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Abstract

These notes are written to provide our own documentation for the
Soot framework from McGill University. They focus exclusively on the
parts of Soot that we have used in various projects: parsing class files,
performing points-to and null pointer analyses, performing data-flow anal-
ysis, and extracting abstract control-flow graphs. The notes also contain
the important code snippets that make everything work since it is our
experience, that the full Soot API leaves novice users in a state of shock
and awe.
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1 Introduction

This guide provides detailed descriptions and instructions on the use of Soot, a
Java optimization framework [13]. More specifically on how we have used and
are using Soot in various projects involving different forms of analysis. Soot is
a large framework which can be quite challenging to navigate without getting
quickly lost. With this guide, we hope to provide the insight necessary to make
that navigation a little more comfortable. The reader is assumed to be familiar
with basic static analysis on a level similar to [12] and a firm command of the
Java programming language and Java bytecode.

Soot is a product of the Sable research group from McGill University, whose
objective is to provide tools leading to the better understanding and faster
execution of Java programs. The Soot website is at http://www.sable.mcgill.
ca/soot/.

One of the main benefits of Soot is that it provides four different Intermediate
Representations (IR) for analysis purposes. Each of the IRs have different levels
of abstraction that give different benefits when analyzing, they are: Baf, Grimp,
Jimple and Shimple.

Soot builds data structures to represent:

Scene. The Scene class represents the complete environment the analysis takes
place in. Through it, you can set e.g., the application classes(The classes
supplied to Soot for analysis), the main class (the one that contains the
main method) and access information regarding interprocedural analysis
(e.g., points-to information and call graphs).

SootClass. Represents a single class loaded into Soot or created using Soot.
SootMethod. Represents a single method of a class.
SootField. Represents a member field of a class.

Body. Represents a method body and comes in different flavors, corresponding
to different IRs (e.g., JimpleBody).

These data structures are implemented using Object-Oriented techniques, and
designed to be easy to use and generic where possible.

This guide is a practitioners survival guide so it is best read sitting in front
of a computer with the source code for each section loaded into your favorite
text editor and running the examples as we go along. There’s no substitute for
hands-on practice.

1.1 Setting up Soot

Soot is available to download from the Sable group’s website: http://www.
sable.mcgill.ca/soot/soot_download.html. The easiest and fastest way is
to get the pre-compiled Jars, you will need all of sootclasses, jasminclasses and



polyglotclasses. During the compilation of this guide we have used Soot version
2.2.2, but we have not tested any newer release. !

To use Soot you need the soot, jasmin, and polyglot jars to be on the class-
path. To test the setup, try executing:

java -cp jasminclasses-2.3.0.jar:polyglot.jar:sootclasses-2.3.0.jar:.
soot.Main --help

at the command line and you should receive instructions on how to use the tool.

Note that you need at least JDK 1.3 to use Soot and at least JDK 1.4 to
use the Eclipse plugin. The newer releases has some support for JDK 1.5 but
we have not tested that.

Developing with Soot in Eclipse

To develop using Soot in Eclipse, you start by creating an empty project. Then
you need to add the three Jars as libraries to your project. To do this, right
click on your project and select Properties. From the tree on the right, select
Java Build Path and from there the Libraries tab. Select Add FEzternal Jars,
navigate to where Jars are located and select the first Jar. Click OK. Repeat
this for the other two Jars.

Setting up the Soot Eclipse plugin

For instruction on how to set up the Eclipse plugin, refer to http://www.sable.
mcgill.ca/soot/eclipse/updates/.

1.2 Road-map to this guide

This Guide is best served when read in the order it is presented. However,
to briefly prepare the reader for what he/she is about to read, we present the
following road-map.

Internal Representations describes the four IRs in Soot: Baf, Jimple, Shim-
ple and Grimp, in some detail.

Basic Soot Constructs describes briefly the basic objects that constitute a
method body.

Soot as a stand-alone tool describes how to use Soot as an isolated tool. To
that end, this section describes the inner workings of Soot, using Soot at
the command-line and the various options it accepts, some of the built-in
analyses it provides and how to extend the tool with user-defined analyses.

The Data-Flow Framework describes in detail how to utilize the power of
the data-flow framework within Soot. It is accompanied by a complete
example implementation of a very-busy expressions analysis. This section

IThe call-graph example has been updated to Soot version 2.3.0.



includes a description of how to tag code for the Eclipse plugin to present
results visually.

Call Graph Construction describes how to access a call graph during a whole-
program analysis and use it to extract various information.

Points-To analysis describes how to set up and use two of the more advanced
frameworks for doing points-to analysis in Soot: SPARK and Paddle.

Extracting Abstract Control-Flow Graphs describes how to use Soot to
extract a custom IR of an abstract control-flow graph to be used as a
starting point for an analysis which may benefit from the simplifications
made during the abstraction, like the Java String Analysis|3].

Furthermore all examples used in this note are complete and can be obtained
at http://www.brics.dk/SootNote/.

2 Basic Soot Constructs

In this section we describe the basic objects used commonly throughout the use
of Soot. More specifically, we focus on the objects that make up the code of a
method. These are fairly brief descriptions due to the fact that these are very
simple constructs.

2.1 Method bodies

The Soot class Body represents a single method body, it comes in different flavors
for each of the IR s used to represent the code. These are:

® BafBody

® GrimpBody

ShimpleBody
e JimpleBody

We can use a Body to access various information, most notably we can retrieve
a Collection (Soot uses its own implementation of a Collection, called Chain)
of the locals declared (getLocals()), the statements which constitute the body
(getUnits()) and all exceptions handled in the body (getTraps()).

2.2 Statements

A statement in Soot is represented by the interface Unit, of which there are
different implementations for different IRs — e.g., Jimple uses Stmt while Grimp
uses Inst.

Through a Unit we can retrieve values used (getUseBoxes()), values defined
(getDefBoxes()) or even both (getUseAndDefBoxes()). Additionally, we can get



at the units jumping to this unit (getBoxesPointingToThis()) and units this unit
is jumping to (getUnitBoxes()) — i.e., by jumping we mean control flow other
than falling through. Unit also provides various methods of querying about
branching behavior, such as fallsThrough() and branches().

Values

A single datum is represented as a Value. Examples of values are: locals (Local),
constants (in Jimple Constant), expressions (in Jimple Expr), and many more.
An expression has various implementations, e.g. BinopExpr and InvokeExpr, but
in general can be thought of as carrying out some action on one or more Values
and returns another Value.

References

References in Soot are called boxes, of which there are two different types:
ValueBox and UnitBox.

UnitBoxes refer to Units. Used when a single unit can have multiple succes-
sors, i.e. when branching.

ValueBoxes refer to Values. As previously described, each unit has a notion
of values used and defined in it, this can be very useful for replacing use
or def boxes in units, for instance when performing constant folding.

3 Intermediate Representations

The Soot framework provides four intermediate representations for code: Baf,
Jimple, Shimple and Grimp. The representations provide different levels of ab-
straction on the represented code and are targeted at different uses e.g., baf is a
bytecode representation resembling the Java bytecode and Jimple is a stackless,
typed 3-address code suitable for most analyses. In this section we will give a
detailed description of the Jimple representation and a short description of the
other representations.

3.1 Baf

Baf is a streamlined stack-based representation of bytecode. Used to inspect
Java bytecode as stack code, but abstracts away the constant pool and ab-
stracts type dependent variations of instructions to a single instruction (e.g.
in Java bytecode there are a number of instructions for adding integers, longs,
etc. in Baf they have all been abstracted into a single instruction for addi-
tion). Instructions in Baf correspond to Soot Units and so all implementations
of instructions implement the Inst interface which implements the Unit and
Switchable interfaces.



The implementation of the Baf representation resides in the soot.baf and
soot.baf.internal packages and the very curious reader is encouraged to investi-
gate these packages, but be aware that there is no documentation of the indi-
vidual classes.

Balf is useful for bytecode based analyses, optimizations and transformations,
like peephole optimizations.

Optimizations available as part of the Soot framework based on the Baf
representation can be found in the package soot.baf.toolkits.base.

3.2 Jimple

Jimple is the principal representation in Soot. The Jimple representation is a
typed, 3-address, statement based intermediate representation.

Jimple representations can be created directly in Soot or based on Java
source code(up to and including Java 1.4) and Java bytecode/Java class files(up
to and including Java 5).

The translation from bytecode to Jimple is performed using a naive trans-
lation from bytecode to untyped Jimple, by introducing new local variables for
implicit stack locations and using subroutine elimination to remove jsr instruc-
tions. Types are inferred for the local variables in the untyped Jimple and
added [4]. The Jimple code is cleaned for redundant code like unused variables
or assignments. An important step in the transformation to Jimple is the lin-
earization (and naming) of expressions so statements only reference at most 3
local variables or constants. Resulting in a more regular and very convenient
representation for performing optimizations. In Jimple an analysis only has to
handle the 15 statements in the Jimple representation compared to the more
than 200 possible instructions in Java bytecode.

In Jimple, statements correspond to Soot Units and can be used as such.
Jimple has 15 statements, the core statements are: NopStmt, IdentityStmt
and AssignStmt. Statements for intraprocedural control-flow: IfStmt, Goto-
Stmt, TableSwitchStmt(corresponds to the JVM tableswitch instruction) and
LookupSwitchStmt(corresponds to the JVM lookupswitch instruction). State-
ments for interprocedural control-flow: InvokeStmt, ReturnStmt and Return-
VoidStmt. Monitor statements: EnterMonitorStmt and ExitMonitorStmt. The
last two are: ThrowStmt, RetStmt (return from a JSR, not created when mak-
ing Jimple from byte code).

As an example lets generate Jimple code for the following class:



public class Foo {

public static void main(String[] args) {
Foo f = new Foo();

int a = 7;
int b = 14;
int x = (f.bar(21) + a) * b;

}

public int bar(int n) { return n + 42; }

}

Running Soot using the command java soot.Main -f J Foo yields the file
Foo.Jimple in the directory sootOutput also shown below - for more information
on how to run Soot from the command line or Eclipse see Section 4.

public static void main(java.lang.String[]) {
java.lang.String[] rO;
Foo $ri1, r2;
int i0, i1, i2, $i3, $i4;

r0 := Qparameter(O: java.lang.String[];

$r1 = new Foo;

specialinvoke $rl.<Foo: void <init>()>(Q);
r2 = $ri;

i0 = 7;

i1 = 14;

// InvokeStmt

$i3 = virtualinvoke r2.<Foo: int bar()>(21);
$i4 = $i3 + i0;

i2 = $id4 * i1;

return;

}

public int bar() {
Foo r0;
int i0, $i1;
r0 := Qthis: Foo; // IdentityStmt
i0 := @parameterO: int; // IdentityStmt
$i1l = i0 + 21; // AssignStmt
return \$il; // ReturnStmt

In the code fragment above we see the Jimple code generated for the main
and bar methods. Jimple is a hybrid between Java source code and Java byte
code. We recognize the statement-based structure from Java with declarations
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of local variables and assignments, but the control flow and method invocation
style is similar to the one in Java bytecode. The local variables which start
with a $ sign represent stack positions and not local variables in the original
program whereas those without $ represent real local variables e.g. i0 in the
main method corresponds to a in the Java source.

The linearization process has split up the statement int x = (f.bar(21) +
a) * b into the three statements $i4 = $i3 + i0 and i2 = $i4 * i1 and thus
enforced the 3-address form.

In Jimple, parameter values and the this reference are assigned to local vari-
ables using IdentityStmt’s e.g. the statements i0 := @parameter0: int; and r0
:= @this: Foo in the bar method. By using IdentityStmt’s it is ensured that
all local variables have at least one definition point and so it becomes explicit
in the code where this in this.m(); is defined.

All the local variables are typed. The type information can be used with
great advantage during analysis.

Jimple is a very good foundation for most analyses which do not need the
explicit control flow and SSA form of Shimple. The versatility of the Jimple
representation is best illustrated by the many built-in analyses provided as part
of the Soot framework.

Be aware that Jimple is not Java source, especially the introduction of new
unique variables can result in great difference between result and expectations
when you compare the Java source code to the produced Jimple code.

The Jimple intermediate representation is available in the packages soot.jimple,
soot.jimple.internal and an extensive collection of optimizations are available
in soot.jimple.toolkits.* especially soot.jimple.toolkits.scalar and soot.jimple.-
toolkits.annotation.™*.

3.3 Shimple

The Shimple intermediate representation is a Static Single Assignment-form ver-
sion of the Jimple representation. SSA-form guarantees that each local variable
has a single static point of definition which significantly simplifies a number of
analyses.

Shimple is almost identical to Jimple with the two differences of the single
static point of definition and the so-called phi-nodes, and so Shimple can be
treated almost in the same way as Jimple.

As an example we use the ShimpleExample class with the test method shown
below?:

public int test() {
int x = 100;

2The example is based on a similar example found on the Soot homepage
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while(as_long_as_it_takes) {

if(x < 200)
x = 100;
else
x = 200;
}
return Xx;
}

Producing Jimple based on the ShimpleExample class using java soot.Main
-f jimple ShimpleExample yields the following Jimple code:

public int test() {
ShimpleExample rO;
int i0;
boolean $z0;

r0 := Othis: ShimpleExample;
i0 = 100;

labelO:
$z0 = r0.<ShimpleExample: boolean as_long_as_it_takes>;
if $z0 == 0 goto label2;

if 10 >= 200 goto labell;

i0 = 100;
goto labelO;

labell:
i0 = 200;
goto labelO;

label2:
return iO;

Where we see three assignments to the variable i0 which violates the static
single assignment form.

If we produce the corresponding Shimple code using java soot.Main -f
shimple ShimpleExample we get:

public int test() {
ShimpleExample r0;
int i0, 10_1, 10_2, i0_3;
boolean $z0;

12



r0 := Othis: ShimpleExample;
(0) i0 = 100;

labelO:
i0_1 = Phi(i0 #0, i0_2 #1, 10_3 #2);
$z0 = r0.<ShimpleExample: boolean as_long_as_it_takes>;
if $z0 == 0 goto label2;

if 10_1 >= 200 goto labell;

i0_2 = 100;
(1) goto labelO;

labell:
i0_3 = 200;
(2) goto labelO;

label2:
return iO_1;

Which is identical to the Jimple code except for two things. The introduction
of a Phi-node and the variable i0 has been spilt into four variables 10, i0_1, i0_2,
and i0_3.

Phi-nodes are needed in SSA-form because the value of i0_1 depends on the
path taken in the control flow graph. The value may arrive from either (0), (1),
or (2). The Phi-node can be seen as a function which returns the value of i0 if
the flow arrives from (0), the value of 102 if the flow arrives from (1) or the
value of 103 if the flow arrives from (2). The paper [2] is a good reference on
SSA-form.

Shimple encodes control-flow explicitly and so we can easily make control-
flow sensitive analysis on Shimple code. The careful reader will have noticed
that x is constant in the above example so the test method could have been
constant folded to a single return statement since most of the control structures
are unnecessary.

To illustrate the differences between the Shimple representation and the Jim-
ple representation let’s optimize the program based on each representation and
compare the outcome. If we run the Jimple constant propagator and folder on
the ShimpleExample class - just to make the point clear we apply every available
optimization in the Soot arsenal: java soot.Main -f jimple -0 ShimpleExample
which yields the following result:

public int test() {
ShimpleExample r0;
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int i0;
boolean $z0;

rO := Qthis: ShimpleExample;
i0 = 100;

labelO:
$z0 = r0.<ShimpleExample: boolean as_long_as_it_takes>;
if $z0 == 0 goto label2;

if 10 >= 200 goto labell;

i0 = 100;
goto labelO;

labell:
i0 = 200;
goto labelO;

label2:
return iO;

Which is exactly equal to the output we saw earlier, when running Soot with
no optimization! Based on the Jimple representation the optimizations are not
able to deduce that x is constant.

Running the Shimple constant propagator and folder java soot.Main -f
jimple -via-shimple -0 ShimpleExample yields:

public int test() {

ShimpleExample r0;
boolean $z0;
rO := Qthis: ShimpleExample;

labelO:
$z0 = r0.<ShimpleExample: boolean as_long_as_it_takes>;
if $z0 == 0 goto labell;
goto labelO;

labell:

return 100;

Which is what we expected. Since the field variable as_long as_it_takes is
non-static the while loop can not be completely removed, but as we see the
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conditional assignments have been removed since the optimizer deduced that x
is constant and so the phi-node chose between three identical values and got
optimized away.

Conclusion: Shimple exposes the control structure explicitly and variables
only have a static single assignment.

The Shimple intermediate representation is available in the packages soot.-
shimple, soot.shimple.internal and a constant-folder is available in soot.shimple.-
toolkits.scalar.

3.4 Grimp

Grimp is similar to Jimple, but allows trees of expressions together with a rep-
resentation of the new operator — in this respect Grimp is closer to resembling
Java source code than Jimple is and so is easier to read and hence the best in-
termediate representation for inspecting disassembled code by a human reader.

As an example of support for trees of expressions we run the Foo example
through Soot in order to produce Grimp code using the command java soot. Main
-f G Foo which yields the file Foo.grimple in the directory sootOutput. Below
we show the main method from the Foo.grimple files:

public static void main(java.lang.String[]) {
java.lang.String[] rO;
Foo r2;
int i0, i1, 1i2;

r0 := Qparameter(O: java.lang.String[];
r2 = new Foo();
i0 = 7;
il = 14;
i2 = (r2.<Foo: int bar(int)>(21) + i0) * il;
return;
}

There are three very clear differences between the two main methods. One,
expression trees are not linearized. Two, object instantiation and constructor
call has been collapsed into the new operator. Three, since expression trees are
not linearized new temporary locals(locals starting with $) are not created, but
we do need new temporary locals in connection with e.g. while.

The Grimp representation is good for some kinds of analyses like available ex-
pressions, if you want complex expressions as well as simple expressions. Grimp
is also a good starting point for decompilation.

The Grimp intermediate representation is available in the packages soot.grimp,

soot.grimp.internal and some optimizations are available in soot.grimp.toolkits.-
base.
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4 Soot as a stand-alone tool

Most of the information contained within this section is a summation from
http://www.sable.mcgill.ca/soot/tutorial/usage/. We wish to stress the
fact that said information is by far not a complete list, but rather a compilation
of features we have found especially useful.

Soot can be used as a stand-alone tool for many different purposes e.g.,
applying some of the built-in analyses or transformations to your own code. The
Soot tool can be executed either using the command line or the Eclipse plug-
in. The many different uses are reflected in the huge number of configuration
options available. This section will describe how to use Soot as a stand-alone
tool, how the options are grouped according to their use and some of the most
often used options are described in detail (further descriptions can be found at
the previously mentioned URL).

Soot can be invoked from the command line as follows, if Soot is included
in your classpath:

java [javaOptions] soot.Main [sootOptions] classname

where [sootOptions] represent the various options Soot accepts and classname
is the class to analyze. Soot can also be run through the Eclipse plugin from
either the Project menu or the Navigator pop-up menu and choose Soot — Pro-
cess (all) source file(s) — Run. The Eclipse plug-in provides a GUI interface to
all the options that Soot accepts.

To get a list of options supported by Soot, run:
java soot.Main -h

from the command-line.

Class categorization. In Soot we distinguish between three kinds of classes:
argument classes, application classes, and library classes.

The argument classes are the classes you specify to Soot. Using the command-
line tool they would be the classes listed explicitly or those found in a directory
given by the -process-dir option. In Eclipse the argument classes are the selected
classes if you access the Soot plug-in using the Navigator pop-up menu, or the
classes of the entire project if you access the Soot plug-in using the Project
menu. All argument classes are also application classes.

The application classes are the classes to be analyzed or transformed by
Soot, and turned into output.

Library classes are those classes that are referred to by application classes but
are not application classes. They are used in the analyses and transformations
but are not themselves transformed or output.

There are also two modes that affect the behavior of how classes are cate-
gorized: application mode and non-application mode. In application mode all
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classes referred to by the argument classes become application classes them-
selves, excluding class from the Java runtime system. In non-application mode
those same classes would be library classes.

Soot provides further options to influence which classes are application classes
in application mode.

-i PKG, -include PKG Those classes in packages whose names begin with
PKG will be treated as application classes.

-x PKG, -exclude PKG Those classes in packages whose names begin with
PKG will be treated as library classes.

-include-all All classes referred to by any argument classes will be treated as
application classes.

Several other options to control this behavior are available.

Input options. Soot provides several option to control how input to Soot is
handled, we will describe the most relevant.

-cp PATH, -soot-class-path PATH, -soot-classpath PATH Sets PATH as
the classpath to search for classes.

-process-dir DIR Sets all the classes found in DIR as argument classes.

-src-prec FORMAT Sets the precedence of source files to use. Valid FOR-
MAT strings are: ¢ (or class) to prefer class files (the default); J (or
jimple) to prefer Jimple files; java to prefer java files.

Output options. The output options control what to actually output from
Soot and then in what format. Classes that have been categorized as applica-
tion classes will be output as class files by default. This can be overridden by
specifying a value to the output format option (-f or -output-format). A format
exists for each of the intermediate representations and their abbreviated format
— e.g. to output Jimple code specify -f J or -f jimple. For a complete list of the
accepted formats refer to the previously mentioned URL.
Other output options worth mentioning are:

-d DIR, -output-dir DIR Specify the folder DIR to store output files (the
default is sootOutput).

-xml-attributes Save all tags to an XML file. This is used by the Eclipse
plug-in to visually convey the results of an analysis.

-outjar, -output-jar Save all output in a JAR file instead of in a directory.

17



4.1 Soot phases

The execution of Soot is separated into several phases called packs. The first
step is to produce Jimple code to be fed into the various packs. This is done
by parsing class, jimple or java files and then passing their result through the
Jimple Body (jb) pack.

The pack naming scheme is fairly simple. The first letter designates which
IR the pack accepts; s for Shimple, j for Jimple, b for Baf and g for Grimp.
The second letter designates the role of the pack; b for body creation, t for
user-defined transformations, o for optimizations and a for attribute generation
(annotation). A p at the end of the pack name stands for “pack”. For instance
the jap (Jimple annotations pack) contains all the built in intra-procedural
analyses.

The packs of special interest are those that allow user-defined transforma-
tions: jtp (Jimple transformation pack) and stp (Shimple transformation pack).
Any user defined transformations (e.g. tagging information from analyses) can
be injected into these packs and they will then be included in the execution of
Soot®. The execution flow through packs is best described in Figure 1. Each
application class is processed through a path in this execution flow but they
don’t have access to any information generated from the processing of other
application classes.

stp | sop sap j Shimple

@ jtp jop jap] Jimple

bb — bop tag Baf

gb | gop Grimp

(Dava) (Jasmin> Output

Figure 1: Intra-procedural execution flow. Image taken from [5].

Inter-procedural analysis With inter-procedural analyses, the execution
flow is a little different. When conducting an inter-procedural analysis in Soot

3These packs are intended for intra-procedural analyses.
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we need to put Soot into Whole-program mode and we do that by specifying the
option -w to Soot. In this mode Soot includes three other packs in the execu-
tion cycle: cg (call-graph generation), wjtp (whole Jimple transformation pack,
and wjap (whole Jimple annotation pack). Additionally, to add whole-program
optimizations (e.g. static inlining) we specify the option - W which further adds
the wjop (whole Jimple optimization pack) into the mix. The difference between
these packs and the intra-procedural ones is that the information generated in
these packs are made available to the rest of Soot through the Scene — i.e., the
same information is available for each application class being processed. See
Figure 2 for a visual representation of the execution flow.

jb jte Hiop Hjap Hbb Htag
\

jb jto Hiop Hjap Hbb [Htag
Nol |2 S [EN
SREIREIRE:

N N T .
jb jteRjopHiapHbbHtag
/
jb jtp Hiop Hjap Hbb Htag

Figure 2: Inter-procedural execution flow. Image taken from [5].

Phase options. To produce a list of all available packs in Soot, execute the
command:

java soot.Main -pl

from the command-line. This information can be used to get further help on
what options are available for the different packs and the operations they contain
(e.g. built in analyses). To list help and available options for a pack run Soot
like this:

java soot.Main -ph PACK

where PACK is one of the pack names listed from running Soot with -pl.

To set an option to a pack you specify the -p option followed by the pack
name and a key-value pair of the form OPT:VAL, where OPT is the option you
want to set and VAL is the value you want to set it to. For example, to turn
off all user-defined intra-procedural transformations you do:

java soot.Main -p jtp enabled:false MyClass

where MyClass is the class you wish analyzed.
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4.2 Off-The-Shelf Analyses

Soot includes several example analyses to demonstrate its capabilities. This
section describes how to run a few of these analyses from the command-line and
using the Eclipse plug-in.

Null Pointer Analysis. The built-in null pointer analysis is located in the
jap pack and is furthermore split up into two separate entities: the null pointer
checker and the null pointer colorer. The former finds instructions which have
the potential to throw NullPointerException while the latter uses that informa-
tion to add tagging information for the Eclipse plug-in. To run the null pointer
colorer to produce some visualization of nullness within our program we can do:

java soot.Main -xml-attributes -f J -p jap.npcolorer on MyClass

which will produce a Jimple file. When this file is viewed in Eclipse, reference
types will be color coded according to their nullness (green for definitely not
null, blue for unknown and red for definitely null).

To run the same analysis to produce color codes for the source file from
Eclipse, right-click the class you want to analyze, navigate to Soot — Process
Source File and click Run Soot... . This will bring up the Soot options dialog.
First click Output Options in the tree on the left and select Jimple File as
the desired Output Format from the options on the right. Next expand the
Phase Options tree, expand the Jimple Annotation Pack and select Null Pointer
Colorer. Check the box next to Enabled. Press Run. Now open the source file
and you should get something like depicted in Figure 3.

S 3=puoblic class NullPointerClass

= public static void main (String[] args)

oo

- string [ =

= String bar = new String("Hella™):
- String baz = Mworld";

S o it (i -

=l System.aut.println(-] H

$11 if (paz '= )

L=l System.out.println (BaE) ;

B if (paz '= EE)

Sz System.out.println (baz) ;

Figure 3: Null pointer analysis visualized.

Array Bounds Analysis. Another good example of a built-in analysis, is the
array bounds checker. The analysis checks whether array bounds might be vio-
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lated. This kind of analysis could enable the compiler to perform optimization
by not inserting explicit array bounds checks in the bytecode. This analysis
is also located in the jap pack under jap.abc. The simplest way to run it to
produce visualizations is:

java soot.Main -xml-attributes -f J -p jap.abc on -p jap.abc
add-color-tags:true MyClass

The results of the analysis indicate for both the upper bound and lower bound,
whether there’s a potentially unsafe access or the access is guaranteed to be
safe.

Liveness Analysis. For the final example, let’s look at liveness analysis. The
built in liveness analysis colors variables that are definitely live out of a state-
ment. It has only one option, enabled or not. To run it:

java soot.Main -xml-attributes -f J -p jap.lvtagger on MyClass

The results indicate all live variables out of a statement and furthermore, vari-
ables that are either used or defined in a statement and are live out of it get
colored green.

4.3 Extending Soot’s Main class

After having designed and implemented an analysis, we might need to be able to
use that in conjunction with other features (e.g. built-in analyses) from Soot.
To do this we need to extend Soot’s Main class to include our own analysis.
Note that this is not an extension in the Java meaning, but rather an injection
of an intermediate step where our analysis is put into Soot. In other words we
want Soot to run our analysis and still process all other options we might want
to pass to it.

How this is done depends on whether the analysis being injected is an inter-
or intra-procedural analysis. The former needs to be injected into the wjtp phase
while the latter goes into the jip phase. The following code example shows how
to inject an instance of the hypothecial class MyAnalysisTagger (which performs
some intraprocedural analysis) into Soot.

public class MySootMainExtension
{
public static void main(String[] args) {
// Inject the analysis tagger into Soot
PackManager.v() .getPack("jtp") .add(new
Transform("jpt.myanalysistagger",
MyAnalysisTagger.instance()));
// Invoke soot.Main with arguments given
Main.main(args) ;
}
}
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5 The Data-Flow Framework

In general we can think of designing a flow analysis as a four step procedure.

1. Decide what the nature of the analysis is. Is it a backwards or forwards
flow analysis? Do we need to consider branching specially, or not?

2. Decide what is the intended approximation. Is it a may or a must analysis?
In effect, you are deciding whether to union or intersect when merging
information flowing through a node.

3. Performing the actual flow; essentially writing equations for each kind of
statement in the intermediate representation — e.g. how should assign-
ment statements be handled?

4. Decide the initial state or approximation of the entry node (exit node if
it is a backwards flow) and inner nodes — generally the empty set or the
full set, depending on how conservative the analysis will be.

Performing data-flow analysis we need some sort of structure representing how
data flows through a program, such as a control flow graph (cfg). The Soot
data-flow framework is designed to handle any form of cfg implementing the
interface soot.toolkits.graph.DirectedGraph.

For instructional purposes we will use a very-busy expressions analysis as a
running example. The full code for the examples can be found in the source.

5.1 Step 1: Nature of the analysis

Soot provides three different implementations of analyses: ForwardFlowAnalysis,
BackwardFlowAnalysis and ForwardBranchedFlowAnalysis. The first two are the
same except for flow direction, the result of which are two maps: from nodes
to IN sets and from nodes to OUT sets. The last one provides the ability to
propagate different information through each of the branches of a branching
node — e.g., the information flowing out of a node containing the statement
if (x>0) can be z > 0 to one branch and x < 0 to the other. Thus the results
of that analysis are three maps: from nodes to IN sets, from nodes to fall-
through OUT sets and from nodes to branch OUT sets. All of these provide
an implementation of the fixed-point mechanism using a worklist algorithm.
If you want to implement this in some other way you can extend one of the
abstract super-classes: AbstractFlowAnalysis (the top one), FlowAnalysis or
BranchedFlowAnalysis. Otherwise, the way to plug your specific analysis into
the framework is to extend one of the first three classes.

In the case of very-busy expressions, we need a backwards flowing analysis,
so our class signature will be:

class VeryBusyExpressionAnalysis extends BackwardFlowAnalysis
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Now, in order to utilize the functionality from the framework we need to provide
a constructor. In this constructor we need to do two things: (1) call the super’s
constructor and (2) invoke the fixed-point mechanism. This is accomplished like
this:

public VeryBusyExpressionAnalysis(DirectedGraph g) {
super(g) ;
doAnalysis();

}

For information regarding DirectedGraph and other control flow graphs provided
by Soot, refer to Section 5.7.

5.2 Step 2: Approximation level

The approximation level of an analysis is decided by how the analysis performs
JOINs of lattice elements. Generally, an analysis is either a may or a must
analysis. In a may analysis we want to join elements using union, and in a
must analysis we want to join elements using intersection. In the flow analysis
framework joining is performed in the merge method. Very-busy expression
analysis is a must analysis so we use intersection to join:

protected void merge(Object inl, Object in2, Object out) {
FlowSet inSetl = (FlowSet)inl,

inSet2 = (FlowSet)in2,
outSet = (FlowSet)out;
inSetl.intersection(inSet2, outSet);

}

As can be seen from this, the flow analysis framework is designed with such
abstraction that it doesn’t assume anything about how the lattice element is
represented. In our case we use the notion of a FlowSet, described in detail
in Section 5.6. Because of this abstraction we also need to provide a way of
copying the contents of one lattice element to another:

protected void copy(Object source, Object dest) {
FlowSet srcSet = (FlowSet)source,
destSet = (FlowSet)dest;
srcSet.copy(destSet) ;
}

5.3 Step 3: Performing flow

This is where the real work of the analysis happens, the actual flowing of
information through nodes in the cfg. The framework method involved is
flowThrough. We can think of this process as having two parts: (1) we need
to move information from the IN set to the OUT set, excluding the information
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that the node kills; and (2) we need to add information to the OUT set that the
node generates. In the case of very-busy expressions, the node kills expressions
containing references to locals that are defined in the node. Furthermore, it
generates expressions that are used in the node.

protected void flowThrough(Object in, Object node, Object out) {
FlowSet inSet = (FlowSet)source,
outSet = (FlowSet)dest;
Unit u = (Unit)node;
kill(inSet, u, outSet);
gen(outSet, u);
}

The ki1l and gen methods are not part of the framework, but rather user-defined
methods. For the actual implementation of these methods, refer to the example
source code; better yet, try implementing them on your own first.

5.4 Step 4: Initial state

This step involves deciding the initial contents of the lattice element for the entry
point, and of the lattice elements of all the other points. In the flow analysis
framework, this is achieved by overriding two methods: entryInitialFlow and
newInitialFlow. In the case of very-busy expressions, the entry point is the last
statement (the exit point) and we want it to be initialized with the empty set.
As for other lattice points, we also want them initialized with the empty set.

protected Object entryInitialFlow() {
return new ValueArraySparseSet();

}

protected Object newInitialFlow() {
return new ValueArraySparseSet();

}

Note that ValueArraySparseSet is not a Soot construct, but rather our own
specialization of ArraySparseSet. For more information refer to Section 5.6.

5.5 Limitations

With an analysis such as very-busy expressions analysis, we need to keep in
mind what is actually being analyzed. In our case, we are analyzing Jimple code
and being a three-address code, compound expressions will be broken up into
intermediate parts (e.g. a+b+c becomes temp = a+b and temp—+c). This brings
us to the realization that our particular analysis, without modification, can only
analyze a fraction of possible expressions in the original source code. In this
particular case we could analyze Grimp code instead, and consider compound
expressions specially.
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5.6 Flow sets

In Soot, flow sets represent data associated with a node in the control-flow graph
(e.g. for busy expressions, a node’s flow set is a set of expressions busy at that
node).

There are two different notions of a flow set, bounded (the interface Bounded-
FlowSet) and unbounded (the interface FlowSet). A bounded set is one that
knows its universe of possible values, while unbounded is the opposite.

Classes implementing the FlowSet interface need to implement (among oth-
ers) the methods:

e clone()

e clear()

e isEmpty()

e copy(FlowSet dest) // deep copy of this into dest

e union(FlowSet other, FlowSet dest) // dest <- this U other

e intersection(FlowSet other, FlowSet dest) // dest <- this N other
o difference(FlowSet other, FlowSet dest) // dest <- this - other

These operations are enough to make a flow set a valid lattice element.

In addition, when implementing BoundedFlowSet, it needs to provide methods
for producing the set’s complement and its topped set (i.e., a lattice element
containing all the possible values).

Soot provides four implementations of flow sets: ArraySparseSet, ArrayPacked-
Set, ToppedSet and DavaFlowSet. We will describe only the first three.

ArraySparseSet is an unbounded flow set. The set is represented as an array
of references. Please note that when comparing elements for equality, it
uses the method equals inherited from Object. The twist here is that soot
elements (representing some code structure) don’t override this method.
Instead they implement the interface soot.EquivTo. So if you need a flow
set containing for example binary operation expressions, you should imple-
ment your own version using the equivTo method to compare for equality.

ArrayPackedSet is a bounded flow set. Requires that the programmer pro-
vides a FlowUniverse object. A FlowUniverse object is simply a wrapper
for some sort of collection or array, and it should contain all the pos-
sible values that might be put into the set. The set is represented by
a bidirectional map between integers and object (this map contains the
universe), and a bit vector indicating which elements of the universe are
contained within the set (i.e. if bit at index 0 is set, then the set contains
the element that the integer 0 maps to in the map). Be advised that
this implementation suffers from the same limitations as ArraySparseSet
concerning element equality.
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ToppedSet wraps another flow set (bounded or not) adding information re-
garding whether it is the top set (T) of the lattice.

In our very-busy expressions example, we need to have flow sets contain-
ing expressions and as such we want them to be compared for equivalence —
i.e., two different occurrences of a + b will be different instantiations of some
class implementing BinopExpr; thus they will never compare equal. To remedy
this, we use a modified version of ArraySparseSet, where we have changed the
implementation of the contains method as such:

public boolean contains(Object obj) {
for (int i = 0; i < numElements; i++)
if (elements[i] instanceof EquivTo
&& ((EquivTo) elements[i]).equivTo(obj))
return true;
else if (elements[i].equals(obj))
return true;
return false;

}

5.7 Control flow graphs

Soot provides several different control flow graphs (CFG) in the package
soot.toolkits.graph. At the base of these graphs sits the interface DirectedGraph;
it defines methods for getting: the entry and exit points to the graph, the suc-
cessors and predecessors of a given node, an iterator to iterate over the graph
in some undefined order and the graphs size (number of nodes).

The implementations we will describe here are those that represent a CFG
in which the nodes are Soot Units. Furthermore, we will only describe those
that represent an intraprocedural flow.

The base class for these kinds of graphs is UnitGraph, an abstract class that
provides facilities to build CFGs. There are three different implementations of
it: BriefUnitGraph, ExceptionalUnitGraph and TrapUnitGraph.

BriefUnitGraph is very simple in the sense that it doesn’t have edges repre-
senting control flow due to exceptions being thrown.

ExceptionalUnitGraph includes edges from throw clauses to their handler
(catch block, referred to in Soot as Trap), that is if the trap is local
to the method body. Additionally, this graph takes into account ex-
ceptions that might be implicitly thrown by the VM (e.g. ArrayIndex-
Out0fBoundsException). For every unit that might throw an implicit ex-
ception, there will be an edge from each of that units predecessors to the
respective trap handler’s first unit. Furthermore, should the excepting
unit contain side effects an edge will also be added from it to the trap
handler. If it has no side effects this edge can be selectively added or not
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with a parameter passed to one of the graphs constructors. This is the
CFG generally used when performing control flow analyses.

TrapUnitGraph like ExceptionalUnitGraph, takes into account exceptions
that might be thrown. There are three major differences:

1. Edges are added from every trapped unit (i.e., within a try block)
to the trap handler.

2. There are no edges from predecessors of units that may throw an
implicit exception to the trap handler (unless they are also trapped).

3. There is always an edge from a unit that may throw an implicit
exception to the trap handler.

To build a CFG for a given method body you simply pass the body to one
of the CFG constructors — e.g.

UnitGraph g = new ExceptionalUnitGraph(body) ;

5.8 Wrapping the results of the analysis

The results of a particular analysis are available through AbstractFlowAnalysis’
getFlowBefore method, FlowAnalysis’ getFlowAfter method and BranchedFlow-
Analysis’ getBranchFlowAfter and getFallFlowAfter methods. These methods
all simply return the object representing the lattice element. To make this more
solid, implementers are encouraged to provide an interface to their analyses,
masking the results to return an unmodifiable list of the elements in the lattice.

For our very-busy expressions example we have chosen to follow the conven-
tion used in the built in Soot analyses — i.e., provide a general interface and
one possible implementation of that. The interface is very simple, just providing
accessors to the relevant data.

public interface VeryBusyExpressions {
public List getBusyExpressionsBefore(Unit s);
public List getBusyExpressionsAfter(Unit s);
}

The implementation of this interface (which we have named SimpleVeryBusy-
Expressions) performs the actual analysis and collects the data into its own
maps of units to unmodifiable lists of expressions. For implementation details
refer to the example source code.

Here is a short example of how to run the very-busy expressions analysis
manually:
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// Set up the class we’re working with

SootClass ¢ = Scene.v().loadClassAndSupport("MyClass");
c.setApplicationClass();

// Retrieve the method and its body

SootMethod m = c.getMethodByName ("myMethod") ;

Body b = m.retrieveActiveBody();

// Build the CFG and run the analysis

UnitGraph g = new ExceptionalUnitGraph(b);
VeryBusyExpressions an = new SimpleVeryBusyExpressions(g);

// Iterate over the results

Iterator i = g.iterator();

while (i.hasNext()) {
Unit u = (Unit)i.next();
List IN = an.getBusyExpressionsBefore(u);
List OUT = an.getBusyExpressionsAfter(u);
// Do something clever with the results

}

But what is this “clever” thing we can do with our results? We’ll see an example
of that in Section 6.2.

6 Annotating code

The annotation framework in Soot was originally designed to support optimiza-
tions of Java programs using Java class file attributes [11]. The idea is to tag
information onto relevant bits of code, the virtual machine can then use these
tags to perform some optimization — e.g. excluding unnecessary array bounds
checks. This framework (located in soot.tagkit) consists of four major concepts:
Hosts, Tags, Attributes and TagAggregators.

Hosts are any objects that can hold and manage tags. In Soot SootClass,
SootField, SootMethod, Body, Unit, Value and ValueBox all implement this
interface.

Tags are any objects that can be tagged to hosts. This is a very general mech-
anism to connect name-value pairs to hosts.

Attributes are an extension to the tag concept. Anything that is an attribute
can be output to a class file. In particular any tag that is tagged to a class,
a field, a method or a body should implement this interface. Attributes
are meant to be mapped into class file attributes and because Soot uses
a tool called Jasmin to output bytecode, anything that should be output
to a class file must extend JasminAttribute. One such implementation in
Soot is CodeAttribute.
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TagAggregators are BodyTransformers (see Section 6.1) that collect tags of
some type and generate a new attribute to be output to a class file. The
aggregator must decide where to tag the relevant information — e.g. a
single unit could be transformed into several bytecode instructions, so the
aggregator must decide which one any annotation on that unit should
refer to. Soot provides several aggregators for its built in tags — e.g.
FirstTagAggregator associates a tag with the first instruction tagged with
it. Generally, if we use only the built in tags we don’t need to worry about
aggregators.

Later, with the development of the Soot plugin for Eclipse, this annotation
framework was used to convey information to the plugin, to display things like
analysis results visually [6]. More specifically, they introduced two new tags:
StringTag and ColorTag.

StringTag is a tag whose value is just a string. These are generally tagged to
units and the Eclipse plugin displays them with a popup balloon when the
mouse pointer hovers over the associated source code line.

ColorTag can be tagged to anything (that is a host). The Eclipse plugin will
use these tags to color either the foreground or the background (set in
the tag) of the associated part — e.g. tagging this to an expression will
prompt the plugin to color that expression.

6.1 Transformers

Transformers are not really a part of the tagging framework, but are used to,
among other things, annotate code. In general, a transformer is an object that
transforms some block of code to some other block of code. In Soot there are
two different transformers: BodyTransformer and SceneTransformer. They are
designed to make transformations on a single method body (i.e., intraprocedu-
ral) and on a whole application (i.e., interprocedural), respectively. To imple-
ment a transformer, one extends either one of the transformers and provides an
implementation of the internalTransform method.

6.2 Annotating very-busy expressions

Let’s take a look at how we can use this tagging mechanism to convey the results
of running our very-busy expressions analysis visually to the user.

Since our example is an intraprocedural analysis, to use the results to tag
code we extend BodyTransformer and implement its internalTransform method.
What we would like to do is tag StringTags to a unit for each busy expression
flowing out of that unit. Additionally, we want to tag a ColorTag to each expres-
sion used in a unit that is also busy after the unit. With this information the
user can easily see the flow of busy expression through his methods and quickly
identify where optimization is possible. The pseudo code for this process is as
follows (refer to example source code for full details):
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internalTransform(body)
analysis <- run very-busy exps analysis
foreach Unit ut in body
veryBusyExps <- busy exps after ut according to analysis
foreach expression e in veryBusyExps
add StringTag to ut describing e
uses <- uses in ut
foreach use u in uses
if u is equivalent to e
add ColorTag to u
end if
end foreach
end foreach
end foreach

To plug our analysis into Soot, we override Soot’s Main class to inject our
tagger into the Jimple transformation pack (as described in Section 4). Fur-
thermore, to set up the Eclipse plugin to use our new main class, we need
to drop it (along with whatever it depends on) into the folder “myclasses”
in the soot plugin folder (<eclipsehome>/plugins/ca.mcgill.sable.soot_
<version>/myclasses/). Note that it is also possible to put a symlink into
that folder pointing to the folder containing the class files.

Now when we run Soot through Eclipse, we can tell it to use our custom main
class instead of the standard Soot one (as shown in Figure 4). Figure 5 shows
how the results are presented. The “SA” icons on the left side of the editor
indicate that there is some analysis information there, and by hovering the
mouse pointer over a statement we get a balloon with the relevant information
(the StringTag values). Furthermore, we can see that one expression is colored
red (because of the ColorTag), indicating that this particular expression will be
evaluated again with the same value.

Another, more “clever” thing to do, is to implement a BodyTransformer that
uses the analysis results to perform code hoisting and move the expression to
the earliest program point where it is busy. This is left as an exercise for the
reader.

7 Call Graph Construction

When performing an interprocedural analysis, the call graph of the applica-
tion is an essential entity. When a call graph is available (only in whole-
program mode), it can be accessed through the environment class (Scene) with
the method getCallGraph. The CallGraph class and other associated constructs
are located in the soot.jimple.toolkits.callgraph package. The simplest call
graph is obtained through Class Hierarchy Analysis (CHA), for which no setup
is necessary. CHA is simple in the fact that it assumes that all reference vari-
ables can point to any object of the correct type. The following is an example
of getting access to the call graph using CHA.

30



Soot Launching Options

General Options

Input Options

Output Options
Processing Options
Phase Options
Application Mode Options
Input Attribute Options
Annotation Options
Miscellaneous Options
Soot Main Class

+

—Soot Main Class Manager
Spedify main dass to run.

Soot Main Class | dk. brics,soot. annotations, TagBusyExpressions|

Figure 4: Setting the main class for Soot in Eclipse.

Km VeryBusyClass.java 4
1 package testers;
2
3Zpublic class VervBusyClass
1= public static void main (String[] args)
- int x = 10;
5 - int a = x - 1;
8 o= int b = x - 2;
9
- il while (x > 0)
2 il System.out.printlni- - X} .:I
- x=x - 1;
13 ¥
14 System.out.println({a*b);
13 h |Bus1,-' expression: a =I:||
1a |}

Figure 5: Very-busy expressions analysis visualized.

CHATransformer.v() .transform() ;
SootClass a = Scene.v().getSootClass("testers.A");

SootMethod src = Scene.v().getMainClass() .getMethodByName ("doStuff");
CallGraph cg = Scene.v().getCallGraph();

Refer to Section 8 for points-to analyses that will produce more interesting

call graphs.
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7.1 Call Graph Representation

A call graph in Soot is a collection of edges representing all known method
invocations. This includes:

e explicit method invocations

e implicit invocations of static initializers
e implicit calls of Thread.run()

e implicit calls of finalizers

e implicit calls by AccessController

e and many more

Each edge in the call graph contains four elements: source method, source
statement (if applicable), target method and the kind of edge. The different
kinds of edges are e.g. for static invocation, virtual invocation and interface
invocation.

The call graph has methods to query for the edges coming into a method,
edges coming out of method and edges coming from a particular statement
(edgesInto(method), edgesOutOf (method) and edgesOutOf (statement), respec-
tively). Each of these methods return an Iterator over Edge constructs. Soot
provides three so-called adapters for iterating over specific parts of an edge.

Sources iterates over source methods of edges.
Units iterates over source statements of edges.
Targets iterates over target methods of edges.

So, in order to iterate over all possible calling methods of a particular method,
we could use the code:

public void printPossibleCallers(SootMethod target) {
CallGraph cg = Scene.v().getCallGraph();
Iterator sources = new Sources(cg.edgesInto(target));
while (sources.hasNext()) {
SootMethod src = (SootMethod)sources.next();
System.out.println(target + " might be called by " + src);

X
}

7.2 More specific information

Soot provides two more constructs for querying the call graph in a more detailed
way: ReachableMethods and TransitiveTargets.
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ReachableMethods. This object keeps track of which methods are reachable
from entry points. The method contains(method) tests whether a specific
method is reachable and the method listener() returns an iterator over
all reachable methods.

TransitiveTargets. Very useful for iterating over all methods possibly called
from a certain method or any other method it calls (traversing call chains).
The constructor accepts (aside from a call graph) an optional Filter. A
filter represents a subset of edges in the call graph that satisfy a given
EdgePredicate (a simple interface of which there are two concrete imple-
mentations, ExplicitEdgesPred and InstanceIlnvokeEdgesPred).

8 Points-To Analysis

In this section we present two frameworks for doing points-to analysis in Soot,
the SPARK and Paddle frameworks.

The goal of a points-to analysis is to compute a function which given a
variable returns the set of possible targets. The sets resulting from a points-to
analysis are necessary in order to do many other kinds of analysis like alias
analysis or for improving precision of e.g. a call graph.

Soot provides the PointsToAnalysis and PointsToSet interfaces which any
points-to analysis should implement. The PointsToAnalysis interface contains
the method reachingObjects(Local 1) which returns the set of objects pointed
to by 1 as a PointsToSet. PointsToSet contains methods for testing for non-
empty intersection with other PointsToSets and a method which returns the
set of all possible runtime types of the objects in the set. These methods are
useful for implementing alias analysis and virtual method dispatching. The cur-
rent points-to set can be accessed using the Scene.v() .getPointsToAnalysis()
method. How to create the current points-to set depends on the implementation
used.

Soot provides three implementations of the points-to interface: CHA (a
dumb version), SPARK and Paddle. The dumb version simply assumes that
every variable might point to every other variable which is conservatively sound
but not terribly accurate. Nevertheless the dumb points-to analysis may be of
some value e.g. to create an imprecise call graph which may be used as starting
point for e.g. a points-to analysis from which a more precise call graph might
be constructed.

The Soot Pointer Analysis Research Kit (SPARK) framework and Paddle
framework provide a more accurate analysis at the cost of more complicated
setup and speed. Both are subset based, like Anderson’s algorithm as opposed
to the equivalence based Steensgaard’s algorithm (see the lecture note [12]). We
will discuss and show how to setup and use each of the two frameworks in the
following subsections.
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8.1 SPARK

SPARK is a framework for experimenting with points-to analysis in Java and
supports both subset-based and equivalence based points-to analysis and any-
thing in between. SPARK is very modular which makes it excellent for bench-
marking different techniques for implementing parts of points-to analysis.

In this section we want to show how to use SPARK to set up and experiment
with the basic points-to analysis provided by SPARK, and so we leave it for
the curious reader to extend the various parts of SPARK with more efficient
implementations.

SPARK is provided as part of the Soot framework and is found in the
soot.jimple.spark.* packages. A points-to analysis is provided as part of
SPARK and a number of facets of the analysis can be controlled using op-
tions e.g. the propagation algorithm can be either a naive iterative algorithm or
a more efficient worklist algorithm. In the example below we go through some
of the most important options.

Using SPARK

The great modularity of SPARK gives a rich set of possible options and makes
it less than easy to set up SPARK for anything. In this subsection we show how
to setup SPARK and discuss some of the most important options.

In order for you to play with SPARK we recommend using Eclipse to either
load the example code from the example source or create a new project and add
the Jasmin, Polyglot and Soot jar files to the classpath. When setting up a run
configuration you should add the following parameters to the JVM -Xma512m
-Xss256m to increase the VM memory.

We now introduce an example* method we wish to analyze using SPARK.
The method uses the Container class and its Item class shown in Figure 6 and
7. The Container class has one private item field and a pair of get/set methods
for the item field and the Item class has one package private field data of type
object.

In Figure 8 we see the go method which uses the container class to create
two new containers and inserts an item in each container. Furthermore a third
container is declared and assigned the reference to the second container.

We would like to run SPARK on this example and expect it to discover that
the points-to set of c1 does not intersect with either of the points-to sets of c2
or c3 whereas c2 and c3 should share the same points-to set. Furthermore we
would expect the item field of the container object allocated at (1) and (2) to
point to different objects i1 and i2.

To run SPARK we setup the Soot Scene to load the Container and Item
classes together with the class containing the go method from Figure 8 using

4The example is similar to Example 4.4 in [8]
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public class Container {
private Item item = new Item();

void setItem(Item item) {
this.item = item;

}

Item getItem() {
return this.item;
}
}

Figure 6: An implementation of a simple container class

public class Item {
Object data;
3

Figure 7: The items of the container class in Figure 6

Scene.v() .loadClassAndSupport (name) ; and c.setApplicationClass(); shown in
Figure 9.

The code that does the magic of setting up SPARK is found in Figure 10
where we have listed the most interesting options and show how to use the
transform method of the SparkTransformer class taking the map of options as
argument to run the SPARK analysis. In the source example we have shown
many more options for you to play with, you might also want to consult [7] for
a description of all the options.

The options shown are:

verbose which makes SPARK print various information as the analysis goes
along.

propagator SPARK supports two points-to set propagation algorithms, a naive
iterative algorithm and a more efficient worklist based algorithm.

simple-edges-bidirectional if true this option makes all edges bidirectional
and hence allows an equivalence based points-to analysis like Steensgaard’s
algorithm.

on-fly-cg if a call graph is created on the fly which in general gives a more
precise points-to analysis and resulting call graph.

set-impl describes the implementation of points-to set. The possible values
are hash, bit, hybrid, array and double. Hash is an implementation based
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public void go() {
(1) Container cl = new Container();
Item il = new Item();
cl.setItem(il);

(2) Container c2 = new Container();
Item i2 = new Item();
c2.setItem(i2);

Container c3 = c2;

Figure 8: A method using the container class

private static SootClass loadClass(String name,
boolean main) {
SootClass ¢ = Scene.v().loadClassAndSupport (name);
c.setApplicationClass();
if (main) Scene.v().setMainClass(c);
return c;

}

public static void main(String[] args) {
loadClass("Item",false);
loadClass("Container",false);
SootClass ¢ = loadClass(args[1],true);

Figure 9: Code for loading classes into the Soot Scene

on the Java Collections hash set. Bit is implemented using a bit vector.
Hybrid is a set, which keeps an explicit list of up to 16 elements and
switches to bit vectors when the set gets larger. Array is implemented
using an array always kept in sorted order. Double is implemented using
two sets, one for the set of new points-to objects which have not yet been
propagated and one for old points-to object which have been propagated

and need to be reconsidered.

double-set-old and double-set-new describes implementation of the new
and the old set of points-to objects in the double implementation and
double-set-old and double-set-new only have effect when double is the

value of set-impl.
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HashMap opt = new HashMap();

opt.put ("verbose", "true");
opt.put("propagator","worklist") ;
opt.put("simple-edges-bidirectional","false");
opt.put("on-fly-cg","true");
opt.put("set-impl","double");
opt.put("double-set-o0ld", "hybrid");
opt.put("double-set-new", "hybrid");

SparkTransformer.v() .transform("",opt);

Figure 10: SPARK options

Running SPARK on the example using the code from the example source
gives the output shown in Figure 11. The numbers in the left column refers to
variable initialization points e.g. [4,8] Container intersect? false refers to
the variable c1 initialized at line 4 and the variable c2 initialized at line 8. The
right column describes whether the points-to set of the two variables have an
empty intersection or not (i.e., true if the intersect, false otherwise).

First as a simple consistency check we see that every variable has an inter-
secting points-to set with itself e.g. [4,4]. As expected the points-to sets of
variables c1 and c2, and c1 and c¢3 are non-intersecting. Whereas the points-to
sets of c2 and c3 are intersecting.

As for the item field we see that all the points-to sets are intersecting with
each other even if they pertain to different container objects. The reason for
this mismatch between the results and our expectations is an error in our ex-
pectations. We expected SPARK to tell the difference between the two calls
to setItem, but SPARK is context-insensitive and so only analyzes the setItem
method once and merges the points-to sets from each invocation of the setItem
method. With this in mind the output corresponds exactly to what we should
have expected.

SPARK is a large and robust framework for experimenting with many dif-
ferent aspects of context-insensitive points-to analysis. We have only covered a
small number of the many options and many more combinations are available
and you should use the source examples to familiarize yourself with SPARK and
try out some of the other combinations than covered here.

8.2 Paddle

Paddle is a context-sensitive points-to analysis and call graph construction
framework for Soot, implemented using Binary Decision Diagrams (BDD) [1].
Paddle is of comparable accuracy to SPARK for context-insensitive analysis, but
also provides very good accuracy for context-sensitive analysis. The use of BDDs
promises efficiency in terms of time and space especially on large programs [1]
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[4,4] Container intersect? true

[4,8] Container intersect? false
[4,12] Container intersect? false
[8,8] Container intersect? true

[8,12] Container intersect? true
[12,12] Container intersect? true

[4,4] Container.item intersect? true
[4,8] Container.item intersect? true
[4,12] Container.item intersect? true
[8,8] Container.item intersect? true

[8,12] Container.item intersect? true
[12,12] Container.item intersect? true

Figure 11: SPARK output

since BDDs provide a more compact set representation than the ones used in
SPARK and other frameworks. The current implementation is very slow mainly
due to the patchwork of different programs that make up the implementation.

Paddle is written in Jedd [10], an extension to the Java programming lan-
guage for implementing program analysis using BDDs.

Obtaining and setup of Paddle

The Paddle “front-end” is distributed along with the Soot framework. The
“back-end” is distributed separately in order to avoid the need for Jedd when
compiling Soot. In the following we describe how to obtain and install the
backend.

Paddle requires a BDD implementation and the Jedd runtime environment
to run, which in turn requires Polyglot and a SAT solver. Two BDD implemen-
tations are provided along with the Jedd runtime, the BuDDy (default) and
CUDD BDD implementations; other BDD implementations like JavaBDD and
SableJBDD can also be used. In the following we use the BuDDy implementa-
tion.

All these prerequisites make it complicated to setup Paddle correctly so we
now give a thorough walk-through of how to setup Paddle.

1 Download the latest Paddle distribution, you should use the nightly build
for the latest updates and bug fixes. The nightly build can be obtained
from http://www.sable.mcgill.ca/~olhota/build/ You should place
the files in some directory e.g. ~/soot/paddle.

2 Download the zChaff SAT solver from
http://www.princeton.edu/~chaff/zchaff.html to some directory on
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your path e.g. ~/bin/zChaff and install by running make all. Make sure
the programs zchaff and zverify_df are executable by you.

3 Download the Jedd runtime from http://www.sable.mcgill.ca/jedd
and untar it to some directory e.g. ~/soot/paddle/jedd/. Copy the
scripts: scripts/zchaff and scripts/zcore to a directory on your path
e.g. ~/bin/ and edit the path in the files so it points to the directory
where you placed zChaff in step 2. Make sure the scripts are executable
by you. Furthermore you should download and use the Jedd runtime and
translator jars from http://www.sable.mcgill.ca/~olhota/build/ to
ensure that they are comparable with the downloaded Soot classes and
Paddle “Back-end”.

4 Download the pre-compiled jars containing the Jasmin, Polyglot and Soot
classes from http://wuw.sable.mcgill.ca/~olhota/build/ to a direc-
tory e.g. ~/soot/paddle/.

In order for you to play with Paddle we recommend using Eclipse to set up a
new project. In Eclipse create a new project and add the Paddle, Jedd-runtime,
Jedd-translator, Jasmin, Polyglot and Soot jar files to the classpath.

When setting up a run configuration you should add the following parameters
to the JVM -Djava.library.path=absolute\_path\_to\_libjeddbuddy.so
to where absolute\_path\_to\_libjeddbuddy.so is the absolute path (ex-
cluding the filename) to the libjeddbuddy.so file found in the runtime/1ib sub-
directory of the directory where you placed the Jedd runtime in step 3 above.
As an alternative to Eclipse you can use the make script in the example source
as a starting point for setting up your own Paddle project.

You are now ready for the fun part — using Paddle to do points-to analysis.

Using Paddle

Paddle is a modular framework for context-sensitive points-to analysis which
allows benchmarking of various components of the analysis e.g. benchmarking
variations of context-sensitivity making it a very interesting tool. Paddle is also
an early a-release and so be aware Paddle is less than robust.

In this subsection we show how to use Paddle to analyze the example in
Figure 8. Furthermore we discuss and show how to use the most interesting
options in the Paddle framework.

Paddle is equipped with a large set of options for configuring the analysis
for your specific needs. A complete description of the options can be obtained
using the Soot commandline tool: java soot.Main -phase-help cg.paddle

The options used for the example are shown in Figure 12. The Paddle
options are specified similar to options in SPARK using a map of option names
and values. The options verbose, set-impl, double-set-new, and double-set-old are
the same as for SPARK. The ¢ option determines how queues are implemented,
and enabled needs to be true for the analysis to run. propagator controls which
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propagation algorithm is used when propagating points-to sets, we leave it up
to Paddle to chose and set it to auto. conf controls whether a call graph
should be created on-the-fly or ahead of time. The implementation of Paddle
is subset-based but equivalence-based analysis can be simulated by setting the
simple-edges-bidirectional option to true. The last four options are the most
essential for the working of Paddle so we describe them in some detail.

bdd - The bdd option toggles BDD on or off. If true then use the BDD
version of Paddle, if false don’t. Default is false.

backend - The backend option selects the BDD backend. Either buddy
(BuDDy), cudd (CUDD), sable (SableJBDD), javabdd(JavaBDD) or none
for no BDDs. Default is buddy.

context - The context option controls the degree of context-sensitivity
used in the analysis. Possible values are insens, Paddle performs a context-
insensitive analysis like SPARK. Ic¢fa Paddle performs a 1-cfa context-
sensitive analysis. kcfa Paddle performs a k-cfa context-sensitive, where
k is specified using the k option. objsens and kobjsens makes Paddle
perform a 1-object-sensitive and k-object-sensitive analysis respectively.
unigkobjsens makes Paddle perform a unique-k-object-sensitive analysis.
Default is insens.

k - The k option specifies the maximum length of a call string or receiver
object string used as context when the value of the context option is
either of kcfa, kobjsens, or unigkobjsens.

A short introduction to k-cfa context-sensitive analysis is appropriate, we
only intend to provide the intuition of the subject and encourage the reader
to read Section 4.1.2.1 of [8] for a thorough introduction to call-site context-
sensitive analyses.

k-cfa context-sensitive analysis is based on strings of call-sites as contexts
and the k describes the maximum length of these strings. A context-sensitive
analysis only using the callsite as context gives good results for examples like the
one in Figure 8, but if an additional layer of indirection is added e.g. an identity
function is called from setItem then a context-sensitive analysis depending only
on the call-site merges the points-to sets of the two calls to the setItem method,
since they use the same call-sites to the identity function. By using a string of
call-sites we are able to distinguish the two calls to the identity function and
hence keep the points-to sets separate. The number of indirections in the pro-
gram can be arbitrarily large so we need to fix the length to some k — hence
the k-cfa.

We will now use Paddle to analyze the same example as we used in the
SPARK section above see Figure 8.

As a sanity check we start by analyzing the method in Figure 8 using Paddle
with the context option set to insens. We would expect the result to be the
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HashMap opt = new HashMap();
opt.put("enabled","true");
opt.put("verbose","true");
opt.put("bdd", "true");

opt.put ("backend", "buddy") ;
opt.put("context","1cfa");
opt.put("k","2");

opt.put ("propagator","auto") ;
opt.put("conf","ofcg");
opt.put("order","32");
opt.put("q","auto");
opt.put("set-impl","double");
opt.put("double-set-o0ld", "hybrid") ;
opt.put("double-set-new","hybrid") ;
opt.put("pre-jimplify","false");

PaddleTransformer pt = new PaddleTransformer();
PaddleOptions paddle_opt = new PaddleOptions(opt);
pt.setup(paddle_opt);

pt.solve(paddle_opt);

soot.jimple.paddle.Results.v() .makeStandardSootResults();

Figure 12: Paddle options

same as for the SPARK analysis since Paddle and SPARK are of similar accuracy
when performing context-insensitive analysis. The result of the analysis fully
meets our expectations and we get the same result as in Figure 11.

The more interesting example is to run Paddle with context-sensitivity en-
abled to see if Paddle can deduce that the item field created as part of the Con-
tainer variable declared on line 4 does not share points-to set with any of the
other item fields. Running Paddle on the example in Figure 8 with the context
option set to Icfa gives the same result as in the SPARK case (see Figure 11).
As expected the points-to information for the Container variables is similar to
the information obtained using SPARK since we do not need context-sensitivity
to distinguish those points-to sets. But the information for the Container.item
variables is also the same as for the SPARK example which is not what we
expected!

The reason for this unexpected behavior is the line: private Item item =
new Item(); in the Container class. Paddle does not use context-sensitive heap
abstraction as default and so the item field of every container object is rep-
resented using the same abstract Item. If we change the line to private Item
item; then the item field of the containers do not point to the same abstract
object and running Paddle on the new Container class yields the expected result
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as shown in Figure 13.

Another way to obtain the correct result is to turn on the context-sensitive
heap abstract opt.put("context-heap","true"); which allows Paddle to distin-
guish the different Items assigned to the different Containers.

[4,4] Container intersect? true
[4,8] Container intersect? false
[4,12] Container intersect? false
[8,8] Container intersect? true

[8,12] Container intersect? true
[12,12] Container intersect? true

[4,4] Container.item intersect? true
[4,8] Container.item intersect? false
[4,12] Container.item intersect? false
[8,8] Container.item intersect? true

[8,12] Container.item intersect? true
[12,12] Container.item intersect? true

Figure 13: Paddle output

Paddle is a framework for experimenting with a great number of aspects of
context-sensitive points-to analysis. We have only covered a small number of
the many options and even more possible combinations are available and you
should use the source example to learn more about the many features of Paddle.
But be aware that Paddle is still a-software and that a number of options might
only work in some combinations with other options. Check the Soot mailing-list
or visit the Paddle homepage and download the nightly build often.

8.3 What to do with the points-to sets?

In the last two subsections we described in some detail how to use the SPARK
and Paddle points-to analysis frameworks to obtain points-to sets for the vari-
ables in a given program using either context-insensitive or context-sensitive
analysis. We saw that it is rather complicated to setup the two frameworks so
it is natural to say a few words why we should bother to do so in the first place.

Points-to (or alias) information is a necessity in order to obtain precision in
many analysis and transformations. For example a precise points-to analysis
can be used to get a precise null pointer analysis or a more precise call graph,
which in turn may lead to more precision in other analysis. Precise points-to
information is also vital for the accuracy of e.g. partial evaluation of imperative
and object oriented languages.
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9 Extracting Abstract Control-Flow Graphs

In this section we will show how to use Soot to extract a custom intermediate
representation of an abstract control-flow graph usable as a starting point for
your own analysis and transformations.

An abstract control-flow graph captures the relevant parts of the control-
flow and abstracts away the irrelevant parts. Removing the irrelevant parts is
often necessary in order to get a tractable and yet sufficient representation upon
which to implement an analysis.

A good example is the Java String Analysis (JSA)[3] where various oper-
ations like concatenation on Java strings are tracked and analyzed. In JSA
only the part of the control-flow having to do with strings is relevant for the
analysis of strings, hence the other parts of the control-flow are removed during
abstraction and the analysis is phrased on the abstract representation.

public class Foo {
private int 1i;
public int foo(int j) {
this.i = j;
}
}

Figure 14: The Foo class which we want to track throughout the program

In the following we show you how to use Soot to create an abstract control-
flow graph. We will use the Foo class shown in Figure 14 which has one method
manipulating the state of the object the foo method (could be the concatenation
method of java.lang.String). We want to be able to track how Foo objects evolves
during program execution and so we need an abstract control-flow graph only
concerned with the parts of the control-flow which has to do with Foo objects.

9.1 The Abstract Foo Control-flow Graph

The abstract Foo control-flow graph is a description of the control-flow related
to Foo programs. We represent the control-flow graph as a very small subset of
Java which we call the Foo intermediate representation described in the BNF
in Figure 15. The Foo intermediate representation only contains six different
kinds of statements and three types and hence is very compact and manageable.

A program in the Foo intermediate representation is a number of methods
containing a number of statements described by the BNF in Figure 15 where
f ranges over identifiers of type Foo, m ranges over method names, int is the
Java integer type and 7 is either the type Foo or any other type.

The six kinds of statements are: initialization of Foo objects, method call on
the foo method of the Foo class, method call on some other method than foo
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stmt = Foo f = new Foo() - Foo initialization
| f.foo(int) - Foo method call
| m(7*) - Some method call
| f = m(7*) - Some method call with Foo return type
| f1 = f2 - Foo assignment
| nop - Nop

7 = Foo
| SomeOtherTypeThanFoo

Figure 15: BNF for statements in the Foo intermediate representation

with a different return type than Foo, method call on some other method than
foo with return type equal to Foo and last a nop statement.

Statements in Java map as one would expect. An instantiation of a Foo
object maps to Foo initialization. A method call to the foo method maps to
a Foo method call, an assignment of type Foo translates to a Foo assignment,
method calls other than on the foo method translates to some method call with
or without Foo return type respectively. In the intermediate representation we
treat non-Foo object instantiation as some method call which just happens to
be to a constructor method and we treat casts to Foo as some method call with
Foo as return type. We completely disregard control-structure and exceptions
for sake of brevity. Any analysis based on this abstract representation is not
sound for programs throwing exceptions which might interfere with the value of
Foo objects.

9.2 Implementation

Implementing the transformation from Java to the Foo intermediate representa-
tion involves two steps: First implementing the Foo intermediate representation
and Second implementing the translation between Java and the intermediate
representation.

The implementation of the Foo intermediate representation is straight for-
ward. Each kind of statement extends the Statement class which provides some
general functionality needed in order to be a node in the control-flow graph e.g.
store the set of predecessor and successor statements.

Along with this note we provide a proof of concept implementation of the
transformation presented in this section, you should consult it as you read along.
Be aware that the provided code does not cover all cases necessary for a complete
and robust translation of Java, but only shows how to use the concepts of this
section to do the transformation.

The code is organized in five subpackages of the dk.brics.soot.intermediate
package. The main subpackage contains the main program(Main.java) which
uses the transformation to show a textual representation of the abstract control-
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flow graph of the test program FooTest.java from the foo subpackage this should
be the starting point when running or inspecting the code. In the foo subpackage
you also find the Foo class as described above. In the representation subpack-
age you find the implementation of the intermediate representation and some
additional classes for variables and methods. Furthermore a visitor (the State-
mentProcessor.java) is provided for traversing statements. In the subpackage
foonalasys you find the class Foonalasys which is the representation of the anal-
ysis one might want to do upon the intermediate representation and so the first
step of the Foonalasys is to instantiate and run the translation from Java to
the Foo intermediate representation. The translation classes are located in the
translation subpackage. Here you will find the three classes responsible for the
translation: JavaTranslator, StmtTranslator, and ExprTranslator.

The translation from Java is done via Jimple and so the translation requires
a good understanding of Jimple and how various Java constructs are mapped
to Jimple in order to recognize them when translating from Jimple to the Foo
intermediate representation e.g. object creation and initialization is done in one
new expression in Java, but has been separated into two constructs in Jimple
like in Java bytecode and so care must be taken to handle this in the translation
from Jimple to the Foo intermediate representation.

Soot provides infrastructure for the translation. Especially the AbstractStmt-
Switch and the soot.jimple.AbstractJimpleValueSwitch classes are useful.
AbstractStmtSwitch is an abstract visitor which provides methods (operations)
for the different kinds of statements available in Java (Soot). Similarly, soot.-
jimple.AbstractJimpleValueSwitch is an abstract visitor which provides meth-
ods (operations) for the different Jimple values like virtuallnvoke, speciallnvoke,
and add expressions.

The translation is implemented using the three classes: JavaTranslator,
StmtTranslator, and ExprTranslator. The JavaTranslator class is responsible
for translating the various methods of the given Java program and connect-
ing the translated statements together. JavaTranslator maintains an array of
methods which is initialized in the makeMethod method. The translate method
is the main method where the actual translation and linking of the translated
statements is done.

The individual statements are translated using the StmtTranslator class
which extends the AbstractStmtSwitch class. In our experience the subset we
use in StmtTranslator should be sufficient for most uses. The complete list
of methods provided by AbstractStmtSwitch is available in the Soot javadoc.
The main method of StmtTranslator is the translateStmt method which ap-
plies StmtTranslator to the statement and maintains a map from Soot state-
ments to the first statement of the corresponding code in the Foo represen-
tation. The map is handy for error reporting. Furthermore StmtTranslator
has a method addStatement which adds the given Foo statement to the correct
method and maintains a reference to the first statement. The addStatement
method is the one used throughout to add statements during the translation.

45



Subexpressions are translated using the ExprTranslator which is an extension of
the soot.jimple.AbstractJimpleValueSwitch class and so overrides a number of
methods in order to implement translation. The entry point is the translateExpr
method which basically applies ExprTranslator to the given ValueBox. We
only implement the methods needed to make our example run since our goal
is only to introduce how an abstract control-flow graph is created. The most
interesting methods are the caseSpeciallnvokeExpr and handleCall methods.
caseSpeciallnvokeExpr tests if we are dealing with an initialization of a Foo
object and if so creates a Foo initialization statement, if not it is just some
other method call and the handleCall method is executed. At this point the
source code differs from the representation described above, in the source we do
not distinguish between the two kinds of other method calls, this is left as an
exercise for the reader.

Implementing the full transformation from Java to the Foo intermediate
representation is just hard and tedious work matching the Jimple code sequences
to Foo language constructs.

Concluding

Soot provides some support for creating your own abstract control-flow graph
but Java is a large language and you have to consider many different aspects
when implementing the translation from Jimple to your own representation,
furthermore you have to figure out how Java constructs map to Jimple and
then how Jimple constructs should be mapped to your representation. But
besides this the two abstract classes AbstractStmtSwitch and soot.jimple.-
AbstractJimpleValueSwitch provide good starting points for the translation and
work very well.

10 Conclusion

In the previous sections we have presented our own documentation for the Soot
framework. We have documented the parts of the Soot framework we have
used earlier in various projects: parsing class files, performing points-to and
null pointer analysis, performing data-flow analysis, and extracting abstract
control-flow graphs. It is our hope that this note will leave a novice users in a
less of a state of shock and awe and so may provide some of the stepping stones
which could make Soot more easily accessible.
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