Postulates of Quantum Mechanics I

Postulate 1 (state space): Associated to any *isolated* system is a complex vector space (i.e. Hilbert space) called the *state space*. The system is completely described by its *state vector*, which is a *unit vector* in the state space.

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}, |+\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}} \end{pmatrix}, |-\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}}\\\frac{-1}{\sqrt{2}} \end{pmatrix}, |+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle), |-\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle),$$

- Postulates of Quantum Mechanics II -----Postulate 2 (composite systems): The state space of a composite system is the *tensor product* of the components. If we have n systems $|\psi_1\rangle, \ldots, |\psi_n\rangle$ then the joint state is

 $|\psi_1\rangle\otimes|\psi_2\rangle\otimes\ldots\otimes|\psi_n\rangle.$

The tensor product is the following operation on vectors,

$$\begin{array}{c} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{array} \right) \otimes \begin{pmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{array} \right) = \begin{pmatrix} a_{1}b_{1} \\ a_{1}b_{2} \\ \vdots \\ a_{1}b_{m} \\ \vdots \\ a_{n}b_{m} \end{pmatrix}$$

-More States -

Let us define a few states in the 4-dimensional Hilbert space \mathcal{H}_4 :

$$|0+\rangle = |0\rangle \otimes |+\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix} \otimes \begin{pmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}}\\ 0\\ 0 \end{pmatrix}$$

The following is a basis for \mathcal{H}_4 :

$$|\beta_{00}\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$
$$|\beta_{01}\rangle = \frac{|01\rangle + |10\rangle}{\sqrt{2}}$$
$$|\beta_{10}\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}}$$
$$|\beta_{11}\rangle = \frac{|01\rangle - |10\rangle}{\sqrt{2}}$$

Postulates of QM

BRICS

- A Little More on Bras and Kets-

Let $|\phi\rangle$ and $|\psi\rangle$ be two unit vectors then:

•
$$|\phi\rangle = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$
 then $\langle \phi | = (a_1^*, \dots, a_n^*).$

- $\langle \phi | \psi \rangle$ denotes the inner product between $| \phi \rangle$ and $| \psi \rangle$.
- $|\phi\rangle\langle\psi|$ is an operator that maps $|\psi\rangle\mapsto|\phi\rangle$. In general, an arbitrary state $|\lambda\rangle$ (belonging to the same space) is mapped to:

$$|\phi\rangle\langle\psi||\lambda\rangle = \langle\psi|\lambda\rangle|\phi\rangle.$$

• $|\phi\rangle\langle\phi|$ is the projector operator along the state $|\phi\rangle$.

Postulates of Quantum Mechanics III —

Postulate 3 (evolution): The evolution of a *closed* system is described by a *unitary transformation*. That is, the state $|\psi\rangle$ at time t_1 is related to the state $|\psi'\rangle$ at time t_2 by a unitary transform U,

$$|\psi'\rangle = U|\psi\rangle.$$

NOTE 1: Operator U (square matrix over the complex) is unitary if all columns (and rows) are orthonormal. Such transformation maps a basis into another one:

$$U: |e_i\rangle \mapsto |f_i\rangle,$$

where $\langle e_i | e_j \rangle = \langle f_i | f_j \rangle = \delta_{i,j}$.

NOTE 2: The complex conjuguate U^{\dagger} for unitary U is always such that $U^{\dagger}U = \mathbb{I}$.

Postulates of QM

When $U: |e_i\rangle \mapsto |f_i\rangle$ then U can be written as

$$U = \sum_{i} |f_{i}\rangle \langle e_{i}|$$
$$U^{\dagger} = \sum_{i} |e_{i}\rangle \langle f_{i}|$$

We easily see that U^{\dagger} is the inverse of U:

$$UU^{\dagger} = (\sum_{i} |f_{i}\rangle\langle e_{i}|)(\sum_{j} |e_{j}\rangle\langle f_{j}|$$
$$= \sum_{i,j} |f_{i}\rangle\langle e_{i}| |e_{j}\rangle\langle f_{j}|$$
$$= \sum_{i} |f_{i}\rangle\langle f_{i}| = \mathbb{I}.$$

Postulates of QM

BRIC

- Complete Set of Unitary Evolutions

Any function $f: \{0,1\}^n \to \{0,1\}^m$ can be computed by an unitary transform U_f as follows:

 $U_f|x\rangle|y\rangle = |x\rangle|y \oplus f(x)\rangle.$

Fact: If f is computable efficienctly by some algorithm then U_f can be implemented perfectly by an efficient quantum circuit.

Thm: The set of unitary transforms,

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}, and \text{CNOT} = \begin{cases} |00\rangle & \mapsto & |00\rangle \\ |01\rangle & \mapsto & |01\rangle \\ |10\rangle & \mapsto & |11\rangle \\ |11\rangle & \mapsto & |10\rangle \end{cases}$$

is universal for quantum computation.

Postulates of QM

- Hadamard Transform -

The Hadamard transform is extremly important. It works as follows:

$$H: \left[\begin{array}{ccc} |0\rangle & \mapsto & |+\rangle \\ |1\rangle & \mapsto & |-\rangle \end{array} \right] = \left[\begin{array}{ccc} |+\rangle & \mapsto & |0\rangle \\ |-\rangle & \mapsto & |1\rangle \end{array} \right]$$

In general, for $x \in \{0, 1\}^n$:

$$H^{\otimes n}|x\rangle = 2^{-n/2} \sum_{z \in \{0,1\}^n} (-1)^{x \cdot z} |z\rangle.$$

BRICS

- More Useful Transformations -

$$X = \begin{cases} |0\rangle & \mapsto & |1\rangle \\ |1\rangle & \mapsto & |0\rangle \end{cases}, Z = \begin{cases} |+\rangle & \mapsto & |-\rangle \\ |-\rangle & \mapsto & |+\rangle \end{cases}, Y = \begin{cases} |0\rangle & \mapsto & |1\rangle \\ |1\rangle & \mapsto & -|0\rangle \end{cases}$$

are called:

- X is the **bit flip** operator,
- Z is the **phase flip** operator,
- Y = XZ is the **bit-phase flip** operator.

Notice that the **Hadamard** transform can be written as,

$$H = \frac{1}{\sqrt{2}}(X + Z).$$

This is not surprising since X, Y, Z, and \mathbb{I} form a basis for all 1-qubit operators.

Postulates of QM

■BRIC

– Postulates of Quantum Mechanics IV –

Postulate 4 (measurement): Quantum measurements are described by a collection $\{M_m\}_m$ of *measurement operators*. These operators act on the *state space* of the system being measured. The index *m* is the meaurement outcomes. If the state before the mesurement is $|\psi\rangle$ then the probability p(m) to observe outcome *m* is given by,

$$p(m) = \langle \psi | M_m^{\dagger} M_m | \psi \rangle = \operatorname{tr} \left(M_m^{\dagger} M_m | \psi \rangle \langle \psi | \right) \quad \text{and},$$
$$|\psi_m\rangle = \frac{M_m |\psi\rangle}{\sqrt{\langle \psi | M_m^{\dagger} M_m | \psi \rangle}} = \frac{M_m |\psi\rangle}{\sqrt{p(m)}}.$$

The measurement operators must satisfy the *completeness equation*:

$$\sum_{m} M_m^{\dagger} M_m = \mathbb{I}.$$

This ensures that,

$$1 = \sum_{m} p(m) = \sum_{m} \langle \psi | M_m^{\dagger} M_m | \psi \rangle = \langle \psi | \sum_{m} M_m^{\dagger} M_m | \psi \rangle = \langle \psi | \psi \rangle.$$

Postulates of QM

Projective Measurements

A projective or Von Neumann measurement is defined by operators $\{P_m\}_m$ where

- for all m, P_m is a projection (i.e. $P_m^2 = P_m$),
- $P_m \perp P_{m'}$ for $m \neq m'$,

Equivalently to $\{P_m\}_m$ the observable $M = \sum_m m P_m$ describes the measurement (we'll see later why). From **Postulate IV**, when $|\psi\rangle$ is measured:

- $p(m) = \langle \psi | P_m^{\dagger} P_m | \psi \rangle = \langle \psi | P_m P_m | \psi \rangle = \langle \psi | P_m | \psi \rangle = || P_m | \psi \rangle ||^2$,
- $|\psi_m\rangle = P_m |\psi\rangle / \sqrt{p(m)}.$

Examples:

• $Z = |0\rangle\langle 0| - |1\rangle\langle 1| \equiv \{|0\rangle\langle 0|, |1\rangle\langle 1|\},\$ $X = |+\rangle\langle +| - |-\rangle\langle -| \equiv \{|+\rangle\langle +|, |-\rangle\langle -|\}$ are measurements in the "+" and "×" basis respectively.

Postulates of QM

≣BR

— Using Projective Measurements Setting: Suppose a source is sending a qubit in state $|0\rangle$ or $|+\rangle$ each with probability $\frac{1}{2}$. **Problem:** Find the best projective measurement that either:

- Identifies the state received perfectly or,
- Outputs "I don't know".

The probability p_{id} to identify the state is $p_{id} = \frac{1}{4}$. This is the best over all projective measurements.

• POVMs formalism

If one is only interested in the probability distribution for the outcomes of a measurement $\{M_m\}_m$ then,

• $\{E_m\}_m = \{M_m^{\dagger} M_m\}_m$ is all what is needed,

From **Postulate IV**, we define a POVM (Positive Operator-Valued Measurement) as,

positivity: $\{E_m\}_m$ where E_m 's are all positive operators,

completeness: $\sum_{m} E_{m} = \mathbb{I}.$

Suppose that $\{E_m = U_m \Sigma U_m^{\dagger}\}_m$ is a set of positive operators where Σ is diagonal with non-negative elements. Then

$$\{M_m\}_m = \{U_m \sqrt{\Sigma} U_m^{\dagger}\}_m = \{\sqrt{E_m}\}_m$$

is a set of measurement operators with POVM $\{E_m\}_m$.

Postulates of QM

- POVM's in action -

Suppose you want to solve the same problem than before. You want to maximize the probability to identify with certainty the state $|0\rangle$ $|+\rangle$. Consider the POVM,

$$E_{+} = \frac{\sqrt{2}}{1+\sqrt{2}}|1\rangle\langle 1|$$
$$E_{0} = \frac{\sqrt{2}}{1+\sqrt{2}}|-\rangle\langle -|$$
$$E_{?} = \mathbb{I} - E_{+} - E_{0}.$$

The POVM $\{E_+, E_0, \mathbb{E}_?\}$ satisfies:

•
$$\langle 0|E_+|0\rangle = \frac{\sqrt{2}}{1+\sqrt{2}}\langle 0|1\rangle\langle 1|0\rangle = 0,$$

•
$$\langle +|E_0|+\rangle = \frac{\sqrt{2}}{1+\sqrt{2}}\langle +|-\rangle\langle -|+\rangle = 0,$$

•
$$\langle 0|E_0|0\rangle = \langle +|E_+|+\rangle = \frac{\sqrt{2}}{1+\sqrt{2}} \|\langle +|1\rangle\|^2 = \frac{1}{\sqrt{2}(1+\sqrt{2})} \approx 0.2929.$$

Postulates of QM

≣BRIC

Evaluation in Superposition

Suppose U_f satisfies for any $x \in \{0,1\}^n$ and $y \in \{0,1\}^m$:

 $\frac{U_f|x}{\otimes} |y\rangle \mapsto |x\rangle \otimes |y \oplus f(x)\rangle,$

for some $f: \{0,1\}^n \mapsto \{0,1\}^m$. Then,

$$\begin{array}{rcl} U_f(H^{\otimes n} \otimes \mathbb{I})|0\rangle \otimes |y\rangle & \mapsto & 2^{-n/2} \sum_{x \in \{0,1\}^n} U_f|x\rangle |y\rangle \\ & \mapsto & 2^{-n/2} \sum_{x \in \{0,1\}^n} |x\rangle |y \oplus f(x)\rangle. \end{array}$$

By calling U_f once, one gets f(x) computed for all $z \in \{0,1\}^n$. By measuring each register in the Z basis, one get a random z with its corresponding value f(z).

Postulates of QM

- Deutsch-Josza Algorithm

Suppose $f: \{0,1\}^n \to \{0,1\}$, is garanteed to be either balanced or constant, you must determine which one. How many calls to U_f are required?

The following sequence of transformations allows to answer the question after measuring the first n qubits:

$$(H^{\otimes n} \otimes \mathbb{I}) U_f(H^{\otimes n} \otimes H) |0^n\rangle |1\rangle.$$

One can check this as follows:

$$(H^{\otimes n} \otimes \mathbb{I}) U_{f}(H^{\otimes n} \otimes H) |0^{n}\rangle |1\rangle = (H^{\otimes n} \otimes \mathbb{I}) \left(\sum_{x} \frac{U_{f}|x\rangle}{\sqrt{2^{n}}} \otimes |-\rangle\right)$$
$$= (H^{\otimes n} \otimes \mathbb{I}) \sum_{x} \frac{|x\rangle}{\sqrt{2^{n+1}}} (|f(x)\rangle - \left|\overline{f(x)}\right\rangle)$$
$$= (H^{\otimes n} \otimes \mathbb{I}) 2^{-n/2} \sum_{x} (-1)^{f(x)} |x\rangle |-\rangle$$
$$= \sum_{x} \sum_{z} 2^{-n} (-1)^{x \cdot z \oplus f(x)} |z\rangle |-\rangle.$$

Postulates of QM

- Conclusion

After the application fo the algorithm we get:

$$\sum_{z} \sum_{x} 2^{-n} (-1)^{x \cdot z \oplus f(x)} |z\rangle |-\rangle.$$

If f(x) is constant then the state is

$$\sum_{z} (-1)^{f(0)} \left(\sum_{x} 2^{-n} (-1)^{x \cdot z} \right) |z\rangle |-\rangle$$

If f(x) is balanced then the amplitude associated to $|0\rangle|-\rangle$ is:

$$\sum_{x} (-1)^{x \cdot 0^{n}} (-1)^{f(x)} |0\rangle |-\rangle = \sum_{x} (-1)^{f(x)} |0\rangle |-\rangle = 0 |0\rangle |-\rangle.$$

It follows that if f is balanced then $|0\rangle$ cannot be observed whereas if f is constant then $|0\rangle$ is always observed when the register is measured by $\{|z\rangle\langle z|\}_{z\in\{0,1\}^n}$. Classically, it is easy to verify that $2^{n-1} + 1$ queries are necessary in worst case.

Postulates of QM

- Conclusion

After the application fo the algorithm we get:

$$\sum_{z} \sum_{x} 2^{-n} (-1)^{x \cdot z \oplus f(x)} |z\rangle |-\rangle.$$

If f(x) is constant then the state is

$$\sum_{z} (-1)^{f(0)} \left(\sum_{x} 2^{-n} (-1)^{x \cdot z} \right) |z\rangle |-\rangle = \pm |0\rangle |-\rangle.$$

If f(x) is balanced then the amplitude associated to $|0\rangle|-\rangle$ is:

$$\sum_{x} (-1)^{x \cdot 0^{n}} (-1)^{f(x)} |0\rangle |-\rangle = \sum_{x} (-1)^{f(x)} |0\rangle |-\rangle = 0 |0\rangle |-\rangle.$$

It follows that if f is balanced then $|0\rangle$ cannot be observed whereas if f is constant then $|0\rangle$ is always observed when the register is measured by $\{|z\rangle\langle z|\}_{z\in\{0,1\}^n}$. Classically, it is easy to verify that $2^{n-1} + 1$ queries are necessary in worst case.

Postulates of QM

-No Cloning

Postulates I-III imply that arbitrary quantum states cannot be cloned. Assume for a contradiction that such a cloning machine U exists. For any $|\psi\rangle$, we have

```
U(|\psi\rangle\otimes|0
angle) = |\psi
angle\otimes|\psi
angle.
```

However, for any $|\Psi\rangle$ and $|\Phi\rangle,$ unitary transforms preserve the inner product,

 $\langle \Psi | U^{\dagger} U | \Phi \rangle = \langle \Psi | \Phi \rangle.$

But our *cloning machine* U satisfies:

 $\langle 0|\langle \psi|\phi\rangle|0\rangle = \langle 0|\otimes \langle \psi|\boldsymbol{U}^{\dagger}\boldsymbol{U}|\phi\rangle\otimes|0\rangle = \langle \psi|\otimes \langle \psi|\phi\rangle\otimes|\phi\rangle = \langle \psi|\phi\rangle^{2},$

which can only be satisfied for

$$\langle \psi | \phi \rangle = 0 \text{ or } \langle \psi | \phi \rangle = 1.$$

 \Rightarrow Such U does not exist!

Postulates of QM

BRI

Ensembles of Quantum States -

Let $\{(p_i, |\psi_i\rangle\}_i$ be an *ensemble of pure states* for $\sum_i p_i = 1$. The *density operator* or *density matrix* for the system is,

$$\rho = \sum_{i} p_i |\psi_i\rangle \langle \psi_i|.$$

Unitary evolution U on a state taken from the ensemble gives,

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle \langle\psi_{i}| \stackrel{U}{\mapsto} \sum_{i} p_{i} U |\psi_{i}\rangle \langle\psi_{i}| U^{\dagger} = U \rho U^{\dagger}.$$

Measurements $\{M_m\}_m$ can be generalized the same way,

$$p(\mathbf{m}) = \sum_{i} p_{i} p(\mathbf{m} \mid i)$$
$$= \sum_{i} p_{i} \operatorname{tr} \left(M_{m}^{\dagger} M_{m} |\psi_{i}\rangle \langle \psi_{i} | \right)$$
$$= \operatorname{tr} \left(M_{m}^{\dagger} M_{m} \rho \right).$$

Postulates of QM

-Density Operators Represent States

Suppose you have only access to particle B in state,

$$|\Psi\rangle^{AB} = \frac{1}{\sqrt{2}} (|0\rangle^{A} \otimes |0\rangle^{B} + |1\rangle^{A} \otimes |1\rangle^{B}).$$

What do you get?

$$\rho^{B} = \operatorname{tr}_{A}\left(|\Psi\rangle\langle\Psi|\right), |\Psi\rangle\langle\Psi| = \frac{1}{2}(|00\rangle\langle00| + |01\rangle\langle01| + |10\rangle\langle10| + |11\rangle\langle11|),$$

called the *partial trace* over A defined as, The partial trace is defined as follows:

 $\operatorname{tr}_{A}\left(|a_{1}\rangle\langle a_{2}|\otimes|b_{1}\rangle\langle b_{2}|\right) = \operatorname{tr}\left(|a_{1}\rangle\langle a_{2}|\right)|b_{1}\rangle\langle b_{2}| = \langle a_{1}|a_{2}\rangle|b_{1}\rangle\langle b_{2}|.$

Which results in,

$$\rho^{B} = \frac{1}{2} (\operatorname{tr}_{A} (|00\rangle\langle00|) + \operatorname{tr}_{A} (|11\rangle\langle00|) + \operatorname{tr}_{A} (|00\rangle\langle11|) + \operatorname{tr}_{A} (|11\rangle\langle11|)) = \frac{1}{2} (|0\rangle\langle0| + |1\rangle\langle1|) = \mathbb{I}/2 \equiv \{(1/2, |0\rangle), (1/2, |1\rangle)\}.$$

Postulates of QM

Properties of Density Operators

Theorem: An operator ρ is the density operator associated to $\{(p_i, |\psi_i\rangle)\}_i$ if and only if

trace condition: $tr(\rho) = 1$,

positivity: ρ is a positive operator (An operator is positive if all its eigenvalues are non-negative real numbers).

The following theorem states the *unitary freedom in the ensemble for density matrices*. We shall write ensembles in a slightly different way:

$$\{(p_i, |\psi_i\rangle)\}_i \equiv \{\sqrt{p_i} |\psi_i\rangle\}_i \equiv \{\left|\tilde{\psi}_i\right\rangle\}_i.$$

Theorem: The ensembles $\{|\tilde{\psi}_i\rangle\}_i$ and $\{|\tilde{\phi}_i\rangle\}_i$ generate the same density matrix if and only if

$$\tilde{\psi}_i \Big\rangle = \sum_j u_{i,j} \Big| \tilde{\phi}_i \Big\rangle$$

for some unitary matrix $\{u_{i,j}\}_{i,j}$ (where we pad the smallest ensemble with $\vec{0}$ vector).

Postulates of QM

Unitary Freedom in Action.

- Let $\{(1/2, |\mathbf{0}\rangle), (1/2, |\mathbf{+}\rangle)\} \equiv \{\frac{1}{\sqrt{2}}|\mathbf{0}\rangle, \frac{1}{\sqrt{2}}|\mathbf{+}\rangle\} \equiv \{|\tilde{\mathbf{0}}\rangle, |\tilde{\mathbf{+}}\rangle\}.$
- Let $\{(\cos^2 \frac{\pi}{8}, |\beta_0\rangle), (\sin^2 \frac{\pi}{8}, |\beta_1\rangle)\} \equiv \{\cos \frac{\pi}{8} |\beta_0\rangle, \sin \frac{\pi}{8} |\beta_1\rangle\} \equiv \{|\tilde{\beta}_0\rangle, |\tilde{\beta}_1\rangle\}$ where $\langle\beta_0|\beta_1\rangle = 0$,

$$|\beta_0\rangle = \cos\frac{\pi}{8}|0\rangle + \sin\frac{\pi}{8}|1\rangle = \cos\frac{\pi}{8}|+\rangle + \sin\frac{\pi}{8}|-\rangle$$
$$|\beta_1\rangle = \cos\frac{\pi}{8}|1\rangle - \sin\frac{\pi}{8}|0\rangle = -\cos\frac{\pi}{8}|-\rangle + \sin\frac{\pi}{8}|+\rangle.$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \Rightarrow \begin{vmatrix} \tilde{0} \rangle &= \frac{1}{\sqrt{2}} (\begin{vmatrix} \tilde{\beta}_0 \rangle - \begin{vmatrix} \tilde{\beta}_1 \rangle) \\ \tilde{\beta}_0 \rangle + \begin{vmatrix} \tilde{\beta}_1 \rangle) \\ \tilde{\beta}_1 \rangle).$$

Not surprising since:

$$\rho = \frac{1}{2}|0\rangle\langle 0| + \frac{1}{2}|+\rangle\langle +| = \cos^2\frac{\pi}{8}|\beta_0\rangle\langle\beta_0| + \sin^2\frac{\pi}{8}|\beta_1\rangle\langle\beta_1|$$

Postulates of QM