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Abstract
We present a domain-specific programming language for Secure
Multiparty Computation (SMC).

Information is a resource of vital importance and considerable
economic value to individuals, public administration, andprivate
companies. This means that the confidentiality of information is
crucial, but at the same time significant value can often be obtained
by combining confidential information from various sources. This
fundamental conflict between the benefits of confidentialityand
the benefits of information sharing may be overcome using the
cryptographic method of SMC where computations are performed
on secret values and results are only revealed according to specific
protocols.

We identify the key linguistic concepts of SMC and bridge the
gap between high-level security requirements and low-level cryp-
tographic operations constituting an SMC platform, thus improv-
ing the efficiency and security of SMC application development.
The language is implemented in a prototype compiler that gener-
ates Java code exploiting a distributed cryptographic runtime.

Categories and Subject Descriptors D.3.2 [Domain-Specific
Languages]: Secure Multipart Computation

General Terms Languages, Design, Security

Keywords SMCL, design, analysis, implementation

1. Introduction
Information is a resource of vital importance and considerable eco-
nomic value to individuals, public administration, and private com-
panies. This means that confidentiality, i.e. the protection of con-
fidential information from unwanted leakage, is an important se-
curity issue. At the same time, however, it is often possibleto ob-
tain significant added value by combining confidential information
from different sources. The promise of Secure Multiparty Compu-
tation (SMC) is to get the best of both worlds: the advantagesof
information sharing without the risks of unwanted leakages.

The seminal example of SMC is theMillionaries’ Problem,
which involves a number of millionaires who want to find out
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which is richer, but all refuse to disclose their net worth. Aconven-
tional solution would involve an external trusted party that could
perform the comparisons and report the result. Yao [46] presented
a cryptographic solution for two millionaires that does notrequire
an external party or any degree of trust between the two parties.
The technique is essentially to perform computations on thedata
while it is encrypted and to control strictly when and how theresult-
ing information is revealed. These techniques have subsequently
been extended to cover comparisons, arithmetic, and bitwise oper-
ations [14].

There are significant benefits from eliminating the relianceon
trusted parties. The only known method for making external parties
trustworthy is essentially to compensate them so adequately that
the temptation to betray other parties is minimized. This imposes
a significant overhead that prohibits their involvement in many
situations. In parody, trusted parties generally receive huge fees for
opening envelopes and announcing the highest bids.

The SIMAP (Secure Information Managing and Processing)
project aims to make SMC a practical and inexpensive technique
for complex applications. Examples include distributed voting, pri-
vate bidding and auctions, and business processes such as match-
making and financial benchmarking [9]. The SIMAP project has
three main components: 1) the development of an efficient crypto-
graphic runtime system (SMCR) supporting the required primitive
operations, 2) a domain-specific high-level language (SMCL) for
specifying computations that are compiled into distributed appli-
cations based on SMCR, and 3) the development and deployment
of large-scale applications in collaboration with industrial partners.
This work presents the initial design and implementation ofthe
SMCL language.

2. Contributions and Outline of the Paper
This paper explores the uncharted area of SMC programming and
provides four main contributions:

• A conceptual analysis of the domain of SMC programming.

• A design and implementation of SMCL, a novel domain-
specific programming language for SMC.

• A definition of the security properties that SMCL programs
satisfy.

• A number of static analyses that ensure these security properties
or boost efficiency of SMCL applications. We also present a
simple language of checked annotations for describing potential
information dependencies among variables in SMCL programs.

The rest of the paper is organized as follows. In Section 3 we
briefly present the structure of the SMCR system. In Section 4we
perform a conceptual analysis of the linguistic elements ofSMC. In
Section 5 the various design decisions of SMCL are presentedand



discussed. In Section 6 we discuss the security guarantees that are
provided for SMCL programs and whose soundness is ensured by
static analyses. In Section 7, we evaluate the cost of using SMCR
and estimate how further static analyses may boost efficiency. A
description of related work is given in Section 8, and we offer
some concluding remarks in Section 9 and highlight a number of
interesting areas for future work.

3. Secure Multiparty Computation
A secure multiparty computation involves a number of parties
that do not trust each other but still want to collaborate in per-
forming a computation. In the abstract version, we haven parties
P1, . . . , Pn that wish to jointly compute the value of an integer
function f(x1, x2, . . . , xn), where partyPi only knows the input
valuexi which must be kept secret from the other parties.

SMCR (a further development of the system used in [8]) en-
ables such computations to take place by allowing each partyto
make their input values secret, exchange them, and perform joint
operations on such values. The final value of the function evalua-
tion can only be revealed by collaboration from all parties.

Under standard cryptographic assumptions it can be proven that
no party can obtain any extra information. SMCR is robust in the
sense that the secrecy can only be compromised if a certain frac-
tion of the parties decides to collude inpassive corruption, where
they pool all their secret values but continue to follow the protocol.
The standard threshold isn/2 + 1 parties, but (more expensive)
protocols exist where the threshold isn − 1, i.e. where each party
trusts no other. SMCR is currently not robust againstactive corrup-
tion where the parties choose to sabotage the computation by not
adhering to their individual part of the protocol, but such behav-
ior is guaranteed to be detected and some (even more expensive)
protocols can even tolerate a threshold ofn/3 such parties.

SMC computations will generally involve complex protocols
that involve many rounds of communication between all parties
[8]. Thus, simple operations become several orders of magnitude
more expensive than their non-cryptographic counterparts, as seen
in Section 7. Technically, the SMCR runtime is a Java API with
support for public key encryption, secret sharing, primitive SMC
operations, and distributed deployment and communication. We
will not discuss the cryptographic challenges and technicalities in
realizing the SMCR in this paper, but refer to [8].

4. Conceptual Analysis
Based on previous experiences with earlier versions of SMCR[9,
20, 39], we can identify a number of concepts that are used in
describing realistic SMC computations.

First, a practical application will typically involve a number of
clientsthat provide the inputs and receive some computed results.
The computation itself is performed by aserverwhich is concep-
tually a single machine that is realized through a number of sepa-
rate parties that perform the SMC computations by running identi-
cal copies of the code in lock-step, see Figure 1. In a realistic ex-
ample, involving the Danish commodities market for sugar beets,
there are around 3000 farmers as clients and the server wouldbe
implemented by parties representing the buyers, the sellers, and a
Government office. In general, there will be (possibly overlapping)
one-to-many mappings from the various kinds of clients and the
single server to physical machines.

Note that the clients are in principle unrelated to the parties
mentioned in Section 3, as every secret client input is represented
secretly on each of the server parties. Also, from the programmer’s
point of view, the server is a single entity.

Clients Server

Figure 1. Conceptual and concrete view of clients and server

A given physical machine may run a client and a server party
simultaneously which is useful if the owner of the machine donot
trust anybody else, e.g. in game of poker.

Clients communicate with the server only and have no incentive
to communicate directly with each other, since they generally do
not trust each other.

The division into clients and a single server separates public
computations from secure computations respectively, in the sense
that SMC computations are performed only on the server. Note
that we actually have three kinds of values (and corresponding
computations):

• secretvalues that reside on the server and are owned jointly by
the server parties;

• public values that reside in plain view on the server; and

• privatevalues that reside only on a single client.

Public and private computations are performed on ordinary values
with a standard runtime representation. A secret value has adif-
ferent runtime representation consisting of secret sharesresiding
on the machines that physically realize the server parties,and the
execution of primitive operations on such values will typically in-
volve complex protocols with several rounds of communications.
The server will have the ability to explicitlyopena secret value
which requires collaboration from all server parties. Careful limi-
tations must be placed on the use of secret values as conditions in
the control flow to avoid attacks that observe public side-effects of
computations.

Clients and the server require secure and flexible communica-
tions: In some scenarios, a client only submits an input and does not
need to wait for the result, whereas in other scenarios the interaction
is more complex and ultimately requires a client to be connected to
the server for the duration of the computation. For these purposes
we identify the need fortunnelsfor asynchronous communication
andremote procedure callsfor synchronous communication.

The classical SMC applications compute a single integer func-
tion, which is similar to a straight-line program. While this is still at
the core of large-scale applications, we will also allow theserver to
perform computations on public values and to perform iterations.
As a motivating example we may consider the use of second-level
protocols where a server repeatedly performs a sequence of secure
auctions until some market equilibrium has been attained. Concep-
tually, the server will execute Turing-complete programs in which
the data is separated intopublic andsecrettypes. However, com-
putations that involve only secret values still only correspond to
loop-free programs.

While the underlying cryptographic protocols are known to be
provably secure, it is still a challenge to write reliable SMC ap-
plications, since confidential information may be propagated along
non-obvious paths and may be leaked in subtle ways, thus an un-
bounded number of potential attacks exists. Implicit flows and tim-
ing attacks are a classical examples [15, 21]. As another example,
consider a variablex containing a secret integer value. Revealing



the values ofx%10 andx/10 is sufficient to effectively revealx it-
self. Thus, programmers must keep track of such value flow depen-
dencies, which turns out to be a tedious task. However, sinceany
non-trivial application is bound to revealsomethingabout its in-
put, the programmer must use careful judgment to determine what
is acceptable. Thus, we are looking for a concept ofchecked an-
notationsensuring that a programmer has been made aware of all
potential information leaks and has explicitly consideredthem.

In summary, we have identified the following key concepts
within the area of SMC programming:

• Architecture: The client-server view forms the fundamental
computing paradigm of SMC, providing a separation between
private, public, and secret computations and between logical
and physical parties.

• Values: Values are either secret, private, or public, which also
determines their runtime representation and separates theeffi-
ciency of primitive operations by several orders of magnitude.

• Communication: Clients communicate with the server only, ei-
ther by using tunnels or by reacting to remote procedure calls
from the server.

• Expressiveness: A general SMC framework must be able to
perform any computation; i.e., it must be Turing-complete on
private and public values.

• Security: Writing reliable SMC programs that do not leak un-
intended information, is a tedious and error-prone task that can
benefit from automated assistance.

5. Secure Multiparty Computation Language
Based on the above key concepts we have designed a novel
language called theSecure Multiparty Computation Language
(SMCL). It is a highlevel, domain-specific language [42], which
allows programmers to express concepts such as clients, server,
and operations on secret values directly using a special syntax and
control structures tailored to the domain of SMC.

SMCL enjoys the classical advantages of being a domain-
specific language as opposed to being a library API for a general-
purpose language:

• The specialized syntax of SMCL closely matches the problem
domain.

• A domain-specific compiler may generate more efficient code
for SMCL.

• It is possible to perform domain-specific analyses that con-
sider global properties of SMCL programs and provide stronger
safety guarantees.

SMCL will be presented based on the example in Figure 2, which
shows an implementation of the solution to the Millionaires’ Prob-
lem, generalized to an arbitrary number of millionaires.

TheMillionaires client describes the actions of a millionaire
and theMax server calculates and reports who is the richest. Each
Millionaires client has amain function that initiates its execution.
The other functions may either be invoked by the client itself (as in
line C6) or by the server as a remote procedure call (as in lineS18).
In the example, each client submits its net worth via thenetWorth

tunnel (lineC10). A tunnel supports asynchronous communicating
that is encrypted using the public key of the receiver. ThereadInt
anddisplay functions are rudimentary primitives for communi-
cating with the person controlling the client (in a future version,
this will happen through a browser with support for appropriate
GUI primitives).

The server declares thatMillionaries may belong to a group
namedmills (line S2). The member of a group is specified exter-

C1: declare client Millionaires:
C2:
C3: tunnel of sint netWorth;
C4:
C5: function void main(int[] args) {
C6: ask();
C7: }
C8:
C9: function void ask() {

C10: netWorth.put(readInt());
C11: }
C12:
C13: function void tell(bool b) {
C14: if (b) {
C15: display("You are the richest!");
C16: }
C17: else {
C18: display("Make more money!");
C19: }
C20: }

S1: declare server Max:
S2: group of Millionaires mills;
S3:
S4: function void main(int[] args) {
S5:
S6: sint max = 0;
S7: sclient rich;
S8:
S9: for (client c in mills) {

S10: sint netWorth = c.netWorth.get();
S11: if (netWorth > max) {
S12: max = netWorth;
S13: rich = c;
S14: }
S15: }
S16:
S17: for (client c in mills) {
S18: c.tell(open(c==rich|rich));
S19: }
S20: }

Figure 2. The generalized Millionaries’ Problem in SMCL

client: Millionaires
gates.microsoft.com 4001 0x85FFA494 mills
ebenezer.scrooge.org 4001 0x5532BB72 mills
ingvar.ikea.com 4001 0x2333DDCC mills
larry.google.com 4001 0x631DE7F2 mills
sergei.google.com 4001 0x7587B5AF mills

server
gates.microsoft.com 4000 0x857722B7
smcl.brics.dk 4000 0xF471BCA7
survey.fortune.com 4000 0x66A7FF35

Figure 3. A map identifying the concrete participants

nally by a mapping supplied to the SMCR runtime describing the
concrete participants involved during runtime. Figure 3 shows a hy-
pothetical example. Each participant is identified by an IP address,
a port number, and a public encryption key. Note that the samema-
chine may serve both as a client and as a server party. Clientsmay
further be listed as belonging to a number of groups, in this case
only the single groupmills containing all clients.

Themain function of the server describes the SMC application
that is executed jointly by all the server parties.

The SMCL language supports the primitive datatypesint and
bool. The identities of clients also form a datatypeclient. All of
these have secret versions, denotedsint, sbool, andsclient.
The typessbool and sclient are represented as secret inte-



gers at runtime, because the SMCR only manipulates public val-
ues and secret integers. A secret client is a client whose identity
(IP-address) is secret shared; the total number of clients is always
public. Furthermore, it is possible to construct records and multi-
dimensional arrays of such primitive datatypes. Private, public, and
secret datatypes support the same standard primitive operations,
and the type system ensures that results are secret unless all ar-
guments are public (this may involve implicit conversions to the
runtime representation of secret values).

In clients, the types of tunnels and return types of functions
may be secret (as in lineC3). When a client sends a secret value
to the server, the transmitted value is not only encrypted, but it
is also split into secret shares for the server parties, matching the
runtime representation of secret values. When the server sends a
secret value to a client, all server parties send encrypted version of
the secret shares which are then assembled on the client to yield a
private value.

TheMax server uses two secret variablesmax andrich to retain
the current highest net worth and the identity of the corresponding
millionaire (lines S6 and S7). It then proceeds by using afor
iterator to process each client in turn (lineS9), updatingmax and
rich if required.

In line S11 a secret boolean is used as condition in anif state-
ment. This is an instance of implicit flow [16] and could potentially
leak the secret value, if the two branches could be observed to be-
have differently, e.g. by timing the execution of each branch. Con-
sequently, we enforce a number of requirements for conditionals on
secret values which we describe in Section 6. Similarly unintended
information may leak fromwhile loops with secret conditionals
and recursive functions which recur based on secret conditions.
while loops cannot be handled in the same way as conditionals and
are thus not allowed. Recursive functions may take secret values as
argument but cannot recur based on secret conditionals due to the
semantics of SMCL similar calls to recursive functions are not al-
lowed within secret conditionals. Conditionals andwhile loops on
private and public values are allowed without any restrictions.

To finish, the server reports to each client a boolean indicating
whether or not that client is the richest. Theopen operator down-
grades a value from secret to public. The operator is generally used
asopen(e|x,y,z) which computes and opens the secret expression
e and declares that the programmer recognizes the simultaneous in-
direct leaking of some information about the secret variablesx, y,
and z. In line S18, opening the value of the comparisonc==rich
may leak some knowledge about the value ofrich as described be-
low. A program cannot be compiled unless it iswell-annotated,
meaning that the programmer has recognized all potential leaks
(see Section 6 for further details).

In generalizing the original Millionaries’ Problem from two to
many millionaires, we have in our solution chosen that whilethe
net worth of each millionaire remains secret, it is actuallypublic
information which millionaire is the richest, see Figure 4(A). In
a stricter version of the generalized problem we could also keep
this information secret and only allow each millionaire to know
his own status. In our program, we would then change linesS17

throughS19 into the lines of Figure 4(B). Here, we do not open
the secret boolean before it is sent to the client. This meansthat
the server parties send their shares representing the valueof type
sbool to the client which combine the shares into a value of type
bool. An equivalent effect can be achieved by changing the iterator
c to have typesclient and thus keep it secret while revealing
the comparison result, Figure 4(C). Consequently, the invocation
c.tell(...) is now implemented by sending to all clients the same
message that can only be understood by the intended recipient
(function invocations with illegible arguments are ignored by the
clients). Sincec is now also secret, theopen operation must also

1: for (client c in mills) {
2: c.tell(open(c==rich|rich));
3: }

(A) public booleans, public receivers

1: for (client c in mills) {
2: c.tell(c==rich);
3: }

(B) secret booleans, public receivers

1: for (sclient c in mills) {
2: c.tell(open(c==rich|c,rich));
3: }

(C) public booleans, secret receivers

1: for (sclient c in mills) {
2: c.tell(c==rich);
3: }

(D) secret booleans, secret receivers

Figure 4. The combinations of server knowledge

recognize responsibility for compromising it (ever so slightly). In a
yet stricter version, we may change the three lines into the lines of
Figure 4(D). For this particular example, however, this refinement
makes no difference (since the server always sends onetrue value
and a number offalse values).

Figure 5 shows another example program which implements a
so-called clock auction [23], where producers of electric power bid
for shares of a total number of MegaWatts that a consumer requires.
This example highlights the benefit of being able to iterate through
what is essentially a sequence of individual SMC applications. A
number of other examples such as double auction, multi-round auc-
tion, the stable marriage problem, the Miller-Rabin primality test
and thek-means-clustering algorithm have all been implemented
using SMCL.

The prototype compiler produces Java code using the SMCR
API, for each kind of client and for the server parties. Deployment
scripts can be used to install and start applications. Currently, all
communication takes place through a coordinator process (that
only sees encrypted information). The coordinator could itself be
distributed using broadcast protocols.

6. Security
As discussed in Section 8, security requirements are many and
multidimensional. Also, the problems to be considered depend
heavily on the capabilities that an adversary are assumed topos-
sess [11, 22].

For SMCL, we are able to obtain quite strong security properties
in the face of powerful adversaries due to two properties: 1)the use
of strong cryptographic protocols in SMCR , and 2) a careful design
of SMCL and its semantics.

To handle many specific but important modes of attack in a
common framework, we will assume an unusually strong model
of the adversary, which is able to observe the physical stateof
the server: At every clock cycle the entire layout of memory and
the instruction pointer are available for inspection. However, the
secret values are not visible to any adversary (unless more than
the given threshold of the server parties have been corrupted in
which case no guarantees are given) and neither are the private
values of the clients. We assume that clients cannot corruptother
clients but clients may collaborate, e.g. share information. This is a
strong adversary who is capable of many common attacks including



declare client Producer:

function void main(int[] args) {}

function sint getBid(int price) {
display(price);
return readInt();

}

function void result(int price) {
display(price);

}

declare client Consumer:

function void main(int[] args) {}

function void result(int price) {
display(price);

}

declare server Auction:

function void main(int[] args) {
group of Producer supply;
group of Consumer demand;

int totalMW = 7;
int shares = 14500000;
int price = 10;

bool done = false;
while(!done) {
sint supply = 0;

for (client c in supply) {
sint bid = c.getBid(price);
supply = supply + bid;

}

if (open(supply > totalMW))
price = price - 1;

else
done = true;

}

for (client c in supply) {
c.result(price);

}

for (client c in demand) {
c.result(shares*price);

}
}

Figure 5. Clock auction written in SMCL

e.g. simple eavesdropping and more complex attacks which are a
function of the program trace, like interference, and timing [18, 21].

Adversary Traces

To formally define these notions, we have provided a small-step
operational semantics of SMCL programs [29]. Here, the state
of an entire system contains the state of the server, the state of
each client, and the state of each tunnel. The semantic relation
reflects the computational progress of the clients, the server, and
their communications. Stores may contain both public, secret, and
private values.

We consider onlywell-typedprograms [29], which have the
simple property that variables with public types can never contain
secret values [38, 43, 45]. In the present SMCL language we only
have two security levels [15]:public andsecretwith distinct run-
time representations. However, it would be natural to extend this
to the lattice of subsets of client groups, such that a secretvalue

is owned by a subset of the clients in the line of the decentralized
label model [28].

To formalize our security guarantees, we introduce a notionof
adversary traces, which contain the information that is made avail-
able to an adversary. Such a trace consists of the entire sequence
of system states (configurations in the small-step semantics) that is
encountered during the evaluation of a program with three restric-
tions:

• secret values on the server and in tunnels are masked out;

• the private states of clients are not available; and

• noopen operations are performed.

The capabilities of an adversary are then limited to observing these
traces. We will use an illustration to show an adversary trace T
from a state with public valuesP and secret valuesS to one with
public valuesP ′ and secret valuesS′:

P

S

P’

S’T

Also, we use an illustration to show a transition where a partS1 of
the secret state is made public using theopen operation to become
the public stateP1:

P

S

P

S

S

P1

2

1

2

A complete computation that occasionally makes use of theopen
operation for downgrading is then described by an alternating se-
quence of adversary traces and these transitions:

The security guarantees of well-typed SMCL programs can now
be expressed through two properties that will be ensured by the
compiler.

The Identity Property

The identity propertystates that whenever we have the two situa-
tions

P’

S’

S’T

T1

2
2

1

P

S1

P

S2

P’’

thenT1 = T2 (and thus alsoP ′ = P ′′). This is a strong property
stating that computations from initial states with the samepublic
values will haveidenticalobservable traces from the point of view
of the adversary. This implies the property ofnoninterference,
which normally only requires that the resulting public values must
be equal [32].

This property implies that SMCL programs are immune to a
range of attacks that attempt to exploit information leaks,namely
all of those where the leaked information is a function of the



adversary trace. This includes timing attacks as discussedin [7, 21]
and also more exotic attacks, e.g. based on measuring radiation
from the server [10]. SMCL programs are even immune to stronger
timing attacks, since we not only assume that computations have
the same overall duration regardless of the secret values, but also
that the instruction pointer of the server is independent ofany
secret conditionals at any point in time. Invulnerability to attacks
of course hinges on the same properties holding for the basic
operations on secret values, where the protocols are independent
of the argument values.

The Commutativity Property

The commutativity propertystates thatopen operations and com-
putations commute:

T1

P1 P’1

P’

S1

P P’

S’1

T2

P

This property evidently expresses that the secret representation is
sound. Note thatT1 andT2 will in general clearly be different, but
the commutativity property implies thatT1 terminates exactly when
T2 does.

Ensuring Security Properties

Validity of the two security properties hinges on two properties of
the SMCL language:

• a runtime semantics whereboth branches of anif statement
with a secret conditional are always evaluated in sequence;and

• static analyses of well-typed SMCL programs to verify that
such branches always terminate and have no public side-effects.

The generated code for anif statement with a secret conditional
will always execute both branches on copies of the local state. After
these executions, the results of both branches are merged based on
the secret boolean value of the conditional. For example, ifa secret
variablex is represented by the variablexthen in the first branch
and the variablexelse in the second branch, then the merging of
the two states is performed by the secret computation:

x = condition*xthen + (1-condition)*xelse

This is not sufficient to ensure the security properties. Since we al-
ways execute both branches, we need to make sure that they will
both always terminate. To this end, the SMCL compiler performs a
static analysis that conservatively checks the branches for termina-
tion (using simple syntactic criteria in the present implementation).

Furthermore, since the merging of the two branches cannot undo
side-effects, we need to make sure that they agree on all public
side-effects. This includes assignments to public variables with
scope outside the branches, function calls, IO, and communication
with clients. To this end, the SMCL compiler performs a static
analysis that conservatively checks that all public side-effects can
be hoisted out of the two branches without changing the semantics;
specifically, this includes non-local assignments, function calls, and
communication.

Note thathoistabilityis a general (and undecidable) concept that
is implied by conventional requirements for noninterference [38,

43, 45]. Instead of fixing a specific decidable requirement, we will
allow the implementation of the SMCL compiler to perform any
sound approximation of this property. In our current implementa-
tion, the static analysis that approximates hoistability is based on
alias analysis, def-use analysis, and side-effect analysis of func-
tions [30].

A similar solution is not possible forwhile loops on secret con-
ditionals and calls to recursive functions which recur based on se-
cret conditions, and are consequently not allowed. However, iter-
ation through a group of clients is possible using afor iterator,
and if the identities of the clients are secret then the iteration is
performed through a secret random permutation of the clients com-
puted at the time of use to avoid revealing any secret information.

Semantic Information Leaks

The security properties provide some basic guarantees about the
behavior of SMCL programs. With these guarantees, any computa-
tion (withoutwhile loops) can be made invulnerable to attack by
being structured as anideal computation:

S S’

P

S’’

Here, all information is kept in secret variables and only atthe very
end are the outputsP made public. However, as shown in Sec-
tion 7, computations on secret values are quite expensive. Thus, a
pragmatic computation will keep information in public variables
as much as possible without compromising the overall security
requirements. The commutativity property ensures that theideal
computation and the pragmatic computation will produce thesame
output, but the programmer now has the burden of (manually) prov-
ing that these two computations will only reveal the same relevant
secret information. Since such proofs are difficult to construct, the
SMCL compiler provides a simple annotation language to aid the
programmer.

Theopen operation may be annotated with the names of some
secret variables:open(e|x,y,z). The meaning of this annotation
is that the programmer recognizes responsibility for compromis-
ing the secret values of these variables, and the compiler should
check that all compromised variables are mentioned, so the pro-
grammer is fully aware of his proof obligations. A program isthen
only accepted aswell-annotatedif all potential semantic informa-
tion leaks are explicitly allowed by such annotations. To beconser-
vative, which is a good attitude when security is concerned,any se-
cret variable whose value may have influenced the opened value is
viewed as potentially compromised. Thus, for anyopen operation
the SMCL compiler computes the set of secret variables that have
ever contained a value that may have influenced the value currently
being opened. From this set of potentially compromised secret vari-
ables we subtract the corresponding sets from all previously exe-
cutedopen operations whose values have not since changed. The
resulting set of newly compromised secret variables must explic-
itly be mentioned in theopenoperation. The set of variables which
must be mentioned may grow fast. In Figure 6 (ideal version) we
open the sign of a polynomial evaluated at a given point, and should
mention all of the variablesa,b,c andp but when arguing for the
security of releasingp one must consider it’s constituetsa,b andc
thus for ease of annotation we also subtract the variables which may
have influence any allready mentioned variable. The corresponding
analysis is a mixture of a def-use analysis, a liveness analysis, and
an available expressions analysis [30]. A simple constant folding
analysis also takes care of cases such as multiplying a secret value
by the constant zero. This is essentially a bookkeeping procedure



sint x = 17;
sint a = 42;
sint b = -5;
sint c = 87;
sint p = a*(x*x) + b*x + c;
sint sign = 0;
int output;
if (p < 0) sign = -1;
if (p > 0) sign = 1;
output = open(sign|p);

Ideal version

int x = 17;
sint a = 42;
sint b = -5;
sint c = 87;
int p = open(a*(x*x) + b*x + c|a,b,c);
int sign = 0;
int output;
if (p < 0) sign = -1;
if (p > 0) sign = 1;
output = sign;

Pragmatic version

int x = 17;
int a = 42;
int b = -5;
int c = 87;
int p = a*(x*x) + b*x + c;
int sign = 0;
int output;
if (p < 0) sign = -1;
if (p > 0) sign = 1;
output = sign;

Public version

Figure 6. Three versions of the polynomial program

(parties, threshold) ideal pragmatic public
(3,1) 12 sec 30 ms <1 ms
(5,2) 17 sec 65 ms <1 ms
(7,3) 30 sec 132 ms <1 ms

Figure 7. Timing results in SMCR

where we try to reduce the annotation burden as much as possible.
Of course, little is gained if the programmer blindly use these an-
notations to accept responsibility for the behavior of the pragmatic
computation: The idea is that it will be easier to prove equivalence
to the ideal computation when the compiler has verified that the
program is well-annotated.

7. Efficiency
Our experiences with SMCR show that Secure Multipart Compu-
tations are feasible in practice. However, secret computations are
quite expensive as they are based on complex protocols that involve
several rounds of communications between the server parties. To il-
lustrate this, we consider a program which computes the signof a
polynomial given coefficientsa, b, andc and a data pointx. We
provide three versions of this program shown in Figure 6. To en-
able proper timings, the client network communications have been
replaced with simple assignments. The ideal version keeps every-
thing secret until the output is revealed. The pragmatic version has
x as a public value and chooses to allow the value of the polynomial
to be public as well as its sign. The public version merely performs
an ordinary computation.

In Figure 7, we show the timing results from running the com-
piled versions of these programs on SMCR with 3, 5, and 7 server
parties distributed on an equal number of Intel P4 1,8 Ghz with
512 MB of memory (the timings are for one execution of the pro-
grams and do not include the time forpreprocessing, which is a part
of the protocols that SMCR uses for multiplications and compar-
isons). The time needed for preprocessing depends on the number
of multiplications done in the computation. The SMCR can be in-
structed to preprocess a number of multiplications and furthermore
use idle time to maintain a pool of preprocessed multiplications.
The numbers 1, 2, and 3 denote the threshold that is used in the
respective case. Our conclusion is that SMC primitives are expen-
sive but feasible. The slowdown from the public to the pragmatic
version is significant but many practical application exists where
the slowdown is acceptable. An example is offline auctions where
ample time is available for executing the auction. The slowdown
from the pragmatic to the ideal version is stunning, but it isto a
large extent an unavoidable price for obtaining the full invulner-
ability of our security properties. In practice, applications will be
written in the pragmatic style—making a convincing case forauto-
mated proof support like our simple annotation language. Itshould
also be noted that there are still many opportunities for optimizing
SMCR.

The SMCL compiler employs a range of static analyses to boost
efficiency, and the timing results clearly show that the potential
payoff can be dramatic. These analyses are all simple instances
of the monotone framework [13] based on fundamental analyses
described in [30], but they are interesting because they solve im-
portant domain-specific problems and thus illustrate the benefits of
using a domain-specific language.

Overflow Checking

SMCR is initialized with a large prime numberp and all secret inte-
ger operations are performed modulop. Thus, the runtime must in-
sert overflow checks to ensure a sound semantics. Such checksare
expensive in SMCR comparable to a comparison operation, anda
straightforward interval analysis will generally be too conservative
to eliminate many of those. Thus, we allow size annotations such
assint[16] andint[2] to state the maximal size in bits of the
corresponding values. We also allow types such assint[%] mean-
ing that the values are actually represented modulop (since this is
sometimes used in SMC applications). With such annotated types
it becomes more feasible to perform a static analysis with good
precision that tries to infer the sizes of integers. The compiler then
only needs to insert an overflow check if a computed integer value
may exceedp and if, furthermore, it is used before being stored in
a variable with type annotation[%].

Batch Processing

Multiplication and comparison of secret integers are particularly
expensive operations, mainly because of numerous communication
rounds taking place between the server parties. This expense may
be reduced by performing several such operations in batchesso that
they share the communication overhead. For example, we use a
static analysis to detect pairs (or generally tuples) of multiplications
that may be bundled in this manner. It is a variation of an available
expression analysis that bundlesa*b with c*d if it can be guaranteed
that the values ofc andd do not change between the evaluation of
a*b and the occurrence ofc*d. As an example, this optimization
applied to 100 multiplications reduces the running times asshown
in Figure 8.

Multiplications are frequent in SMC applications. However,
they often occur on array entries, and it poses more of a challenge
to bundle multiplications such asa[i]*b[j] andc[k]*d[l] since
an advanced integer analysis must first be performed.



(parties, threshold) sequential batch
(3,1) 1,002 ms 117 ms
(5,2) 2,298 ms 333 ms
(7,3) 4,880 ms 1,210 ms

Figure 8. Timing results of multiplications

Representation Heuristics

Secret integers may alternatively be represented at runtime as a se-
quence of secret bit values. Not surprisingly, this representation is
much more efficient when bitwise operations are performed. How-
ever, the overhead between changing representation is quite large.
We are experimenting with heuristics that identify points in the
control-flow graph where it may pay off to toggle the representation
of a given secret integer variable.

8. Related Work
To the best of our knowledge, SMCL is the first imperative pro-
gramming language for general Secure Multiparty Computation.
We discuss its relation to two other languages for SMC, and we
briefly survey the areas of language-based information-flowsecu-
rity and cryptography and explain their relationship to ourwork.

Languages for SMC

Closely related is the Fairplay project [25], which has developed a
DSL for secure two-party computation (that is the special case of
SMC where the number of parties is restricted to two). The Fair-
play system consists of a compiler from the Secure Function Defi-
nition Language (SFDL) to one-pass boolean circuits described in
the Secure Hardware Definition Language (SHDL). SFDL is a pro-
cedural DSL where all values are secret boolean, integer, orenu-
merations. SFDL also support arrays and the usual logic and arith-
metic operations on booleans and integers except for multiplication
and division on integers. The restriction to two parties andthe use
of boolean circuits as target greatly reduces the complexity of the
runtime and the compilation. In contrast to the SFDL, SMCL al-
lows both public/private and secret values which may potentially
boost efficiency and allows general loops and recursive functions
on public/private values. SMCL leaves the main burden of gener-
ating sound and efficient code to the compiler. Also, SFDL is re-
stricted to the two-party scenario.

Another closely related language is the SMC language [37]. The
language is a declarative language for SMC based on constraint
programming. A public program is distributed among the parties
in the computation along with an interpreter, each party inputs his
secret values and the interpreter calculates the result. Computations
are specified as arithmetic circuits and lacks branches on secret
values. The computer of each party is considered secure in contrast
to SMCL where the computation is done at the server parties, which
we do not consider secure. SMCL is more expressive, offers stricter
security guarantees, and provides a higher abstraction level.

Language-Based Security

Language based information-flow security aims at developing lan-
guage mechanisms for protection against deliberate or accidental
release of information. A thorough survey of language-based secu-
rity is given by Sabelfeld and Myers in [32]. To SMCL the protec-
tion of confidential information is of vital importance and SMCL
applies information-flow control to enforce security. Below we dis-
cuss areas of related work relevant to language-based security.

Noninterference SMCL is a security-typed language which is
firmly based on the work by Denning and by Volpano and Smith

and is in line with the work done by others [18, 32, 41, 47].
SMCL basically employs a two-level lattice of security levels, a
type system based on [43, 45] (in the current implementation),
which together with a semantics where the trace is independent of
secret values to enforce noninterference. The work by Volpano and
Smith has ignited a wide variety of work on the use of security
types for enforcing noninterference. The work has been extended
in various directions to languages with first-order procedures [43],
multiple threads [35, 38], and concurrent programs [44]. The type
system based approach has been applied to wide range of settings
like the calculi SLam [19] and DCC [1], the functional language
FlowCaml [31], and recently VHDL [41].

Another approach to noninterference is the use of an “informa-
tion-flow logic”. Amtoft et al. propose a Hoare-like logic [4, 5]
on top of which they present an interprocedural and modular
information-flow analysis where noninterference is enforced as
an end-to-end guarantee in object-oriented programs and programs
with pointers. The logic supports programmer assertions that spec-
ify more precise information-flow policies. The technique has in-
creased precision compared to previous type-based approaches like
the ones by Volpano and Smith [43] and Zdancewic [47].

In the decentralized label model (DLM) of [28], information
is marked by labels. A label is a set of components consistingof
an owner section and a reader section. The purpose of labels is to
protect the confidentiality of the owner principals that maygrant
other principals the right to read their values. The DLM guarantees
that the privacy of principals is never compromised. SMCL isalso
concerned with protecting the privacy of client input, and one
could easily imagine that the DLM would be suitable for SMCL
to guarantee that the values from some kind of clients do not flow
to certain other clients. SMCL already has the notion of groups
of clients and it seems like the combination of groups and DLM
make an interesting match. We leave research into their synergies
as future work.

Downgrading The noninterference property is often too restric-
tive in practice. Any practically interesting program leaks some
kind of acceptable information, e.g. a password checker even leaks
information when rejecting a candidate password. To accommodate
this intentional leak of information, a way to lower or declassify the
security level is needed. Allowing declassification without uninten-
tional release of information has been the focus of recent attention
and the paper by Sabelfeld and Sands [36] provides a good sur-
vey of declassification. According to the survey downgrading may
be classified according towhat information is revealed (The PER
model [34], delimited release [33], relaxed noninterference [24],
and quantitative abstractions [12]), bywhom(The DLM and robust
declassification [48]),where(non-disclosure [27]), andwhen.

Downgrading in SMCL can quite possibly be formulated in a
PER model. The programmer is alerted by the compiler of the
possible implicit leaks which may result from a downgrade. An
interesting future direction of research is to relate the warnings to
the quantitative approach and deduce how much of the information
is released.

The downgrading in SMCL is somewhat related to the DLM
and robust declassification in that a downgrade can only occur if all
server parties (or at least a number of parties equal to the threshold)
agree, but a downgrade may occur based on input received from
a possible corrupted client and thus a client may control what
information is revealed. SMCL guaranties that the given server
program is executed according to the semantics of SMCL and that
no information is leaked as a product of the execution with the
except of any information explicitly declassified using theopen
operator.

The approach by Mantel and Sands [26] based on intransitive
noninterference and the non-disclosure approach by Matos and



Boudol [27] are similar to downgrading in SMCL. The usual non-
interference property does not hold in the presence of declassi-
fication, but as observed by both Mantel and Sands and Matos
and Boudol the property may be enforced in maximal paths along
which there is no downgrading, and then restart the bisimulation
game in the context of any new low-equivalent stores. Our notion of
adversary traces achieves the same goal using similar techniques:
localization of declassification and enforcing the noninterference
property between downgrades. The trivial information flow relation
is left implicit in SMCL since we only have a two-level security lat-
tice.

Information may be downgraded over time. The SMCR is based
on computational security, so the values transmitted from clients to
the server are encrypted using public-key cryptography. Thus an
adversary may reveal these values if he has sufficient patience to
break these cryptographic systems.

Timing Attacks Timing channels can present a serious threat. The
problem of preventing timing attacks has received significant atten-
tion, and we will only consider those approaches closely related to
SMCL.

Volpano and Smith [44] propose a notion of protected branches
with atomic execution time. Their approach guarantees absence of
timing leaks observable in the program, but does not preventexter-
nal timing leaks and forbid the use of loops in secret conditionals.
Agat [3] observed that branches of secret conditionals musthave
the same timing characteristics in order to prevent timing attacks.
Agat proposed to use transformation as a tool to remove timing
attacks. In secret conditionals time parameters from the semantics
are used to guide a cross padding of instructions with dummy in-
structions to ensure the same execution time of the two branches.
The technique has inspired others like Barbosa and Page [6] who
analyze functions (branches) to find the least set of dummy assign-
ments that make their execution time equivalent. In some sense we
employ the simplest possible variant of this approach: execute both
branches in sequence and join the effects on the store. Our approach
is potentially a lot slower than the approach by Barbosa and Page,
but we cannot apply dummy assignments because the adversary
may inspect the instruction pointer and thus learn which branch
is being executed, so to eliminate this possibility we must execute
both branches.

Tolstrup and Nielson [40] consider VHDL programs for which
they define a semantic definition of security against timing attacks
based on bisimulation and use a type system to enforce the con-
dition. In SMCL there is no need for transformations and a type
system is only needed to prevent loops on secret values. The lack
of timing channels is vacuously true due to the semantics of SMCL.
The model of Köpf and Basin [22] is a general and abstract seman-
tic model based on automata for observable input and output,which
is suitable for many situations but not entirely for SMCL, since the
capability of the adversary is not just a function of the input and
output, but also of the instruction pointer and state of the computa-
tion at any time.

Secure Program Partitioning

In [49] Zdancewic proposes secure program partitioning as ameans
of allowing mutual distrusting hosts to execute a program. Apro-
gram is partitioned into a number of slices according to security
types and trust declarations. Confidentiality of information is ob-
tained by restricting the computation on values to the host who
owns the values or is trusted by the owner. This has some resem-
blance to SMCL since both operate in a scenario of untrusted hosts,
but whereas program partitioning is aiming at removing the need
for a universally trusted host, SMCL realizes such a host based on
SMC. A limitation of program partitioning seems to be that func-
tions on confidential values similar to the Millionaires’ Problem are

not possible to compute without revealing the net worth to the other
millionaires.

Validation of Cryptographic Protocols

SMCL is a domain-specific language for SMC applications and
uses a cryptographic runtime with several cryptographic protocols
which could conceivably be verified using techniques for validating
cryptographic protocols [2, 17].

9. Conclusion and Future Work
We have presented SMCL, the first imperative domain-specificlan-
guage for programming SMC applications. The language design
expresses a conceptual analysis of the application domain and uses
a host of static analyses to ensure security and to boost efficiency.
A prototype compiler has been written which translates SMCLto
Java exploiting a distributed cryptographic runtime (SMCR). The
SMCL design is based on initial experiences with SMC program-
ming, but with this platform we plan to perform extensive experi-
ments with larger applications, mainly in the area of e-commerce
and business processes. The information gained from such usage
of SMCL forms a suitable basis for the next generation of the lan-
guage. Many ideas for improvements already exist, but only prac-
tice will give a sound basis for prioritizing these.
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