
Qualification Exam
A Domain-Specific Programming Language

for
Secure Multiparty Computation

June 29, 2007 Janus Dam Nielsen - Qualification Exam

Janus Dam Nielsen

1/30

Thesis

Creating tools with strong security guaranties
which exploits the benefits obtained by
combining confidential information without
compromising it, is feasible and useful.

Report on SMCL

2/30Janus Dam Nielsen - Qualification ExamJune 29, 2007

Overview
• Secure Multiparty Computation

• SMCL Concepts

• An example

• Security - what, why

• Efficiency

• Future Work

• Conclusion
Janus Dam Nielsen - Qualification ExamJune 29, 2007 3/30

Secure Multiparty
Computation

• n parties P1,...,Pn wish to jointly compute the
computable function: f(x1,...,xn)

• Party Pi only knows the input value xi which
must be kept secret from the other parties.

• Even if some adversary has power to corrupt
some subset of the parties

Janus Dam Nielsen - Qualification ExamJune 29, 2007 4/30

The Millionaire’s
Example

Alice Bob

TrentSMC

Janus Dam Nielsen - Qualification ExamJune 29, 2007 5/30

SMC Solves Problems

• Auctions

• Distributed Voting

• Matchmaking

• Benchmarking

Janus Dam Nielsen - Qualification ExamJune 29, 2007 6/30

Overview
• Secure Multiparty Computation

• SMCL Concepts

• An example

• Security - what, why

• Efficiency

• Future Work

• Conclusion
Janus Dam Nielsen - Qualification ExamJune 29, 2007 7/30

Conceptual Model

Clients Server

Janus Dam Nielsen - Qualification ExamJune 29, 2007 8/30

Values

Public & Secret valuesPrivate values
Booleans
Integers
Records

Booleans
Secret booleans
Integers
Secret integers
Records

Clients: Server:

Client identity
Secret client identity

9/30Janus Dam Nielsen - Qualification ExamJune 29, 2007

Communication

Clients: Server:
Tunnels:

Asynchronous

Functions:
Synchronous

Primitive types only
Data encrypted
Secret data - shared
and encrypted

put and get functions

Primitive types only
Invoked by server

Tunnels:
Accessed via client
identity
put and get functions

Janus Dam Nielsen - Qualification ExamJune 29, 2007 10/30

Client Identity

Clients: Server:
Groups of clients:

A set of clients
All of the same kind
Iterated using a for loop
Uniform treatment of
clients
Secrecy of client identity
Specified externally

Janus Dam Nielsen - Qualification ExamJune 29, 2007 11/30

Overview
• Secure Multiparty Computation

• SMCL Concepts

• An example

• Security - what, why

• Efficiency

• Future Work

• Conclusion
Janus Dam Nielsen - Qualification ExamJune 29, 2007 12/30

SMCL

declare server Max:declare client Millionaires:

function void main(int[] args) {

}

function void main(int[] args) {

}

sint max = 0;
sclient rich;

function void tell(bool b) {
 if (b) {
 display("You are the richest!");
 } else {
 display("Make more money!");
 }
}

foreach (client c in mills) {
 c.tell(open(c==rich|rich));
}

group of Millionaires mills;

foreach (client c in mills) {

}

 if (netWorth >= max) {
 max = netWorth;
 rich = c;
 }

tunnel of sint netWorth;

function void ask() {
 netWorth.put(readInt());
}

ask();

sint netWorth = c.netWorth.take();

The Millionaire’s Example

Janus Dam Nielsen - Qualification ExamJune 29, 2007 13/30

Overview
• Secure Multiparty Computation

• SMCL Concepts

• An example

• Security - what, why

• Efficiency

• Future Work

• Conclusion
Janus Dam Nielsen - Qualification ExamJune 29, 2007 14/30

Security

• Identity property

• Commutative property

• Adversary may:

• Observe physical
state of the server

• Not observe private
and secret values

Clients Server

Janus Dam Nielsen - Qualification ExamJune 29, 2007 15/30

Adversary Traces

• A sequence of states
of an entire
computation

• Secret values are
masked out

• Private state of
clients not available

• No declassification

P

S

P’

S’T

P

S

P

S
S

P1

2

1

2

16/30Janus Dam Nielsen - Qualification ExamJune 29, 2007

Adversary Traces (cont’)
Janus Dam Nielsen - Qualification ExamJune 29, 2007 17/30

Identity Property

P’

S’

S’T

T1

2
2

1

P

S1

P

S2

P’’

• p’ = p’’ - Low equiv.

• Traces must be
identical

• Prevents attacks
which are a function of
the trace (e.g. timing)

• Requires basic
operations
independent of
arguments

Janus Dam Nielsen - Qualification ExamJune 29, 2007 18/30

Commutative Property

• Soundness of secret
representation

T1

P1 P’1

P’

S1

P P’

S’1

T2

P

Janus Dam Nielsen - Qualification ExamJune 29, 2007 19/30

Ensuring Security

• Carefully crafted semantics

• Static analysis of well-typed SMCL
programs

Janus Dam Nielsen - Qualification ExamJune 29, 2007 20/30

Semantics

• Conditionals are a
source of differences
in trace

• Execute both
branches

• Termination x = b*y + (1-b)*z

if (b) {
x = y;

x = z;

}
else {

}

Janus Dam Nielsen - Qualification ExamJune 29, 2007 21/30

20 Chapter 4. Security in SMCL

Evaluation of both branches removes timing attacks because the execution time
is independent of the condition. Cache-timing attacks are also eliminated because
which branch gets executed is independent of the condition, and thus the state of
the cache contains no information about the value of the condition.

Evaluation of both branches is however not sufficient to ensure the security prop-
erties. Since we always execute both branches, we need to make sure that they will
both always terminate. To this end, the SMCL compiler performs a static analy-
sis that conservatively checks the branches for termination (using simple syntactic
criteria in the present implementation). Furthermore no return commands, I/O, or
function calls with side-effects are not allowed.

while loops on secret conditionals and calls to recursive functions which recur
based on secret conditions, cannot be treated in the same way as conditionals on
secret values. In conditionals we only needed a finite number of additional stores,
in a loop or recursion and unbounded number is needed. Currently we can see no
better alternative than to disallow while loops and recursive functions based on a
secret condition. Iteration through a group of clients is possible using a for iterator,
and if the identities of the clients are secret then the iteration is performed through
a secret random permutation of the clients computed at the time of use to avoid
revealing any secret information.

G ! 〈C2, S〉 →COMsv
〈C′

2, S
′〉

G ! 〈if(v) {} else {C2}, Uthen, S〉 →COMsv
〈if(v) {} else {C′

2}, S
′, Uthen, S〉

(If-sbool-else)

σ.S′ = S[x %→ v ∗ Uthen(x) + (1 − v) ∗ Uelse(x)]
∀x ∈ S |Uthen(x) = v = Uelse(x) ∨Uthen(x) = v′ ∧ Uelse(x) = v′′

G ! 〈if(v) {} else {}, Uelse, Uthen, S〉 →COMsv
〈σ.S′〉

(If-sbool-phi)

Figure 4.3: Sample of server-side semantics for secret conditional commands

4.4 Hoistability

In this Section we introduce the concept of hoistability and describe a type-system
based approximation. As described before merging the two branches of conditionals
removes timing leaks. However it does not prevent implicit flow [19]. This includes
assignments to public variables with scope outside the branches, function calls,
IO, and communication with clients. To this end, the SMCL compiler performs a
static analysis that conservatively checks that all public side-effects can be hoisted
out of the two branches without changing the semantics; specifically, this includes
non-local assignments, function calls, and communication.

Note that hoistability is a general (and undecidable) concept that is implied by
conventional requirements for noninterference [46,52,54]. Instead of fixing a specific
decidable requirement, we will allow the implementation of the SMCL compiler to
perform any sound approximation of this property.

In our current implementation, hoistability is approximated by a type system
based on a type system by Volpano and Smith [52, 54] which includes effects in
the style of Jouvelot and Gifford [27]. We extend this type system by tracking all

Janus Dam Nielsen - Qualification ExamJune 29, 2007 22/30

Hoistability

• Branches must agree on public side-effects

• Assignment to public variables

• Communication

• Function calls

• While loops and recursion with secret condition - not
allowed

Janus Dam Nielsen - Qualification ExamJune 29, 2007 23/30

22 Chapter 4. Security in SMCL

[Σ, η, µ, "] ! x : (τ, ρ)-var [Σ, η, µ, "] ! e : (τ ′, ρ′, ν′, ιo′)-exp τ ′ ≤ τ
ν = write(x, η, x = e)

[Σ, η, µ, "] ! x = e : (τ, ρ ! ρ′, ν " ν′, ιo′)-exp
(TAssign)

Figure 4.4: Typing rule for assignment

must be of type at least public and local. This rules out implicit flow to local
variables declared outside the branches, but allows assignment to variables declared
inside the branches, a formal proof of soundness is work in progress. The I/O of
the condition determines the I/O of the conditional. The variables written to is the
greatest common suptype of those in the branches, PL, and in the condition. A

Γt ! e : (bool, S, ν, ιo)-exp
Γt ! C1 : (PL, NIO)-cmd Γt ! C2 : (PL, NIO)-cmd

Γt ! if (e) {C1} else {C2} : (PL " ν, ιo)-cmd
(TIf-secret)

Γt ! e : (bool, P, ν0, ιo0)-exp
Γt ! C1 : (ν1, ιo1)-cmd Γt ! C2 : (ν2, ιo2)-cmd

Γt ! if (e) {C1} else {C2} : (
2

"
i=0

νi,
2

!
i=0

ιoi)-cmd

(TIf-public)

Figure 4.5: Typing rules for conditional commands

4.5 Semantic Security

The security properties provide some basic guarantees about the behavior of SMCL
programs. With these guarantees, any computation (without while loops) can be
made invulnerable to attack by being structured as an ideal computation:

S S’

P

S’’

Here, all information is kept in secret variables and only at the very end are the
outputs P made public. However, as shown in [36], computations on secret val-
ues are quite expensive. Thus, a pragmatic computation will keep information in
public variables as much as possible without compromising the overall security re-
quirements. The commutativity property ensures that the ideal computation and
the pragmatic computation will produce the same output, but the programmer now
has the burden of (manually) proving that these two computations will only reveal
the same relevant secret information. Since such proofs are difficult to construct,
the SMCL compiler provides a simple annotation language to aid the programmer.

The open operation may be annotated with the names of some secret variables:
open(e|x,y,z). The meaning of this annotation is that the programmer recognizes
responsibility for compromising the secret values of these variables, and the com-
piler should check that all compromised variables are mentioned, so the programmer

Janus Dam Nielsen - Qualification ExamJune 29, 2007 24/30

Semantic Security

S S’
P

S’’

• Ideal computations are
inefficient

• Prove that a pragmatic
version reveals same
information as the
ideal version

• Assist the
programmer

Ideal computation

open(e|x,y,z)

Janus Dam Nielsen - Qualification ExamJune 29, 2007 25/30

Overview
• Secure Multiparty Computation

• SMCL Concepts

• An example

• Security - what, why

• Efficiency

• Future Work

• Conclusion
Janus Dam Nielsen - Qualification ExamJune 29, 2007 26/30

Efficiency

(parties,
threshold) ideal pragmatic public

(3,1) 12 sec 30 ms < 1 ms

(5,2) 17 sec 65 ms < 1 ms

(7,3) 30 sec 132 ms < 1 ms

sint x = 17;
sint a = 42;
sint b = -5;
sint c = 87;
sint p = a*(x*x) + b*x +c
sint sign = 0;
int output;
if (p<0) sign = -1;
if (p>0) sign = 1;
output = open(sign|p);

Ideal

int x = 17;
sint a = 42;
sint b = -5;
sint c = 87;
int p = open(a*(x*x) + b*x +c|a,b,c)
int sign = 0;
int output;
if (p<0) sign = -1;
if (p>0) sign = 1;
output = sign;

Pragmatic

Janus Dam Nielsen - Qualification ExamJune 29, 2007 27/30

Future Work
• SMCL

• Formalize Adversary traces

• Dynamic groups

• Secret compound datatypes

• More elaborate examples

• SecRas

• SVM, SPL...
Janus Dam Nielsen - Qualification ExamJune 29, 2007 28/30

Conclusion

• A DSL for SMC

• High-level abstractions

• Strong security guaranties

• Useful in practice

Janus Dam Nielsen - Qualification ExamJune 29, 2007 29/30

Questions?

30/30Janus Dam Nielsen - Qualification ExamJune 29, 2007

