Postulates of Quantum Mechanics I

Postulate 1 (state space): Associated to any isolated system is a complex vector space (i.e. Hilbert space) called the state space. The system is completely described by its state vector, which is a unit vector in the state space.

—Postulates of Quantum Mechanics II

Postulate 2 (composite systems): The state space of a
composite system is the tensor product of the components. If we have n systems $\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{n}\right\rangle$ then the joint state is

$$
\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \otimes \ldots \otimes\left|\psi_{n}\right\rangle .
$$

The tensor product is the following operation on vectors,

$$
\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right) \otimes\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)=\left(\begin{array}{c}
a_{1} b_{1} \\
a_{1} b_{2} \\
\vdots \\
a_{1} b_{m} \\
\vdots \\
a_{n} b_{m}
\end{array}\right)
$$

More States

Let us define a few states in the 4 -dimensional Hilbert space \mathcal{H}_{4} :

$$
|0+\rangle=|0\rangle \otimes|+\rangle=\binom{1}{0} \otimes\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}=\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0 \\
0
\end{array}\right)
$$

The following is a basis for \mathcal{H}_{4} :

$$
\begin{aligned}
\left|\beta_{00}\right\rangle & =\frac{|00\rangle+|11\rangle}{\sqrt{2}} \\
\left|\beta_{01}\right\rangle & =\frac{|01\rangle+|10\rangle}{\sqrt{2}} \\
\left|\beta_{10}\right\rangle & =\frac{|00\rangle-|11\rangle}{\sqrt{2}} \\
\left|\beta_{11}\right\rangle & =\frac{|01\rangle-|10\rangle}{\sqrt{2}} .
\end{aligned}
$$

A Little More on Bras and Kets

Let $|\phi\rangle$ and $|\psi\rangle$ be two unit vectors then:

- $|\phi\rangle=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right)$ then $\langle\phi|=\left(a_{1}^{*}, \ldots, a_{n}^{*}\right)$.
- $\langle\phi \mid \psi\rangle$ denotes the inner product between $|\phi\rangle$ and $|\psi\rangle$.
- $|\phi\rangle\langle\psi|$ is an operator that maps $|\psi\rangle \mapsto|\phi\rangle$. In general, an arbitrary state $|\lambda\rangle$ (belonging to the same space) is mapped to:

$$
|\phi\rangle\langle\psi||\lambda\rangle=\langle\psi \mid \lambda\rangle|\phi\rangle .
$$

- $|\phi\rangle\langle\phi|$ is the projector operator along the state $|\phi\rangle$.

Postulates of Quantum Mechanics III

Postulate 3 (evolution): The evolution of a closed system is described by a unitary transformation. That is, the state $|\psi\rangle$ at time t_{1} is related to the state $\left|\psi^{\prime}\right\rangle$ at time t_{2} by a unitary transform U,

$$
\left|\psi^{\prime}\right\rangle=U|\psi\rangle .
$$

NOTE 1: Operator U (square matrix over the complex) is unitary if all columns (and rows) are orthonormal. Such transformation maps a basis into another one:

$$
U:\left|e_{i}\right\rangle \mapsto\left|f_{i}\right\rangle,
$$

where $\left\langle e_{i} \mid e_{j}\right\rangle=\left\langle f_{i} \mid f_{j}\right\rangle=\delta_{i, j}$.
NOTE 2: The complex conjuguate U^{\dagger} for unitary U is always such that $U^{\dagger} U=\mathbb{I}$.

A Little More on Unitary Transforms

When $U:\left|e_{i}\right\rangle \mapsto\left|f_{i}\right\rangle$ then U can be written as

$$
\begin{aligned}
U & =\sum_{i}\left|f_{i}\right\rangle\left\langle e_{i}\right| \\
U^{\dagger} & =\sum_{i}\left|e_{i}\right\rangle\left\langle f_{i}\right|
\end{aligned}
$$

We easily see that U^{\dagger} is the inverse of U :

$$
\begin{aligned}
U U^{\dagger} & =\left(\sum_{i}\left|f_{i}\right\rangle\left\langle e_{i}\right|\right)\left(\sum_{j}\left|e_{j}\right\rangle\left\langle f_{j}\right|\right) \\
& =\sum_{i, j}\left|f_{i}\right\rangle\left\langle e_{i}\right|\left|e_{j}\right\rangle\left\langle f_{j}\right| \\
& =\sum_{i}\left|f_{i}\right\rangle\left\langle f_{i}\right|=\mathbb{I} .
\end{aligned}
$$

Complete Set of Unitary Evolutions

Any function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ can be computed by an unitary transform U_{f} as follows:

$$
U_{f}|x\rangle|y\rangle=|x\rangle|y \oplus f(x)\rangle .
$$

Fact: If f is computable efficienctly by some algorithm then U_{f} can be implemented perfectly by an efficient quantum circuit.

Thm: The set of unitary transforms,

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), T=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi / 4}
\end{array}\right), \text { and } \mathrm{CNOT}=\begin{array}{ccc}
|01\rangle & \mapsto & |01\rangle \\
|10\rangle & \mapsto & |11\rangle \\
|11\rangle & \mapsto & |10\rangle
\end{array}
$$

is universal for quantum computation.

Hadamard Transform

The Hadamard transform is extremly important. It works as follows:

$$
H:\left[\begin{array}{ccc}
|0\rangle & \mapsto & |+\rangle \\
|1\rangle & \mapsto & |-\rangle
\end{array}\right]=\left[\begin{array}{ccc}
|+\rangle & \mapsto & |0\rangle \\
|-\rangle & \mapsto & |1\rangle
\end{array}\right]
$$

In general, for $x \in\{0,1\}^{n}$:

$$
H^{\otimes n}|x\rangle=2^{-n / 2} \sum_{z \in\{0,1\}^{n}}(-1)^{x \cdot z}|z\rangle .
$$

$$
X=\left\{\begin{array}{ccc}
|0\rangle & \mapsto & |1\rangle \\
|1\rangle & \mapsto & |0\rangle
\end{array}, Z=\left\{\begin{array}{rll}
|+\rangle & \mapsto & |-\rangle \\
|-\rangle & \mapsto & |+\rangle
\end{array}, Y=\left\{\begin{array}{rlr}
|0\rangle & \mapsto & |1\rangle \\
|1\rangle & \mapsto & -|0\rangle
\end{array}\right.\right.\right.
$$

are called:

- X is the bit flip operator,
- Z is the phase flip operator,
- $Y=X Z$ is the bit-phase flip operator.

Notice that the Hadamard transform can be written as,

$$
H=\frac{1}{\sqrt{2}}(X+Z) .
$$

This is not surprising since X, Y, Z, and \mathbb{I} form a basis for all 1-qubit operators.

Postulates of Quantum Mechanics IV

Postulate 4 (measurement): Quantum measurements are described by a collection $\left\{M_{m}\right\}_{m}$ of measurement operators. These operators act on the state space of the system being measured. The index m is the meaurement outcomes. If the state before the mesurement is $|\psi\rangle$ then the probability $p(m)$ to observe outcome m is given by,

$$
\begin{aligned}
p(m) & =\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle=\operatorname{tr}\left(M_{m}^{\dagger} M_{m}|\psi\rangle\langle\psi|\right) \quad \text { and }, \\
\left|\psi_{m}\right\rangle & =\frac{M_{m}|\psi\rangle}{\sqrt{\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle}}=\frac{M_{m}|\psi\rangle}{\sqrt{p(m)}} .
\end{aligned}
$$

The measurement operators must satisfy the completeness equation:

$$
\sum_{m} M_{m}^{\dagger} M_{m}=\mathbb{I}
$$

This ensures that,

$$
1=\sum_{m} p(m)=\sum_{m}\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle=\langle\psi| \sum_{m} M_{m}^{\dagger} M_{m}|\psi\rangle=\langle\psi \mid \psi\rangle .
$$

Projective Measurements

A projective or Von Neumann measurement is defined by operators $\left\{P_{m}\right\}_{m}$ where

- for all m, P_{m} is a projection (i.e. $P_{m}^{2}=P_{m}$),
- $P_{m} \perp P_{m^{\prime}}$ for $m \neq m^{\prime}$,

Equivalently to $\left\{P_{m}\right\}_{m}$ the observable $M=\sum_{m} m P_{m}$ describes the measurement (we'll see later why). From Postulate IV, when $|\psi\rangle$ is measured:

- $p(m)=\langle\psi| P_{m}^{\dagger} P_{m}|\psi\rangle=\langle\psi| P_{m} P_{m}|\psi\rangle=\langle\psi| P_{m}|\psi\rangle=\| P_{m}|\psi\rangle \|^{2}$,
- $\left|\psi_{m}\right\rangle=P_{m}|\psi\rangle / \sqrt{p(m)}$.

Examples:

- $Z=|0\rangle\langle 0|-|1\rangle\langle 1| \equiv\{|0\rangle\langle 0|,|1\rangle\langle 1|\}$,
$X=|+\rangle\langle+|-|-\rangle\langle-| \equiv\{|+\rangle\langle+|,|-\rangle\langle-|\}$ are measurements in the " + " and " \times " basis respectively.

Using Projective Measurements

Setting: Suppose a source is sending a qubit in state $|0\rangle$ or $|+\rangle$ each with probability $\frac{1}{2}$.
Problem: Find the best projective measurement that either:

- Identifies the state received perfectly or,
- Outputs "I don't know".

The probability $p_{i d}$ to identify the state is $p_{i d}=\frac{1}{4}$. This is the best over all projective measurements.

POVMs formalism

If one is only interested in the probability distribution for the outcomes of a measurement $\left\{M_{m}\right\}_{m}$ then,

- $\left\{E_{m}\right\}_{m}=\left\{M_{m}^{\dagger} M_{m}\right\}_{m}$ is all what is needed,

From Postulate IV, we define a POVM (Positive Operator-Valued Measurement) as,
positivity: $\left\{E_{m}\right\}_{m}$ where E_{m} 's are all positive operators,
completeness: $\sum_{m} E_{m}=\mathbb{I}$.
Suppose that $\left\{E_{m}=U_{m} \Sigma U_{m}^{\dagger}\right\}_{m}$ is a set of positive operators where Σ is diagonal with non-negative elements. Then

$$
\left\{M_{m}\right\}_{m}=\left\{U_{m} \sqrt{\Sigma} U_{m}^{\dagger}\right\}_{m}=\left\{\sqrt{E_{m}}\right\}_{m}
$$

is a set of measurement operators with POVM $\left\{E_{m}\right\}_{m}$.

POVM's in action

Suppose you want to solve the same problem than before. You want to maximize the probability to identify with certainty the state $|0\rangle$

$$
\begin{aligned}
E_{+} & =\frac{\sqrt{2}}{1+\sqrt{2}}|1\rangle\langle 1| \\
E_{0} & =\frac{\sqrt{2}}{1+\sqrt{2}}|-\rangle\langle-| \\
E_{?} & =\mathbb{I}-E_{+}-E_{0} .
\end{aligned}
$$

The POVM $\left\{E_{+}, E_{0}, E_{?}\right\}$ satisfies:

- $\langle 0| E_{+}|0\rangle=\frac{\sqrt{2}}{1+\sqrt{2}}\langle 0 \mid 1\rangle\langle 1 \mid 0\rangle=0$,
- $\langle+| E_{0}|+\rangle=\frac{\sqrt{2}}{1+\sqrt{2}}\langle+\mid-\rangle\langle-\mid+\rangle=0$,
- $\langle 0| E_{0}|0\rangle=\langle+| E_{+}|+\rangle=\frac{\sqrt{2}}{1+\sqrt{2}}\|\langle+\mid 1\rangle\|^{2}=\frac{1}{\sqrt{2}(1+\sqrt{2})} \approx 0.2929$.

Suppose U_{f} satisfies for any $x \in\{0,1\}^{n}$ and $y \in\{0,1\}^{m}$:

$$
U_{f}|x\rangle \otimes|y\rangle \mapsto|x\rangle \otimes|y \oplus f(x)\rangle,
$$

for some $f:\{0,1\}^{n} \mapsto\{0,1\}^{m}$. Then,

$$
\begin{aligned}
U_{f}\left(H^{\otimes n} \otimes \mathbb{I}\right)|0\rangle \otimes|y\rangle & \mapsto 2^{-n / 2} \sum_{x \in\{0,1\}^{n}} U_{f}|x\rangle|y\rangle \\
& \mapsto 2^{-n / 2} \sum_{x \in\{0,1\}^{n}}|x\rangle|y \oplus f(x)\rangle .
\end{aligned}
$$

By calling U_{f} once, one gets $f(x)$ computed for all $z \in\{0,1\}^{n}$. By measuring each register in the Z basis, one get a random z with its corresponding value $f(z)$.

Deutsch-Josza Algorithm

Suppose $f:\{0,1\}^{n} \rightarrow\{0,1\}$, is garanteed to be either balanced or constant, you must determine which one. How many calls to U_{f} are required?
The following sequence of transformations allows to answer the question after measuring the first n qubits:

$$
\left(H^{\otimes n} \otimes \mathbb{I}\right) U_{f}\left(H^{\otimes n} \otimes H\right)\left|0^{n}\right\rangle|1\rangle .
$$

One can check this as follows:

$$
\begin{aligned}
\left(H^{\otimes n} \otimes \mathbb{I}\right) U_{f}\left(H^{\otimes n} \otimes H\right)\left|0^{n}\right\rangle|1\rangle & =\left(H^{\otimes n} \otimes \mathbb{I}\right)\left(\sum_{x} \frac{U_{f}|x\rangle}{\sqrt{2^{n}}} \otimes|-\rangle\right) \\
& =\left(H^{\otimes n} \otimes \mathbb{I}\right) \sum_{x} \frac{|x\rangle}{\sqrt{2^{n+1}}}(|f(x)\rangle-|\overline{f(x)}\rangle) \\
& =\left(H^{\otimes n} \otimes \mathbb{I}\right) 2^{-n / 2} \sum_{x}(-1)^{f(x)}|x\rangle|-\rangle \\
& =\sum_{x} \sum_{z} 2^{-n}(-1)^{x \cdot z \oplus f(x)}|z\rangle|-\rangle
\end{aligned}
$$

Conclusion

After the application fo the algorithm we get:

$$
\sum_{z} \sum_{x} 2^{-n}(-1)^{x \cdot z \oplus f(x)}|z\rangle|-\rangle .
$$

If $f(x)$ is constant then the state is

$$
\sum_{z}(-1)^{f(0)}\left(\sum_{x} 2^{-n}(-1)^{x \cdot z}\right)|z\rangle|-\rangle
$$

If $f(x)$ is balanced then the amplitude associated to $|0\rangle|-\rangle$ is:

$$
\sum_{x}(-1)^{x \cdot 0^{n}}(-1)^{f(x)}|0\rangle|-\rangle=\sum_{x}(-1)^{f(x)}|0\rangle|-\rangle=0|0\rangle|-\rangle .
$$

It follows that if f is balanced then $|0\rangle$ cannot be observed whereas if f is constant then $|0\rangle$ is always observed when the register is measured by $\{|z\rangle\langle z|\}_{z \in\{0,1\}^{n}}$. Classically, it is easy to verify that $2^{n-1}+1$ queries are necessary in worst case.

Conclusion

After the application fo the algorithm we get:

$$
\sum_{z} \sum_{x} 2^{-n}(-1)^{x \cdot z \oplus f(x)}|z\rangle|-\rangle .
$$

If $f(x)$ is constant then the state is

$$
\sum_{z}(-1)^{f(0)}\left(\sum_{x} 2^{-n}(-1)^{x \cdot z}\right)|z\rangle|-\rangle= \pm|0\rangle|-\rangle .
$$

If $f(x)$ is balanced then the amplitude associated to $|0\rangle|-\rangle$ is:

$$
\sum_{x}(-1)^{x \cdot 0^{n}}(-1)^{f(x)}|0\rangle|-\rangle=\sum_{x}(-1)^{f(x)}|0\rangle|-\rangle=0|0\rangle|-\rangle .
$$

It follows that if f is balanced then $|0\rangle$ cannot be observed whereas if f is constant then $|0\rangle$ is always observed when the register is measured by $\{|z\rangle\langle z|\}_{z \in\{0,1\}^{n}}$. Classically, it is easy to verify that $2^{n-1}+1$ queries are necessary in worst case.

No Cloning

Postulates I-III imply that arbitrary quantum states cannot be cloned. Assume for a contradiction that such a cloning machine U exists. For any $|\psi\rangle$, we have

$$
U(|\psi\rangle \otimes|0\rangle)=|\psi\rangle \otimes|\psi\rangle .
$$

However, for any $|\Psi\rangle$ and $|\Phi\rangle$, unitary transforms preserve the inner product,

$$
\langle\Psi| U^{\dagger} U|\Phi\rangle=\langle\Psi \mid \Phi\rangle .
$$

But our cloning machine U satisfies:

$$
\langle 0|\langle\psi \mid \phi\rangle|0\rangle=\langle 0| \otimes\langle\psi| U^{\dagger} U|\phi\rangle \otimes|0\rangle=\langle\psi| \otimes\langle\psi \mid \phi\rangle \otimes|\phi\rangle=\langle\psi \mid \phi\rangle^{2},
$$

which can only be satisfied for

$$
\langle\psi \mid \phi\rangle=0 \text { or }\langle\psi \mid \phi\rangle=1 .
$$

\Rightarrow Such U does not exist!

Ensembles of Quantum States

Let $\left\{\left(p_{i},\left|\psi_{i}\right\rangle\right\}_{i}\right.$ be an ensemble of pure states for $\sum_{i} p_{i}=1$. The density operator or density matrix for the system is,

$$
\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| .
$$

Unitary evolution U on a state taken from the ensemble gives,

$$
\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \stackrel{U}{\mapsto} \sum_{i} p_{i} U\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| U^{\dagger}=U \rho U^{\dagger}
$$

Measurements $\left\{M_{m}\right\}_{m}$ can be generalized the same way,

$$
\begin{aligned}
p(m) & =\sum_{i} p_{i} p(m \mid i) \\
& =\sum_{i} p_{i} \operatorname{tr}\left(M_{m}^{\dagger} M_{m}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right) \\
& =\operatorname{tr}\left(M_{m}^{\dagger} M_{m} \rho\right)
\end{aligned}
$$

Density Operators Represent States

Suppose you have only access to particle B in state,

$$
|\Psi\rangle^{A B}=\frac{1}{\sqrt{2}}\left(|0\rangle^{A} \otimes|0\rangle^{B}+|1\rangle^{A} \otimes|1\rangle^{B}\right) .
$$

What do you get?

$$
\rho^{B}=\operatorname{tr}_{A}(|\Psi\rangle\langle\Psi|),|\Psi\rangle\langle\Psi|=\frac{1}{2}(|00\rangle\langle 00|+|01\rangle\langle 01|+|10\rangle\langle 10|+|11\rangle\langle 11|),
$$

called the partial trace over A defined as, The partial trace is defined as follows:

$$
\operatorname{tr}_{A}\left(\left|a_{1}\right\rangle\left\langle a_{2}\right| \otimes\left|b_{1}\right\rangle\left\langle b_{2}\right|\right)=\operatorname{tr}\left(\left|a_{1}\right\rangle\left\langle a_{2}\right|\right)\left|b_{1}\right\rangle\left\langle b_{2}\right|=\left\langle a_{1} \mid a_{2}\right\rangle\left|b_{1}\right\rangle\left\langle b_{2}\right| .
$$

Which results in,

$$
\begin{aligned}
\rho^{B} & =\frac{1}{2}\left(\operatorname{tr}_{A}(|00\rangle\langle 00|)+\operatorname{tr}_{A}(|11\rangle\langle 00|)+\operatorname{tr}_{A}(|00\rangle\langle 11|)+\operatorname{tr}_{A}(|11\rangle\langle 11|)\right) \\
& =\frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|)=\mathbb{I} / 2 \equiv\{(1 / 2,|0\rangle),(1 / 2,|1\rangle)\} .
\end{aligned}
$$

Properties of Density Operators

Theorem: An operator ρ is the density operator associated to $\left\{\left(p_{i},\left|\psi_{i}\right\rangle\right)\right\}_{i}$ if and only if
trace condition: $\operatorname{tr}(\rho)=1$,
positivity: ρ is a positive operator (An operator is positive if all its eigenvalues are non-negative real numbers) .

The following theorem states the unitary freedom in the ensemble for density matrices. We shall write ensembles in a slightly different way:

$$
\left\{\left(p_{i},\left|\psi_{i}\right\rangle\right)\right\}_{i} \equiv\left\{\sqrt{p_{i}}\left|\psi_{i}\right\rangle\right\}_{i} \equiv\left\{\left|\tilde{\psi}_{i}\right\rangle\right\}_{i} .
$$

Theorem: The ensembles $\left\{\left|\tilde{\psi}_{i}\right\rangle\right\}_{i}$ and $\left\{\left|\tilde{\phi}_{i}\right\rangle\right\}_{i}$ generate the same density matrix if and only if

$$
\left|\tilde{\psi}_{i}\right\rangle=\sum_{j} u_{i, j}\left|\tilde{\phi}_{i}\right\rangle
$$

for some unitary matrix $\left\{u_{i, j}\right\}_{i, j}$ (where we pad the smallest ensemble with $\overrightarrow{0}$ vector).

Unitary Freedom in Action

- Let $\{(1 / 2,|0\rangle),(1 / 2,|+\rangle)\} \equiv\left\{\frac{1}{\sqrt{2}}|0\rangle, \frac{1}{\sqrt{2}}|+\rangle\right\} \equiv\{|\tilde{0}\rangle,|\tilde{+}\rangle\}$.
- Let $\left\{\left(\cos ^{2} \frac{\pi}{8},\left|\beta_{0}\right\rangle\right),\left(\sin ^{2} \frac{\pi}{8},\left|\beta_{1}\right\rangle\right)\right\} \equiv\left\{\cos \frac{\pi}{8}\left|\beta_{0}\right\rangle, \sin \frac{\pi}{8}\left|\beta_{1}\right\rangle\right\} \equiv$ $\left\{\left|\tilde{\beta}_{0}\right\rangle,\left|\tilde{\beta}_{1}\right\rangle\right\}$ where $\left\langle\beta_{0} \mid \beta_{1}\right\rangle=0$,

$$
\begin{aligned}
&\left|\beta_{0}\right\rangle=\cos \frac{\pi}{8}|0\rangle+\sin \frac{\pi}{8}|1\rangle=\cos \frac{\pi}{8}|+\rangle+\sin \frac{\pi}{8}|-\rangle \\
&\left|\beta_{1}\right\rangle=\cos \frac{\pi}{8}|1\rangle-\sin \frac{\pi}{8}|0\rangle=-\cos \frac{\pi}{8}|-\rangle+\sin \frac{\pi}{8}|+\rangle . \\
& \frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right) \Rightarrow \begin{aligned}
|\tilde{0}\rangle & =\frac{1}{\sqrt{2}}\left(\left|\tilde{\beta}_{0}\right\rangle-\left|\tilde{\beta}_{1}\right\rangle\right) \\
|\tilde{+}\rangle & \left.=\frac{1}{\sqrt{2}}\left(\tilde{\beta}_{0}\right\rangle+\left|\tilde{\beta}_{1}\right\rangle\right) .
\end{aligned}
\end{aligned}
$$

Not surprising since:

$$
\rho=\frac{1}{2}|0\rangle\langle 0|+\frac{1}{2}|+\rangle\langle+|=\cos ^{2} \frac{\pi}{8}\left|\beta_{0}\right\rangle\left\langle\beta_{0}\right|+\sin ^{2} \frac{\pi}{8}\left|\beta_{1}\right\rangle\left\langle\beta_{1}\right| .
$$

