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Abstract

We present a domain-specific programming language for $ecur
Multiparty Computation (SMC).

Information is a resource of vital importance and considiera
economic value to individuals, public administration, gvivate
companies. This means that the confidentiality of inforpratis
crucial, but at the same time significant value can often baiobd
by combining confidential information from various sourcéhis
fundamental conflict between the benefits of confidentizitgl
the benefits of information sharing may be overcome using the
cryptographic method of SMC where computations are perform
on secret values and results are only revealed accordingetfic
protocols.

We identify the key linguistic concepts of SMC and bridge the
gap between high-level security requirements and lowHergo-
tographic operations constituting an SMC platform, thupriow-
ing the efficiency and security of SMC application developime
The language is implemented in a prototype compiler thaegen
ates Java code exploiting a distributed cryptographicimt

Categories and Subject Descriptors D.3.2 [Domain-Specific
Languagelk Secure Multipart Computation

General Terms Languages, Design, Security
Keywords SMCL, design, analysis, implementation

1. Introduction

Information is a resource of vital importance and considieraco-
nomic value to individuals, public administration, andvpte com-
panies. This means that confidentiality, i.e. the protectibcon-
fidential information from unwanted leakage, is an imparteer
curity issue. At the same time, however, it is often possibleb-
tain significant added value by combining confidential infation
from different sources. The promise of Secure Multipartyr(ao-
tation (SMC) is to get the best of both worlds: the advantagfes
information sharing without the risks of unwanted leakages
The seminal example of SMC is thdillionaries’ Problem
which involves a number of millionaires who want to find out
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which is richer, but all refuse to disclose their net worthcénven-
tional solution would involve an external trusted partytthauld
perform the comparisons and report the result. Yao [46]qrei
a cryptographic solution for two millionaires that does nequire
an external party or any degree of trust between the twogsarti
The technique is essentially to perform computations ondtita
while itis encrypted and to control strictly when and how tasult-
ing information is revealed. These techniques have sulesgigu
been extended to cover comparisons, arithmetic, and letoper-
ations [14].

There are significant benefits from eliminating the relianoe
trusted parties. The only known method for making exteraaies
trustworthy is essentially to compensate them so adequdtet
the temptation to betray other parties is minimized. Thipdses
a significant overhead that prohibits their involvement iany
situations. In parody, trusted parties generally receivgetfees for
opening envelopes and announcing the highest bids.

The SIMAP (Secure Information Managing and Processing)
project aims to make SMC a practical and inexpensive tecieniq
for complex applications. Examples include distributeting, pri-
vate bidding and auctions, and business processes sucht@s ma
making and financial benchmarking [9]. The SIMAP project has
three main components: 1) the development of an efficiemtory
graphic runtime system (SMCR) supporting the required b
operations, 2) a domain-specific high-level language (SMfGL
specifying computations that are compiled into distribuggpli-
cations based on SMCR, and 3) the development and deployment
of large-scale applications in collaboration with indiedtpartners.
This work presents the initial design and implementatiorthef
SMCL language.

2. Contributions and Outline of the Paper

This paper explores the uncharted area of SMC programmidg an
provides four main contributions:

e A conceptual analysis of the domain of SMC programming.

e A design and implementation of SMCL, a novel domain-
specific programming language for SMC.

o A definition of the security properties that SMCL programs
satisfy.

e Anumber of static analyses that ensure these security giepe
or boost efficiency of SMCL applications. We also present a
simple language of checked annotations for describingieie
information dependencies among variables in SMCL programs

The rest of the paper is organized as follows. In Section 3 we
briefly present the structure of the SMCR system. In Sectiore4
perform a conceptual analysis of the linguistic elemenSMLC. In
Section 5 the various design decisions of SMCL are preseatdd



discussed. In Section 6 we discuss the security guararitatare
provided for SMCL programs and whose soundness is ensured by
static analyses. In Section 7, we evaluate the cost of udihgrs

and estimate how further static analyses may boost effigiehc
description of related work is given in Section 8, and we offe
some concluding remarks in Section 9 and highlight a number o
interesting areas for future work.

3. Secure Multiparty Computation

A secure multiparty computation involves a number of partie
that do not trust each other but still want to collaborate én-p
forming a computation. In the abstract version, we haygarties
Py, ..., P, that wish to jointly compute the value of an integer
function f(z1, z2, ..., xn), Where partyP; only knows the input
valuez; which must be kept secret from the other parties.

SMCR (a further development of the system used in [8]) en-
ables such computations to take place by allowing each party
make their input values secret, exchange them, and perfainh |
operations on such values. The final value of the functiotuava
tion can only be revealed by collaboration from all parties.

Under standard cryptographic assumptions it can be prdwan t
no party can obtain any extra information. SMCR is robustia t
sense that the secrecy can only be compromised if a certin fr
tion of the parties decides to collude passive corruptionwhere
they pool all their secret values but continue to follow thetpcol.
The standard threshold is/2 + 1 parties, but (more expensive)
protocols exist where the thresholdris- 1, i.e. where each party
trusts no other. SMCR is currently not robust agaattive corrup-
tion where the parties choose to sabotage the computation by not
adhering to their individual part of the protocol, but suathhv-
ior is guaranteed to be detected and some (even more expgnsiv
protocols can even tolerate a thresholdwg8 such parties.

SMC computations will generally involve complex protocols
that involve many rounds of communication between all parti
[8]. Thus, simple operations become several orders of nbadmi
more expensive than their non-cryptographic counterpagseen
in Section 7. Technically, the SMCR runtime is a Java API with
support for public key encryption, secret sharing, priva@tSMC
operations, and distributed deployment and communicatige
will not discuss the cryptographic challenges and techiitiesin
realizing the SMCR in this paper, but refer to [8].

4. Conceptual Analysis

Based on previous experiences with earlier versions of SNECR
20, 39], we can identify a number of concepts that are used in
describing realistic SMC computations.

First, a practical application will typically involve a nurar of
clientsthat provide the inputs and receive some computed results.
The computation itself is performed bysarverwhich is concep-
tually a single machine that is realized through a numbeephfs
rate parties that perform the SMC computations by runnieaqtid
cal copies of the code in lock-step, see Figure 1. In a réakst
ample, involving the Danish commodities market for sugatbe
there are around 3000 farmers as clients and the server vibauld
implemented by parties representing the buyers, the seted a
Government office. In general, there will be (possibly capging)
one-to-many mappings from the various kinds of clients dral t
single server to physical machines.

Note that the clients are in principle unrelated to the parti
mentioned in Section 3, as every secret client input is sspreed
secretly on each of the server parties. Also, from the prognar’s
point of view, the server is a single entity.

-~ Server” -~

Clients

Figure 1. Conceptual and concrete view of clients and server

A given physical machine may run a client and a server party
simultaneously which is useful if the owner of the machinendo
trust anybody else, e.g. in game of poker.

Clients communicate with the server only and have no ineenti
to communicate directly with each other, since they gehedd
not trust each other.

The division into clients and a single server separatesipubl
computations from secure computations respectively, énsénse
that SMC computations are performed only on the server. Note
that we actually have three kinds of values (and correspgndi
computations):

e secretvalues that reside on the server and are owned jointly by
the server parties;

® public values that reside in plain view on the server; and
e privatevalues that reside only on a single client.

Public and private computations are performed on ordinafyes
with a standard runtime representation. A secret value hdi§ a
ferent runtime representation consisting of secret shagsisling
on the machines that physically realize the server parsied,the
execution of primitive operations on such values will tygig in-
volve complex protocols with several rounds of communaai
The server will have the ability to explicitlppena secret value
which requires collaboration from all server parties. Galrémi-
tations must be placed on the use of secret values as carditio
the control flow to avoid attacks that observe public sideet$ of
computations.

Clients and the server require secure and flexible communica
tions: In some scenarios, a client only submits an input aed dot
need to wait for the result, whereas in other scenarios tieegiotion
is more complex and ultimately requires a client to be cotetbto
the server for the duration of the computation. For thespqags
we identify the need fotunnelsfor asynchronous communication
andremote procedure callfor synchronous communication.

The classical SMC applications compute a single integez-fun
tion, which is similar to a straight-line program. Whilegtlis still at
the core of large-scale applications, we will also allowskever to
perform computations on public values and to perform iteret
As a motivating example we may consider the use of secoral-lev
protocols where a server repeatedly performs a sequen@cofes
auctions until some market equilibrium has been attainedc€p-
tually, the server will execute Turing-complete programsvhich
the data is separated inpublic and secrettypes. However, com-
putations that involve only secret values still only copmsd to
loop-free programs.

While the underlying cryptographic protocols are known & b
provably secure, it is still a challenge to write reliable SNap-
plications, since confidential information may be propadatlong
non-obvious paths and may be leaked in subtle ways, thus-an un
bounded number of potential attacks exists. Implicit flowd &am-
ing attacks are a classical examples [15, 21]. As anothenpba
consider a variable: containing a secret integer value. Revealing



the values oft %10 andz /10 is sufficient to effectively reveat it-
self. Thus, programmers must keep track of such value flowlep
dencies, which turns out to be a tedious task. However, singe
non-trivial application is bound to reveabmethingabout its in-
put, the programmer must use careful judgment to determhma w
is acceptable. Thus, we are looking for a conceptlugcked an-

notationsensuring that a programmer has been made aware of all

potential information leaks and has explicitly considetfesim.
In summary, we have identified the following key concepts
within the area of SMC programming:

e Architecture The client-server view forms the fundamental
computing paradigm of SMC, providing a separation between
private, public, and secret computations and between dbgic
and physical parties.

¢ Values Values are either secret, private, or public, which also
determines their runtime representation and separatesffine
ciency of primitive operations by several orders of maguhetu

e CommunicationClients communicate with the server only, ei-
ther by using tunnels or by reacting to remote procedurescall
from the server.

e ExpressivenessA general SMC framework must be able to
perform any computation; i.e., it must be Turing-complete o
private and public values.

e Security Writing reliable SMC programs that do not leak un-
intended information, is a tedious and error-prone task¢ha
benefit from automated assistance.

5. Secure Multiparty Computation Language

Based on the above key concepts we have designed a novel

language called thé&ecure Multiparty Computation Language
(SMCL). It is a highlevel, domain-specific language [42],igth
allows programmers to express concepts such as clientgrser
and operations on secret values directly using a specishsynd
control structures tailored to the domain of SMC.

SMCL enjoys the classical advantages of being a domain-
specific language as opposed to being a library API for a géner
purpose language:

¢ The specialized syntax of SMCL closely matches the problem
domain.

¢ A domain-specific compiler may generate more efficient code
for SMCL.

e It is possible to perform domain-specific analyses that con-
sider global properties of SMCL programs and provide stesng
safety guarantees.

SMCL will be presented based on the example in Figure 2, which
shows an implementation of the solution to the Millionaifesob-
lem, generalized to an arbitrary number of millionaires.

TheM 11ionaires client describes the actions of a millionaire
and themax server calculates and reports who is the richest. Each
M | 1i onai res client has ami n function that initiates its execution.
The other functions may either be invoked by the client ft&e in
line cs) or by the server as a remote procedure call (as indirs.

In the example, each client submits its net worth viarteensr t h
tunnel (linecto). A tunnel supports asynchronous communicating
that is encrypted using the public key of the receiver. TheadI nt
anddi spl ay functions are rudimentary primitives for communi-
cating with the person controlling the client (in a futurersien,
this will happen through a browser with support for apprafei
GUI primitives).

The server declares thati I i onari es may belong to a group
namedni | I s (line s2). The member of a group is specified exter-

Cl: declare client MIlionaires:
C2:

C3: tunnel of sint netWrth;

C4:

C5: function voidmain(int[] args) {
C6: ask();

cr: }

C8:

C9: function voidask() {

C10: net Wort h. put (readl nt());

cii:  }

Cl2:

C13: function voidtell(bool b) {
Cl4: if (b) {

C15: di splay("You are the richest!");
C16:

C17: el se {

C18: di spl ay("Make nore noney!");
C19:

C20: }

S1: declare server Max:

S2: group of MIlionaires mlls;

S3:

S4: function voidnmain(int[] args) {
S5:

S6: sint max = O;

S7: sclient rich;

S8:

S9: for (client c inmlls) {

S10: sint netWorth = c.netWrth.get();
S11: if (netWorth > max) {

S12: max = netWorth;

S13: rich = c;

S14: 1

S15:  }

S16:

S17: for (client cinmlls) {

S18: c.tell (open(c==rich|rich));
S19:

S20: }

Figure 2. The generalized Millionaries’ Problem in SMCL

client: MIllionaires
gates. mcrosoft.com 4001 Ox85FFA494 nills
ebenezer.scrooge.org 4001 0x5532BB72 mi
i ngvar. i kea.com 4001 0x2333DDCC m
I arry. googl e. com 4001 Ox631DE7F2 m
sergei . googl e.com 4001 Ox7587B5AF mlls
server
gates. mcrosoft.com 4000 0x857722B7
sntl . brics. dk 4000 OxF471BCA7
survey. fortune. com 4000 Ox66A7FF35

Figure 3. A map identifying the concrete participants

nally by a mapping supplied to the SMCR runtime describirgy th
concrete participants involved during runtime. Figure 8w a hy-
pothetical example. Each participant is identified by andéress,

a port number, and a public encryption key. Note that the same
chine may serve both as a client and as a server party. Chegs
further be listed as belonging to a number of groups, in thisec
only the single groupi | | s containing all clients.

The mei n function of the server describes the SMC application
that is executed jointly by all the server parties.

The SMCL language supports the primitive datatypes and
bool . The identities of clients also form a datatyge ent. All of
these have secret versions, denotédt, sbool, andscl i ent.
The typessbool and sclient are represented as secret inte-



gers at runtime, because the SMCR only manipulates public va
ues and secret integers. A secret client is a client whogsttifye
(IP-address) is secret shared; the total number of clisnadnays
public. Furthermore, it is possible to construct recordd amulti-
dimensional arrays of such primitive datatypes. Privatblip, and
secret datatypes support the same standard primitive tipesa
and the type system ensures that results are secret unless al
guments are public (this may involve implicit conversioosthe
runtime representation of secret values).

In clients, the types of tunnels and return types of funcion
may be secret (as in lines). When a client sends a secret value
to the server, the transmitted value is not only encrypted, it
is also split into secret shares for the server parties, miragcthe
runtime representation of secret values. When the servetssa
secret value to a client, all server parties send encryptesion of
the secret shares which are then assembled on the cliergltbayi
private value.

Themx server uses two secret variablesc andri ch to retain
the current highest net worth and the identity of the comesing
millionaire (linessé and s7). It then proceeds by using feor
iterator to process each client in turn (lise), updatingnex and
ri ch if required.

In line s11 a secret boolean is used as condition in arstate-
ment. This is an instance of implicit flow [16] and could pdtealty
leak the secret value, if the two branches could be observbé-t
have differently, e.g. by timing the execution of each brar@on-
sequently, we enforce a number of requirements for conditson
secret values which we describe in Section 6. Similarly temided
information may leak fromwhi | e loops with secret conditionals
and recursive functions which recur based on secret comditi

for (client c inmlls) {
c.tell (open(c==rich|rich));

wNRE

(A) public booleans, public receivers

for (client cinmlls) {
c.tell(c==rich);

}
(B) secret booleans, public receivers

wnNe

for (sclient c inmlls) {
c.tell (open(c==rich|c,rich));

wNRE

(C) public booleans, secret receivers

for (sclient c inmlls) {
c.tell(c==rich);

}
(D) secret booleans, secret receivers

wnNe

Figure 4. The combinations of server knowledge

recognize responsibility for compromising it (ever so btig). In a
yet stricter version, we may change the three lines intoitfes|of
Figure 4D). For this particular example, however, this refinement
makes no difference (since the server always sends arevalue
and a number ofal se values).

Figure 5 shows another example program which implements a
so-called clock auction [23], where producers of electawer bid

whil e |OOpS cannot be handled in the same way as conditionals andfor shares of a total number of MegaWattS that a Consumeimu

are thus not allowed. Recursive functions may take secle¢sas
argument but cannot recur based on secret conditionalsodile t
semantics of SMCL similar calls to recursive functions aoé al-
lowed within secret conditionals. Conditionals ard | e loops on
private and public values are allowed without any restitsi

To finish, the server reports to each client a boolean intligat
whether or not that client is the richest. Thpen operator down-
grades a value from secret to public. The operator is geyara¢d
asopen(e| x, y, z) which computes and opens the secret expression
e and declares that the programmer recognizes the simultaneo
direct leaking of some information about the secret vadsh] y,
andz. In line s18, opening the value of the comparises=rich
may leak some knowledge about the valueiah as described be-
low. A program cannot be compiled unless itvigll-annotated
meaning that the programmer has recognized all potentisle
(see Section 6 for further details).

In generalizing the original Millionaries’ Problem from oato
many millionaires, we have in our solution chosen that witike
net worth of each millionaire remains secret, it is actugllplic
information which millionaire is the richest, see Figur@¥ In
a stricter version of the generalized problem we could aksepk
this information secret and only allow each millionaire tookv
his own status. In our program, we would then change lmgs
throughsi9 into the lines of Figure #). Here, we do not open
the secret boolean before it is sent to the client. This méaais
the server parties send their shares representing the vélype
sbool to the client which combine the shares into a value of type
bool . An equivalent effect can be achieved by changing the terat
c to have typescl i ent and thus keep it secret while revealing
the comparison result, Figurg@). Consequently, the invocation
c.tell(...) isnowimplemented by sending to all clients the same
message that can only be understood by the intended recipien
(function invocations with illegible arguments are ignibriey the
clients). Since: is now also secret, thepen operation must also

This example highlights the benefit of being able to iterateugh
what is essentially a sequence of individual SMC appliceticA
number of other examples such as double auction, multier@uic-
tion, the stable marriage problem, the Miller-Rabin priityatest
and thek-means-clustering algorithm have all been implemented
using SMCL.

The prototype compiler produces Java code using the SMCR
API, for each kind of client and for the server parties. Dgplent
scripts can be used to install and start applications. @tiyeall
communication takes place through a coordinator processt (t
only sees encrypted information). The coordinator coulélftbe
distributed using broadcast protocols.

6. Security

As discussed in Section 8, security requirements are mady an
multidimensional. Also, the problems to be considered ddpe
heavily on the capabilities that an adversary are assumedgo
sess [11, 22].

For SMCL, we are able to obtain quite strong security prapsrt
in the face of powerful adversaries due to two propertieshéuse
of strong cryptographic protocols in SMCR , and 2) a care@slign
of SMCL and its semantics.

To handle many specific but important modes of attack in a
common framework, we will assume an unusually strong model
of the adversary, which is able to observe the physical sifite
the server: At every clock cycle the entire layout of memong a
the instruction pointer are available for inspection. Heere the
secret values are not visible to any adversary (unless niane t
the given threshold of the server parties have been cowuipte
which case no guarantees are given) and neither are theeriva
values of the clients. We assume that clients cannot cooilyar
clients but clients may collaborate, e.g. share infornmatithis is a
strong adversary who is capable of many common attacksdimgju



decl are client Producer:

function voidmin(int[] args) {}

function sint getBid(int price) {
di spl ay(price);
return readl nt();

}

function voidresult(int price) {
di spl ay(price);

decl are client Consumer:

function voidmin(int[] args) {}

function voidresult(int price) {

di spl ay(price);
}

decl are server Auction:

function voidmain(int[] args) {
group of Producer supply;
group of Consuner denmand;

int total MNV= 7;
int shares = 14500000;
int price = 10;

bool done = fal se;
whi | e(! done) {
sint supply = 0;

for (client ¢ in supply) {
sint bid = c.getBid(price);
supply = supply + bid;

}

if (open(supply > total MY)
price = price - 1;

el se

done = true;

}

for (client ¢ in supply) {
c.result(price);

}

for (client ¢ in demand) {
c.result(sharesx*price);

Figure 5. Clock auction written in SMCL

e.g. simple eavesdropping and more complex attacks whiela ar
function of the program trace, like interference, and tigiibg, 21].

Adversary Traces

To formally define these notions, we have provided a smaf-st
operational semantics of SMCL programs [29]. Here, theestat
of an entire system contains the state of the server, the sfat
each client, and the state of each tunnel. The semantidomlat
reflects the computational progress of the clients, theeseand
their communications. Stores may contain both public,eteand
private values.

We consider onlywell-typed programs [29], which have the
simple property that variables with public types can neartain
secret values [38, 43, 45]. In the present SMCL language We on
have two security levels [15public and secretwith distinct run-
time representations. However, it would be natural to extdris
to the lattice of subsets of client groups, such that a seelee

is owned by a subset of the clients in the line of the decenéal
label model [28].

To formalize our security guarantees, we introduce a nation
adversary traceswhich contain the information that is made avail-
able to an adversary. Such a trace consists of the entiresequ
of system states (configurations in the small-step sengritiat is
encountered during the evaluation of a program with thretrice
tions:

e secret values on the server and in tunnels are masked out;
¢ the private states of clients are not available; and
® noopen operations are performed.

The capabilities of an adversary are then limited to obsgrtfiese
traces. We will use an illustration to show an adversaryetrac
from a state with public value® and secret valueS to one with
public valuesP’ and secret values':

Also, we use an illustration to show a transition where a parbf
the secret state is made public using ¢ipen operation to become

the public stateP; :
H —

A complete computation that occasionally makes use obthen
operation for downgrading is then described by an altemgasie-
quence of adversary traces and these transitions:

IH—>H\
H:\ ." ! S
\_.H—»H\I g '~—H
The security guarantees of well-typed SMCL programs can now

be expressed through two properties that will be ensurechby t
compiler.

The Identity Property

The identity propertystates that whenever we have the two situa-
tions

thenT) = T5 (and thus als@®’ = P”). This is a strong property
stating that computations from initial states with the sgublic
values will haveidentical observable traces from the point of view
of the adversary. This implies the property nbninterference
which normally only requires that the resulting public v@dumust
be equal [32].

This property implies that SMCL programs are immune to a
range of attacks that attempt to exploit information lealamnely
all of those where the leaked information is a function of the



adversary trace. This includes timing attacks as discusg@d21]
and also more exotic attacks, e.g. based on measuring icadiat
from the server [10]. SMCL programs are even immune to si&ong
timing attacks, since we not only assume that computatiawe h
the same overall duration regardless of the secret valugsalgo
that the instruction pointer of the server is independentioy
secret conditionals at any point in time. Invulnerabilityattacks

43, 45]. Instead of fixing a specific decidable requiremest il
allow the implementation of the SMCL compiler to perform any
sound approximation of this property. In our current impéerta-
tion, the static analysis that approximates hoistabibtypased on
alias analysis, def-use analysis, and side-effect amsabfsfunc-
tions [30].

A similar solution is not possible farhi | e loops on secret con-

of course hinges on the same properties holding for the basic ditionals and calls to recursive functions which recur lobse se-

operations on secret values, where the protocols are indepé
of the argument values.

The Commutativity Property

The commutativity propertgtates thabpen operations and com-
putations commute:

A

EIEEE S IFEEN

This property evidently expresses that the secret reprasen is
sound. Note thal andT: will in general clearly be different, but
the commutativity property implies th@i terminates exactly when
T» does.

Ensuring Security Properties

Validity of the two security properties hinges on two prapes of
the SMCL language:

¢ a runtime semantics whetgoth branches of amf statement
with a secret conditional are always evaluated in sequera;

e static analyses of well-typed SMCL programs to verify that
such branches always terminate and have no public sidet&ffe

The generated code for an statement with a secret conditional
will always execute both branches on copies of the locat stfter
these executions, the results of both branches are merged ba
the secret boolean value of the conditional. For exampkesécret
variablex is represented by the variabkg nen in the first branch
and the variablee| se in the second branch, then the merging of
the two states is performed by the secret computation:

x =condi tion*X¢pen + (1-condi tion)*Xe|se
This is not sufficient to ensure the security propertiescSine al-

cret conditions, and are consequently not allowed. Howeter
ation through a group of clients is possible usinfa iterator,
and if the identities of the clients are secret then the fi@mais
performed through a secret random permutation of the dieotn-
puted at the time of use to avoid revealing any secret inftona

Semantic Information Leaks

The security properties provide some basic guaranteest dheu
behavior of SMCL programs. With these guarantees, any ctanpu
tion (withoutwhi | e loops) can be made invulnerable to attack by
being structured as @deal computation

- PR
s|? v Ns |-
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Here, all information is kept in secret variables and onlthatvery
end are the output® made public. However, as shown in Sec-
tion 7, computations on secret values are quite expensives,Ta
pragmatic computation will keep information in public \avles
as much as possible without compromising the overall sgcuri
requirements. The commutativity property ensures thatidleal
computation and the pragmatic computation will producestae
output, but the programmer now has the burden of (manualby)-p
ing that these two computations will only reveal the samewvaaht
secret information. Since such proofs are difficult to comst the
SMCL compiler provides a simple annotation language to laéd t
programmer.

Theopen operation may be annotated with the names of some
secret variablesopen(e| x, y, z) . The meaning of this annotation
is that the programmer recognizes responsibility for camps-
ing the secret values of these variables, and the compitarldh
check that all compromised variables are mentioned, so the p
grammer is fully aware of his proof obligations. A progranthien
only accepted awell-annotatedf all potential semantic informa-
tion leaks are explicitly allowed by such annotations. Tabeser-
vative, which is a good attitude when security is conceraeg,se-
cret variable whose value may have influenced the openeé ialu
viewed as potentially compromised. Thus, for amen operation
the SMCL compiler computes the set of secret variables that h
ever contained a value that may have influenced the valuerdlyr

ways execute both branches, we need to make sure that tHey wil being opened. From this set of potentially compromisedeteferi-

both always terminate. To this end, the SMCL compiler penfoa
static analysis that conservatively checks the branchdsiimina-
tion (using simple syntactic criteria in the present impdetation).

Furthermore, since the merging of the two branches canrdat un
side-effects, we need to make sure that they agree on alicpubl
side-effects. This includes assignments to public vaemblith
scope outside the branches, function calls, 10, and conmoatian
with clients. To this end, the SMCL compiler performs a stati
analysis that conservatively checks that all public sifeets can
be hoisted out of the two branches without changing the séosan
specifically, this includes non-local assignments, fuorctalls, and
communication.

Note thathoistabilityis a general (and undecidable) concept that
is implied by conventional requirements for noninterferer38,

ables we subtract the corresponding sets from all prewoetst-
cutedopen operations whose values have not since changed. The
resulting set of newly compromised secret variables mugli@x
itly be mentioned in thepen operation. The set of variables which
must be mentioned may grow fast. In Figure 6 (ideal versioa) w
open the sign of a polynomial evaluated at a given point, aodls
mention all of the variablea, b, ¢ andp but when arguing for the
security of releasing one must consider it's constitueas b andc
thus for ease of annotation we also subtract the variabladwhay
have influence any allready mentioned variable. The cooredipg
analysis is a mixture of a def-use analysis, a liveness aisalgnd
an available expressions analysis [30]. A simple constaidirfg
analysis also takes care of cases such as multiplying atsedue

by the constant zero. This is essentially a bookkeepingeuha®



sint
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si nt
sint ;
sint ax(x*x) + bxx + c;
sint sign = 0;

int output;

if (p<0) sign=-1;

if (p>0) sign 1;
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out put = open(sign|p);
Ideal version
int x = 17;
sint a = 42;
sint b = -5;
sint ¢ = 87;
int p = open(ax(x*x) + bxx + c|a,b,c);
int sign = 0;
int output;

if (p <0) sign
if (p>0) sign
out put = sign;

Pragmatic version

-1:
1;

o nn
a1

bxx + c;

X
a
int b
i c
p
s

=}
=

out put ;

if (p <0) sign
if (p>0) sign
out put = sign;

Public version

-1;
1;

Figure 6. Three versions of the polynomial program

(parties, threshold) ideal |[pragmati¢ public
(3,1) 12sec| 30ms| <1ms
(5,2) 17sec| 65ms| <1lms
(7,3) 30sec| 132ms| <1ms

Figure 7. Timing results in SMCR

where we try to reduce the annotation burden as much as pmssib
Of course, little is gained if the programmer blindly useshen-
notations to accept responsibility for the behavior of thegmatic
computation: The idea is that it will be easier to prove eglg@nce

to the ideal computation when the compiler has verified that t
program is well-annotated.

7. Efficiency

Our experiences with SMCR show that Secure Multipart Compu-
tations are feasible in practice. However, secret comjausitare
quite expensive as they are based on complex protocolsitrave
several rounds of communications between the server pafiisl-
lustrate this, we consider a program which computes the @fign
polynomial given coefficienta, b, andc and a data point. We
provide three versions of this program shown in Figure 6. ifo e
able proper timings, the client network communicationsehagen
replaced with simple assignments. The ideal version keepy-e
thing secret until the output is revealed. The pragmatisieerhas

x as a public value and chooses to allow the value of the poljadom
to be public as well as its sign. The public version merelyqrens
an ordinary computation.

In Figure 7, we show the timing results from running the com-
piled versions of these programs on SMCR with 3, 5, and 7 serve
parties distributed on an equal number of Intel P4 1,8 Ghh wit
512 MB of memory (the timings are for one execution of the pro-
grams and do not include the time fameprocessingwhich is a part
of the protocols that SMCR uses for multiplications and camp
isons). The time needed for preprocessing depends on thberum
of multiplications done in the computation. The SMCR canrbe i
structed to preprocess a number of multiplications andh&rrhore
use idle time to maintain a pool of preprocessed multipiore.
The numbers 1, 2, and 3 denote the threshold that is used in the
respective case. Our conclusion is that SMC primitives apee-
sive but feasible. The slowdown from the public to the pratitna
version is significant but many practical application exiathere
the slowdown is acceptable. An example is offline auctionsreh
ample time is available for executing the auction. The skowmml
from the pragmatic to the ideal version is stunning, but itoisa
large extent an unavoidable price for obtaining the fulluimer-
ability of our security properties. In practice, applicats will be
written in the pragmatic style—making a convincing casesfiato-
mated proof support like our simple annotation languagehduld
also be noted that there are still many opportunities foinaigtng
SMCR.

The SMCL compiler employs a range of static analyses to boost
efficiency, and the timing results clearly show that the ptiét
payoff can be dramatic. These analyses are all simple iossan
of the monotone framework [13] based on fundamental anslyse
described in [30], but they are interesting because theyesioh-
portant domain-specific problems and thus illustrate theebts of
using a domain-specific language.

Overflow Checking

SMCR is initialized with a large prime numbgiand all secret inte-
ger operations are performed moduloThus, the runtime must in-
sert overflow checks to ensure a sound semantics. Such caerks
expensive in SMCR comparable to a comparison operationaand
straightforward interval analysis will generally be toanservative

to eliminate many of those. Thus, we allow size annotatiarth s
assi nt[16] andi nt[2] to state the maximal size in bits of the
corresponding values. We also allow types suchiag [ % mean-
ing that the values are actually represented mogufince this is
sometimes used in SMC applications). With such annotateelsty
it becomes more feasible to perform a static analysis withdgo
precision that tries to infer the sizes of integers. The dtengphen
only needs to insert an overflow check if a computed integkreva
may exceeg and if, furthermore, it is used before being stored in
a variable with type annotatiqrg .

Batch Processing

Multiplication and comparison of secret integers are patrly
expensive operations, mainly because of numerous comatioric
rounds taking place between the server parties. This erpey
be reduced by performing several such operations in batdhtst
they share the communication overhead. For example, we use a
static analysis to detect pairs (or generally tuples) oftiplitations
that may be bundled in this manner. It is a variation of anlatée
expression analysis that bundles with c«d if it can be guaranteed
that the values of andd do not change between the evaluation of
axb and the occurrence af-d. As an example, this optimization
applied to 100 multiplications reduces the running timestasvn
in Figure 8.

Multiplications are frequent in SMC applications. However
they often occur on array entries, and it poses more of aangd
to bundle multiplications such agi]«b[j] andc[k]+d[I] Since
an advanced integer analysis must first be performed.



(parties, threshold) sequentia batch
(3,1) 1,002 ms 117 ms
(5,2) 2,298 ms 333 ms
(7,3) 4,880 ms| 1,210 ms

Figure 8. Timing results of multiplications

Representation Heuristics

Secret integers may alternatively be represented at rerdisra se-
quence of secret bit values. Not surprisingly, this repnestéon is

much more efficient when bitwise operations are performesivH
ever, the overhead between changing representation is lquge.

We are experimenting with heuristics that identify pointsthe

control-flow graph where it may pay off to toggle the repraatan

of a given secret integer variable.

8. Related Work

To the best of our knowledge, SMCL is the first imperative pro-
gramming language for general Secure Multiparty Compaorati
We discuss its relation to two other languages for SMC, and we
briefly survey the areas of language-based information-fewou-

rity and cryptography and explain their relationship to ouark.

Languages for SMC

Closely related is the Fairplay project [25], which has deped a
DSL for secure two-party computation (that is the speciakocaf
SMC where the number of parties is restricted to two). The-Fai
play system consists of a compiler from the Secure Functiefi- D
nition Language (SFDL) to one-pass boolean circuits desdrin
the Secure Hardware Definition Language (SHDL). SFDL is a pro
cedural DSL where all values are secret boolean, integeznor
merations. SFDL also support arrays and the usual logic &tid a
metic operations on booleans and integers except for niaktpon
and division on integers. The restriction to two parties t#rause
of boolean circuits as target greatly reduces the complefithe
runtime and the compilation. In contrast to the SFDL, SMCL al
lows both public/private and secret values which may pdaént
boost efficiency and allows general loops and recursivetions
on public/private values. SMCL leaves the main burden okgen
ating sound and efficient code to the compiler. Also, SFDLeis r
stricted to the two-party scenario.

Another closely related language is the SMC language [37. T
language is a declarative language for SMC based on cantstrai
programming. A public program is distributed among the igart
in the computation along with an interpreter, each partyisgis
secret values and the interpreter calculates the resuttpOtations
are specified as arithmetic circuits and lacks branches oretse
values. The computer of each party is considered secureninasd
to SMCL where the computation is done at the server partibtw
we do not consider secure. SMCL is more expressive, offacsest
security guarantees, and provides a higher abstractieh lev

Language-Based Security

Language based information-flow security aims at devetpfan-
guage mechanisms for protection against deliberate odewtal
release of information. A thorough survey of language-tiaseu-
rity is given by Sabelfeld and Myers in [32]. To SMCL the prote
tion of confidential information is of vital importance andSL
applies information-flow control to enforce security. Belwe dis-
cuss areas of related work relevant to language-baseditsecur

Noninterference  SMCL is a security-typed language which is
firmly based on the work by Denning and by Volpano and Smith

and is in line with the work done by others [18, 32, 41, 47].
SMCL basically employs a two-level lattice of security lkyea
type system based on [43, 45] (in the current implementgtion
which together with a semantics where the trace is indeperafe
secret values to enforce noninterference. The work by VaEnd
Smith has ignited a wide variety of work on the use of security
types for enforcing noninterference. The work has beenngide

in various directions to languages with first-order procedy43],
multiple threads [35, 38], and concurrent programs [44 Type
system based approach has been applied to wide range ofysetti
like the calculi SLam [19] and DCC [1], the functional langea
FlowCaml [31], and recently VHDL [41].

Another approach to noninterference is the use of an “inferm
tion-flow logic”. Amtoft et al. propose a Hoare-like logic,[8]
on top of which they present an interprocedural and modular
information-flow analysis where noninterference is endoras
an end-to-end guarantee in object-oriented programs agtqms
with pointers. The logic supports programmer assertioasspec-
ify more precise information-flow policies. The techniquashin-
creased precision compared to previous type-based ap@oiike
the ones by Volpano and Smith [43] and Zdancewic [47].

In the decentralized label model (DLM) of [28], information
is marked by labels. A label is a set of components consisifng
an owner section and a reader section. The purpose of lab#s i
protect the confidentiality of the owner principals that ngagnt
other principals the right to read their values. The DLM gudees
that the privacy of principals is never compromised. SMChl&s
concerned with protecting the privacy of client input, anteo
could easily imagine that the DLM would be suitable for SMCL
to guarantee that the values from some kind of clients do pet fl
to certain other clients. SMCL already has the notion of geou
of clients and it seems like the combination of groups and DLM
make an interesting match. We leave research into theinrgigse
as future work.

Downgrading The noninterference property is often too restric-
tive in practice. Any practically interesting program Isakome
kind of acceptable information, e.g. a password checken maks
information when rejecting a candidate password. To accodate
this intentional leak of information, a way to lower or dessdy the
security level is needed. Allowing declassification withoointen-
tional release of information has been the focus of receahtibn
and the paper by Sabelfeld and Sands [36] provides a good sur-
vey of declassification. According to the survey downgrgdimay

be classified according t@hat information is revealed (The PER
model [34], delimited release [33], relaxed noninterfeeri24],
and quantitative abstractions [12]), sjhom(The DLM and robust
declassification [48])where(non-disclosure [27]), andthen

Downgrading in SMCL can quite possibly be formulated in a
PER model. The programmer is alerted by the compiler of the
possible implicit leaks which may result from a downgradex A
interesting future direction of research is to relate theniveys to
the quantitative approach and deduce how much of the infioma
is released.

The downgrading in SMCL is somewhat related to the DLM
and robust declassification in that a downgrade can onlyratall
server parties (or at least a number of parties equal to tiesttiold)
agree, but a downgrade may occur based on input received from
a possible corrupted client and thus a client may controltwha
information is revealed. SMCL guaranties that the giverveser
program is executed according to the semantics of SMCL aatd th
no information is leaked as a product of the execution with th
except of any information explicitly declassified using theen
operator.

The approach by Mantel and Sands [26] based on intransitive
noninterference and the non-disclosure approach by Matds a



Boudol [27] are similar to downgrading in SMCL. The usual xon
interference property does not hold in the presence of dskla

fication, but as observed by both Mantel and Sands and Matos

and Boudol the property may be enforced in maximal pathsgalon
which there is no downgrading, and then restart the bisitimra
game in the context of any new low-equivalent stores. Oupnaif
adversary traces achieves the same goal using similaritpeE®
localization of declassification and enforcing the nonifeience
property between downgrades. The trivial information fl@hation

is left implicitin SMCL since we only have a two-level seadyfiat-
tice.

Information may be downgraded over time. The SMCR is based
on computational security, so the values transmitted frbemts to
the server are encrypted using public-key cryptographyisTan
adversary may reveal these values if he has sufficient fatiem
break these cryptographic systems.

Timing Attacks Timing channels can present a serious threat. The
problem of preventing timing attacks has received signifiedten-
tion, and we will only consider those approaches closelgteel to
SMCL.

Volpano and Smith [44] propose a notion of protected brasche
with atomic execution time. Their approach guaranteesratesef
timing leaks observable in the program, but does not presxetetr-
nal timing leaks and forbid the use of loops in secret coodils.
Agat [3] observed that branches of secret conditionals rhase
the same timing characteristics in order to prevent timitigcks.
Agat proposed to use transformation as a tool to remove gmin
attacks. In secret conditionals time parameters from theaséics
are used to guide a cross padding of instructions with dummy i
structions to ensure the same execution time of the two hemc
The technique has inspired others like Barbosa and Paget6] w
analyze functions (branches) to find the least set of dummsigias
ments that make their execution time equivalent. In somsesese
employ the simplest possible variant of this approach: eteclooth
branches in sequence and join the effects on the store. @roagh
is potentially a lot slower than the approach by Barbosa aagkP

not possible to compute without revealing the net worth &dther
millionaires.

Validation of Cryptographic Protocols

SMCL is a domain-specific language for SMC applications and
uses a cryptographic runtime with several cryptographatqarols
which could conceivably be verified using techniques foidating
cryptographic protocols [2, 17].

9. Conclusion and Future Work

We have presented SMCL, the first imperative domain-spdaific
guage for programming SMC applications. The language desig
expresses a conceptual analysis of the application domdinses

a host of static analyses to ensure security and to boosieeffic

A prototype compiler has been written which translates SMEL
Java exploiting a distributed cryptographic runtime (SMCRhe
SMCL design is based on initial experiences with SMC program
ming, but with this platform we plan to perform extensive esip
ments with larger applications, mainly in the area of e-caroa
and business processes. The information gained from swdeus
of SMCL forms a suitable basis for the next generation of #re |
guage. Many ideas for improvements already exist, but ordgp
tice will give a sound basis for prioritizing these.
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