An Introduction to XML and Web Technologies

The XPath Language

Anders Møller & Michael I. Schwartzbach
© 2006 Addison-Wesley

XPath Expressions

- Flexible notation for **navigating** around trees
- A basic technology that is widely used
 - uniqueness and scope in XML Schema
 - pattern matching an selection in XSLT
 - relations in XLink and XPointer
 - computations on values in XSLT and XQuery

An Introduction to XML and Web Technologies

3

Objectives

- Location steps and paths
- Typical locations paths
- Abbreviations
- General expressions

An Introduction to XML and Web Technologies

2

Location Paths

- A location path evaluates to a sequence of nodes
- The sequence is **sorted** in document order
- The sequence will **never** contain **duplicates**

An Introduction to XML and Web Technologies

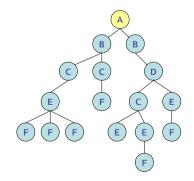
Locations Steps

- The location path is a sequence of *steps*
- A location step consists of
 - an axis
 - a nodetest
 - some predicates

 $axis :: nodetest [Exp_1] [Exp_2] ...$

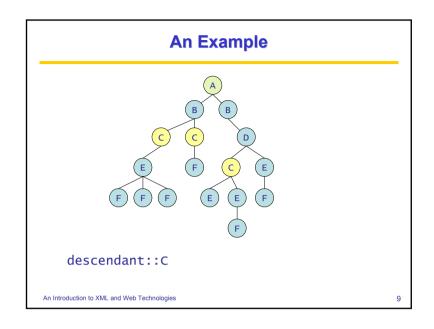
An Introduction to XML and Web Technologies

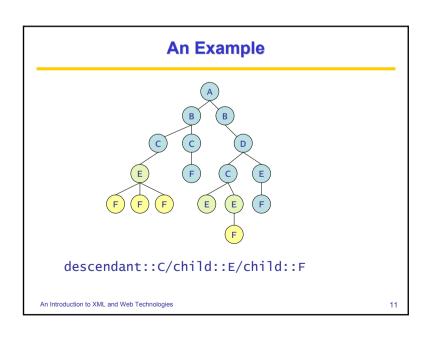
An Example Gradient Street St

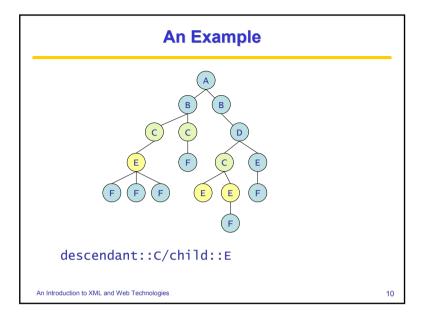

Evaluating a Location Path

- A step maps a *context node* into a sequence
- This also maps sequences to sequences
 - · each node is used as context node
 - and is replaced with the result of applying the step
- The path then applies each step in turn

An Introduction to XML and Web Technologies


6





Context node

An Introduction to XML and Web Technologies

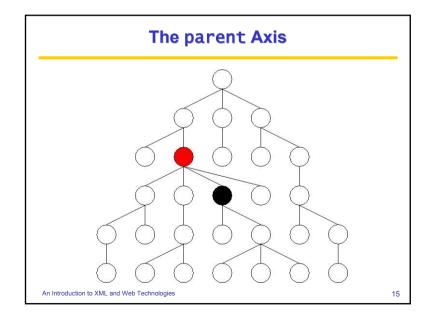
Contexts

- The *context* of an XPath evaluation consists of
 - a context *node* (a node in an XML tree)
 - a context *position* and *size* (two nonnegative integers)
 - a set of variable bindings
 - a function library
 - a set of namespace declarations
- The application determines the initial context
- If the path starts with '/' then
 - · the initial context node is the root
 - the initial position and size are 1

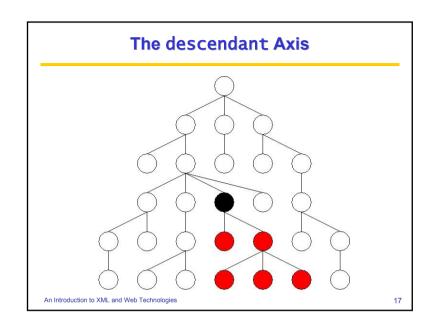
An Introduction to XML and Web Technologies

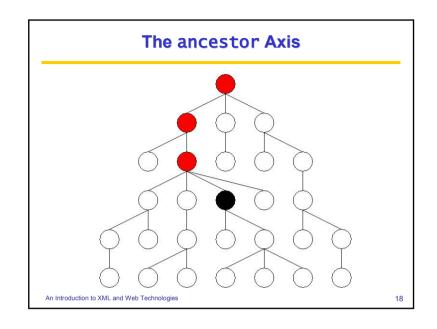
Axes

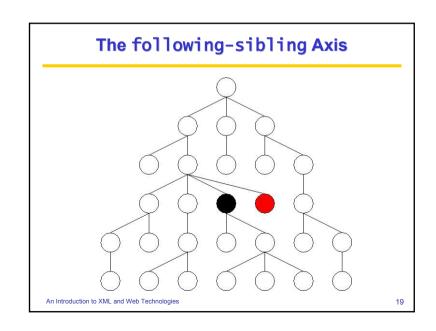
- An axis is a sequence of nodes
- The axis is evaluated relative to the context node
- XPath supports 12 different axes
 - •child
 - descendant
 - parent
 - ancestor
 - •following-sibling
 - •preceding-sibling
- attribute •following
- preceding
- •self
- descendant-or-self
- •ancestor-or-self

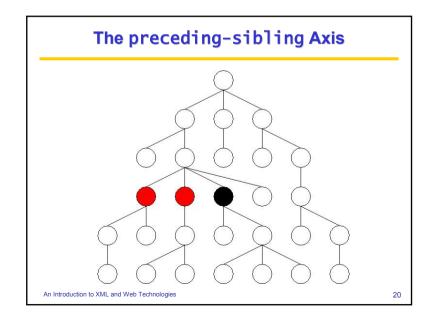

An Introduction to XML and Web Technologies

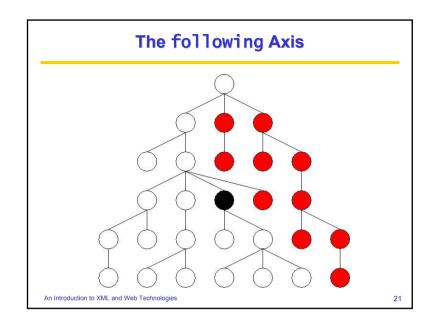
13

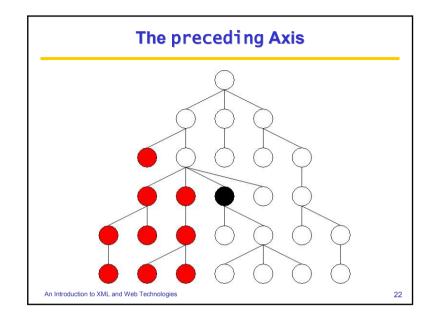

Axis Directions


- Each axis has a direction
- Forwards means document order:
 - child, descendant, following-sibling, following, self, descendant-or-self
- Backwards means reverse document order:
 - parent, ancestor, preceding-sibling, preceding
- Stable but depends on the implementation:
 - attribute


An Introduction to XML and Web Technologies

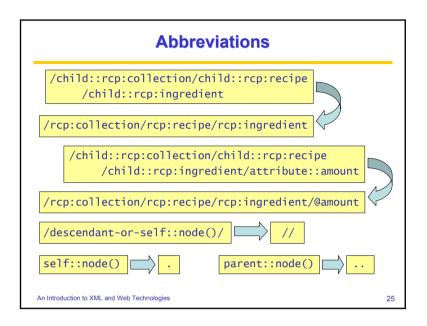






Node Tests

- text()
- comment()
- processing-instruction()
- node()
- *
- QName
- *:NCName
- NCName:*


An Introduction to XML and Web Technologies

Predicates

- General XPath expressions
- Evaluated with the current node as context
- Result is coerced into a boolean
 - a number yields true if it equals the context position
 - · a string yields true if it is not empty
 - a sequence yields true if it is not empty

An Introduction to XML and Web Technologies

23

Atomization

- A sequence may be atomized
- This results in a sequence of atomic values
- For element nodes this is the concatenation of all descendant text nodes
- For other nodes this is the *obvious string*

An Introduction to XML and Web Technologies

27

General Expressions

- Every expression evaluates to a sequence of
 - atomic values
 - nodes
- Atomic values may be
 - numbers
 - booleans
 - Unicode strings
 - · datatypes defined in XML Schema
- Nodes have identity

An Introduction to XML and Web Technologies

26

Literal Expressions

42

3.1415

6.022E23

'XPath is a lot of fun'

"XPath is a lot of fun"

'The cat said "Meow!"'

"The cat said ""Meow!"""

"XPath is just

so much fun"

An Introduction to XML and Web Technologies

Arithmetic Expressions

- +, -, *, div, idiv, mod
- Operators are generalized to sequences
 - · if any argument is empty, the result is empty
 - if all argument are singleton sequences of numbers, the operation is performed
 - · otherwise, a runtime error occurs

An Introduction to XML and Web Technologies

29

Sequence Expressions

- The ',' operator concatenates sequences
- Integer ranges are constructed with 'to'
- Operators: union, intersect, except
- Sequences are always flattened
- These expression give the same result:

An Introduction to XML and Web Technologies

31

Variable References

\$foo
\$bar:foo

- \$foo-17 refers to the variable "foo-17"
- Possible fixes: (\$foo)-17, \$foo -17, \$foo+-17

An Introduction to XML and Web Technologies

30

Path Expressions

- Locations paths are expressions
- The may start from arbitrary sequences
 - · evaluate the path for each node
 - · use the given node as context node
 - · context position and size are taken from the sequence
 - · the results are combined in document order

An Introduction to XML and Web Technologies

Filter Expressions

- Predicates generalized to arbitrary sequences
- The expression '.' is the *context item*
- The expression:

(10 to 40)[. mod 5 = 0 and position()>20] has the result:

30, 35, 40

An Introduction to XML and Web Technologies

33

General Comparison

- Operators: =, !=, <, <=, >, >=
- Used on general values:
 - atomize
 - if there exists two values, one from each argument, whose comparison holds, the result is true
 - · otherwise, the result is false

```
8 = 4+4
(1,2) = (2,4)
//rcp:ingredient/@name = "salt"
```

An Introduction to XML and Web Technologies

35

Value Comparison

- Operators: eq, ne, 1t, 1e, gt, ge
- Used on atomic values
- When applied to arbitrary values:
 - · atomize
 - · if either argument is empty, the result is empty
 - if either has length >1, the result is false
 - · if incomparable, a runtime error
 - · otherwise, compare the two atomic values

```
8 eq 4+4
(//rcp:ingredient)[1]/@name eq "beef cube steak"
```

An Introduction to XML and Web Technologies

34

Node Comparison

- Operators: is, <<, >>
- Used to compare nodes on identity and order
- When applied to arbitrary values:
 - · if either argument is empty, the result is empty
 - · if both are singleton nodes, the nodes are compared
 - · otherwise, a runtime error

```
(//rcp:recipe)[2] is
    //rcp:recipe[rcp:title eq "Ricotta Pie"]
/rcp:collection << (//rcp:recipe)[4]
(//rcp:recipe)[4] >> (//rcp:recipe)[3]
```

An Introduction to XML and Web Technologies

Be Careful About Comparisons

((//rcp:ingredient)[40]/@name,(//rcp:ingredient)[40]/@amount) eq
((//rcp:ingredient)[53]/@name, (//rcp:ingredient)[53]/@amount)

Yields false, since the arguments are not singletons

((//rcp:ingredient)[40]/@name, (//rcp:ingredient)[40]/@amount) =
((//rcp:ingredient)[53]/@name, (//rcp:ingredient)[53]/@amount

Yields true, since the two names are found to be equal

((//rcp:ingredient)[40]/@name, (//rcp:ingredient)[40]/@amount) is
((//rcp:ingredient)[53]/@name, (//rcp:ingredient)[53]/@amount)

Yields a runtime error, since the arguments are not singletons

An Introduction to XML and Web Technologies

37

XPath Violates Most Axioms

- Reflexivity?
 - ()=() yields false
- Transitivity?

$$(1,2)=(2,3), (2,3)=(3,4), \text{ not } (1,2)=(3,4)$$

Anti-symmetry?

$$(1,4) \leftarrow (2,3), (2,3) \leftarrow (1,4), \text{ not } (1,2) = (3,4)$$

Negation?

(1)!=() yields false, (1)=() yields false

An Introduction to XML and Web Technologies

39

Algebraic Axioms for Comparisons

•Reflexivity: x = x

•Symmetry: $x = y \Rightarrow y = x$

•Transitivity: $x = y \land y = z \Rightarrow x = z$

 $x < y \land y < z \Longrightarrow x < z$

•Anti-symmetry: $x \le y \land y \le x \Rightarrow x = y$

•Negation: $x \neq y \Leftrightarrow \neg x = y$

An Introduction to XML and Web Technologies

20

Boolean Expressions

- Operators: and, or
- Arguments are coerced, false if the value is:
 - · the boolean false
 - the empty sequence
 - the empty string
 - · the number zero
- Constants use functions true() and false()
- Negation uses not(...)

An Introduction to XML and Web Technologies

Functions

- XPath has an extensive function library
- Default *namespace* for functions:

http://www.w3.org/2006/xpath-functions

- 106 functions are required
- More functions with the *namespace*:

http://www.w3.org/2001/XMLSchema

An Introduction to XML and Web Technologies

41

Arithmetic Functions

```
fn:abs(-23.4) = 23.4
fn:ceiling(23.4) = 24
fn:floor(23.4) = 23
fn:round(23.4) = 23
fn:round(23.5) = 24
```

An Introduction to XML and Web Technologies

43

Function Invocation

- Calling a function with 4 arguments:
 fn:avg(1,2,3,4)
- Calling a function with 1 argument:
 fn:avg((1,2,3,4))

An Introduction to XML and Web Technologies

42

Boolean Functions

```
fn:not(0) = fn:true()
fn:not(fn:true()) = fn:false()
fn:not("") = fn:true()
fn:not((1)) = fn:false()
```

An Introduction to XML and Web Technologies

String Functions

```
fn:concat("X","ML") = "XML"
fn:concat("X","ML"," ","book") = "XML book"
fn:string-join(("XML","book")," ") = "XML book"
fn:string-join(("1","2","3"),"+") = "1+2+3"
fn:substring("XML book",5) = "book"
fn:substring("XML book",2,4) = "ML b"
fn:string-length("XML book") = 8
fn:upper-case("XML book") = "XML BOOK"
fn:lower-case("XML book") = "xml book"
```

An Introduction to XML and Web Technologies

45

Cardinality Functions

```
fn:exists(()) = fn:false()
fn:exists((1,2,3,4)) = fn:true()
fn:empty(()) = fn:true()
fn:empty((1,2,3,4)) = fn:false()
fn:count((1,2,3,4)) = 4
fn:count(//rcp:recipe) = 5
```

An Introduction to XML and Web Technologies

47

Regexp Functions

```
fn:contains("XML book","XML") = fn:true()
fn:matches("XML book","XM..[a-z]*") = fn:true()
fn:matches("XML book",".*Z.*") = fn:false()
fn:replace("XML book","XML","Web") = "Web book"
fn:replace("XML book","[a-z]","8") = "XML 8888"
```

An Introduction to XML and Web Technologies

Sequence Functions

An Introduction to XML and Web Technologies

Aggregate Functions

```
fn:avg((2, 3, 4, 5, 6, 7)) = 4.5
fn:max((2, 3, 4, 5, 6, 7)) = 7
fn:min((2, 3, 4, 5, 6, 7)) = 2
fn:sum((2, 3, 4, 5, 6, 7)) = 27
```

An Introduction to XML and Web Technologies

49

51

Coercion Functions

```
xs:integer("5") = 5
xs:integer(7.0) = 7
xs:decimal(5) = 5.0
xs:decimal("4.3") = 4.3
xs:decimal("4") = 4.0
xs:double(2) = 2.0E0
xs:double(14.3) = 1.43E1
xs:boolean(0) = fn:false()
xs:boolean("true") = fn:true()
xs:string(17) = "17"
xs:string(1.43E1) = "14.3"
xs:string(fn:true()) = "true"
```

An Introduction to XML and Web Technologies

Node Functions

```
fn:doc("http://www.brics.dk/ixwt/recipes/recipes.xml")
fn:position()
fn:last()
```

An Introduction to XML and Web Technologies

For Expressions

The expression

```
for $r in //rcp:recipe
  return fn:count($r//rcp:ingredient[fn:not(rcp:ingredient)])
```

returns the value

11, 12, 15, 8, 30

The expression

```
for $i in (1 to 5)
for $j in (1 to $i)
return $j
```

returns the value

```
1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5
```

An Introduction to XML and Web Technologies

Conditional Expressions

```
fn:avg(
  for $r in //rcp:ingredient return
    if ( $r/@unit = "cup" )
        then xs:double($r/@amount) * 237
    else if ( $r/@unit = "teaspoon" )
        then xs:double($r/@amount) * 5
    else if ( $r/@unit = "tablespoon" )
        then xs:double($r/@amount) * 15
    else ()
)
```

An Introduction to XML and Web Technologies

53

XPath 1.0 Restrictions

- Many implementations only support XPath 1.0
- Smaller function library
- Implicit casts of values
- Some expressions change semantics:

is false in XPath 1.0 but true in XPath 2.0

An Introduction to XML and Web Technologies

55

Quantified Expressions

```
some $r in //rcp:ingredient
satisfies $r/@name eg "sugar"
```



```
fn:exists(
  for $r in //rcp:ingredient return
    if ($r/@name eq "sugar") then fn:true() else ()
)
```

An Introduction to XML and Web Technologies

-

XPointer

- A fragment identifier mechanism based on XPath
- Different ways of pointer to the fourth recipe:

```
...#xpointer(//recipe[4])
...#xpointer(//rcp:recipe[./rcp:title ='Zuppa Inglese'])
...#element(/1/5)
...#r102
```

An Introduction to XML and Web Technologies

XLink

- Generalizing hyperlinks from HTML to XML
- Allow many-to-many relations
- Allow third party links
- Allow arbitrary element names
- Not widely used...

An Introduction to XML and Web Technologies

57

A Picture of the XLink Carl myresource myresource

An XLink Link

Simple Links

An Introduction to XML and Web Technologies

HTML Links in XLink

```
<a xlink:type="simple"
  xlink:href="..."
  xlink:show="replace"
  xlink:actuate="onRequest"/>
```

An Introduction to XML and Web Technologies

61

Essential Online Resources

- http://www.w3.org/TR/xpath/
- http://www.w3.org/TR/xpath20/
- http://www.w3.org/TR/xlink/
- http://www.w3.org/TR/xptr-framework/

An Introduction to XML and Web Technologies

63

The HLink Alternative

```
<hlink namespace="http://www.w3.org/1999/xhtml"
    element="a"
    locator="@href"
    effect="replace"
    actuate="onRequest"
    replacement="@target"/>
```

An Introduction to XML and Web Technologies