Quantum Teleportation

- Bennett, Brassard, Crepeau, Josza, Peres and Wootters, "Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channel", PRL, vol. 70, \#13, 1993.
- Bennett and Wiesner, "Superdense Coding", PRL, vol. 69, 1992.

The Goal

\Rightarrow Alice has a particle ψ in an unknown state

$$
|\psi\rangle=a|0\rangle+b 1\rangle
$$

for any complex numbers a, b s.t. $\left.a\right|^{2}+\left.b\right|^{2}=1$.
\Rightarrow Alice wants to send ψ to Bob but she does not know where Bob is in the universe.
\Rightarrow Alice has access to a broadcast channel that Bob can listen.

How to do that?

What we cannot do

EPR pairs

An EPR pair is a quantum state for two particles. The state is said to be entangled because measuring one affects the other:

$$
|\Omega\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
$$

The EPR state is the singlet state meaning that if you represent the first and the second particle in the same basis then you get exactly the same state than above.

$$
\begin{aligned}
|\Omega\rangle_{x \times x} & =\frac{1}{2 \sqrt{2}}((00--11)((0)+|1\rangle)-(|0\rangle+\mid 1)((0)-(1))) \\
& =\frac{1}{\sqrt{2}}\left(|01\rangle_{x x}-|10\rangle_{x \times x}\right)
\end{aligned}
$$

The Setting for Teleportation

Bell Measurement

- Here is a basis for the Hilbert space of dimension 4. We call it the Bell basis and it defines a Von Neumann measurement for that space called Bell measurement:

The Composite System

$\sum_{\text {my }}^{\sum_{n}}$ The EPR pair plus the unknown system are in composite state:

$$
|\Delta\rangle=|\Psi\rangle \otimes|\Omega\rangle
$$

Bob's particle

$$
=\frac{1}{\sqrt{2}}[(a|0\rangle+b|1\rangle) \otimes(|01\rangle-|10\rangle)]
$$

$$
=\frac{1}{\sqrt{2}}[a|0\rangle \otimes|01\rangle-a|0\rangle \otimes|10\rangle+b|1\rangle \otimes|01\rangle-b|1\rangle \otimes|10\rangle]
$$

$$
=\frac{1}{\sqrt{2}}[a|001\rangle-a|010|+b|101|-b \mid 110]
$$

Alice's Measurement

We now express Alice's part of the composite system Λ in Bell basis:

$$
|\Lambda\rangle=\frac{1}{\sqrt{2}}[a|001\rangle-a|010\rangle+b|101\rangle-b|110\rangle]
$$

Once simplified gives:

$$
\left.|\Lambda\rangle=\frac{1}{2}\left[\mathrm{~B}_{00}^{+}\right\rangle(a|1\rangle-b|0\rangle)+\left|\mathrm{B}_{00}\right\rangle(a|1\rangle+b|0\rangle)+\left|\mathrm{B}_{01}^{+}\right\rangle(-a|0\rangle+b|1\rangle)+\left|\mathrm{B}_{01}\right\rangle(-a|0\rangle-b| \rangle)\right]
$$

Outcomes for Bell Measurement

Assume Alice measures her two particles in Bell Basis.

New state
for
Bob's
particle
By announcing the outcome, Alice can tell Bob what to do to his particle in order to recover the original state:

$$
|\psi\rangle=a|0\rangle+b|1\rangle=\binom{a}{b}
$$

How to Recover ψ

Alice announces the outcome of the Bell measurement by broadcasting the two classical bits (x, y).

霊 Bob receives (x, y) and applies the unitary transformation $\sigma_{x y}$ on his particle defined as:

$$
\sigma_{00}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \sigma_{01}=\left(\begin{array}{cc}
-\mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{1}
\end{array}\right) \quad \sigma_{11}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{10}=\left(\begin{array}{cc}
\mathbf{- 1} & \mathbf{0} \\
\mathbf{0} & -\mathbf{1}
\end{array}\right)
$$

\square As expected Bob finally gets:
$(0,0) \Rightarrow\binom{a}{b}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\binom{-b}{a}$
$(0,1) \Rightarrow\binom{a}{b}=\left(\begin{array}{cc}-\mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1}\end{array}\right)\binom{-a}{b}$
$(1,0) \Rightarrow\binom{a}{b}=\left(\begin{array}{cc}-\mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1}\end{array}\right)\binom{-a}{-b}$
$(1,1) \Rightarrow\binom{a}{b}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{b}{a}$

Conclusion

- Alice and Bob shares an EPR pair.
- Alice receives an unknown particle ψ.
- Alice measures her EPR particle together with ψ in the Bell basis.
- Alice broadcasts the two classical bits describing the outcome.
- Bob, given the two bits, applies an unitary transformation on his part of the EPR pair and gets the original particle ψ.

Superdense coding

- It seems natural to think that a quantum state in a 2 dimensional Hilbert space can only be used to send 1 classical bit of information.(in general $\lg ($ Dim(Hilbert Space)) bits)
- It is FALSE!
- Superdense coding allows to transmit 2 classical bits of information by sending one q-bit!
- However, Alice and Bob must share an EPR pair before the communication takes place.

The Trick

. Assume Alice and Bob shares an EPR pair:

$$
|\Omega\rangle=\frac{1}{\sqrt{2}}(01-|10\rangle)
$$

$$
\text { NOTE }:|\Omega\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right)
$$

勫 Assume Alice applies $\sigma_{x y}$ on her part of the system:

$$
\left(\sigma_{00} \otimes \mathrm{I}\right)|\Omega\rangle=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)|\Omega\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
-1 \\
0 \\
0 \\
-1
\end{array}\right)=-\left|\mathrm{B}_{00}^{+}\right|
$$

Similarly we have:

$$
\left(\sigma_{01} \otimes \mathrm{I}\right)|\Omega\rangle=-\left|\mathrm{B}_{01}^{+}\right\rangle \quad \text { ث̇ } \quad\left(\sigma_{10} \otimes \mathrm{I}\right)|\Omega\rangle=-\left|\mathrm{B}_{01}\right\rangle\left\langle\quad\left(\sigma_{11} \otimes \mathrm{I}\right) \mid \Omega\right\rangle=-\left|\mathrm{B}_{00}\right\rangle
$$

The Procedure

- Alice and Bob shares an EPR pair
- If Alice wants to send the classical pair of bits (x, y) then she applies $\sigma_{x y}$ to her particle
- Alice send her particle to Bob
- Bob performs a Bell measurement on both particles and get the classical outcome (x, y).

