
SIMAP
Secure Information Management and Processing

BRICS Research School
University of Aarhus

Martin Geisler, Mikkel Krøigaard,
Janus Dam Nielsen, and Tomas Toft

SMCL
The Secure Multiparty Computation Language

VAM1-Bristol’07Work in progress

Outline

Motivation

Secure Multiparty Computation

SMCL

Why and What?

SMCR (How?)

Motivation

Alice Bob

Trent

The Millionaire's problem, Yao 1982

Secure Multiparty
Computation

n parties P1,...,Pn wish to jointly compute the
computable function: f(x1,...,xn)

Party Pi only knows the input value xi which
must be kept secret from the other parties.

Even if some adversary has power to corrupt
some subset of the parties

SMCL - Why?

Writing SMC programs is tedious and error-prone

DSL:

Important concepts up front(concise)

Efficiency

Management

Analyze(security)

SMCL - What
Highlevel domain
specific language

Language support for
fundamental concepts

Parties are separated
into clients and
servers

Clients Server

SMCL

Declare Server Max:Declare Client Millionaires:

function void main(int[] args) {

}

function void main(int[] args) {

}

sint max = 0;
sclient rich;

function void tell(bool b) {
 if (b) {
 display("You are the richest!");
 } else {
 display("Make more money!");
 }
}

foreach (client c in mills) {
 c.tell(open(c==rich|rich));
}

The Millionaire's Example

Group of Millionaires mills;

foreach (client c in mills) {

}

 if (netWorth >= max) {
 max = netWorth;
 rich = c;
 }

Tunnel of sint netWorth;

function void ask() {
 netWorth.put(readInt());
}

ask();

sint netWorth = c.netWorth.take();

max = b*netWorth+(1-b)*max

The server is the
Trusted Third Party
Alice Bob

Server

Concepts
Clients: Server:

Public & secret values
- (Bools, Ints, Records, clients)

Public values
- (Bools, Ints, Records)

Fields

Functions
- callable from server

Groups of clientsTunnels
Fields

Functions

Security
at the language level

Preventing covert channels:

Direct and indirect information flow

Timing and termination leaks

Open and responsibilities

etc.

Security
sbool h = ...;
sint i = 0;
int l = 0;
if (h) {
 i = 7 * h;
 l = 7;
} else {
 l = 42;
}
open(i|h);

SMCLc

Compiler: SMCLc (alpha)

Available from www.BRICS.dk/SMCL/

SMCR
The Secure Multiparty Computation Runtime

Overview of the
Runtime

Implements an ideal functionality

Provides the primitives used by the compiler:

Secret sharing input

Opening sharings

Arithmetic (addition and multiplication)

Comparison

Security against passive adversaries

* Security against passive adversaries
(currently)

Design of the Runtime
System

Decoupled from the language (thin interface
to compiler)

Modularity

Ability to exchange implementation of
primitives

Primitives: Sharing and
Opening

Input is secret shared using an additively
homomorphic secret sharing system over Zp

Basic shares are standard Shamir-sharing

Other techniques for sharing used in
special cases (e.g. PRSS)

Output is reconstructed by opening shares
when enough parties agree

Primitives: Addition

Add shares together

Requires no communication, free in our
complexity model

Corollary: arbitrary linear combinations are
free

Primitives: Multiplication

Standard GRR: multiply shares, reshare
result

Requires a round of communication

Basic unit of complexity

Primitives: Comparison
Complex protocol using the other arithmetic
primitives

Seen as a primitive by the compiler

Most expensive operation: 10-12 communication
rounds

Number of multiplications: linear in bitlength

With preprocessing: ~2 communication rounds

Faster special cases: equality, public result,
comparison of public and secret integers, etc.

Primitives: Comparison

Some ideas for computing “a>b?”:

Compute c = 2l + a - b, extract the l´th
bit of c (e.g. compute c mod 2l)

Extract the bit of a at the most
significant bit position where a and b
differ (assuming bit sharings are available)

Possibilities for
Optimization

Multiplications require a round of
communication

Run independent multiplications in parallel!

Do the same for comparison

Tradeoff between round complexity and
number of multiplications

Future Work

Explore possibilities for better primitives

Construct and implement applications: e.g.
simplex

Intermediate language for writing complex
primitives for thin runtime system.

Security against active adversaries and self-
trust

Questions?

