Few Notations

- We denote $|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ and $|-\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$,
- Also, $\ominus=\{|0\rangle,|1\rangle\}$ and $\varnothing=\{|+\rangle,|-\rangle\}$ are two orthogonormal bases (rectilinear and diagonal resp.) in \mathcal{H}_{2},
- The 4 states BB84 $=\{|0\rangle,|1\rangle,|+\rangle,|-\rangle\}$ are called the BB84 states,
- BB84(0) $=\{|0\rangle,|+\rangle\}$ are the two non-orthogonal encoding of classical bit 0 ,
- BB84(1) $=\{|1\rangle,|-\rangle\}$ are the two non-orthogonal encoding of classical bit 1.
- $\left|\gamma_{0}\right\rangle=\cos \frac{\pi}{8}|0\rangle+\sin \frac{\pi}{8}|1\rangle$ and $\left|\gamma_{1}\right\rangle=\sin \frac{\pi}{8}|0\rangle-\cos \frac{\pi}{8}|1\rangle$ are states of the Breidbard basis $\left\{\left|\gamma_{0}\right\rangle,\left|\gamma_{1}\right\rangle\right\}$.

BB84(0)

1. Alice chooses $b \in_{R}\{0,+\}$,
2. Alice sends $|b\rangle$,

BB84* (0)

1. Alice prepares

$$
|S(0)\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{1}|0\rangle_{2}+|1\rangle_{1}|+\rangle_{2}\right)
$$

2. Alice sends particle 2 and keeps particle 1.

The state ρ_{2} of particle 2 in $\mathbf{B B 8 4} \boldsymbol{4}^{*}(0)$ is

$$
\rho_{2}=\operatorname{Tr}_{1}(|S(0)\rangle\langle S(0)|)=\frac{1}{2}(|0\rangle\langle 0|+|+\rangle\langle+|)=\rho_{B B 84}(0) .
$$

- $\mathbf{B B 8 4 *}(0)$ is called a purification of $\mathbf{B B 8 4 (0)}$. The purified version does not use any coin.
- In BB84* (0) Alice does not know the state sent before she measures particle 1.

One could also purify the mixture of pure states $\mathcal{B}=\left\{\left(\left|\gamma_{0}\right\rangle, \cos ^{2} \frac{\pi}{8}\right),\left(\left|\gamma_{1}\right\rangle, \sin ^{2} \frac{\pi}{8}\right)\right\}$ the same way:

$$
\left|\mathcal{B}^{*}\right\rangle=\cos \frac{\pi}{8}|0\rangle_{1}\left|\gamma_{0}\right\rangle_{2}+\sin \frac{\pi}{8}|1\rangle_{1}\left|\gamma_{1}\right\rangle_{2}
$$

which satisfies

$$
\rho_{\mathcal{B}}=\operatorname{Tr}_{1}\left(\left|\mathcal{B}^{*}\right\rangle\left\langle\mathcal{B}^{*}\right|\right)=\cos ^{2} \frac{\pi}{8}\left|\gamma_{0}\right\rangle\left\langle\gamma_{0}\right|+\sin ^{2} \frac{\pi}{8}\left|\gamma_{1}\right\rangle\left\langle\gamma_{1}\right|=\rho(0) .
$$

- Nothing can tell given only particle 2 whether it is part of $\left|B^{*}\right\rangle$ or $|S(0)\rangle$.
- One can transform one into the other by applying a transformation to particle 1 alone...

Equivalence between Purifications

Let U be the unitary transform acting in a 2-dimensional Hilbert space:

$$
|0\rangle \mapsto \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \text { and }|1\rangle \mapsto \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$

Let's apply U on the particle 1 of $|S(0)\rangle$,

$$
\begin{aligned}
(U \otimes \mathbb{1}))|S(0)\rangle & =(U \otimes \mathbb{1}) \frac{1}{\sqrt{2}}\left(|0\rangle_{1}|0\rangle_{2}+|1\rangle_{1}|+\rangle_{2}\right) \\
& =\frac{1}{2}\left(\left(|0\rangle_{1}-|1\rangle_{1}\right)|0\rangle_{2}+\left(|0\rangle_{1}+|1\rangle_{1}\right)|+\rangle_{2}\right) \\
& =\frac{1}{2}\left\{|0\rangle_{1}(|0\rangle+|+\rangle)+|1\rangle(-|0\rangle+|+\rangle)\right\} \\
& =\cos \frac{\pi}{8}|0\rangle\left|\gamma_{0}\right\rangle+\sin \frac{\pi}{8}|1\rangle\left|\gamma_{1}\right\rangle=\left|B^{*}\right\rangle
\end{aligned}
$$

HJW Theorem (a special case)

Theorem [HJW93]. Any pairs of purifications $\left\{\left|\Psi_{0}\right\rangle,\left|\Psi_{1}\right\rangle\right\}$ in
$H_{1} \otimes H_{2}$ for $\rho \in H_{2}$ is related by some unitary transform $U_{0,1} \in H_{1}$ that satisfies:

$$
\left|\Psi_{1}\right\rangle^{1,2}=\left(U_{0,1} \otimes \mathbf{I}_{2}\right)\left|\Psi_{0}\right\rangle^{1,2}
$$

Proof: Write $\left|\Psi_{0}\right\rangle$ and $\left|\Psi_{1}\right\rangle$ in the Schmidt form:

$$
\begin{array}{ccc}
\left|\Psi_{0}\right\rangle=\sum_{i=1}^{r} \sqrt{\lambda_{i}} & \left|e_{i}^{(0)}\right\rangle & \otimes\left|f_{i}\right\rangle \\
& \Uparrow U_{0,1} \\
\left|\Psi_{1}\right\rangle=\sum_{i=1}^{r} \sqrt{\lambda_{i}} & \left|e_{i}^{(1)}\right\rangle & \otimes\left|f_{i}\right\rangle
\end{array}
$$

$\lambda_{1}, \ldots, \lambda_{r}$ are the eigenvalues of $\rho=\operatorname{Tr}_{1}\left(\left|\Psi_{0}\right\rangle\left\langle\Psi_{0}\right|\right)=\operatorname{Tr}_{1}\left(\left|\Psi_{1}\right\rangle\left\langle\Psi_{1}\right|\right)$, and $\left\{\left|e_{i}^{(b)}\right\rangle\right\}_{i}$ and $\left\{\left|f_{i}\right\rangle\right\}_{i}$ are orthonormal bases for \mathcal{H}_{1} and \mathcal{H}_{2}.

Implications

We have seen,

- Purifications allow to encapsulate a quantum mixture in a pure state.
- Different purifications of the same density matrix ρ are related by some unitary transform $U_{0,1}$ that is the identity on $\rho \in H_{2}$,
- Purifications are therefore all equivalent under local quantum computation,

We shall see,

- Quantum 2-Party protocols can be implemented in such a way that each execution with the same classical inputs generates the same state. This process is called the purification of a quantum protocols,
- This implies that no quantum bit commitment is secure against both parties.

Purifying a measurement

1. Alice chooses $\theta \in_{R}\{\ominus, \oslash\}$,
2. Alice measures photon π in basis θ and gets the outcome \hat{b},
3. Alice announces \hat{b} to Bob.
convention: $|\ominus\rangle=|0\rangle$ and $|\oslash\rangle=|1\rangle$.

Let U_{M} acting on quantum register $|\bullet\rangle$ and the received qubit $|\bullet\rangle$:

$$
\begin{array}{ll}
\frac{1}{\sqrt{2}}(|\ominus\rangle+|\oslash\rangle) & \overbrace{|0\rangle}^{\text {state of the register }} \text { photon } \pi
\end{array} \mapsto \frac{1}{\sqrt{2}}\left(|\ominus\rangle|0\rangle+\frac{1}{\sqrt{2}}(|\oslash\rangle|0\rangle+|\oslash\rangle|1\rangle)\right)
$$

$$
\begin{aligned}
U_{M} \frac{1}{\sqrt{2}}(|\ominus\rangle+|\oslash\rangle)|+\rangle & =U_{M} \frac{1}{2}(|\ominus\rangle+|\oslash\rangle)(|0\rangle+|1\rangle) \\
& =\frac{1}{\sqrt{2}}\left(|\oslash\rangle|0\rangle+\frac{1}{\sqrt{2}}(|\ominus\rangle|0\rangle+|\ominus\rangle|1\rangle)\right)
\end{aligned}
$$

- The construction can easily be generalized for $\theta \in\{(p, \ominus),(1-p, \oslash)\}$ (for any $0 \leq p \leq 1)$ by starting with state

$$
\sqrt{p}|\ominus\rangle+\sqrt{1-p}|\oslash\rangle
$$

- Measuring $|0\rangle$ alone gives the classical outcome of an undetermined random measurement $\{\ominus, \oslash\}$.
\Rightarrow The outcome \hat{b} can be obtained without θ being determined,
\Rightarrow Purifying a measurement postpones the choice of it until it is really required.

Purifying Quantum Protocols (I)

1. Set an internal register with a fresh random bit according to distribution $\{(0, p),(1,1-p)\}$,
2. Compute a function f of the set of registers and store the outcome,
3. Send the content of a quantum register to the peer,
4. Classical announcement to the peer of the content of one register,
5. Quantum reception of a new qubit,
6. Classical reception of a new classical bit.

Purifying Quantum Protocols (II)

1. Randomness:A new quantum register $|R\rangle$ is set to

$$
|R\rangle=\sqrt{p}|0\rangle+\sqrt{1-p}|1\rangle .
$$

2. Computation/Measurement:Let U_{f} the unitary transformation implementing f and acting on the set \mathcal{V} of registers. The new state \mathcal{V}^{\prime} for the registers is

$$
\left|\mathcal{V}^{\prime}\right\rangle=U_{f}|\mathcal{V}\rangle
$$

3. Quantum transmission:A quantum register is sent away.
4. Classical announcement:The register containing the bit is measured (in the standard basis \ominus) and the classical result announced.
5. Quantum/Classical reception:The received qubit is added to the set of registers.

Mayers' Theorem (ind. disc. Lo \& Chau)

Theorem[PRL97].Any unconditionally concealing quantum bit commitment protocol is necessarily not binding.

Proof sketch. Assume $\rho_{0}=\rho_{1}$ where ρ_{b} is the mixed state sent when Alice commits upon b.

Let $\left|\Psi_{0}\right\rangle \in H_{A} \otimes H_{B}$ and $\left|\Psi_{1}\right\rangle \in H_{A} \otimes H_{B}$ be the purifications for Commit(0) and Commit(1) respectively,

$$
\begin{aligned}
\left|\Psi_{0}\right\rangle & =\sum_{i} \lambda_{i}\left|e_{i}^{(0)}\right\rangle \otimes\left|f_{i}\right\rangle \\
\left|\Psi_{1}\right\rangle & =\sum_{i} \lambda_{i}\left|e_{i}^{(1)}\right\rangle \otimes\left|f_{i}\right\rangle
\end{aligned}
$$

since $\left|\Psi_{0}\right\rangle$ and $\left|\Psi_{1}\right\rangle$ are purifications of the same density matrix $\rho=\rho_{0}=\rho_{1}$ (i.e. required for perfectly concealing commitments).

Cheating Alice

- Alice executes the purification $\left|\Psi_{0}\right\rangle$ for commit (0),
- If Alice wants to unveil 0 she just executes unveil(0) from $\left|\Psi_{0}\right\rangle$,
- If Alice wants to unveil 1 :
- She applies $U_{0,1} \in H_{A}$ to her part of $\left|\Psi_{0}\right\rangle$ promised by Theorem [HJW93],

$$
\left|\Psi_{1}\right\rangle=\left(U_{0,1} \otimes \mathbb{1}_{B}\right)\left|\Psi_{0}\right\rangle,
$$

- She executes unveil(1) from $\left|\Psi_{1}\right\rangle$.
\Rightarrow How to generalize to the case where the commitments are statistically concealing:

$$
\rho_{0} \approx \rho_{1} ?
$$

Statistically Concealing Commitments

If $\Lambda_{0}=\left\{\rho_{0}^{(n)}\right\}$ and $\Lambda_{1}=\left\{\rho_{1}^{(n)}\right\}$ are statistically indistinguishable,

$$
\begin{aligned}
& B\left(\rho_{0}^{(n)}, \rho_{1}^{(n)}\right) \geq 1-\epsilon^{n} \Rightarrow \\
& \quad\left|\Psi_{1}\right\rangle \in \operatorname{Purif}\left(\rho_{1}^{(n)}\right),\left|\hat{\Psi}_{1}\right\rangle \in \operatorname{Purif}\left(\rho_{0}^{(n)}\right):\left\|\left\langle\Psi_{1} \mid \hat{\Psi}_{1}\right\rangle\right\| \geq 1-\epsilon^{n}
\end{aligned}
$$

Let $\hat{U}_{0,1}$ be such that $\left|\hat{\Psi}_{1}\right\rangle=\left(\hat{U}_{0,1} \otimes \mathbb{1}_{B}\right)\left|\Psi_{0}\right\rangle($ from [HJW93]):

Alice's Attack

- Alice executes the purification $\left|\Psi_{0}\right\rangle$ for commit(0),
- If Alice wants to unveil 0 she just executes unveil(0) from $\left|\Psi_{0}\right\rangle$,
- If Alice wants to unveil 1:
- She applies $\hat{U}_{0,1} \in H_{A}:\left|\hat{\Psi}_{1}\right\rangle=\left(\hat{U}_{0,1} \otimes \mathbb{1}_{B}\right)\left|\Psi_{0}\right\rangle$,
- She executes unveil(1) from $\left|\hat{\Psi}_{1}\right\rangle$.

