap
environment, τ : G → E, maps a finite set of gap names, G, to gap types
which are either terminals or nonterminals.

Example 3 illustrates the basic concepts of a transformation; it desugars
the numeral extensions of the calculus, LambdaNum, by transforming it into
the basic lambda calculus, Lambda. The first line names the transformation
LambdaNum2Lambda and specifies its type by designating the source and target
languages ; this instructs metafront to load these two language definitions.
The second line declares a transformer action, Xexp, and specifies its source
and target nonterminals, respectively belonging to the source and target lan-
guages; both called Exp in the example.

Hereafter comes the actual rules for how to transform a LambdaNum.Exp

syntax tree into one from Lambda.Exp; there must be a rule for each pro-
duction of the source nonterminal. Each individual rule has four parts; a

12

Brabrand, Schwartzbach, and Vanggaard

Example 3.1 A Transformation, LambdaNum2Lambda

transformation LambdaNum2Lambda: LambdaNum ==> Lambda {
transform Xexp: Exp ==> Exp;

Xexp[id] (I) ==> << <I> >>
[lambda] (I,E) E.Xexp()=>X ==> << \ <I> . <X> >>
[apply] (E,F) E.Xexp()=>X, F.Xexp()=>Y ==> << (<X> <Y>) >>
[zero] () ==> << \z.z >>
[succ] (E) E.Xexp()=>X ==> << \ n . <X> >>
[pred] (E) E.Xexp()=>X ==> << (<X> \z.z) >>︸ ︷︷ ︸

productions

︸ ︷︷ ︸
bindings

︸ ︷︷ ︸
inductive transformers

︸ ︷︷ ︸
result construction

}

production name, a binding part naming all constituent terminal and nonter-
minal variables, a number of inductive transformer applications, and a result
construction part.

Consider the second last Xexp rule, [succ]. The rule name, succ, refers to
the production with the same name in the source nonterminal, LambdaNum.Exp.
Since this production has one terminal-or-nonterminal variable, namely the
nonterminal <Exp>, it must be bound in the binder part; this rule names it
E. The inductive transformer part, E.Xexp()=>X, means that the syntax tree
contained in E is inductively subjected the transformer, Xexp, to produce an
output syntax tree which is named, X. Finally, the result of this transformer
rule is obtained by inserting the syntax tree held in X, into the result construc-
tion for the place-holder gap, <X>.

3.1 Lexical Transformation

The terminals of the source and target languages need not be related in any
way. Thus, a syntactic transformation must also perform lexical transforma-
tions. An example of such a specification is:

transform Esc: String ==> PCDATA;
transform Escape: StringContents ==> PCDATA;

Esc --> \" <Escape E> verb::̈ ==> << <E> >>

Escape --> "&" <Escape E> ==> << & <E> >>
--> ">" <Escape E> ==> << > <E> >>
--> "<" <Escape E> ==> << < <E> >>
--> <StringContent S> <Escape E> ==> << <S> <E> >>

Here, transformers are typed with terminal languages. In case of ambiguties
during the processing of a token, the most specific input terminal is chosen.

13

Brabrand, Schwartzbach, and Vanggaard

Some structural restrictions apply to the transformation rules. The input
productions are required to constitute a regular grammar and the output
productions to constitute a regular or left-linear grammar. This ensures that
we can compute regular languages describing both the possible input and
output strings. To provide the desired static safety guarantee we check that
these languages are in the appropriate contravariant relationship with the
declared source and target terminal languages.

3.2 Evaluation

Again, we have divided our evaluation into flexibility, safety, and efficiency.

3.2.1 Flexibility

Our transformations are sufficiently expressive to handle many useful cases.
They will of course always be limited compared to Turing-complete alterna-
tives. Note though that we can perform more than linear transformations,
since the output term may be exponentially larger than the input term. The
liberal grammar structure that our parsing algorithm allows is essential to
specify transformations. If we were forced to write:

ClassDeclaration[both] --> class <Identifier> <ExtendsOpt> <ClassBody> ;
ExtendsOpt[extends] --> extends <Identifier> ;

[simple] --> ;

instead of the more straightforward:

ClassDeclaration
[simple] --> class <Identifier> <ClassBody> ;
[extends] --> class <Identifier> extends <Identifier> <ClassBody> ;

then we could not specify independent transformations for the two kinds of
classes. Finally, the inherent extensibility of metafront helps in structuring
transformations.

3.2.2 Safety

Transformations are statically checked to be type-safe with respect to the
input and output languages. This is done by parsing the right-hand sides of
transformations relative to an environment mapping place-holder gaps into
terminals and nonterminals. Termination is also guaranteed, since inductive
transformations can only be invoked on subtrees.

3.2.3 Efficiency

Given a transformation, x, and input ω, the transformation runs in optimal
time O(|ω| + |x(ω)|). The current implementation is a prototype, but as for
parsing there are ample opportunities for optimizations.

14

Brabrand, Schwartzbach, and Vanggaard

3.3 Default Transformations

When using metafront as a macro mechanism where the source is an ex-
tension of the target language, we want to write only transformations for
the extended syntax. To this end we take two measures. First, the tool de-
fines identity transformers with the same name as the nonterminals on all
overlapping productions. Second, we provide E()=>X as short-hand notation
for E.N()=>X, where N is the name of the nonterminal type of E (naming a
transformer which is possibly generated by default). The lambda calculus
transformation above can now be written as:

transform LambdaNum2Lambda: LambdaNum ==> Lambda {
Exp[zero]() ==> << \z.z >>

[succ](E) E()=>X ==> << \n.<X> >>
[pred](E) E()=>X ==> << (<X> \z.z) >>

}

Both measures can also be achieved with self-application of the metafront

tool.

3.4 Unparsing

To control unparsing, we have augmented production right-hand sides with
four pretty print directives that are ignored by the parser: <+>, for increasing
indentation after newlines; <->, for decreasing indentation after newlines; </>,
for inserting newlines followed by indentation whitespaces; and <>, to supress
whitespace printing between sentential form entities which is default. For
convenience, these directives may be grouped sequentially, e.g. as <+/>.

4 Examples

We illustrate the use of metafront by sketching a number of small and larger
examples. The full details of all examples are available from our project Web
site at http://www.brics.dk/metafront/.

4.1 More Lambda Extensions

Continuing with the lambda calculus we add syntax for booleans:

language LambdaBool extends LambdaNum {
Exp[true] --> true ;

[false] --> false ;
[if] --> (if <Exp> <Exp> <Exp>) ;

}

and extend the desugaring accordingly:

transformation LambdaBool2LambdaNum: LambdaBool ==> LambdaNum {
Exp
[true] () ==> << \x.\y.x >>
[false]() ==> << \x.\y.y >>

15

Brabrand, Schwartzbach, and Vanggaard

[if](E1,E2,E3) E1()=>X1, E2()=>X2, E3()=>X3 ==> << ((<X1> <X2>) <X3>) >>
}

This example could of course be extended to a full language with operators
and functions.

4.2 Java Extensions

Some more substantial examples involve the full Java syntax. We use the
grammar copied directly from the language definition [8], with all EBNF con-
structions desugared away. The full grammar contains 144 nonterminals and
335 productions. Our specificity parser reported specificity clashes in six places
where we have added attractors and traps to disambiguate the grammar. Our
first extension is to add a C# foreach construction:

language ForEach extends Java {
Statement[foreach] -->
foreach (<Type> <Identifier> in <Expression>) <Statement> ;

}

which is desugared by a corresponding small transformation:

transformation ForEach2Java: ForEach ==> Java {
Statement[foreach](T,I,E,S) T()=>xT, E()=>xE, S()=>xS ==> << {
Iterator iterator = (<xE>).iterator();
while (iterator.hasNext()) {
<xT> <I> = (<xT>) iterator.next();
<xS>

}
} >>

}

A larger Java extension originates from the JWIG project [5], which uses
domain-specific syntax to manipulate XML fragments in Web services. The
extension involves numerous modifications at various levels of the Java gram-
mar. A small part introduces a new operator, “x<[g=y]”, for plugging to-
gether XML fragment values:

language JWIG extends Java {
nonterminal Plugs;

PostfixExpression[plug] --> <PrimaryExpression> <Plugs> ;

Plugs[one] --> "<[" <Identifier> = <Expression> "]" ;
[more] --> "<[" <Identifier> = <Expression> "]" <Plugs> ;

}

which uses the following transformation to produce nested invocations of a
plug method:

transformation JWIG2Java: JWIG ==> Java {
transform Plugs: Plugs ==> PrimaryExpressionRest;

PostfixExpression[plug](E,P) E()=>xE, P()=>xP ==> << ((<xE>) <xP>) >>

16

Brabrand, Schwartzbach, and Vanggaard

Plugs[one] (I,E) E()=>xE ==> << .plug(<I> , <xE>) >>
[more](I,E,P) E()=>xE, P()=>xP ==> << .plug(<I> , <xE>) <xP> >>

}

Another example shows the need for multiple transformations. We extend
Java with a hypothetical mechanism for reserving named resources. To avoid
deadlock, a sequence of ressources must be released in the opposite order in
which they were acquired. The Java extension looks a follows:

language Reserve extends Java {
nonterminal Identifiers;

Statement[reserve] --> reserve (<Identifiers>) <Statement> ;
Identifiers[one] --> <Identifier> ;

[more] --> <Identifier> , <Identifiers> ;
}

and the transformation is defined as follows:

transformation Reserve2Java: Reserve ==> Java {
transform Acqs: Identifiers ==> Statement;
transform Rels: Identifiers ==> Statement;

Statement[reserve](Is,S) Is.Acqs()=>xA, S()=>xS, Is.Rels()=>xR
==> << { <xA> <xS> <xR> } >>

Acqs[one] (I) ==> << acquire(<I>); >>
[more](I,Is) Is.Acqs()=>xA ==> << { acquire(<I>); <xA> } >>

Rels[one] (I) ==> << release(<I>); >>
[more](I,Is) Is.Rels()=>xR ==> << { <xR> release(<I>); } >>

}

4.3 Java Enumerations

An example involving arguments to transformers is the definition of enumer-
ation types in Java:

language Enum extends Java
Declaration[enum] --> enum <Identifiers> ";" ;

The transformation uses an argument K to build an appropriate enumeration
constant expressed as simple sums:

transformation Enum2Java: Enum ==> Java {
transform Enums(Expression K): Identifiers ==> Declarations;

Declaration[enum] (E) E.Enums(<< 1 >>)=>X ==> <<
static final int <I> = 0;
<X>

>>

Enums[empty] () ==> << >>

17

Brabrand, Schwartzbach, and Vanggaard

[more] () E.Enums(<< <K> + 1 >>)=>X ==> <<
static final int <I> = <K>;
<X>

>>
}

4.4 Questionnaires

A complete example of a domain-specific language involves online question-
naires. We have defined a syntax for asking a series of questions, each with a
fixed number of options as possible answers. A dependency relation ensures
that each question may only be asked when other questions have been given
certain answers.

We have then defined a transformation into the above mentioned JWIG
extension of Java, which in turn generates a customized interactive Web ser-
vice that permits users to answer questionnaires and administrators to view
statistics.

4.5 Self-Applications

We have observed many occasions for applying metafront to itself. We have
defined a transformation to HTML syntax, which provides online documenta-
tion of metafront files in the style of JavaDoc.

Transformations from metafront to itself are also interesting. For the
common cases of language extensions being desugared, our tool provides useful
default transformations for all productions. As mentioned in Section 3.2,
those can be defined through an explicit preprocessing defined as a metafront

transformation. Similarly, we can extend the syntax for grammars to include
EBNF right-hand sides.

The most ambitious self-application introduces explicit directives for prece-
dence and associativity of operators. This can be given a semantics through
a transformation into the basic metafront language.

5 Future Work

We plan to implement all optimizations mentioned in Section 2.2.3 and in-
stead of interpreting, code generate a parser that uses tables and control-flow
embedded DFAs. The resulting parser should obtain performance comparable
to that of Lex/Yacc combinations.

We want to create a typed algebra of languages and transformations, al-
lowing operators like products and compositions. The extends mechanism
will induce a subtype relation.

It is possible to allow transformations to use symbol tables and derived def-
use links, while still retaining the safety guarantees. This would extend the
expressive power considerably and enable transformations to read and write

18

Brabrand, Schwartzbach, and Vanggaard

typed trees across those links.

Finally, we would like to provide alternative characterizations of the class
of languages that specificity parsing can recognize.

6 Conclusion

The metafront tool provides a flexible, safe, and efficient means for parsing
and performing syntactic transformations, both designed with special empha-
sis on extensibility.

The implementation is available in 6300 lines of Java code under an open-
source license.

References

[1] Lex Augusteijn. The Elegant compiler generator system. In Attribute
Grammars and their Applications, volume 461 of LNCS. Springer-Verlag, 1990.

[2] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. The <bigwig>
project. ACM Transactions on Internet Technology, 2(2), 2002. (See
Dissertation Chapter 10).

[3] Claus Brabrand and Michael I. Schwartzbach. Growing languages with
metamorphic syntax macros. In Proc. ACM SIGPLAN Workshop on Partial
Evaluation and Semantics-Based Program Manipulation, PEPM ’02, January
2002.

[4] Luca Cardelli, Florian Matthes, and Martin Abadi. Extensible syntax with
lexical scoping. SRC Research Report 121, 1994.

[5] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach.
Extending Java for high-level Web service construction. Technical Report RS-
02-11, BRICS, March 2002.

[6] J. Earley. An efficient context-free parsing algorithm. CACM, 1970.

[7] R. W. Gray, V. P. Heuring, S. P. Levi, A. M. Sloane, and W. M. Waite. Eli: A
complete flexible compiler construction system. CACM, 1992.

[8] Sriram Sankar. Javacc java grammar, 2002.
http://www.cobase.cs.ucla.edu/pub/javacc/java/.

[9] Friedrich Wilhelm Schroer. The GENTLE Compiler Construction System.
Oldenbourg Verlag, 1997.

[10] M. G. J. van den Brand, J. Scheerder, J. J. Vinju, and E. Visser.
Disambiguation filters for scannerless generalized lr parsers. In Proc. Compiler
Construction 2002. Springer-Verlag, 2002.

19

Brabrand, Schwartzbach, and Vanggaard

[11] M. G. J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju,
E. Visser, and J. Visser. The ASF+SDF meta-environment: a component-
based language development environment. In Proc. Compiler Construction
2001. Springer-Verlag, 2001.

20

Brabrand, Schwartzbach, and Vanggaard

A Specificity Grammar

G = 〈Σ, T, N, s, π〉
• Σ finite set of characters (alphabet);

• T ∈ P(Reg(Σ)) finite set of regular languages over Σ;

• N finite set of nonterminals;

• s ∈ N start nonterminal; and

• π : N → P(E∗) production function, where E = T ∪ N

B Head-sets

B.1 Epsilon

The definitions epsilonE and epsilon determine whether or not an entity or
a sentential form can derive the empty string, ε; epsilonE : E → B and
epsilon : E∗ → B are the leastfalse<true functions satisfying:

epsilonE(e) ≡

false if e = t∨
α∈π(n)

epsilon(α) if e = n

epsilon(α) ≡
{

true if α = ε

epsilonE(e) ∧ epsilon(β) if α = eβ

B.2 Head-Sets

head-setE : E → P(E ∪ {2}), head-set : E∗ → P(E ∪ {2}), and Head-set :
P(E∗) → P(E ∪ {2}) are the least⊆ functions satisfying:

head-setE(e) =

{
{t} if e = t

{n} ∪ Head-set(π(n)) if e = n

head-set(α) =

{2} if α = ε

head-setE(e) if α = eβ , ¬epsilonE(e)

(head-setE(e)\{2}) ∪ head-set(β) if α = eβ , epsilonE(e)

Head-set(A) =
⋃
α∈A

head-set(α)

B.3 Advance

advance : E∗ × E → P(E∗) and Advance : P(E∗) × E → P(E∗)

21

Brabrand, Schwartzbach, and Vanggaard

advance(α, e) =

∅ if α = ε

∅ if α = e′β , e′ 6= e

{β} if α = e′β , e′ = e

Advance(A, e) =
⋃
α∈A

advance(α, e)

C Specificity Relations

C.1 Lexical Specificity

The relation, vlex ⊆ 〈T × Σ∗ × Σ∗〉 × 〈T × Σ∗ × Σ∗〉, is defined as:

〈t, ω1, ω2〉 vlex 〈t′, ω′
1, ω

′
2〉 iff (|ω′

1| <N |ω1|) ∨ (|ω′
1| =N |ω1| ⇒ t ⊆ t′)

C.2 Syntactic Specificity

The relations, vE ⊆ E × E and vsyn ⊆ E∗ × E∗, are defined as:

e vE e′ iff head-setE(e) ⊆ head-setE(e′)
α vsyn α′ iff head-set(α) ⊆ head-set(α′)

D Specificity Grammar Wellformedness

|= G iff ∀n ∈ N : WNLR(n) ∧ WDER(n) ∧ WUSW(n)

D.1 No Left-Recursion

This requirement ensures termination of the parser. WNLR : N → B and
W ∗

NLR : E∗ → B are the leastfalse<true functions satisfying:

WNLR(n) ≡
∧

α∈π(n)

W ∗
NLR(α)

W ∗
NLR(α) ≡

true if α = ε

true if α = tβ

WNLR(n) if α = nβ , ¬epsilonE(n)

WNLR(n) ∧ W ∗
NLR(β) if α = nβ , epsilonE(n)

D.2 Derivability

This is just a sanity check to ensure that nonterminals can derive something.
WDER : N → B and W ∗

DER : E∗ → B are the leastfalse<true functions satisfying:

22

Brabrand, Schwartzbach, and Vanggaard

WDER(n) ≡
∨

α∈π(n)

W ∗
DER(α)

W ∗
DER(α) ≡

true if α = ε

W ∗
DER(β) if α = tβ

WDER(n) ∧ W ∗
DER(β) if α = nβ

D.3 Unique Specificity Winner

This ensures that each challenge round has a unique final entity winner.
WUSW : N → B and W ∗

USW : (E∗ × E∗) → B are defined as:

WUSW(n) ≡
∧

α,α′∈π(n),α6=α′
W ∗

USW(α, α′)

W ∗
USW(α, α′) ≡

false if α = ε , α′ = ε

true if α = ε , α′ 6= ε

true if α 6= ε , α′ = ε

spec(head-set(α), head-set(α′)) if α = eβ , α′ = e′β ′ , e 6= e′

W ∗
USW(β, β ′) if α = eβ , α′ = e′β ′ , e = e′

Where spec : (P(E ∪ {2}) × P(E ∪ {2})) → B is defined as:

spec(F, F ′) iff (F ∩ F ′ = ∅ ∨ F ⊂ F ′ ∨ F ′ ⊂ F) ∧
(∀t, t′ ∈ F ∪ F ′ : t 6= t′ ⇒ t ∩ t′ = ∅ ∨ t ⊂ t′ ∨ t′ ⊂ t)

E Attractor Disjunction

∀k : <?n:k?> 6∼ <?m:k?> iff prefix(n) ⊆ m ∧ n ⊆ prefix(m)

F Specificity Parsing Gaps

Let G be a set of gap names, where ∀g ∈ G, t ∈ T, ω ∈ Σ∗ : g ω /∈ t. We then
extend the algorithm to parse relative to a gap environment, τ : G → E:

31
2
.if ω = g ω2 ∧ τ(g) ∈ H then if input is expected gap:

〈x, ω1, ω2〉 = 〈τ(g), g, ω2〉 select gap terminalization;
3*.else ...steps 3a-3c (as before)... not gap or unexpected gap;
61

2
.if ω1 = g ∧ e = x then w′ = ω2 skip past this gap, g;

7*.else ...steps 7-7b (as before)... not gap or wrong gap type;

23

	Introduction
	Language Design
	Related Work

	Parsing
	Specificity Parsing
	Evaluation
	Comments and Whitespace
	Attractors

	Transformation
	Lexical Transformation
	Evaluation
	Default Transformations
	Unparsing

	Examples
	More Lambda Extensions
	Java Extensions
	Java Enumerations
	Questionnaires
	Self-Applications

	Future Work
	Conclusion
	References
	Specificity Grammar
	Head-sets
	Epsilon
	Head-Sets
	Advance

	Specificity Relations
	Lexical Specificity
	Syntactic Specificity

	Specificity Grammar Wellformedness
	No Left-Recursion
	Derivability
	Unique Specificity Winner

	Attractor Disjunction
	Specificity Parsing Gaps

