Normal Operators

Defn: The Hermitian adjoint $A^{\dagger}\left(\right.$ or $\left.A^{*}\right)$ of $A \in M_{n}(\mathcal{C})$ is $A^{\dagger}=\bar{A}^{T}$.
Hermitian adjoint for vectors is defined the same way.

- $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$, and $\overline{A B}=\bar{A} \cdot \bar{B}$.
- Since for $x, y \in \mathcal{C}^{n}$, we have $y^{\dagger} x \in \mathcal{C}$ so $\left(y^{\dagger} x\right)^{\dagger}=\overline{y^{\dagger} x}$, it follows that $\left(y^{\dagger} x\right)^{\dagger}=\overline{y^{\dagger} x}=\overline{y^{\dagger}} \bar{x}=y^{T} \bar{x}$.

Notation: If ψ is a vector in \mathcal{C}^{n} then $|\psi\rangle$ is ψ as a column vector and $\langle\psi|=|\psi\rangle^{\dagger}$.

$$
\overline{\left\langle\psi_{1} \mid \psi_{2}\right\rangle}=\left(\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right)^{\dagger}=\left|\psi_{2}\right\rangle^{\dagger}\left\langle\left.\psi_{1}\right|^{\dagger}=\left\langle\psi_{2} \mid \psi_{1}\right\rangle .\right.
$$

Defn: An operator $A \in M_{n}(\mathcal{C})$ is normal if $A^{\dagger} A=A A^{\dagger}$ (i.e. A commutes with its self-adjoint).
Defn: An operator $A \in M_{n}(\mathcal{C})$ is Hermitian if $A=A^{\dagger}$.
Defn: An operator $U \in M_{n}(\mathcal{C})$ is unitary if $U^{\dagger} U=U U^{\dagger}=\mathbb{1}$.
Equivalently, U has orthonormal columns and orthonormal rows.

- Any unitary matrix is normal $U U^{\dagger}=\mathbb{1}=U^{\dagger} U$,
- Any Hermitian matrix is normal: $A=A^{\dagger} \Rightarrow A A^{\dagger}=A^{\dagger} A$,
- The following operators,

$$
X=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), Y=i\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), H=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right)
$$

are all both Hermitian and unitary.
We define:

$$
|0\rangle=\binom{1}{0},|1\rangle=\binom{0}{1},|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle),|-\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) .
$$

Notice that,

$$
\begin{aligned}
& |1\rangle=X|0\rangle,|0\rangle=X|1\rangle,|+\rangle=X|+\rangle,|-\rangle=-X|-\rangle, \\
& |0\rangle=Z|0\rangle,|1\rangle=-Z|1\rangle,|-\rangle=Z|+\rangle,|+\rangle=Z|-\rangle .
\end{aligned}
$$

Eigenvalues and Eigenvectors

Defn: Let $A \in M_{n}(\mathcal{C})$ and $x \in \mathcal{C}^{n}$ be such that

$$
A|x\rangle=\lambda|x\rangle, x \neq \mathbf{0},
$$

for scalar $\lambda \in \mathcal{C}$ then A is said to have an eigenvector x with eigenvalue λ.
We have seen on the previous slide that:

$$
\operatorname{Eig}(X)=\{(+1,|+\rangle),(-1,|-\rangle)\}, \operatorname{Eig}(Z)=\{(+1,|0\rangle),(-1,|1\rangle)\} .
$$

Defn: $B \in M_{n}(\mathcal{C})$ is unitarily equivalent to $A \in M_{n}(\mathcal{C})$ if there exists unitary $U \in M_{n}(\mathcal{C})$ such that $B=U^{\dagger} A U$.

Defn: $B \in M_{n}(\mathcal{C})$ is unitarily diagonalizable if B is unitarily equivalent to a diagonal matrix:

$$
B=U^{\dagger} \Sigma U \Rightarrow \Sigma=U B U^{\dagger}
$$

Spectral Decomposition

Thm: If $A \in M_{n}(\mathcal{C})$ has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ then the following are equivalent:

- A is normal,
- A is unitarily diagonalizable,
- A has an orthonormal set of n eigenvectors.

Thm[Spectral Decomposition]:If $A \in M_{n}(\mathcal{C})$ is normal then,

$$
A=\sum_{i=1}^{n} \lambda_{i}\left|f_{i}\right\rangle\left\langle f_{i}\right|,
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues and $\left\{\left|f_{i}\right\rangle\right\}_{i}$ are orthonormal eigenvectors of A.

Hermitian Operators

Thm: If A is Hermitian then,

1. $\langle x \mid A x\rangle \in \mathcal{R}$ for any $x \in \mathcal{C}^{n}$,
2. all eigenvalues of A are real,
3. $\forall S \in M_{n}(\mathcal{C}), S^{\dagger} A S$ is Hermitian.

From the spectral decomposition theorem, this means that

$$
A=\sum_{i=1}^{n} \lambda_{i}\left|f_{i}\right\rangle\left\langle f_{i}\right|,
$$

where $\left\{\left|f_{i}\right\rangle\right\}_{i=1}^{n}$ is an orthonormal basis and $\left\{\lambda_{i}\right\}_{i=1}^{n}$ is the set of eigenvalues that are garanteed to be real.
The contraposite of the above theorem also holds:
Thm: If condition 1. or 2. or 3. holds for A then A is Hermitian.

Positive Operators

Defn: An operator $A \in M_{n}(\mathcal{C})$ is positive if for all $x \in \mathcal{C}^{n}$, $\langle x \mid A x\rangle \geq 0$.

- For $A \in M_{n}(\mathcal{C}), A^{\dagger} A$ is always positive.
- From last slide, any positive operator is also Hermitian.

Thm: A is positive if all eigenvalues of A are non-negative.
Defn: An operator P is called a projection if it can be written as:

$$
P=\sum_{i}\left|f_{i}\right\rangle\left\langle f_{i}\right|,
$$

for $\left\{\left|f_{i}\right\rangle\right\}$ an orthonormal set.
Th eigenvalue of P being real, it follows that a projection is always Hermitian. Moreover,
Example: It is easy to verify that if P is a projection then $P P=P$. A projection must be positive since $\langle x \mid P x\rangle=\langle x P \mid P x\rangle=\langle z \mid z\rangle \geq 0$.

Trace

Defn: Given $A \in M_{n}(\mathcal{C})$, we define $\operatorname{Tr}(A)=\sum_{i} A_{i, i}$.
The trace satisfies the following properties:

1. $\operatorname{Tr}(A+B)=\operatorname{Tr}(A)+\operatorname{Tr}(B)$,
2. $\operatorname{Tr}(\lambda A)=\lambda \operatorname{Tr}(A)$,
3. $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$,
4. $\operatorname{Tr}(A)=\sum_{v}\langle v \mid A v\rangle$ where $\{|v\rangle\}_{v}$ is an orthonormal basis,
5. $\operatorname{Tr}(A)=\operatorname{Tr}\left(U^{\dagger} A U\right)$ for any unitary U.

Proof of 4.:
$\operatorname{Tr}(A)=\operatorname{Tr}\left(\sum_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right| A\right)$ where $\left\{\left|v_{i}\right\rangle\right\}_{i}$ is an orthonormal basis,

$$
\text { 1. } \sum_{i} \operatorname{Tr}\left(\left|v_{i}\right\rangle\left\langle v_{i}\right| A\right) \stackrel{3 .}{=} \sum_{i} \operatorname{Tr}\left(\left\langle v_{i}\right| A\left|v_{i}\right\rangle\right)=\sum_{i}\left\langle v_{i}\right| A\left|v_{i}\right\rangle \text {. }
$$

The following will be useful: $\operatorname{Tr}(|v\rangle\langle v| A)=\operatorname{Tr}(\langle v| A|v\rangle)=\langle v| A|v\rangle$.

