Normal Operators

Defn: The Hermitian adjoint A^{\dagger} (or A^{*}) of $A \in M_{n}(\mathcal{C})$ is $A^{\dagger} = \overline{A}^{T}$. Hermitian adjoint for vectors is defined the same way.

•
$$(AB)^{\dagger} = B^{\dagger}A^{\dagger}$$
, and $\overline{AB} = \overline{A} \cdot \overline{B}$.

• Since for $x, y \in \mathcal{C}^n$, we have $y^{\dagger}x \in \mathcal{C}$ so $(y^{\dagger}x)^{\dagger} = \overline{y^{\dagger}x}$, it follows that $(y^{\dagger}x)^{\dagger} = \overline{y^{\dagger}x} = \overline{y^{\dagger}x} = y^{T}\overline{x}$.

Notation: If ψ is a vector in \mathcal{C}^n then $|\psi\rangle$ is ψ as a column vector and $\langle \psi | = |\psi\rangle^{\dagger}$.

$$\overline{\langle \psi_1 | \psi_2 \rangle} = (\langle \psi_1 | \psi_2 \rangle)^{\dagger} = |\psi_2 \rangle^{\dagger} \langle \psi_1 |^{\dagger} = \langle \psi_2 | \psi_1 \rangle.$$

Defn: An operator $A \in M_n(\mathcal{C})$ is normal if $A^{\dagger}A = AA^{\dagger}$ (i.e. A commutes with its self-adjoint). **Defn:** An operator $A \in M_n(\mathcal{C})$ is Hermitian if $A = A^{\dagger}$. **Defn:** An operator $U \in M_n(\mathcal{C})$ is unitary if $U^{\dagger}U = UU^{\dagger} = \mathbf{1}$. Equivalently, U has orthonormal columns and orthonormal rows.

Quantum Tools

BRICS

Normal Operators (II)

• Any unitary matrix is normal $UU^{\dagger} = 1 = U^{\dagger}U$,

• Any Hermitian matrix is normal: $A = A^{\dagger} \Rightarrow AA^{\dagger} = A^{\dagger}A$,

• The following operators,

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y = i \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, H = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix}$$

are all both Hermitian and unitary.

We define:

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}, |+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), |-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle).$$

Notice that,

$$\begin{split} |1\rangle &= X \mid 0\rangle, \mid 0\rangle = X \mid 1\rangle, \mid +\rangle = X \mid +\rangle, \mid -\rangle = -X \mid -\rangle, \\ |0\rangle &= Z \mid 0\rangle, \mid 1\rangle = -Z \mid 1\rangle, \mid -\rangle = Z \mid +\rangle, \mid +\rangle = Z \mid -\rangle. \end{split}$$

Quantum Tools

BRICS

-Eigenvalues and Eigenvectors

Defn: Let $A \in M_n(\mathcal{C})$ and $x \in \mathcal{C}^n$ be such that

 $A \mid x \rangle = \lambda \mid x \rangle, x \neq \mathbf{0},$

for scalar $\lambda \in \mathcal{C}$ then A is said to have an eigenvector x with eigenvalue λ .

We have seen on the previous slide that:

 $\operatorname{Eig}(X) = \{(+1, |+\rangle), (-1, |-\rangle)\}, \operatorname{Eig}(Z) = \{(+1, |0\rangle), (-1, |1\rangle)\}.$

Defn: $B \in M_n(\mathcal{C})$ is unitarily equivalent to $A \in M_n(\mathcal{C})$ if there exists unitary $U \in M_n(\mathcal{C})$ such that $B = U^{\dagger}AU$.

Defn: $B \in M_n(\mathcal{C})$ is unitarily diagonalizable if B is unitarily equivalent to a diagonal matrix:

$$B = U^{\dagger} \Sigma U \Rightarrow \Sigma = U B U^{\dagger}.$$

Quantum Tools

-Spectral Decomposition

Thm: If $A \in M_n(\mathcal{C})$ has eigenvalues $\lambda_1, \ldots, \lambda_n$ then the following are equivalent:

- A is normal,
- A is unitarily diagonalizable,
- A has an orthonormal set of n eigenvectors.

Thm[Spectral Decomposition]: If $A \in M_n(\mathcal{C})$ is normal then,

$$A = \sum_{i=1}^{n} \lambda_i |f_i\rangle \langle f_i|,$$

where $\lambda_1, \ldots, \lambda_n$ are eigenvalues and $\{ |f_i\rangle \}_i$ are orthonormal eigenvectors of A.

Quantum Tools

-Hermitian Operators

Thm: If A is Hermitian then,

- 1. $\langle x | Ax \rangle \in \mathcal{R}$ for any $x \in \mathcal{C}^n$,
- 2. all eigenvalues of A are real,
- 3. $\forall S \in M_n(\mathcal{C}), S^{\dagger}AS \text{ is Hermitian.}$

From the spectral decomposition theorem, this means that

$$A = \sum_{i=1}^{n} \lambda_i |f_i\rangle \langle f_i|,$$

where $\{ |f_i\rangle \}_{i=1}^n$ is an orthonormal basis and $\{\lambda_i\}_{i=1}^n$ is the set of eigenvalues that are garanteed to be real. The contraposite of the above theorem also holds:

Thm: If condition 1. or 2. or 3. holds for A then A is Hermitian.

Quantum Tools

Positive Operators

Defn: An operator $A \in M_n(\mathcal{C})$ is positive if for all $x \in \mathcal{C}^n$, $\langle x | Ax \rangle \geq 0$.

- For $A \in M_n(\mathcal{C})$, $A^{\dagger}A$ is always positive.
- From last slide, any positive operator is also Hermitian.

Thm: A is positive if all eigenvalues of A are non-negative. **Defn:** An operator P is called a projection if it can be written as:

$$P = \sum_{i} |f_i\rangle \langle f_i|,$$

for $\{ |f_i\rangle \}$ an orthonormal set.

Th eigenvalue of P being real, it follows that a projection is always Hermitian. Moreover,

Example: It is easy to verify that if P is a projection then PP = P. A projection must be positive since $\langle x | Px \rangle = \langle xP | Px \rangle = \langle z | z \rangle \ge 0$.

• Trace

Defn: Given $A \in M_n(\mathcal{C})$, we define $Tr(A) = \sum_i A_{i,i}$. The trace satisfies the following properties:

1.
$$\operatorname{Tr}(A+B) = \operatorname{Tr}(A) + \operatorname{Tr}(B),$$

- 2. $\operatorname{Tr}(\lambda A) = \lambda \operatorname{Tr}(A),$
- 3. $\operatorname{Tr}(AB) = \operatorname{Tr}(BA),$
- 4. $\operatorname{Tr}(A) = \sum_{v} \langle v | Av \rangle$ where $\{ |v \rangle \}_{v}$ is an orthonormal basis,
- 5. $\operatorname{Tr}(A) = \operatorname{Tr}(U^{\dagger}AU)$ for any unitary U.

Proof of 4.:

 $\operatorname{Tr}(A) = \operatorname{Tr}(\sum_{i} |v_{i}\rangle\langle v_{i}|A) \text{ where } \{|v_{i}\rangle\}_{i} \text{ is an orthonormal basis,}$ $\stackrel{1}{=} \sum_{i} \operatorname{Tr}(|v_{i}\rangle\langle v_{i}|A) \stackrel{3}{=} \sum_{i} \operatorname{Tr}(\langle v_{i}|A | v_{i}\rangle) = \sum_{i} \langle v_{i}|A | v_{i}\rangle.$

The following will be useful: $\operatorname{Tr}(|v\rangle\langle v|A) = \operatorname{Tr}(\langle v|A|v\rangle) = \langle v|A|v\rangle.$

Quantum Tools

BRICS