CONTENTS

Foreword xvii
Preface xix

PART I XML TECHNOLOGIES 1

1 HTML AND WEB PAGES 3

Objectives 3
1.1 Hypertext and Markup Languages 3
1.2 The History of HTML 4
1.3 URLs, URIs, URNs, and IRIs 7
1.4 Survivor’s Guide to HTML 8
1.5 Survivor’s Guide to CSS 16
1.6 Syntax and Validation 20
1.7 Limitations of HTML 23
1.8 Unicode 25
1.9 The World Wide Web Consortium (W3C) 28
1.10 Chapter Summary 29
1.11 Further Reading 29
1.12 Online Resources 29
1.13 Exercises 30

2 XML DOCUMENTS 32

Objectives 32
2.1 Introduction 32
2.2 Recipes in XML 33
2.3 XML Trees 35
2.4 Textual Representation of XML Documents 40
2.5 Applications of XML 44
2.5.1 XHTML 45
2.5.2 CML 46
2.5.3 WML 47
2.5.4 ebXML 48
2.5.5 ThML 49

2.6 XML Namespaces 49
2.7 Running Example: More Recipes 53
2.8 Chapter Summary 54
2.9 Further Reading 55
2.10 Online Resources 55
2.11 Exercises 56

3 NAVIGATING XML TREES WITH XPATH 58

Objectives 58
3.1 Pointing into XML Documents 58
3.2 Location Steps and Paths 59
 3.2.1 Contexts 61
 3.2.2 Axes 62
 3.2.3 Node Tests 64
 3.2.4 Predicates 65
3.3 Typical Location Paths 66
3.4 Abbreviations 67
3.5 General Expressions 69
 3.5.1 Values and Atomization 70
 3.5.2 Literal Expressions 70
 3.5.3 Comments 72
 3.5.4 Variable References 72
 3.5.5 Arithmetic Expressions 72
 3.5.6 Sequence Expressions 73
 3.5.7 Path Expressions 74
 3.5.8 Filter Expressions 74
 3.5.9 Comparison Expressions 75
 3.5.10 Boolean Expressions 78
 3.5.11 Functions 78
 3.5.12 For Expressions 82
 3.5.13 Conditional Expressions 83
 3.5.14 Quantified Expressions 83
 3.5.15 Types 84
 3.5.16 XPath 1.0 Restrictions 84
3.6 XPointer and XLink 85
3.7 Chapter Summary 89
3.8 Further Reading 89
3.9 Online Resources 89
3.10 Exercises 90
4 SCHEMA LANGUAGES

Objectives 92

4.1 XML Languages and Validation 92
4.2 Regular Expressions 94
4.3 DTD – Document Type Definition 96
 4.3.1 Document Type Declarations 96
 4.3.2 Element Declarations 98
 4.3.3 Attribute-List Declarations 101
 4.3.4 Conditional Sections, Entity, and Notation Declarations 106
 4.3.5 Checking Validity with DTD 109
 4.3.6 Recipe Collections with DTD 110
 4.3.7 Limitations of DTD 112
4.4 XML Schema 113
 4.4.1 Overview 114
 4.4.2 Simple Types 119
 4.4.3 Complex Types 124
 4.4.4 Global versus Local Descriptions 134
 4.4.5 Namespaces 139
 4.4.6 Annotations 141
 4.4.7 Modularization 142
 4.4.8 Subsumption and Substitution Groups 145
 4.4.9 Defaults and Whitespace Normalization 149
 4.4.10 Uniqueness, Keys, and References 150
 4.4.11 Recipe Collections with XML Schema 153
 4.4.12 Limitations of XML Schema 156
 4.4.13 Best Practices 158
 4.4.14 Other Schema Languages 159
4.5 DSD2 ★ 159
 4.5.1 Recipe Collections with DSD2 160
 4.5.2 Rules 163
 4.5.3 Boolean Expressions 165
 4.5.4 Regular Expressions 166
 4.5.5 Normalization 166
 4.5.6 Modularization 167
 4.5.7 Uniqueness and Pointers 168

4.6 RELAX NG ★ 168
 4.6.1 Patterns and Grammars 169
 4.6.2 Datatypes 174
 4.6.3 Recipe Collections with RELAX NG 177
 4.6.4 Modularization 180
 4.6.5 A Non-XML Syntax 181

4.7 Chapter Summary 183
4.8 Further Reading 184
6.1.1 From Relations to Trees 241
6.1.2 Usage Scenarios 245
6.2 The XQuery Design 245
 6.2.1 Relationship to XPath 246
 6.2.2 Relationship to XSLT 247
6.3 The Prolog 247
6.4 Expressions 249
 6.4.1 XPath Expressions 249
 6.4.2 Datatype Expressions 249
 6.4.3 XML Expressions 250
 6.4.4 FLWOR Expressions 254
6.5 Defining Functions 259
6.6 XQuery versus XSLT* 261
 6.6.1 Emulating XSLT in XQuery 262
 6.6.2 Emulating XQuery in XSLT 264
6.7 The Type System* 266
 6.7.1 Sequence Types 267
 6.7.2 Validation and Dynamic Types 268
 6.7.3 Type Matching 268
 6.7.4 Type Annotations and Type Errors 271
 6.7.5 Static Type Checking 272
6.8 XQueryX 275
6.9 XML Databases 277
 6.9.1 XML Publishing 277
 6.9.2 XML Shredding 279
6.10 Full-Text Searching 281
6.11 Chapter Summary 282
6.12 Further Reading 282
6.13 Online Resources 283
6.14 Exercises 283

7 XML PROGRAMMING 285
 Objectives 285
7.1 Programming with XML Documents 285
7.2 The DOM API 286
7.3 The JDOM API 289
 7.3.1 Embracing Java 289
 7.3.2 Data Model 290
 7.3.3 Parsing, Validation, and Serializing 293
 7.3.4 XPath Evaluation 297
 7.3.5 XSLT Transformation 297
 7.3.6 A Business Card Editor 299
7.4 XML Data Binding 304
 7.4.1 Binding Compilers 305
7.4.2 The JAXB Framework 305
7.4.3 A Business Card Editor using JAXB 305

7.5 The SAX API 310
7.5.1 Streaming XML 310
7.5.2 Parsing Events 311
7.5.3 SAX Applications 313
7.5.4 SAX Filters 317
7.5.5 Streaming with XmlPull 319

7.6 Streaming Transformations with STX ★ 320
7.6.1 STXPath 321
7.6.2 Transformations and Templates 321
7.6.3 Variables 325
7.6.4 Groups 326
7.6.5 Limitations of Streaming 327
7.6.6 STX for Recipes 328

7.7 Type-Safe XML Programming Languages ★ 331
7.7.1 XDuce 331
7.7.2 XACT 334

7.8 Chapter Summary 338
7.9 Further Reading 338
7.10 Online Resources 339
7.11 Exercises 339

PART II WEB TECHNOLOGIES 341

8 THE HTTP PROTOCOL 343

Objectives 343
8.1 The Internet and HTTP 343
8.1.1 Requests 346
8.1.2 Responses 350
8.1.3 HTML Forms 353
8.1.4 Authentication 356
8.1.5 Other Advanced Features 358
8.1.6 Limitations of HTTP 361
8.2 Sessions 362
8.3 SSL and TLS 366
8.4 Web Programming with Java 368
8.4.1 TCP/IP in Java 369
8.4.2 HTTP in Java 374
8.4.3 SSL in Java (JSSE) 378
8.5 A Web Server in 145 Lines of Code 383
8.6 Chapter Summary 387
8.7 Further Reading 387
8.8 Online Resources 387
8.9 Exercises 388

9 PROGRAMMING WEB APPLICATIONS WITH SERVLETS 390

Objectives 390
9.1 Writing Web Applications 390
9.2 The Servlet API 391
 9.2.1 The Life Cycle of Servlets 392
 9.2.2 Requests 394
 9.2.3 Responses 396
 9.2.4 Servlet Contexts and Shared State 398
 9.2.5 Sessions 403
9.3 Running Web Applications 406
 9.3.1 Web Applications and Deployment 407
 9.3.2 Running Servlets with Tomcat 410
9.4 Advanced Features 411
 9.4.1 Listeners 411
 9.4.2 Filters 413
 9.4.3 Request Dispatchers 418
 9.4.4 Security 419
9.5 Limitations of Servlets 422
9.6 Web Applications with JWIG ★ 423
9.7 Chapter Summary 427
9.8 Further Reading 427
9.9 Online Resources 427
9.10 Exercises 427

10 PROGRAMMING WEB APPLICATIONS WITH JSP 429

Objectives 429
10.1 The JSP Framework 429
 10.1.1 Templates 430
 10.1.2 Expressions 431
 10.1.3 Statements 432
 10.1.4 Declarations 432
 10.1.5 Directives 433
 10.1.6 Translation into Servlets 435
 10.1.7 XML Version of JSP 438
 10.1.8 The Expression Language 440
 10.1.9 A JSP Shopping Cart 441
10.2 Tags 442
 10.2.1 Tag Files 442
 10.2.2 Tags for Quick Polls 444
 10.2.3 Tag Libraries and JSTL 449
10.2.4 Limitations of Tags 453

10.3 The Model–View–Controller Pattern 455
10.3.1 A Model 1 Business Card Server 455
10.3.2 A Model 2 Business Card Server 458

10.4 Chapter Summary 463
10.5 Further Reading 464
10.6 Online Resources 464
10.7 Exercises 464

11 WEB SERVICES 466

Objectives 466
11.1 Distributed Systems and Web Services 466
11.1.1 A Recipe Server with XML and HTTP 468
11.2 Web Service Standards 469
11.3 SOAP 471
11.3.1 The Processing Model 471
11.3.2 Faults 474
11.3.3 Data Representation and RPC 476
11.3.4 Protocol Binding 479
11.4 WSDL 480
11.4.1 Interface Descriptions 485
11.4.2 Binding Descriptions 486
11.4.3 Service Descriptions 489
11.5 UDDI 489
11.5.1 Descriptions 490
11.5.2 Discovery 492
11.6 Chapter Summary 493
11.7 Further Reading 494
11.8 Online Resources 494
11.9 Exercises 495

12 A COMPLETE APPLICATION 496

Objectives 496
12.1 The Web of Jokes 496
12.2 The Joke Language 497
12.2.1 Representing Jokes 498
12.2.2 XML Schema for Jokes 498
12.2.3 XSLT for Jokes 500
12.3 The Joke Server 502
12.3.1 State 503
12.3.2 Operations 503
12.3.3 Implementation 503
12.4 The Joke Metaserver 508
12.4.1 State 508
12.4.2 Operations 509
12.4.3 Implementation 509

12.5 The Joke Client 512
 12.5.1 State 513
 12.5.2 Operations 513
 12.5.3 Implementation 513

12.6 Deployment 522
12.7 Robustness 526
12.8 Reflections 527
12.9 Exercises 528

Bibliography 529
Index 535
The Web has revolutionized the way the world accesses and shares information. Early on, the Web was a primarily passive, unidirectional platform for serving static HTML pages on demand to people. In no time, business users discovered that the Web not only enabled them to present unified views of products and services to customers around the clock, but that with some programming effort, the Web could support transactional customer-to-business interactions. Today, major corporations worldwide increasingly depend on the Web for deploying widely distributed business-to-business processes both within and across the corporate boundary. These applications typically provide services that integrate data from Web and non-Web sources and coordinate interactions with existing business processes—a long way from one-page-at-a-time HTML programming.

The Web’s core technologies—HTML and HTTP—were strained to the limit by this rapid evolution. In response, an alphabet soup of new technologies emerged to do what HTML and HTTP could not. XML, XSLT, DTD, JSP, SOAP, WSDL, and UDDI are just a few of the myriad technologies that promise to make the Web application developer’s job easier. Developers, however, sit uncomfortably between the promise and the reality of Web technologies. The XML and Web technologies at their disposal are immature. Many are just emerging from standardization, have few robust or interoperable implementations, and lack the application development environments available for more mature technologies.

In ‘An Introduction to XML and Web Technologies’, Anders Møller and Michael Schwartzbach expertly decipher the alphabet soup of Web technologies. They lucidly describe the technical features of each technology, compare closely related technologies, and show how to apply them in various application scenarios. In Part I, they describe XML’s genesis from SGML to become the standard data format on the Web, compare various XML schema languages including DTD and XML Schema, contrast the XML query languages XPath, XSLT, and XQuery, and most importantly, explain how XML technologies can coexist with general purpose programming languages. In Part II, they describe technologies for building stateful Web servers—Servlets and JSP—as well as the standards for defining, publishing, and connecting to Web services.

Anders and Michael hold their readers in high regard. They write in a clear and plain-spoken voice that disguises their deep understanding of their subject. Each carefully crafted example teaches several concepts at once, and when put together, the examples yield
non-trivial (and entertaining!) results. Anders and Michael also describe the cutting-edge research that will effect the way we program for the Web in the future, which is invaluable to the reader who wants to develop a deep and lasting understanding of these technologies.

This book is a genuine pleasure to read – I learned a lot, and I learned it fast! I hope that Anders and Michael continue to track the Web’s rapid changes and provide us with more valuable information in future editions.

Mary Fernández
AT&T Labs Research
XML and Web Technologies

In the early 1990s, the World Wide Web was defined by a triumvirate consisting of the HTML language for writing hypertext documents, the HTTP communication protocol, and the URL notation for addressing resources. Today, new Web technologies are being developed and deployed at amazing rates, building on top of the early foundations. This book offers a comprehensive introduction to the area.

There are two main threads of development, corresponding to the two parts of this book. **XML technologies** generalize the notion of data on the Web from hypertext documents to arbitrary data, including those that have traditionally been the realm of databases. In this book we cover the basic XML technology and the supporting technologies of XPath, DTD, XML Schema, DSD2, RELAX NG, XSLT, XQuery, DOM, JDOM, JAXB, SAX, STX, XDuCe, and XACT. **Web technologies** build on top of the HTTP protocol to provide richer languages for constructing applications and services. In this book we cover the basic HTTP protocol and the increasingly abstract technologies of Servlets, JSP, JWIG, WSDL, SOAP, and UDDI.

These are, for better or worse, core technologies that will exist for many years or provide the foundation for future developments.

Aims of This Book

The topics covered by this book are, of course, all richly described in free online standards documents, totaling several thousand pages, but those are wholly unsuited for a self-contained course. This book is unique in providing a coherent overview of the most important XML and Web technologies. It goes into great detail but still aims for conciseness, thereby enabling the reader to see the big picture and yet obtain practical experience with the technologies and supporting tools.
The book also contains critical analyses and discussions of the technologies, in contrast to standards documents and technical manuals, which mainly present and exemplify features. It also provides a uniform terminology that is familiar to readers with a standard computer science background.

The book describes the newest technologies, including XML 1.1, XPath 2.0, XSLT 2.0, XQuery 1.0, JDOM 1.0, SAX2, JAXB 1.0, STX 1.0, HTTP/1.1, Java Servlet 2.4, JSP 2.0, JSTL 1.1, SOAP 1.2, WSDL 2.0, and UDDI 3.0. It focuses on concepts and technologies, rather than on vendor-specific tools. Moreover, the book presents selected research projects – DSD2, RELAX NG, STX, XDuce, XACT, and JWIG – that may influence future technologies.

How to Use This Book

The intended audience of this book includes computer science students, computer professionals, and researchers that want an overview of the area. Preliminary versions of this book have been used several times for undergraduate courses at the University of Aarhus and at the IT University of Copenhagen, and have been the basis for numerous industrial courses. The book can be the complete curriculum for an XML/Web course, or it may be used as a supplement for database or programming courses.

Each chapter contains carefully selected links to the essential online resources, references to further reading, and exercises that help the readers test their understanding and gain familiarity and practical experience with the most important technical specifications and tools.

Chapter 1 contains survivor’s guides to HTML and CSS, and motivates the need for XML. It also covers technical issues related to Web publication, such as URLs, URNs, URIs, and Unicode. Moreover, this chapter briefly introduces the workings of the World Wide Web Consortium, which develops many of the technologies covered by the book. In Chapter 2, we explain the XML notation, its dual nature as a textual format and a tree structure, and the namespace mechanism. Chapter 3 covers the XPath language, which is used in several other languages for pointing into XML documents and much more. Chapter 4 describes the use of schema languages. It explains the languages DTD and XML Schema, and also two less widely known alternatives, DSD2 and RELAX NG, and compares the languages. Additionally, this chapter contains an introduction to the notion of regular expressions, which is commonly used in schema languages. In Chapters 5 and 6, we show how the XSLT and XQuery languages can be used to define transformations between XML languages, and we provide a thorough comparison between the two. XSLT is mainly targeted at stylesheet transformations for presenting XML data, whereas XQuery is designed primarily for database-like queries. Chapter 7 shows how to work with XML in programming languages using DOM, JDOM, JAXB, SAX, and STX. As a running example, we develop an XML-based language for recipe collections and show how the various technologies become useful.

Chapter 8 contains an introduction to the HTTP protocol and shows how to program HTTP servers and clients. Chapter 9 describes the Servlet platform, which is a convenient API that builds upon HTTP. Closely related technologies are JSP and JSTL, which are the topics of Chapter 10. Chapter 11 explains the basic technologies related to Web services that
communicate XML data on the Web, in particular the WSDL, SOAP, and UDDI initiatives. Finally, Chapter 12 collects the essential knowledge from the other chapters and applies it to a larger project: development of an interactive Web service, *The Web of Jokes*, for sharing jokes on the Web.

All chapters contain numerous ‘gold nuggets’ showing concrete examples of how typical tasks can be solved with the technologies being described.

The chapter dependencies may be illustrated by the following diagram:

```
     9       10
   / \     /  \
  8  11    12
 /   \   /   \
1  12   11  12
```

Chapters 7, 8, 9, 10, 11, and 12 assume a basic knowledge of the Java programming language. This language is natural to use when illustrating Web technologies because of its platform independence and native support for Unicode and migration of data and code, and furthermore, a majority of the freely available tools that exist for XML and Web development are based on Java. Except from this prerequisite, the book is self-contained.

Some sections of this book are intended for advanced studies and may safely be skipped by readers who only need to obtain basic familiarity with the presented technologies. These sections, marked with the symbol ⋆, contain further discussions and presentations of advanced features and research topics.

The Companion Web Site

The book has a companion Web site located at

http://www.brics.dk/ixwt/

This site contains additional material for teachers and students: an extensive collection of slides, examples from the book, additional projects, and multiple choice tests for each topic. Qualified instructors may obtain solutions to the exercises and the PowerPoint sources for the slides. Moreover, many exercises in the book refer to online data. We use EX as an abbreviation of the URL http://www.brics.dk/ixwt/exercises/.

A preliminary version of the online material has been continually updated since March 2000 and has been visited by more than 300,000 people (counted as unique IP numbers).
Acknowledgements

Thanks to Claus Brabrand, Mary Fernández, Thomas Hildebrandt, Martin Mosegaard Jensen, Lars Michael Kristensen, Henning Niss, Peter Thiemann, Phil Wadler, and the anonymous reviewers for detailed comments to the contents of this book. The participants of several XML and Web courses at the University of Aarhus and the IT University of Copenhagen have also contributed to structuring and proofreading the presented material. Thanks to the people from Pearson Education: to Sami Taalas and Kate Brewin for persuading us to enter into the project, and to Owen Knight, Mary Lince, Karen McLaren Simon Plumtree, and Simon Turner for guiding us through the process.

Anders Møller
Michael I. Schwartzbach

Publisher’s Acknowledgements

Screen shots on pages 14 and 343 used with permission from Google Inc. Google™ is a trademark of Google Inc.