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Abstract

We show that it is feasible and useful to create programming languages with
strong security guarantees for secure multiparty computation. We have de-
signed and implemented the Secure Multiparty Computation Language (SMCL),
which is a domain-specific programming language for secure multiparty compu-
tation. SMCL allows programmers to write programs using secure multiparty
computation without expert knowledge on how to design and implement crypto-
graphic protocols. We have proven that programs written in SMCL are immune
to a broad range of security threads and confidential information may only be
revealed in specific parts of a program, designated by the programmer.

We demonstrate the usefulness of SMCL by reporting on how an SMCL
program contributed to the first large-scale practical application of secure mul-
tiparty computation.

Based on our experiences with SMCL we have designed a successor called
PySMCL which is a domain-specific language embedded in Python, and will
provide even better security guarantees than SMCL.

We also show that syntactic abstraction can enable programming languages
to evolve over time by adding new libraries with syntax and semantics as they
become needed. This is an important feature because it is difficult to anticipate
which language concepts becomes needed over the lifetime of a programming
language. We have designed and implemented a hygienic syntactic abstraction
system for the Fortress programming language based on parsing expression
grammars. The system allows syntactic extensions of Fortress to be specified in
a modular fashion and added in libraries as needed. The system also allows us to
not only support new language extensions, but also to move many constructs of
the core language into libraries. We have designed a type system which extend
the guarantees provided by the Fortress type system to the combined language
of Fortress and our system for syntactic abstraction.
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Introduction

Anything I’ve ever done that ultimately was worthwhile...
initially scared me to death

— Betty Bender

In this dissertation we investigate whether it is feasible and useful to create
programming languages with strong security guarantees for secure multiparty
computation. We also investigate to what extend syntactic abstraction can
enable programming languages to evolve over time by providing new syntax
and semantics as they become needed.

Information is a resource of vast importance and economic value to indi-
viduals, public administration, and private companies, who spend more and
more time and effort to protect the confidentiality of their information from
other parties. Examples include the definition of security policies, access con-
trol (physical as well as electronic), careful destruction of old data, encryption
of information, restrictions on allowed programs on company computers, and
the wide spread use of anti virus programs and firewalls.

However, there are many situations where significant value can be ob-
tained by combining confidential information from various sources (e.g. financial
benchmarking, auctions, negotiations, and profile matching). In economics, it
is well-known that the most precise market clearing price (the price at which
supply meets demand) for auctions can be found if all participants reveal how
they truly value the auctioned commodity. The information can be provided
as a bid-strategy which is a function of the price describing how much of the
commodity to buy at each price. However, the bid-strategy is sensitive data
because it may be misused by a dishonest auctioneer. The auctioneer could
collude with the seller and set the market clearing price to the maximum value
anyone is willing to bid. This is a real world problem with the many online
providers of auctions where the user submit a bid-strategy in terms of a max-
imum bid. The auctioneer now has the possibility of raising the bids on an
item to the maximum of all maximum bids, which is usually not what the users
expects or wants. Another example is profile matching. A buyer would find
it useful to get recommendations on which music album to purchase without
revealing the entire content of his/hers music collection, including any possibly
embarrassing content. Yet another example is financial benchmarking where a
number of companies have a common interest in computing a ranking of the
companies, e.g. based on their individual productions costs in order to assess
possibilities for reduction of production costs. However, none of the companies
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2 Introduction

are interested in revealing their own exact production costs to the others, be-
cause it might reveal valuable information about profit margins and robustness
of the company.

Overcoming this fundamental conflict between the benefits of confidentiality
and the benefits of information sharing is possible using the technique of secure
multiparty computation. The technique has been available for quite some time.
However, we have only recently begun to see real world application of secure
multiparty computation, in fact we will report on how one of the program-
ming languages described in this thesis contributed to the very first large-scale
practical application of secure multiparty computation.

We release some of the yet unused potential of secure multiparty compu-
tation by providing domain-specific programming languages [99] with strong
security guarantees for secure multiparty computation. The languages will al-
low programmers with a very limited understanding of secure multiparty com-
putation to implement, e.g. secure versions of auctions and financial bench-
marking using secure multiparty computation. In this way we enable the easy
development of new applications which exploit confidential information without
revealing it, to solve problems of considerable economic value.

Programming languages are generally designed to enable the programmer
to express ideas clearly and concisely. But the set of concepts needed over
the lifetime of a programming language is difficult to anticipate and is often
dependent on the development of new systems that programs must interact with
(for example, new domain-specific languages, new programming platforms, new
virtual machines, etc.). If a programming language can adapt and support new
concepts during the lifetime of the language it will retain its ability to express
ideas clearly and concisely. We say that such languages are able to grow.

A language may grow in various ways, new concepts may be supported in
libraries using data abstractions, like functions and objects. But in some cases
we want to add new syntax which express the new concepts more concisely and
naturally than the existing syntax and semantics allows. One mechanism to
allow for such growth is syntactic abstraction: It is possible to add new syntactic
constructs to the language in libraries, defining new constructs in terms of old
ones. In this manner, the language can gracefully adapt to unanticipated needs
as they become apparent.

The new syntax and semantics should be indistinguishable from the old one,
and subject to the same guarantees as the language provide for the old syntax
and semantics. If the host language is a strongly typed language, where well-
typed programs are ensured not to go “wrong” in some way, then the system
for syntactic abstraction should support the same guarantees for the new code.

We present a syntactic abstraction system for the Fortress programming
language based on parsing expression grammars, which allows syntactic exten-
sions of Fortress to be specified in a modular fashion. This allows composition
of independent macros, which is important because it enables programs written
in domain-specific languages to be embedded in Fortress programs and parsed
along with their host programs. The new syntax is indistinguishable from old
syntax from the user’s perspective which leads to a coherent language, instead
of a language with a number of patches. The system is also powerful and sup-
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ports case dispatch and allows syntax extensions to expand into other syntax
extensions or even it self, thus supporting recursion.

Moreover, the definition of many constructs that are traditionally defined
as core language primitives (e.g. for loops) can be moved into Fortress’ own
libraries, thereby reducing the size of the core language.

The Fortress language is a strongly typed language which guarantees that
well-typed programs does not go “wrong”. The guarantees should naturally
cover the extended syntax as well. We define a core calculus for Fortress which
include the system for syntactic abstraction, and formally define a type system
for this extended calculus. We also state the theorems which should be proven
to ensure the validity of the guarantees.

An Overview

The dissertation is structured as two major parts, Part I on languages for SMC
and Part II on enabling languages to grow over time using syntactic abstraction.

Part I consists of three chapters; in Chapter 1 we give a detailed definition
of SMCL and its security guarantees, in Chapter 2, we describe a real world
application of an SMCL program, and in Chapter 3 we present our preliminary
work on PySMCL, a further development of SMCL and an interesting future
direction of research in language support for secure multiparty computation.

In Part II we investigate how syntactic abstraction can enable a language
to evolve over time to accommodate the changing needs of its users. It is
possible to add new syntactic constructs to the language in libraries, defining
new constructs in terms of old ones. In this manner, the language can gracefully
adapt to unanticipated needs as they become apparent. Chapter 4 presents our
system for syntactic abstraction for the Fortress programming language, and in
Chapter 5 we present a core calculus for the system based on the Basic Core
Fortress calculus, a type system which guarantees that no type errors occur in
expanded macros, and some considerations and future work on the type system.

The work in this dissertation is made up of a combination of previous con-
tributions and novel work. Chapter 1 is similar to the work presented in the
paper [71] with minor typographical changes to make it fit the layout of the
dissertation. The paper [71] is a further development of the paper [69] and
the author’s progress report [68], adding descriptions of the dynamic and static
semantics of SMCL, formal proof of security guarantees, and a description of
optimizations. Chapter 2 is based partly on the paper [16] where we have
omitted a formal description of the used cryptographic protocols and added
a detailed description of the SMCL program used for the auction. Chapter 3
is joint work with Ivan Damg̊ard, Sigurd Torkel Meldgaard, and Michael I.
Schwartzbach. Chapter 4 is similar to the work presented in the paper [8] with
minor typographical changes.

We expect the reader to be familiar with static analysis and basic cryptog-
raphy [91] on a level equivalent to the knowledge taught in most undergraduate
courses. Furthermore we expect the reader to have a rudimentary understand-
ing of secure multiparty computation [30] and language-based security [78].





Part I

Languages for Secure
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Chapter 1

SMCL - Security Guaranteed

The limits of language are the limits of one’s world
— Ludwig Wittgenstein

Janus Dam Nielsen Michael I. Schwartzbach

Abstract

We present a domain-specific programming language for Secure Multi-
party Computation (SMC).

Information is a resource of vital importance and considerable economic
value to individuals, public administration, and private companies. This
means that the confidentiality of information is crucial, but at the same
time significant value can often be obtained by combining confidential
information from various sources. This fundamental conflict between the
benefits of confidentiality and the benefits of information sharing may be
overcome using the cryptographic method of SMC where computations
are performed on secret values and results are only revealed according to
specific protocols.

We provide a conceptual analysis of SMC that leads to the design of a
domain-specific language, SMCL, for expressing such computations. The
linguistic concepts of SMC bridge the gap between high-level security re-
quirements and low-level cryptographic operations constituting an SMC
platform, thus improving the efficiency and security of SMC application
development. The language is implemented in a prototype compiler that
generates Java code exploiting a distributed cryptographic runtime. Var-
ious optimizations are provided to speed up the costly computations on
secret values.

We provide a formal semantics of SMCL and prove that well-typed
programs possess the novel property of trace security, which means that
they are immune to a wide range of attacks by hostile observers.

1.1 Introduction

We present the Secure Multiparty Computation Language (SMCL) a domain-
specific language for SMC. The development of SMCL is based on an analysis
of the SMC domain and experiences with previous applications based on SMC.

7



8 Chapter 1. SMCL - Security Guaranteed

The language is carefully designed to provide high-level abstractions and
strong security guarantees. The abstractions (including such concepts as se-
cret, public, and private values, clients, servers, and tunnels, and the ability to
explicitly open secret values) make the application of SMC to many problems
like auctions and benchmarking easier to program and also accessible for new-
comers to SMC. As a major example, the SMCL language has been used to
define the first ever real-life, commercial application of SMC [16].

Security is a central issue in SMC, given that its central premise is that
no information at all may be obtained by outside observers (modulo the stan-
dard cryptographic assumptions). In principle, SMC will be robust against any
kind of passive attack provided that a certain threshold of participants remain
uncorrupted. We formalize this idea by defining the notion of trace security
and we show relatively to a formal semantics that well-typed SMCL programs
possess this property.

Another issue is whether information that is opened will unintentionally
leak other information. This requires the programmer to keep track of subtle
dependencies among computed values. The SMCL language applies a concept of
checked annotations to support the programmer and to raise awareness of which
information is released. An important part of practical SMC programming is
to decide which information it is harmless to reveal during computations, since
a program with exclusively secret values is generally prohibitively expensive to
execute.

Finally, the SMC runtime is very sensitive to the use of secret values in com-
putations, particularly multiplications, which due to the involved cryptographic
protocols are several orders of magnitude more expensive than additions. Con-
sequently, we apply analysis that seek to reduce the number of such operations
as much as possible.

1.1.1 Contributions

The goal of this article is to give a firm and detailed description of all aspects
of the SMCL language. Our contributions in this article are:

1. A conceptual analysis of the domain of SMC programming.

2. A design and implementation of a domain-specific language for secure
multiparty computation (SMCL)

3. A concurrent semantics for SMCL

4. An effect-based type system for SMCL which approximate our concept of
hoistability and provides better precision than previous type systems for
noninterference, and a proof of its soundness.

5. A characterization of a very broad family of attacks which can be per-
formed by exploiting physical measurements e.g. timing attacks.

6. We define the concept of trace security for SMCL programs which is based
on a formalization of physical measurements and we show that SMCL
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programs are trace-secure under the reasonable assumption that all the
operations of the runtime we use are trace-secure.

7. We present an optimization for multiplications and prove that it is correct.

8. A simple language of checked annotations for describing potential infor-
mation dependencies among variables in SMCL programs.

Of these, numbers three to seven are novel contributions compared to the work
published in [69].

1.1.2 Structure

To achieve the goal of this article we first give an analysis of secure multiparty
computation as a domain and present the key linguistic concepts we have iden-
tified, Section 1.2. Then we describe the language in Section 1.3 and the formal
semantics in Section 1.4. In Section 1.5 and Section 1.6 we discuss security
and prove that SMCL programs are secure against trace-attacks. We present
an optimization of multiplications in Section 1.8. A description of related work
is given in Section 1.9, and we conclude the article in Section 1.10 and give
directions for future work.

1.2 Secure Multiparty Computation as Domain

We give a short introduction to SMC and SMCR a runtime for SMC. Based
on this we provide a conceptual analysis to determine the central concepts of
SMC.

1.2.1 SMC

The seminal example of SMC is the Millionaire’s problem which involves a num-
ber of millionaires who want to find out which is richer, but all of them refuse
to disclose their net worth. A conventional solution would involve an external
trusted third party (TTP) that could perform the comparisons and report the
result. An external TTP is usually realized by a law or accountant company,
which is paid an adequate sum as incentive to not reveal the secret information.
The amount paid must be high enough that a counter-bribe from any of the
millionaires is unlikely, however no-matter how high a sum is paid it cannot
be guarantied that the TTP will not reveal some information intentionally or
unintentionally. Thus this approach to establishing a TTP is expensive and
without any guarantees of security. SMC offers another approach to realizing a
TTP using software which is secure and cost efficient. Yao [109] showed in 1982
that it is possible to find the richest of two millionaires without any degree of
trust between the two parties if they work together.

In general a secure multiparty computation involves a number of parties.
Each party does not trust the other parties, but they still want to collaborate in
performing a computation. The computation could be in the form of a Secure
Function Evaluation (SFE), where we have n parties P1, . . . , Pn that wish to
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jointly compute the value of an integer function f(x1, x2, . . . , xn), where party
Pi only knows the input value xi, and the input must be kept secret from the
other parties. SMC can also be performed in an Iterative SFE model which
generalizes SFE. Here the parties perform the following sequence of actions any
number of times:

• A subset of parties input values

• All parties work together and perform SFE

• A subset of values are revealed to some subset of parties

The Millionaires examples fits nicely in the SFE model, whereas the card game
of poker fits better in the Iterative model.

The foundation for SMC that we have made use of in our work is threshold
secret sharing scheme [86] defined by a probabilistic algorithm S. It takes as
input a secret s chosen from some finite set S , and outputs a sequence of n
shares s1, . . . , sn. A share is a sequence of bits. Furthermore the scheme comes
with a threshold 1 ≤ τ ≤ n, and the properties:

Privacy Take any subset I of the indices {1, . . . , n} and run S on any secret
s. Then the probability distribution of the {si | i ∈ I } is independent of
s.

Correctness Take any subset J of the indices {1, . . . , n} of size at least t+ 1,
and run S on any secret s. Then s is uniquely determined by {si | i ∈ J},
and there is an efficient algorithm that computes s from {si | i ∈ J}.

These properties ensure that if someone knows up to t shares of a secret s then
the secret is not compromised, however if someone knows t+ 1 or more shares
then he can efficiently reconstruct the secret. Understanding this model is key
to understanding a number of our decisions.

1.2.2 SMCR: A Runtime Environment for SMC

SMCR is an implementation and API for secure multiparty computation, and
is a further development of the system used in [17]. SMCR enables secure
multiparty computations to take place by allowing each party to make their
input values secret, exchange them, perform arithmetic operations jointly on
such values, and reveal values only by collaboration from all parties.

Under standard cryptographic assumptions it can be proved that no party
can obtain any extra information. SMCR is robust in the sense that the secrecy
can only be compromised if a certain fraction of the parties decide to collude
in passive corruption, where they pool all their secret values but continue to
follow the protocol. The standard threshold is t = n/2 + 1 parties, but (more
expensive) protocols exist where the threshold is t = n − 1, i.e. where each
party trusts no other. SMCR is currently not robust against active corruption
where the parties choose to sabotage the computation by not adhering to their
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Clients Server

Figure 1.1: Conceptual and concrete view of clients and server

individual part of the protocol, but such behavior is guaranteed to be detected
and some (even more expensive) protocols can even tolerate a threshold of
t = n/3 such parties.

SMC computations will generally involve complex protocols that involve
many rounds of communication between all parties [17]. Thus, simple op-
erations become several orders of magnitude more expensive than their non-
cryptographic counterparts. Technically, the SMCR runtime is a Java API
with support for public key encryption, secret sharing, primitive SMC opera-
tions, and distributed deployment and communication. We will not discuss the
cryptographic challenges and technicalities in realizing the SMCR any further,
but refer the reader to [17].

1.2.3 Conceptual Analysis

Based on experiences with current and earlier versions of SMCR [18, 51, 96],
we can identify a number of concepts that are used in describing realistic SMC
computations.

First, a practical application will typically involve a number of clients that
provide the inputs and receive some computed results. The computation itself
is performed by a server which is conceptually a single machine that is realized
through a number of separate parties that perform the SMC computations by
running identical copies of the code in lock-step, see Figure 1.1. In a realis-
tic example, involving the Danish commodities market for sugar beets, there
are around 1200 farmers as clients and the server is implemented by parties
representing the buyers, the sellers, and a Government office. The example is
described in more detail in Chapter 2. In general, there will be (possibly over-
lapping) one-to-many mappings from the various kinds of clients and the single
server to physical machines.

Note that the clients are in principle unrelated to the parties mentioned
in Section 1.2.1, as every secret client input is represented as a share of input
on each of the server parties. Also, from the programmer’s point of view, the
server is a single entity.

Clients communicate with the server only and have no incentive to commu-
nicate directly with each other, since they generally do not trust each other.
Potential attacks based on clients communicating directly and not through the
server are captured in the adversary’s capabilities as described in Section 1.6.
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The division into clients and a single server separates public computations
from secure computations respectively, in the sense that SMC computations are
performed only on the server. Note that we actually have three kinds of values
(and corresponding computations):

• secret values that reside on the server and are owned jointly by the server
parties;

• public values that reside in plain view on the server; and

• private values that reside only on a single client.

Public and private computations are performed on ordinary values with a stan-
dard runtime representation. A secret value has a different runtime represen-
tation consisting of secret shares (generated using a threshold secret sharing
scheme) residing on the machines that physically realize the server parties, and
the execution of primitive operations on such values will typically involve com-
plex protocols with several rounds of communications. The server will have the
ability to explicitly open a secret value which requires collaboration from all
server parties. Careful limitations must be placed on the use of secret values as
conditions in the control flow to avoid attacks that observe public side-effects
of computations.

Clients and the server require secure and flexible communications: In some
scenarios, a client only submits an input and does not need to wait for the re-
sult, whereas in other scenarios the interaction is more complex and ultimately
requires a client to be connected to the server for the duration of the compu-
tation. For these purposes we identify the need for tunnels for asynchronous
communication and remote procedure calls for synchronous communication.

SMC applications are generally instances of Iterative Secure Function Eval-
uation. To support Iterative SFE we allow the server to perform computations
on public values and to perform iterations on public values. In SFE iteration
and branching (in the usual sense) on secret values cannot occur, so SFE is sim-
ilar to evaluation of a straight-line program. As a motivating example we may
consider the use of second-level protocols where a server repeatedly performs a
sequence of secure auctions until some market equilibrium has been attained.
Conceptually, the server will execute Turing-complete programs in which the
data is separated into public and secret types. However, computations that
involve only secret values still only corresponds to loop-free programs.

While the underlying cryptographic protocols are known to be provably
secure, it is still a challenge to write reliable SMC applications, since confidential
information may be propagated along non-obvious paths and may be leaked in
subtle ways, thus an unbounded number of potential attacks exists. Implicit
flows and timing attacks are classical examples [36, 56]. As another example,
consider a variable x containing a secret integer value. Revealing the values of
x%10 and x/10 is sufficient to effectively reveal x itself. Thus, programmers
must keep track of such value flow dependencies, which turns out to be a tedious
task. However, since any non-trivial application is bound to reveal something
about its input, the programmer must use careful judgment to determine what is
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acceptable. Thus, we are looking for a concept of checked annotations ensuring
that a programmer has been made aware of all potential information leaks and
has explicitly considered them.

To conclude, we have identified the following key concepts within the area
of SMC programming:

• Architecture: The client-server view forms the fundamental computing
paradigm of SMC, providing a separation between private, public, and
secret computations and between logical and physical parties.

• Values: Values are either secret, private, or public, which also determines
their runtime representation and separates the efficiency of primitive op-
erations by several orders of magnitude.

• Communication: Clients communicate with the server only, either by
using tunnels or by reacting to remote procedure calls from the server.

• Expressiveness: A general SMC framework must be able to perform any
computation; i.e., it must be Turing-complete on private and public val-
ues.

• Security : Writing reliable SMC programs that do not leak unintended
information, is a tedious and error-prone task that can benefit from au-
tomated assistance.

1.3 The SMCL Language

Based on the key concepts identified in Section 1.2 we have designed a novel
language called the Secure Multiparty Computation Language (SMCL). It is a
high-level, domain-specific language [99], which allows programmers to express
concepts such as clients, server, and operations on secret values directly using
a special syntax and control structures tailored to the domain of SMC.

SMCL enjoys the classical advantages of being a domain-specific language
as opposed to being a library API for a general-purpose language:

• The specialized syntax of SMCL closely matches the problem domain.

• A domain-specific compiler may generate more efficient code for SMCL.

• It is possible to perform domain-specific analyses that consider global
properties of SMCL programs and provide stronger safety guarantees.

We start by introducing an example which gives a quick introduction to the
look and feel of SMCL and then proceed to a more in-depth presentation of
the basic concepts and continue with an elaboration of the example. Before
concluding we shortly discuss the implementation of SMCL.
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C1: client Millionaires :
C2: tunnel of sint netWorth;
C3:
C4: function void main(int[] args) {
C5: ask ();
C6: }
C7:
C7: function void ask() {
C8: netWorth .put(readInt ());
C9: }

C10:
C11: function void tell(bool b) {
C12: if (b) {
C13: display(‘‘You are the richest!’’);
C14: }
C15: else {
C16: display(‘‘Make more money!’’);
C17: }
C18: }

S1: server Max :
S2: group of Millionaires mills ;
S3:
S4: function void main(int[] args) {
S5: sint max = 0;
S6: sclient rich;
S7: for (client c in mills) {
S8: sint netWorth =

c.netWorth .get();
S9: if (netWorth > max ) {

S10: max = netWorth;
S11: rich = c;
S12: }
S13: }
S14: for (client c in mills) {
S15: c.tell(open(c==rich|rich));
S16: }
S17: }

Figure 1.2: The generalized Millionarie’s problem in SMCL

1.3.1 An Example

We present an example program written in SMCL in Figure 1.2, which shows
an implementation of the solution to the Millionaire’s problem, generalized to
an arbitrary number of millionaires.

The Millionaires client describes the actions of a millionaire and the Max server
calculates and reports who is the richest. Each Millionaires client has a main
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function that initiates its execution. The other functions may either be invoked
by the client itself (as in line C5) or by the server as a remote procedure call (as in
line S15). In the example, each client submits its net worth via the netWorth tunnel
(line C8). Tunnels are described in more detail in Section 1.3.7.

The server declares that Millionaries may belong to a group named mills (line S2).
The group is processed in the main function of the server which describes the SMC
application that is executed jointly by all the server parties. The Max server uses two
secret variables max and rich to retain the current highest net worth and the identity
of the corresponding millionaire (lines S5 and S6). It then proceeds by using a for

iterator to process each client in turn (line S7), updating max and rich if required.
The update is guarded by the secret condition of the if command (line S9). To finish,
the server reports to each client a boolean indicating whether or not that client is the
richest. The open operator downgrades a value from secret to public.

1.3.2 Basic Concepts

We now present the basic concepts of SMCL and the role they fulfill within SMCL,
how they are declared, and what restrictions are put on their use.

1.3.3 Clients and the Server

There is a clear distinction between the role of the server and the clients. The server
does the computation and has no input or output besides communication with the
clients. Clients take the input from the user, process it, provide it to the server, receive
output from the server, and display it to the user. This can go on any number of times.

The server and client concept is central in the SMC world, it allows a wide range
of scenarios from the paranoid self-trust scenario where the participants do not trust
each other, to the more liberal scenario where some participants trust a specific party
to do their part of the computation. Clients are declared using the reserved word
client followed by the name of the client and the client body. Similarly the server is
declared using the reserved word server followed by the server body. The client and
server bodies are declared in the same way, as a number of functions interleaved with
a number of field declarations.

1.3.4 Values

Values are separated into public and secret values. Secret values are secret booleans,
secret clients, and secret integers. Private values are booleans, integers, and records.
The public values are the same as the private values plus clients.

1.3.5 Functions and Control

Functions

The server and clients may declare any number of functions, however at least one func-
tion, the void main(int[] args) function must always be present. Functions may return
any kind of values and may take any kind and any number of arguments. Functions
are declared using the reserved word function , prefixed by a return type and followed
by a comma-separated list of argument declarations, and finally a block command. An
argument declaration is a type followed by a variable, the variable has scope in the
entire block command, but may be shadowed by other variable declarations. Functions
may be recursively defined.

Functions declared in a client may be invoked from the server, the actual execution
of the function will be carried out on the client similarly to a remote procedure call.
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If the function has a secret return type and is invoked from the server then the return
value transmitted back to the server is encrypted, and split into secret shares for the
server parties. If the function is invoked from within the client and the return type is
secret then it is treated as if the return type is public.

In addition to user defined functions there are two primitive functions for input/out-
put. The readInt and display functions are rudimentary primitives for communicating
with the person controlling the client (in a future version, this will happen through
a browser with support for appropriate GUI primitives). A third primitive function,
open (e|x , y, z ) is provided for declassification of secret values to public values. The
operator computes and opens the secret expression e and declares that the program-
mer recognizes the simultaneous indirect leaking of some information about the secret
variables x , y , and z . A program cannot be compiled unless it is well-annotated,
meaning that the programmer has recognized all potential leaks (see Section 1.6.5 for
further details).

Restrictions A number of restrictions are needed to enforce security properties. We
mention the restrictions here for completeness of the description and give the motivation
behind the restrictions in Section 1.6.

No recursion with secret stop condition. No calls to functions with side-effects
within conditionals guarded by secret values. Clients may only invoke functions defined
within the client itself.

If-commands

An if-command (or simply a conditional) is constructed from the reserved word if ,
a conditional expression followed by a command and an optional occurrence of the
reserved word else along with another command, for example,

S9: if (netWorth > max ) {
S10: max = netWorth;
S11: rich = c;
S12: }

Restrictions Conditionals guarded by a expression of secret type must be treated
specially and we dissallow all of the following in the branches of such a conditional:

• assignments to public non-locally declared variables

• invocation of functions which have side-effects, including I/O

• occurences of return commands

• occurences of while loops

But we do allow assignment to public locally declared variabels.

Variable declaration

A variable is declared by first declaring its type and then its name. The name can be
any sequence of characters, but must begin with a letter. Variables may be declared
by the server or client, as a field which is in scope throughout the server or client,
but may be shadowed. Variables may also be declared in block-commands, with scope
throughout the block, but may be shadowed.



1.3. The SMCL Language 17

While-commands

A while-command consists of the reserved word while followed by an expression (the
condition) and a block command, for example,

int i = 7;
sint x = 84;
while (i < 42) {

x = x + i ;
i = i + 1 ;

}

Restrictions while loops may not have a condition with a secret type.

For-commands

There are two variations of the for-command. One is used for performing the same
computation a statically known number of times, and the other is used for iterating
through a group of clients.

The first for-command is written with the reserved word for and then a variable
declaration, followed by a lower and upper bound, which should be numbers. The
declared variable is in scope inside the block-command and draws a new value from
the interval including the lower and excludes the upper bound. An example is:

S14: for (int inx ; 0 ; 10) {
S15: a[inx ] = 42;
S16: }

Where we initialize the array a with the value 42 for the indicies 0 to 9.

The second for-command is written with the reserved word for and then a vari-
able declaration, followed by the reserved word in , followed by an expression which
evaluates to a group, and finally a block-command. The declared variable is in scope
inside the block-command and draws a new value from the group in each iteration of
the for-command. An example is:

S14: for (client c in mills) {
S15: c.tell(open(c==rich|rich));
S16: }

Restrictions Only groups can be iterated using for-commands.

1.3.6 Types

The SMCL language supports the primitive datatypes int and bool. The identities
of clients also form a datatype client. All of these have secret versions, denoted sint,
sbool, and sclient. The types sbool and sclient are represented as secret integers at
runtime, because the SMCR only manipulates public values and secret integers. A
secret client is a client whose identity (IP-address) is secret shared; the total number
of clients is always public. Furthermore, it is possible to construct records and multi-
dimensional arrays of such primitive datatypes. Private, public, and secret datatypes
support the same standard primitive operations, and the type system ensures that
results are secret unless all arguments are public (this may involve implicit conversions
to the runtime representation of secret values).
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1.3.7 Tunnels

A tunnel is a mean for asynchronous communicating between a client and the server,
and is declared in clients only. A tunnel is declared using the reserved words tunnel

and of , followed by the type of values that can be placed in the tunnel, and terminated
by the name of the tunnel followed by a semicolon, for example:

C2: tunnel of sint netWorth;

A tunnel may be declared to contain data of any primitive type, int, sint, bool, sbool.
When a client sends a secret value to the server, the transmitted value is not only
encrypted, but it is also split into secret shares for the server parties, matching the
runtime representation of secret values. When the server sends a secret value to a
client, all server parties send encrypted version of the secret shares which are then
assembled on the client to yield a private value. Public values sent are encrypted but
not secret shared. A tunnel is equipped with functions for sending put and retrieving
get data and for inquiring the emptiness isEmpty of the tunnel.

Currently a tunnel is only working as long as the client and the server are run-
ning. That is if one of them terminates, any information in the tunnel is lost and the
remaining process is likely to terminate abruptly. In a future version we would like to
introduce various different kinds of persistent tunnels, e.g. an XML-tunnel, database-
tunnel, or a plain file-tunnel, where all values are serialized and stored persistently.
The values can be store in different places. In a central computer if all values are
encrypted using the public keys of the server parties. Another possibility is to store
the values for each party at a computer owned by the organization running the server
party.

Restrictions Only primitive types can be sent through a tunnel.

1.3.8 Groups

A group is a collection of clients. Currently a group may only contain clients of the
same kind, they have to be homogeneous. Groups may only be declared in the server.
A group is declared using the reserved words group and of followed by the name of
the clients and the name of the group, for example,

S2: group of Millionaires mills ;

The members of a group are specified externally by a mapping supplied to the
SMCR runtime describing the concrete participants involved during runtime. Figure 1.3
shows a hypothetical example. Each participant is identified by an IP address, a port
number, and a public encryption key. Note that the same machine may serve both as
a client and as a server party. Clients may further be listed as belonging to a number
of groups, in this case only the single group mills containing all clients.

Restrictions Only homogeneous groups.

1.3.9 The Example Elaborated

In generalizing the original Millionarie’s problem from two to many millionaires, we
have in our solution chosen that while the net worth of each millionaire remains secret,
it is actually public information which millionaire is the richest, see Figure 1.4(A). In
a stricter version of the generalized problem we could also keep this information secret
and only allow each millionaire to know his own status. In our program, we would then
change lines S14 through S16 into the lines of Figure 1.4(B).



1.3. The SMCL Language 19

client : Millionaires

gates .microsoft .com 4001 0 x85FFA494 mills

ebenezer .scrooge .org 4001 0 x5532BB72 mills

ingvar .ikea.com 4001 0 x2333DDCC mills

larry .google .com 4001 0 x631DE7F2 mills

sergei .google .com 4001 0 x7587B5AF mills

server

gates .microsoft .com 4000 0 x857722B7

smcl.brics.dk 4000 0 xF471BCA7

survey .fortune .com 4000 0 x66A7FF35

Figure 1.3: A map identifying the concrete participants

1: for (client c in mills) {
2: c.tell(open(c == rich|rich));
3: }

(A) public booleans, public receivers

1: for (client c in mills) {
2: c.tell(c == rich);
3: }

(B) secret booleans, public receivers

1: for (sclient c in mills) {
2: c.tell(open(c == rich|c, rich));
3: }

(C) public booleans, secret receivers

1: for (sclient c in mills) {
2: c.tell(c == rich);
3: }

(D) secret booleans, secret receivers

Figure 1.4: The combinations of server knowledge

Here, we do not open the secret boolean before it is sent to the client. This means
that the server parties send their shares representing the value of type sbool to the
client which combine the shares into a value of type bool. An equivalent effect can
be achieved by changing the iterator c to have type sclient and thus keep it secret
while revealing the comparison result, Figure 1.4(C). Consequently, the invocation
c.tell(. . .) is now implemented by sending to all clients the same message that can only
be understood by the intended recipient (function invocations with illegible arguments
are ignored by the clients). Since c is now also secret, the open operation must also
recognize responsibility for compromising it (ever so slightly). In a yet stricter version,
we may change the three lines into the lines of Figure 1.4(D).

For this particular example, however, this refinement makes no difference (since
the server always sends one true value and a number of false values).

1.3.10 Implementation

SMCL is implemented by a prototype compiler (SMCLc) which produces Java code
based on the SMCR API. A Java program is created for each kind of client and for the
server. Deployment scripts can be used to install and start applications. Currently,
all communication takes place through a coordinator process (that only sees encrypted
information). The coordinator could itself be distributed using broadcast protocols.
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1.4 Semantics

In this section we formally describe the non-standard parts of the SMCL semantics.
We will be needing a good deal of terminology which we introduce as needed, first we
introduce the abstract syntax of SMCL programs and then the formal semantics. In
Figure 1.5 we see the overall structure of an SMCL program which defines a number
of different clients K and a server Σ . We have omitted the abstract syntax for client
definitions because computations in clients are mostly standard for a strongly typed
imperative language, and most importantly does not involve secret values; we refer
to [70] for a full description of the semantics. In Figure 1.6 we show the abstract
syntax for the server definition, here we have typeset the various parts of the abstract
syntax tree (AST) using different fonts: nonterminals , keywords, and variables . The
syntactic constructs are either standard or easily identified from the discussion in the
previous section. We use the following naming conventions: Field declarations are
denoted D, function names f , function declarations F, commands C, expressions e,
types τ , and tunnels θ, see Section 1.5 for the type system. Values are separated
into public and secret values. Secret values, secret booleans, secret clients, and secret
integers, are denoted by v (intuitively, the value is hidden inside a box, so we cannot
see the value). Public values are denoted by v. A value which is either public or secret
is denoted by w, we denote the set of all secret, public, and private values as Value.

Program ::= K+ Σ

Figure 1.5: SMCL abstract syntax and values

SMCL is a concurrent imperative language, concurrency means that the server
and clients may be executing at the same time. The server and clients may be ex-
ecuted with an arbitrary interleaving of commands and expressions, and only need
to synchronize for communication. An SMCL server definition consists of a number
of functions containing commands, which are executed sequentially. Commands may
contain expressions which potentially have side effect on the state of the program.

An SMCL program consists of a server σ and a set of clients κi ∈ χ. We use ξ
to range over both the server and clients. The evaluation of an SMCL program is
defined in terms of a small-step operational semantics [74]. We define the semantics
using a number of transition systems. A transition system consists of a set of config-
urations γα ∈ Γα, a set of terminal configurations Tα ⊆ Γα, and a transition relation
⇒ ⊆ Γα × Γα, where α is the name of the transition system.

We define different transition systems to model the difference between evaluation of
commands and expressions, and also to model the difference between evaluation on the
server and clients. We use transition systems for client-side commands (the cc system),
client-side expressions, server-side commands (the sc system), server-side expressions,
and also one for specifying the interaction and communication between the server and
the clients (the Server-Client scl system). The transition systems are fairly standard
and we will only discuss the non-standard parts below to some extent (we intentionally
left out the names of the transition systems that we will not discuss in this article).
We refer to [70] for all the details.

The set of configurations Γscl and terminal configurations Tscl for the scl transition
system is defined as follows:

Γscl = Γ1
cc × . . .× Γn

cc × Γsc × Statesv

∪ Γ1
cc × . . .× Γn

cc × Statesv

Tscl = T1
cc × . . .× Tn

cc × Statesv
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Σ ::= server name : D∗ F+ server definition
F ::= function τ f (τ1 x1,. . .,τn xn) { C } function
D ::= τ x = e field definition

| group of name x group definition
C ::= τ id identity

| τ x = e assignement
| while ( e ) { C } while-loop
| for ( τ x : e ) { C } for loop
| if e { C1 } else { C2 } if statement
| C1;C2 sequence
| return e return expression
| return return
| void void

e ::= w
| x variable
| f (e1,. . .,en) function application
| open (e| x 1,. . .,x n) open operation
| θ.put (e) put on tunnel
| θ.get (e) get from tunnel
| θ.take (e) take from tunnel
| e1 op e2 operations

op ::= + | - | * | / |
== | && | || |=|>|>=|<=|<

Figure 1.6: Server-side SMCL abstract syntax and values

A configuration in the scl transition system consist of a number of configurations from
the respective transition systems, one for each client process Γi

cc and one for the server
Γsc. We write configurations, G ⊢ ‖κi∈χ 〈κi : C〉 ‖ 〈σ : C, σ.S〉, as a number of con-
current configurations for the clients in the set χ, similar to [98], and an additional
configuration for the server. We write to κi : C to mean that client κi is about to
evaluate the command C and similarly for the server σ.

We define the Global client store G in Figure 1.7 to be a tuple containing the client
stores κi.S and all the tunnels κi.θj . We write G[O 7→ U ] for the store G where the
component O is updated to hold U . The server and each client ξ have a local store
ξ.S defined as a map from variables to values: ξ.S = V ar 7→ Value. The server store
σ.S ∈ Statesv is a member of the set of all server stores Statesv. Similarly for the client
store, κ.S ∈ Statecl. The local stores also work as environments in the way one would
expect. A preliminary store is the store used when computation begins. A preliminary
local store is initialized with bindings from function names to function bodies and
bindings from field variables to an initial value (which depends on the type of the
field). From here on fields are treated as ordinary variables which may be shadowed in
the current scope.

The transition rules of the scl system are described in Figure 1.8 where the first
rule describe how clients are evaluated and the second rule describes how the server is
evaluated. In each case a client or the server is chosen non-deterministically and may
proceed by evaluating one step using the appropriate transition system.

The other transitions systems will not be presented here in their entirety as men-
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G : [κ.S, κ1.θ, . . . , κn.θ]

Figure 1.7: The global client store of an SMCL computation

tioned above. However, we will present the standard rule for server-side assignment
as an introduction to the sc system, and then we describe the nonstandard evaluation
of conditional commands on secret values. As we will discuss in Section 1.6 it is very
important to prevent physically observable side-effects of computations, e.g. timing
attacks [5, 43, 56]. A part of our solution to avoid physical side-effects is to execute
both branches of a conditional command and combine the results in the end according
to the value of the test. Why this solution works, and what implications it has will
be thoroughly discussed and correctness of the solution will be formally established in
Section 1.6.

The server-side commands system is defined as follows:

Γsc = sc× Statesv

∪ sc× Statesv × Statesv

∪ sc× Statesv × Statesv × Statesv

∪ void× Statesv

∪ (Rtn w ∪ Rtn )× Statesv

Tsc = void× Statesv

∪ (Rtn w ∪ Rtn )× Statesv

The configurations are divided into a number of intermediate configurations and ter-
minal configurations. The intermediate configurations contains two additional configu-
rations defined and used for evaluation of conditional commands on secret values. The
difference is the addition of one or two additional server stores respectively. The ter-
minal configurations correspond to normal termination 〈void, ξ.S〉 of a command and
abnormal termination (return of a function call) 〈Rtn w, ξ.S〉 which carries the return
value w. Return values from functions are modeled in the configuration using the Rtn
component in order to allow values to flow from return commands to call-sites.

The rules for evaluating server-side assignments are shown in Figure 1.9. The
configuration G ⊢ 〈y = e, σ.S〉 in rule Assign-eval consists of the term x = e, the server
store σ.S and the global client store G. The term is an assignment of the result of the
argument expression e to the identifier y . In rule Assign-eval we evaluate the argument
expression one step and obtain the resulting argument expression e′ and server store

G ⊢ 〈κi : C〉 →cc G′ ⊢
〈

κi : C ′
〉

G ⊢ ‖κi∈χ 〈κi : C〉 ‖ 〈σ : C, σ.S〉 →scl G′ ⊢ ‖κi∈χ

〈

κi : C ′
〉

‖ 〈σ : C, σ.S〉
(client-eval)

G ⊢ 〈σ : C, σ.S〉 →sc G ⊢
〈

σ : C ′, σ.S′
〉

G ⊢ ‖κi∈χ 〈κi : C〉 ‖ 〈σ : C, σ.S〉 →scl G ⊢ ‖κi∈χ 〈κi : C〉 ‖
〈

σ : C ′, σ.S′
〉

(server-eval)

Figure 1.8: One-step evaluation of an SMCL computation
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G ⊢ 〈e, σ.S〉 →se G ⊢
〈

e′, σ.S′
〉

G ⊢ 〈y = e, σ.S〉 →se G ⊢
〈

y = e′, σ.S′
〉 (Assign-eval)

σ.S′ = σ.S[y 7→ w]

G ⊢ 〈y = w, σ.S〉 →se G ⊢
〈

w, σ.S′
〉 (Assign-exp)

Figure 1.9: Server-side semantics for assignments

σ.S′ which is used in the resulting configuration G ⊢ 〈y = e′, σ.S′〉 along with the
unchanged global client store. The global client store is unchanged since there is no
interaction with the clients in the evaluation step.

In rule Assign-exp the argument expression has been evaluated to a value w which
is supposed to be assigned to the identifier y . The assignment simply happens by
updating the binding of the identifier y to point to the value w in the server store,
regardless of the value being public or secret.

Evaluation of conditional commands on secret values is performed by evaluating
both branches of the conditional in sequence. To evaluate the branches we make copies
of the server store. In total we need three stores, one for each branch and a copy of
the original for combining the effects. The threading of environments complicates the
rules, and we need eight rules in total to specify the evaluation. Figure 1.10 presents the
entry rule (If-stm) and the three main rules. The other four rules are mainly concerned
with evaluation of each branch in a conditional command to obtain the forms shown
in Figure 1.10 and will not be presented here.

A conditional command is in general evaluated by first evaluating the condition
If-stm, like in the usual semantics for conditionals. If the result of evaluating the con-
dition turns out to be a public value the evaluation proceeds as in the usual semantics.
However if the value is a secret value, then both branches are evaluated in a copy of
the current store, as indicated by the three stores in the configuration. We evaluate
the branches by first evaluating the then-branch followed by the else-branch.

The rule If-sbool-then-final is the last step of evaluating the then-branch C1 to the
terminal configuration containing void and the resulting store. Return values cannot
occur since it is an error to return from a branch of a secret conditional. At this point
we duplicate the original store and the following configurations now have three stores.

The execution continues at If-sbool-else where C2 is evaluated in the newly created
copy of the original store Uelse. The evaluation results in a store U ′

else which we save as
part of the new state of the conditional. The evaluation of C2 now proceeds in a number
of steps using the store Uelse, and eventually the system ends up in a configuration
as the one in rule If-sbool-phi. The server state σ.S can be stratified by distinguishing
between the public and the secret state. We write (x, s) for an unnamed configuration
γα with public state x and secret state s.

The last step of evaluating a conditional command is the combination of stores
from each branch. The result is a store σ.S′ which is the same as the original store
S but updated for each variable which has been assigned to during the execution of a
branch. We write s{[y1 7→ w], . . .} for updating the store s with the bindings in the set
{[y1 7→ w], . . .}. We update a variable x by looking up x in both Uthen and Uelse and
combine the values using conditional assignment. If a variable has not been updated
in a branch its value is unchanged compared to the original store and conditional
assignment ensures that the result is correct. If a variable in the original environment
has been updated with a public value in either branch or with different public values
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G ⊢ 〈e, S〉 →se G ⊢
〈

e′, S′
〉

G ⊢ 〈if (e) {C1} else {C2}, S〉 →sc G ⊢
〈

if (e′) {C1} else {C2}, S
′
〉

(If-stm)

G ⊢ 〈C1, Uthen〉 →sc G ⊢
〈

void, U ′

then

〉

G ⊢ 〈if (v ) {C1} else {C2}, Uthen, S〉
→sc

G ⊢
〈

if (v ) {void} else {C2}, U
′

then, S, S
〉

(If-sbool-then-final)

G ⊢ 〈C2, Uelse〉 →sc G ⊢
〈

C ′

2, U
′

else

〉

G ⊢
〈

if (v ) {void} else {C2}, Uthen , Uelse , S
〉

→sc

G ⊢
〈

if (v ) {void} else {C ′

2}, Uthen , U
′

elseS
〉

(If-sbool-else)

s1 = s{ [y 7→ v ∗ sthen(y) + (1− v ) ∗ selse(y)] |

∀y ∈ s : sthen(y) = v′ ∧ selse(y) = v′′ }
s2 = s1{[y 7→ v ] | ∀y : (v = sthen(y) ∧ y 6∈ selse) ∨ (y 6∈ sthen ∧ v = selse(y))}

x′ = x[y 7→ v] ∀y ∈ x : v = x then(y) = x else(y)

G ⊢ 〈if (v ) {void} else {void}, (xthen, sthen), (xelse, selse), (x, s)〉
→sc

G ⊢
〈

void, (x′, s2)
〉

(If-sbool-phi)

Figure 1.10: Sample of server-side semantics for secret conditional commands

in both branches then it is a potential security threat and therefor we make it an
execution error and the transition system is “stuck”. In the next section we will define
a type system, which will prevent well-typed SMCL programs to get “stuck”.

1.5 Static Semantics

The main goal of the SMCL design is to provide the programmer with a set of well-
defined security guarantees. In this Section we present a type system, which provides
two guarantees, well-typed programs do not get “stuck” and well-typed programs are
hoistable. The two guarantees will be fundamental parts of showing that SMCL pro-
grams are secure in Section 1.6. A well-typed program is a program which can be
assigned a type by the type system.
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Well-typed programs do not get “stuck”. This is a standard safety condition [73]
which guarantees that well-typed programs do not end in a configuration, which is a
not a terminal configuration and no evaluation rule apply. This safety condition should
apply to client definitions as well as to server definitions.

Programs must be hoistable, which intuitively means that there are no side-effects
in the computations defined in branches of secret conditionals. Side-effects in secret
conditionals like I/O or assignment to public variables (implicit flow [36]) are a security
threat and we forbid it by considering it a programmer error.

We start by defining hoistability and then present a type system which conserva-
tively approximates hoistability and prevents SMCL programs from getting “stuck”.

1.5.1 Hoistability

An expression is said to be inside a conditional if it syntactically occurs in either branch
of the conditional. An expression inside a secret conditional is hoistable if it can be
moved (hoisted) immediately before the conditional in the control flow graph without
changing the result of evaluating the conditional.

A variable is locally declared in a conditional if its declaration int x = . . . is inside
the conditional. A variable is called public if it is declared to be of a public type, e.g.
bool or int.

A secret conditional is said to be hoistable if every syntacically contained I/O oper-
ation, function call, communication, and assignment to a non-locally declared variable
are hoistable. A program is hoistable if all syntactically contained secret conditionals
are hoistable.

A fragment of a program containing a hoistable assignment is shown in Figure 1.11
(left) where the assignment x = y can be hoisted without changing the result of evalu-
ating the fragment. Note that the conditional is hoistable even with the code int h = y
because the h is locally declared in the then branch. The program fragment on the
right of Figure 1.11 shows an example of a nonhoistable conditional, because x = z
only occurs in one of the branches.

sbool b = true ;
sint s = 0;
int x = 7;
int y = 7;
if (b ) {

x = y ;
int h = y ;
s = s + h ;

}
else {

x = y ;
s = s + 1 ;

}

sbool b = true ;
sint s = 0;
int x = 7;
int z = 7;
if (b ) {

x = z ;
s = s + x ;

}
else {

s = s + 1;
}

Figure 1.11: (Left) A hoistable conditional and (right) a non-hoistable condi-
tional

Hoistability is a non-trivial property and is thus clearly undecidable by Rice’s
theorem [76]. Hoistability is implied by conventional requirements for noninterfer-
ence [88, 101, 103]. Instead of fixing a specific decidable requirement, we will allow
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the implementation of the SMCL compiler to perform any sound and conservative
approximation of this property.

In the rest of this section we will present a conservative approximation to ensure
that all SMCL programs are hoistable.

1.5.2 A Type System for Hoistability

SMCL is a strongly typed imperative language with a broad range of values as shown in
Figure 1.12. The figure shows the fundamental types which include integers, booleans,
clients, strings, tuples - where ℓ denotes the label, arrays, and void.

τ ::= bool booleans
| int integers
| client client identity
| string strings
| [ ℓi : (τi, ρi)

i...n ] tuples
| τ [] arrays
| void void

Figure 1.12: Different types of values in the language

In SMCL the programmer is required to provide type annotations on declarations
of local variables, field variables, and formal parameters. The annotations describe
both the fundamental type and the security level of values to be contained in the vari-
able, field, or returned by a function. We extend the fundamental types with a notion
of security types [78] based on a lattice of security levels as introduced and used by
many others before [36–38,101,103]. We use a lattice of two security levels, the secret
or high-level, S, and the public or low-level, P, where P ⊑ S. The type system can
be generalized to an arbitrary lattice since we don’t use the fact that there are only
two levels. As an example consider the program in Figure 1.13 where the variable x
is declared to be of type sint, which indicates that the values of x are integers and
their security level is secret. We denote these values as being secret integers. Similar
we define (public) integers of public security level like y as int. Arrays and tuples can
only be public in SMCL, this is enforced by only providing public type annotations
for those values. For information about the challenges and possible solutions to secret
pointers to tuples see the work by Banerjee et al. [9, 10].

sint x = 7;
int y = 0;
if (x > 12) {

x = 1;
}
else {

y = 0;
}
y = 0;

Figure 1.13: Example program
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Types at the secret security level are mainly used in server definitions, where they
are used to prevent insecure flow of information. In client definitions we only use secu-
rity types to control the security level of values returned from the server (annotations
on function returns and tunnels). The type system is naturally divided into two parts:
the client-side type system for client definitions and the server-side type system for
server definitions. The client-side type system is mainly standard and we will not go
into details with it here. In the following we will only focus on the server-side type
system. We refer to [70] for a complete account of the type system.

The server-side type system is designed to enforce the hoistability property and is
based on the type system by Volpano and Smith [101] which includes effects in the
style of Jouvelot and Gifford [53]. In [101] noninterference is established by recording
and preventing assignment side-effects at the appropriate places like no assignments to
public variables in secret conditionals. We modify this type system to enforce hoista-
bility by tracking any potentially side-effecting operations in SMCL, e.g. assignments
and I/O. Our type system is more permissive by allowing assignments to locally de-
fined public variables in secret conditionals. The tracking is done by recording different
information for functions, commands, expressions, and variables. In particular we will
be recording information about assignments and I/O for each command occurring in
the program. Informally the tracking is done by observing the “lowest” security level
at which an assignment has been done at each command. In this way we can ensure
that no assignments to public variables occur in secret conditionals.

Read Write I /O

⊤

⊤ SL ⊤

S SG NIO

P PL IO

⊥ PG ⊥

⊥

Figure 1.14: Read, write, and I/O Lattices

Formally it gets a bit more involved because we need to record the highest security
level at which a variable has been read, and second we record the least security level
at which a variable has been written to and whether the variable is locally declared.

We use the Read lattice shown in Figure 1.14 with the two levels S and P to describe
the variables read. This is similar to Volpano and Smith [101, 103] and Denning [36]
with the addition that ⊥ means that no variable has been read. We use ρ to denote
elements of the Read lattice. I/O is captured in a similar fashion to reading of variables
with the two level I/O lattice of possible I/O IO and definitely no I/O NIO. We use ιo
to denote elements of the I/O lattice.
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We use the Write lattice also shown in Figure 1.14 to decide the security level at
which a variable has been written to, and whether the variable is locally declared. The
elements of the lattice are: a given variable is secret and locally declared SL, secret
and non-locally declared SG, public and locally declared PL, public and non-locally
declared PG, and ⊤ means “no variable written”, its usefulness will become clear later.
There is the partial relation PG ⊑ PL ⊑ SG ⊑ SL ⊑ ⊤ on the elements. We use ν to
denote elements of the Write lattice.

We use the Read, Write, and I/O lattices along with the fundamental types as
foundation for the actual types, which are stratified into four kinds:

• Variable types, (τ, ρ)-var

• Expression types, (τ, ρ, ν, ιo)-exp

• Command types, (ν, ιo)-cmd

• Function types, (ν, ιo)-(τ0, ρ0)-fun((τ1, ρ1), . . . , (τn, ρn))

The variable types (τ, ρ)-var are given to variables. A variable type describes the
kind τ and the security level ρ of the values which may be assigned to the variable. The
security levels are elements from the Read lattice, which we also call the Read types,
similar for the other lattices, the Write types and the I/O types.

Expression types (τ, ρ, ν, ιo)-exp are the types assigned to expressions. Intuitively
an expression has a given type (τ, ρ, ν, ιo)-exp if the values computed by the expression
have fundamental type τ , there will be a read from variables of at most security level
ρ, assignments to variables of at least level ν, and whether there is potential for any
I/O ιo during the execution of the expression.

Command types are assigned to commands. A command with type (ν, ιo)-cmd is
expected to maintain the invariant that no assignments are made to a variable in the
command of type lower than ν and ιo describes whether I/O may occur during the
execution of the command.

Function types (ν, ιo)-(τ0, ρ0)-fun((τ1, ρ1), . . . , (τn, ρn)) are assigned to functions.
A function has a declared return type (τ, ρ0) along with a number of argument types
(τi, ρi). Both the return type and the argument types consists of a fundamental type
and a read type with similar semantics as variable types. The read type of the return
type indicates that a read of a variable of at most security level ρ0 in the computation
of any return value. These types are treated in the standard [73] way and are covariant
and contravariant with respect to subtyping respectively. Furthermore function types
have an additional component which captures if there will not be assignments of type
lower than ν and ιo describes whether there might be any I/O occurring during the
evaluation of the function. Function types are monomorphic and not first-order in the
security levels as in [101] which simplifies our treatment of functions.

The partial ordering ⊑ of lattice elements give rise to a straight forward reflexive,
transitive, and anti-symmetric subtyping relation ≤ when we view the elements of the
three lattices as types. An example is given in Figure 1.15 for the Read lattice. We
use these subtype relations as basis for subtype relations on variable types, expression
types, command types, and function types. In Figure 1.16 we define the subtyping
relation for each of the types. We show only the full set of rules for variable types
since all of the rules except for the base case are similar. Variable types are covariant
in the fundamental type and the Read type. Expression types are also covariant in the
fundamental type, the Read type, and the I/O type, but contravariant in the Write
type due to the difference in the requirement; the Read types record the highest level
read, whereas the Write types record the lowest level assigned. Command types are
contravariant in the Write type and covariant in the I/O type. Function types are
contravariant in the arguments and Write type and covariant in the return type and
the I/O type.
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The least upper bound ⊔ and greatest lower bound ⊓ operator on the lattices give
rise to two useful operations on the subtype relation: The least common super type ⊻

and the greatest common subtype ⊼. The operations naturally extends from the binary
to n-ary case and we define ⊻

n
i=1ρi as ((ρ1 ⊻ ρ2) ⊻ . . .) ⊻ ρn) and similar for ⊼

n
i=1ρi and

similar for the other types.

ρ ⊑ ρ′

ρ ≤ ρ′
(ρ-Base) ρ ≤ ρ (ρ-Reflexivity)

ρ ≤ ρ′ ρ′ ≤ ρ′′

ρ ≤ ρ′′
(ρ-Transitive)

ρ ≤ ρ′ ρ′ ≤ ρ

ρ = ρ′
(ρ-Anti-symmetric)

Figure 1.15: Example subtype relation for elements of the Read lattice viewed
as types

We now present the three most interesting type rules of the type system. The
other type rules are mainly as one would expect, See [70] for a complete treatment. In
Figure 1.18 we present the type rule for assignment and in Figure 1.19 we show the two
type rules for conditionals. We start by describing the typing context Γt = [Σ, η, µ,̟].
The typing context is a tuple of the server declaration Σ, the var-typing η, the write-
typing µ, and the return type of the current function ̟. The var-typing and the write-
typing are finite maps from variables to variable-types and write types respectively.

A typing judgment has the form Γt ⊢ C : (ν, ιo)-cmd for commands. The judgment
means that command C has type (ν, ιo)-cmd, assuming that Γt prescribes the server
declaration, types for any variable in C and a return type for the current function.
Similarly for variable, expression, and function types. The server declaration contains
information from which we can easily construct the type of tuples and functions (ar-
guments and return type).

The rule for assignment ensures no explicit flow [36] (ρ′ ≤ ρ ensures that a se-
cret value cannot be assigned to a public variable) and no assignment of values of
incompatible types (τ ′ must be a subtype of τ).

We use the write function shown in Figure 1.17 to allow assignments to public
variables if they are declared within the same block as the assignment occurs. The
function “write” computes the security level and locality of a given variable, read-
typing, and program point p. We use a variant of a reaching definitions analysis [72]
to compute the variable declarations that are local at a given point. The set LRD(p)
contains the locally declared variables at the program point p. A variable declaration is
locally declared with respect to a program point if the declaration is in the same block
of the code as the program point. The body of a function, conditional, and while-, and
for-loop define blocks of code.

There are two typing rules for conditional commands. The first rule TIf-secret define
the type of conditional commands with a secret condition and the second rule TIf-public
the type of conditionals with public condition. The rule TIf-public just propagate
the side-effects of the condition and the branches, whereas the rule TIf-secret is more
interesting. Here we require no I/O NIO in the branches and assignments must be
on variables of type at least public and local (PL ≤ νj j ∈ {1, 2}). This prohibits
implicit flow to public variables declared outside the branches, but allows assignment
to variables declared inside the branches. The I/O of the condition determines the I/O
of the conditional. The variables written to is the greatest common subtype of those
in the branches and in the condition (⊼2

i=0 νi).
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τ ≤ τ ′ ρ ≤ ρ′

(τ, ρ)-var ≤ (τ ′, ρ′)-var
(Var-base)

(τ, ρ)-var ≤ (τ, ρ)-var (Var-reflexivity)

(τ, ρ)-var ≤ (τ ′, ρ′)-var (τ ′, ρ′)-var ≤ (τ ′′, ρ′′)-var

(τ, ρ)-var ≤ (τ ′′, ρ′′)-var
(Var-transitive)

(τ, ρ)-var ≤ (τ ′, ρ′)-var (τ ′, ρ′)-var ≤ (τ, ρ)-var

(τ, ρ)-var = (τ ′, ρ′)-var
(Var-antisymmetric)

τ ≤ τ ′ ρ ≤ ρ′ ν ′ ≤ ν ιo ≤ ιo′

(τ, ρ, ν, ιo)-exp ≤ (τ ′, ρ′, ν ′, ιo′)-exp
(Exp-base)

ν ′ ≤ ν ιo ≤ ιo′

(ν, ιo)-cmd ≤ (ν ′, ιo′)-cmd
(Com-base)

ρ′i ≤ ρ
i∈1,...,n
i τ ′i ≤ τ

i∈1,...,n
i

ν ′ ≤ ν ιo ≤ ιo′ ρ0 ≤ ρ
′

0 τ0 ≤ τ
′

0

(ν, ιo)-(τ0, ρ0)-fun((τ1, ρ1), . . . , (τn, ρn)) ≤ (ν ′, ιo′)-(τ ′0, ρ
′

0)-fun(ρ′1, . . . , ρ
′

n)

(Fun-base)

Figure 1.16: Subtype relation on the variable, expression, command, and func-
tion types

write(x , η, p) = SL if η(x ) = (τ ,S) and x ∈ LRD(p)
= SG if η(x ) = (τ ,S) and x 6∈ LRD(p)
= PL if η(x ) = (τ ,P) and x ∈ LRD(p)
= PG if η(x ) = (τ ,P) and x 6∈ LRD(p)

Figure 1.17: Write function, returns the locality of x

1.5.3 Proof of Soundness

In this subsection we prove the soundness of our type system. The proof implies that
no terms of the language ever gets “stuck” and hence there is no implicit flow. We use
the standard technique of proving a progress theorem and a preservation theorem. To
see that the type system ensures hoistability one has to inspect the type system to see
that the system propagates information soundly and the only places where hoistability
is relevant is in the type rules for assignments and conditionals.

Technically we would need to prove the progress and preservation theorems over the
transition system of the SMCL semantics. However, such a proof follows more clearly if
we project out the closed terms of the configurations. A closed term t of a configuration
is a command or an expressions with no free variables. We will write t → t′ for the
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Γt ⊢ x : (τ, ρ)-var Γt ⊢ e : (τ ′, ρ′, ν ′, ιo′)-exp τ ′ ≤ τ ρ′ ≤ ρ
ν = write(x , η, x = e)

Γt ⊢ x = e : (τ, ρ, ν ⊼ ν ′, ιo′)-exp
(TAssign)

Figure 1.18: Typing rule for assignment

Γt ⊢ e : (bool,S, ν0, ιo)-exp
Γt ⊢ C1 : (ν1,NIO)-cmd Γt ⊢ C2 : (ν2,NIO)-cmd PL ≤ νj j ∈ {1, 2}

Γt ⊢ if (e) {C1} else {C2} : (
2

⊼
i=0

νi, ιo)-cmd

(TIf-secret)

Γt ⊢ e : (bool,P, ν0, ιo0)-exp
Γt ⊢ C1 : (ν1, ιo1)-cmd Γt ⊢ C2 : (ν2, ιo2)-cmd

Γt ⊢ if (e) {C1} else {C2} : (
2

⊼
i=0

νi,
2

⊻
i=0

ιoi)-cmd

(TIf-public)

Figure 1.19: Typing rules for conditional commands

closed terms t and t′ projected from the configurations γ, γ′ where γ → γ′. We use T
to range over all four kinds of types.

Theorem 1.1 (Progress). t : T for some type T then either t is a value or else there
is some t′ with t→ t′.

Proof. By induction on the derivation of t : T , we only show the interesting cases for
the conditional command:

[Case TIf-Secret] t = if (t1) {t2} else {t3}

t1 : (bool, S, ν0, ιo)-exp t2 : (ν1,NIO)-cmd t3 : (ν2,NIO)-cmd

t is clearly not a value, so we need to show that there is some t′ with t→ t′. By
the induction hypothesis t1 is either a value or there is a term t′1 such that t1 → t′1.
If t1 is not a value then rule If-stm applies with t′ = if (t′1) {t2} else {t3}.

If t1 is a value then it is either true or false . In either case exactly one of
the rules If-SBool-* applies because TIf-Secret ensures that νj ≥ PL for both
branches. The result is the evaluation of both t2 and t3.

[Case TIf-Public] t = if (t1) {t2} else {t3}

t1 : (bool,P, ν0, ιo)-exp t2 : (ν1, IO1)-cmd t3 : (ν2, IO2)-cmd

t is clearly not a value, so we need to show that there is some t′ with t→ t′. By
the induction hypothesis t1 is either a value or there is a term t′1 such that t1 → t′1.
If t1 is not a value then rule If-stm applies with t′ = if (t′1) {t2} else {t3}.

If t1 is a value then it is either true or false . In either case the usual rule for
conditionals applies evaluating either t2 or t3.
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2

Theorem 1.2 (Preservation). If Γt ⊢ t : T and t→ t′, then Γt ⊢ t′ : T .

Proof. By induction on the derivation of t : (ν, ιo)-cmd, we only show the interesting
cases for conditional commands:

[Case TIf-Secret] t = if (t1) {t2} else {t3}

t1 : (bool, S, ν0, ιo)-exp t2 : (ν1,NIO)-cmd t3 : (ν2,NIO)-cmd

From the evaluation rules for secret conditionals we see that t′ can be one of the
following terms (there are four more possibilities but for brevity we only show
the cases we also mentioned in Section 1.4):

[Case If-stm] t′ = if (t′1) {t2} else {t3}, where by induction we know that
t1 → t′1 and t′1 : (bool, S, ν0, ιo)-exp. Thus by TIf-Secret t′ : T

[Case If-sbool-then-final] t1 = v and t′ = if (v ) {void} else {t3}, where by
induction we know that t2 → void and void : T . Thus by TIf-Secret t′ : T

[Case If-sbool-else] t1 = v , t2 = void, and t′ = if (v ) {void} else {t3}, where
by induction we know that t3 → t′3 and t′3 : T . Thus by TIf-Secret t′ : T

[Case If-sbool-phi] t1 = v , t2 = t3 = void, and t′ = void. By TIf-Secret
νj ≥ PL and because there is no I/O in the evaluation of rule If-sbool-phi and
the assignments respect the assignments made in each branch then t′ : T

[Case TIf-Public] t = if (t1) {t2} else {t3}

t1 : (bool,P, ν0, ιo)-exp t2 : (ν1, ιo1)-cmd t3 : (ν2, ιo2)-cmd

From the evaluation rules for secret conditionals we see that t′ can be one of
the following terms (here we also leave out the two cases we did not cover in
Section 1.4):

[Case If-stm] t′ = if (t′1) {t2} else {t3}, where by induction we know that
t1 → t′1 and t′1 : (bool, S, ν0, ιo)-exp. Thus by TIf-Secret t′ : T

2

1.5.4 Termination

SMCL programs may be nonterminating due to infinite while loops or infinite recur-
sions. Non of these can of course depend on secret values, because that would leak
information about the secret values. The type system above presents while loops
which depends on secret values. Recursion on secret values would need to involve a
secret conditional to test if the recursion should halt or continue. Since we always exe-
cute both branches, the execution would never halt, and we consider it a programming
error to have nonterminating code in a branch of a secret condition. We require all
SMCL programs to be branch terminating:

Definition 1.1 (Branch terminating). An SMCL program is branch terminating if
both branches of every secret conditional terminates.

We enforce branch termination by a static analysis that conservatively checks the
branches for termination. There are a number of termination analysis [60] which can be
adopted to SMCL, however we chosen to use a simple syntactic criteria in the present
implementation of the SMCL compiler for simplicity. We have yet to write examples
where a more advanced analysis is needed. The criteria prevents return commands,
I/O, while loops, and function calls from occurring in branches of secret conditionals.
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1.6 Security Guaranteed

In this Section we will define what it means for an SMCL program to be secure, and
prove that all well-typed SMCL programs are secure.

Security in the world of SMC is the protection of information from being revealed
explicit or implicitly to any unintended entity. An adversary is an entity (e.g. person or
organization) who wants to learn the information. Security is achieved by distributing
parts of the information among the server parties, and the information is considered
secure if no more than a predefined threshold of the server parties are corrupted by an
adversary. If the adversary corrupts more than the threshold of server parties then all
security guarantees are off, because the adversary may reconstruct the secret. This is
called threshold security.

Information is not only distributed among the server parties but is also the input
to computations which may be observed by an adversary. The adversary may be able
to deduce information about the inputs and the intermediate results by observing the
side-effects of the computation, if the side-effects depends on the secret information.
The side-effects may be physical side-effects like time, electric power consumption,
electromagnetic radiation, noninterference, or interaction with cache, harddrive, or
other physical objects. Information may also be leaked through logical or semantic
side-effects like deducing the value of a variable from some other but related values
which has all ready been made public, e.g. say x is containing a secret value, we make
x%10 and x/10 public then it is easy for an adversary to compute x .

Security in SMCL must ultimately be based on threshold security and prevent
physical and semantic side-effects. Threshold security is achieved by using the crypto-
graphic runtime, which must provide us with the following security guarantees:

1. Operations on secret values are free of physical side-effects

2. Operations compute the correct result

3. Operations cannot be compromised unless at least a threshold of the server
parties are corrupted

We will prevent physical side-effects by using a carefully crafted semantics and type
system. If a computation on secret values has any observable side-effects which depends
on its arguments then it is a potential security threat, and history has shown us that
someone will devise an attack which exploits this vulnerability. The semantic security
is more difficult to ensure, and we only present an aid for the SMCL programmer to
avoid semantics leaks in Subsection 1.6.5.

In the rest of this section we will formally state and prove that any computation
expressed as an SMCL program is free of physical side-effects.

1.6.1 A Model of Security for SMCL

In this section we develop a model of what it will mean for SMCL programs to be free
of physical side-effects, and in the next subsection we will prove that it is the case.

First we define the capabilities of the adversary A. His computational power is
limited to probabilistic polynomial time computations, which means that he cannot
break usual cryptographic algorithms, e.g. he cannot factor a prime number of rea-
sonable size in reasonable time. Besides the computational capabilities the adversary
may also make any measurement at each step of the execution, and record the infor-
mation, and make future measurements based on this. Furthermore the adversary can
corrupt any subset (up to a threshold) of clients (χ ⊆ {κ1, . . . , κn}) and server parties
(Σ ⊆ {σ1, . . . , σm}). By corrupting a party the adversary takes control of the machines
executing the party. The adversary may also control when and if messages among



34 Chapter 1. SMCL - Security Guaranteed

parties are delivered. But may not control the content of messages from non-corrupted
parties. The adversary learns the secret values of the client parties he corrupts, and
if he takes control of more than the threshold of server parties then he learns all the
secret values - including those submitted by client parties he has not corrupted.

The adversary may be considered in a static case or an adaptive case. In the static
case the adversary decides which set of parties to corrupt before the program execution
begin. In the adaptive case, the adversary corrupts parties at will throughout the
computation. Adversaries also come in two other kinds of flavors malicious (corrupted
parties follow arbitrary instruction set by the adversary) and semi-honest (parties
follows the protocol). We consider an adaptive, semi-honest adversary because this is
what the underlying cryptographic runtime supports.

The adversary may make a measurement at each step of the evaluation of an SMCL
program to observe the value of one or more physical properties φ. A measurement
m ∈ M determines the value of a finite set of physical properties (φ1, . . . , φn) up to
the precision of the used measuring tool.

Definition 1.2 A measurement on a transition is a triple (γα,m, γ
′
α) ∈ Γα ×M× Γα

for states γα → γ′α ∈ Γα and m ∈ M. We write the measurements performed when

going from state γα to state γ′α as γα
m
−→α γ

′
α.

To capture our intuitive notion of when measurements should be equivalent we
introduce the concept indistinguishability. Two measurements m1,m2 are indistin-
guishable (written m1 ≈ m1) if the distributions of the measurements are the same.
This formulation of physical observations is similar to the one found in [65].

There are three basic assumptions we make about indistinguishability of measure-
ments. The three assumptions are listed in Definition 1.3. The first is a property of
the representation of secret values. The information obtainable through physical mea-

surements on a configuration (written
m1

〈t, (x, s)〉) is indistinguishable from the same

measurements made on another configuration
m2

〈

t, (x, ŝ)
〉

, if the two configurations only
differ on secret state and the adversary does not corrupt more than the threshold of
server parties. If this was not the case then the storage of secret values would leak
information to the adversary, and computation on such values would be of small value.

The second assumption informally states that if we do the same thing we will
observe the same distribution. If a step of evaluation is made from a configuration
〈t, (x, s)〉 to a state with unchanged secret state 〈t′, (x′, s)〉 then it will never be the case
that a different distribution on the measurements is observed if we make the exact same
step at any point of the future. This captures the reproducibility of physical results.
If the state is a step in the evaluation which determines the value of some physical
property by rolling a dice each time it is executed, the property would definitely be of
no value to adversary or anybody else.

The third assumption informally states that if a transition does not affect the term
or state then the measurements on two transitions which only differ on secret state are
indistinguishable.

Definition 1.3 m1 ≈ m2 if either of the three cases hold:

1.
m1

〈t, (x, s)〉 and
m2

〈t, (x, s′)〉

2.

〈t, (x, s)〉
m1−→α 〈t′, (x′, s)〉

〈t, (x, s)〉
m2−→α 〈t′, (x′, s)〉
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3.

〈t, (x, s)〉
m1−→α 〈t, (x, s)〉

〈

t, (x, ŝ)
〉 m2−→α

〈

t, (x, ŝ)
〉

Any implementation of SMCL must have the property that changing the program
counter is indistinguishable. Here we are not referring to which configuration the
program counter should be changed to, but the act of changing it. This is a reasonable
assumption because changing the configuration is not dependent on the state in any
way.

Definition 1.4 Changing the program counter is indistinguishable. If two transitions:

〈t, (x, s)〉
m1−→α 〈t′, (x′, s′)〉

〈

t, (x, ŝ)
〉 m2−→α

〈

t′, (x′, ŝ
′
)
〉

are indistinguishable then changing the instruction pointer from 〈t, (x, s)〉 to 〈t′, (x′, s′)〉

or from
〈

t, (x, ŝ)
〉

to
〈

t′, (x′, ŝ
′
)
〉

respectively is indistinguishable.

A measurement mi = (φ0, . . . , φn) may be separated into two disjoint measure-
ments m′

1 = (φ0, . . . , φj),m
′′
1 = (φj+1, . . . , φn) which we write mi = m′

im
′′
i . Phys-

ical measurements m1 = m′
1m

′′
1 and m2 = m′

2m
′′
2 are indistinguishable if they are

component-wise indistinguishable:

Definition 1.5 m′
1m

′′
1 = m1 ≈ m2 = m′

2m
′′
2 iff. m′

1 ≈ m
′
2 and m′′

1 ≈ m
′′
2 .

The evaluation of an SMCL program under observation by a given adversary leaves
a trace of physical properties measured by the adversary.

Definition 1.6 We define the physical trace Tr(γα) of a state γα ∈ Γα as a finite
or infinite sequence of measurements on transitions: Tr(γα) = (t1, t2, . . .) where ti =

γi
α

mi→α γ
i+1
α .

Definition 1.7 We define the physical trace for the execution of an SMCL program
as the physical trace of the start configuration γstart of the program: Tr(γstart).

We show a physical trace Tr from a state with public state x and secret state s to one
with public state x′ and secret state s′ as the illustration:

s̄

x̄
′

s̄
′

Tr

x̄

An SMCL program is intuitively secure if whatever measurements an adversary
makes during the execution of a program does not depend on the secret state. For-
mally if an SMCL program P is executed on public state x, secret state s1, and an
adversary makes a sequence of measurements (m1, . . .), then he should observe values
indistinguishable from the values he would have observed if he had executed the pro-
gram with the same public state x, different secret state s2, and made the same sequence
of measurements. This property can be visualized by the following illustration:
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x̄
′

s̄
′
1

s̄
′
2Tr2

Tr1

x̄

s̄1

x̄

s̄2

x̄
′′

Where the traces are equal Tr1 = Tr2. We call this property the identity property.
The identity property states that computation does not reveal information about se-
cret state. Formally we start by defining what it means for two configurations to be
equivalent:

Definition 1.8 (Equivalence of configurations). γα ∼ δα if γα = G ⊢ 〈t, (x, s)〉,
δα = G′ ⊢ 〈t, (x, s′)〉, and

1. γα
m1−→α γ

′
α ⇒ ∃ δ

′
α : δα

m2−→α δ
′
α and γ′α ∼ δ

′
α,m1 ≈ m2

2. if γα ∈ Tα or δα ∈ Tα then γα = δα.

for some pair of secret states s, s′ and closed term t.

Two states are equivalent if they consists of some global store, the same closed term
t and a server state with equal public state but potentially different secret state. The
adversary should not be able to tell the difference between the evaluation of the two
transitions, so we require that each possible transition from one configuration should be
matched by exactly one step from the other configuration, effectively defining a strong
bisimilation.

The equivalence of physical traces is defined in terms of equivalence of their start
configurations, two traces are equal if their start configurations are equivalent:

Definition 1.9 (Equivalence of physical traces). Tr(γα) = Tr(γ′α) if and only if γα ∼
γ′α.

Definition 1.10 (The Identity Property). An SMCL program P has the identity prop-
erty if the trace of the program evaluated on secret state s and public state x is equal to
the trace of the same program evaluated on some (other) secret state s′ and the same
public state x:

Tr((x, s)) = Tr((x, s′))

Note that the secret state may change during the computation, e.g. as a result of client
inputs, which is not a problem because the identity property ensures that the trace does
not change

The identity property only holds in general on traces without open operations,
because an open operation explicitly influences the public state which may alter the
control flow.

A transition where secret state s1 is made public using the open operation to
become public state x1 can be illustrated by:

x̄ x̄

s̄1

s̄2

x̄1

s̄2
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A complete computation that occasionally makes use of the open operation for down-
grading can then be described by an alternating sequence of physical traces and these
transitions:

The adversary may of course also make measurements during the evaluation of the
open operation which is modeled in the same way as other transitions.

Trace security can now be defined similarly to [63, 64] in terms of trace sequences :

Definition 1.11 (Trace sequence). A trace sequence is a possible infinite sequence of

maximal physical traces without open operations (Tr1((x1, s1)), . . .), if γα
m
−→α γ′α is

an evaluation of an open operation then γα is the last configuration in Tri((xi, si)),
and γ′α is the first configuration in Tri+1((xi+1, si+1)) for all Tri+1((xi+1, si+1)) ∈
(Tr1((x1, s1)), . . .).

Trace security is defined by requiring the identity property to hold for each trace of
all the trace sequences of an SMCL program’s start configuration and the open opera-
tion must not reveal any physical observable property which depends on its arguments
except for the result.

Definition 1.12 (Trace security). An SMCL program P is said to be trace-secure if for
all trace sequences (Tr1, . . .) initiating from the start configuration of P the following
holds: Tri((xi, si)) = Tri((xi, s

′
i)) ∀ Tri((xi, si)) ∈ (Tr1((x1, s1)), . . .) for all sets of

secret states s, s′.

The definition of trace security does not mention the requirements on the open
operation. This is intentional because by assumption on the runtime the open operation
has the required properties.

1.6.2 Every SMCL Program is Trace-secure

We now proceed by showing that every SMCL program is trace-secure. The security is
founded on a solid combination of a type system and well-designed semantics which in
combination ensures the necessary properties to prove the main result of trace-security.

The first result we will need to establish is the determinism of the server-side
transition systems which will simplify the following proofs a great deal. The Server-
Client transition systems is not deterministic by construction, however we can restrict
our selves to only consider the server-side part of the SMCL traces.

Lemma 1.1 The server-side transition systems are deterministic.

Proof. By inspection of the semantics we see that for each configuration there is at
most one rule which applies and that each rule results in exactly one configuration. 2

We continue by proving a lemma which informally says that server-side expressions
are secure. By secure we mean that the secret state does not influence the public state
and physical measurements are indistinguishable for states which only differ on secret
state.

Lemma 1.2 For all well-typed and non-open configurations in the server-side expres-
sion transition system: γse, γ

′
se, δse where γse

m1−→se γ
′
se and γse ∼ δse there exists δ′se,m2

such that δse
m2−→se δ

′
se, γ

′
se ∼ δ

′
se, and m1 ≈ m2.

Which can be illustrated by the following diagram:
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γse ∼ δse
↓m1 ↓m2

γ′se ∼ δ′se

Proof. Let γse, γ
′
se, δse be non-open configurations in well-typed in the server-side ex-

pression transition system. And let physical measurement m1 be given such that
γse

m1−→se γ′se and γse ∼ δse. We now prove by induction in the derivation of an

expression e that there exists a δ′se,m2 such that δse
m2−→se δ

′
se, γ

′
se ∼ δ

′
se, and m1 ≈ m2.

We split the proof into cases for each rule involving server-side expressions, which
is possible because the transition system is deterministic by Lemma 1.1. For brevity
we only show three representative cases Op-left, Op-sexp, and Assign-exp

[Case Op-left] The structure of the rule is:

G ⊢ 〈e1, σ.S〉 →se G ⊢ 〈e′1, σ.S
′〉

G ⊢ 〈e1 op e2, σ.S〉 →se G ⊢ 〈e′1 op e2, σ.S
′〉

(Op-left)

We can identify the following configurations:

γse = G ⊢ 〈e1 op e2, (x, s)〉

γ′se = G ⊢ 〈e′1 op e2, (x
′, s′)〉

δse = G′ ⊢
〈

e1 op e2, (x, ŝ)
〉

For there to be a transition from δse
m2→se δ

′
se then δ′se must have the form:

δ′se = G ⊢ 〈e′1 op e2, (x
′′, s′′)〉

for public and secret state x′′, s′′, because of rule Op-left.

By the inductive hypothesis we get that G ⊢ 〈e1, (x, s)〉
m′

1→se G ⊢ 〈e′1, (x
′, s′)〉

implies the existence of a configuration G ⊢
〈

e′1, (x
′, ŝ′)

〉

with the relationship

G ⊢
〈

e1, (x, ŝ)
〉 m′

2→se G ⊢
〈

e′1, (x
′, ŝ′)

〉

which together with rule Op-left gives
that x′′ = x′. Furthermore m′

1m
′′
1 = m1 ≈ m2 = m′

2m
′′
2 due to Definition 1.5

and because we only increment the program counter (captured by m′′
i ) in rule

Op-left which is independent of the state.

[Case Assign-exp] The structure of the rule is:

(x′, s′) = (x, s)[y 7→ w]

G ⊢ 〈y = w, (x, s)〉 →se G ⊢ 〈w, (x′, s′)〉
(Assign-exp)

We can identify the following configurations:

γse = G ⊢ 〈y = w, (x, s)〉

γ′se = G ⊢ 〈w, (x′, s′)〉

δse = G′ ⊢
〈

y = w, (x, ŝ)
〉

For there to be a transition from δse
m2→se δ

′
se then δ′se must have the form:

G ⊢ 〈w, (x′′, s′′)〉

for public and secret state x′′, s′′, because of rule Assign-exp.

We do a case analysis on the value w. Either w is a public value v or it is a
secret value v .
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If w = v then the type system guarantees that the variable y will be in the
public part of the state, and so only the public state x will be modified. Thus
x′ = x[y 7→ v] which applies equally to 〈e, (x, s)〉 and

〈

e, (x, ŝ)
〉

thus x′′ = x′.
The secret state does not change in this case and we get m1 ≈ m2 by assumption
(2) of Definition 1.3.

If w = v then the type system guarantees that the variable y will be in the
secret part of the state, and so only the secret state s will be modified. Thus
x′′ = x′ = x. m1 ≈ m2 because variable assignment is independent of the secret
value by assumption of the runtime.

[Case Op-sexp] The structure of the rule is:

op(v1 , v2 ) = v3

G ⊢ 〈v1 op v2 , σ.S〉 →se G ⊢ 〈 v3 , σ.S〉
(Op-sexp)

We can identify the following configurations:

γse = G ⊢ 〈v1 op v2 , (x, s)〉

γ′se = G ⊢ 〈v3 , (x
′, s′)〉

δse = G′ ⊢
〈

v1 op v2 , (x, ŝ)
〉

For there to be a transition from δse
m2→se δ

′
se then δ′se must have the form:

δ′se = G ⊢
〈

v3 , (x, ŝ)
〉

because of rule Op-sexp and the rule preserves state. m1 ≈ m2 because operations
are by assumption of the runtime independent of secret value arguments.

2

Lemma 1.2 will be an important stepping stone in the main theorem, Theorem 1.3
which informally says that all steps in the evaluation of well-typed and branch termi-
nating SMCL programs are independent of secret values. This is not true if the step
is the evaluation of an open operation, so we require the configurations of the steps to
be a non-open configuration which is a configuration without open operations.

Theorem 1.3 For all non-open configurations in well-typed and branch terminating
SMCL programs: γsc, γ

′
sc, δsc where γsc

m1−→sc γ
′
sc and γsc ∼ δsc there exists δ′sc,m2 such

that δsc
m2−→sc δ

′
sc, γ

′
sc ∼ δ

′
sc, and m1 ≈ m2.

Which can be illustrated by the following diagram:

γsc ∼ δsc
↓m1 ↓m2

γ′sc ∼ δ′sc

Proof. Let γsc, γ
′
sc, δsc be non-open configurations in well-typed and branch terminating

SMCL programs and physical measurement m1 be given such that γsc
m1−→sc γ

′
sc and

γsc ∼ δsc. We now show by coinduction that there exists a δ′sc,m2 s.t. δsc
m2−→sc δ

′
sc,

γ′sc ∼ δ
′
sc, and m1 ≈ m2.

The proof will be a case analysis on the rules of the various transition systems.
Most of the rules we will show have the general structure:

G ⊢ 〈C2, S〉
m′′

i→se G ⊢ 〈C′
2, S

′〉

G ⊢ 〈C1, S〉
m′

i→sc G ⊢ 〈C′
1, S

′〉
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Here we split the result of the physical observation mi into two components m′′
i and

m′
i, where m′′

i will be the part of the result related to evaluating the premiss of the
rule and m′

i will be the result related to evaluating the conclusion of the rule.
For brevity we only show the proofs for the most interesting cases: If-stm, If-sbool-

then-final, If-sbool-else, and If-sbool-phi:

[Case If-stm] The structure of the rule is:

G ⊢ 〈e, S〉 →se G ⊢ 〈e′, S′〉

G ⊢ 〈if(e) {C1} else {C2}, S〉 →sc G ⊢ 〈if (e′) {C1} else {C2}, S
′〉

(If-stm)

We can identify the following configurations:

γsc = G ⊢ 〈if(e) {C1} else {C2}, (x, s)〉

γ′sc = G ⊢ 〈if(e′) {C1} else {C2}, (x
′, s′)〉

δsc = G′ ⊢
〈

if (e) {C1} else {C2}, (x, ŝ)
〉

For there to be a transition from δsc
m2→sc δ

′
sc then δ′sc must have the form:

δ′sc = G ⊢ 〈if(e′) {C1} else {C2}, (x
′′, s′′)〉

for public and secret state x′′, s′′.

Because γsc ∼ δsc, G ⊢ 〈e, (x, s)〉
m′′

1→se G ⊢ 〈e′, (x′, s′)〉, and G ⊢ 〈e, (x, s)〉 ∼ G ⊢
〈

e, (x, ŝ)
〉

then by Lemma 1.2 we get that G ⊢
〈

e, (x, ŝ)
〉 m′′

2→se G ⊢
〈

e′, (x′′, ŝ
′
)
〉

,

where x′′ = x′ and m′′
1 ≈ m

′′
2 .

Incrementing the program counter is indistinguishable by Definition 1.4 which
gives us that m′

1 ≈ m′
2 which combined with Definition 1.5 gives the result

m1 = m′
1m

′′
1 ≈ m

′
2m

′′
2 = m2. So δsc ∼ δ′sc.

[Case If-sbool-then-final] The structure of the rule is:

G ⊢ 〈C1, Uthen〉 →sc G ⊢ 〈void, U ′
then〉

G ⊢ 〈if(v ) {C1} else {C2}, Uthen, S〉
→sc

G ⊢ 〈if (v ) {void} else {C2}, U
′
then, S, S〉

(If-sbool-then-final)

We can identify the following configurations:

γsc = G ⊢ 〈if(v ) {C1} else {C2}, (xthen, sthen), (x, s)〉

γ′sc = G ⊢ 〈if (v ) {void} else {C2}, (x
′
then, s

′
then), (x, s), (x, s)〉

δsc = G ⊢
〈

if(v ) {C1} else {C2}, (xthen, ŝthen), (x, ŝ)
〉

For there to be a transition from δsc
m2→sc δ

′
sc then δ′sc must have the form:

δ′sc = G ⊢
〈

if (v ) {void} else {C2}, (x
′′
then, s

′′
then), (x, ŝ), (x, ŝ)

〉

for public and secret state x′′then, s
′′
then.

Because γsc ∼ δsc, G ⊢ 〈C1, (xthen, sthen)〉
m′′

1→sc G ⊢ 〈void, (x′then, s
′
then)〉,

and G ⊢ 〈C1, (xthen, sthen)〉 ∼ G ⊢
〈

C1, (xthen, ŝthen)
〉

then by the co-inductive
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hypothesis we get that: G ⊢
〈

C1, (xthen, ŝthen)
〉 m′′

2→sc G ⊢
〈

void, (x′′then, ŝ
′

then)
〉

where x′′then = x′then and m′′
1 ≈ m

′′
2

Incrementing the program counter is indistinguishable by Definition 1.4 which
gives us that m′

1 ≈ m′
2 which combined with Definition 1.5 gives the result

m1 = m′
1m

′′
1 ≈ m

′
2m

′′
2 = m2. So δsc ∼ δ′sc.

[Case If-sbool-else] The structure of the rule is:

G ⊢ 〈C2, Uelse〉 →sc G ⊢ 〈C′
2, U

′
else〉

G ⊢ 〈if (v ) {void} else {C2}, Uthen, Uelse, S〉
→sc

G ⊢ 〈if (v ) {void} else {C′
2}, Uthen, U

′
elseS〉

(If-sbool-else)

We can identify the following configurations:

γsc = G ⊢ 〈if (v ) {void} else {C2}, Uthen, (x, s), S〉

γ′sc = G ⊢ 〈if (v ) {void} else {C′
2}, Uthen, (x

′, s′), S〉

δsc = G ⊢
〈

if (v ) {void} else {C2}, Uthen, (x, ŝ), S
〉

For there to be a transition from δsc
m2→sc δ

′
sc then δ′sc must have the form:

δ′sc = G ⊢ 〈if (v ) {void} else {C′
2}, Uthen, (x

′′, s′′), S〉

for public and secret state x′′then, s
′′
then.

Because γsc ∼ δsc, G ⊢ 〈C2, (xelse, selse)〉
m′′

1→sc G ⊢ 〈C′
2, (x

′
else, s

′
else)〉, and G ⊢

〈C2, (xelse, selse)〉 ∼ G ⊢
〈

C2, (xelse, ŝelse)
〉

then by the co-inductive hypothesis

we get that: G ⊢ 〈C2, (xelse, selse)〉
m′′

2→sc G ⊢
〈

C2, (x
′′
else, ŝ

′

else)
〉

, where x′′else =

x′else and m′′
1 ≈ m

′′
2 .

Incrementing the program counter is indistinguishable by Definition 1.4 which
gives us that m′

1 ≈ m′
2 which combined with Definition 1.5 gives the result

m1 = m′
1m

′′
1 ≈ m

′
2m

′′
2 = m2. So δsc ∼ δ′sc.

[Case If-sbool-phi] The structure of the rule is:

s1 = s{ [y 7→ v ∗ sthen(y) + (1− v ) ∗ selse(y)] |

∀y ∈ s : s then(y) = v′ ∧ selse(y) = v′′ }
s2 = s1{[y 7→ v ] | ∀y : (v = sthen(y) ∧ y 6∈ selse) ∨ (y 6∈ sthen ∧ v = selse(y))}

x′ = x[y 7→ v] ∀y ∈ x : v = x then(y) = x else(y)

G ⊢ 〈if (v ) {void} else {void}, (xthen, sthen), (xelse, selse), (x, s)〉
→sc

G ⊢ 〈void, (x′, s2)〉

(If-sbool-phi)

We can identify the following configurations:

γsc = G ⊢ 〈if (v ) {void} else {void}, (xthen, sthen), (xelse, selse), (x, s)〉

γ′sc = G ⊢ 〈void, (x′, s′)〉

δsc = G ⊢
〈

if (v ) {void} else {void}, (xthen, ŝthen), (xelse, ŝelse), (x, ŝ)
〉
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For there to be a transition from δsc → δ′sc then δ′sc must have the form:

δ′sc = G ⊢ 〈void, (x′′, s′′)〉

for public and secret state x′′, s′′ because γsc ∼ δsc.

Now x′ = x′′ because:

x′ =
(

x[y 7→ v] ∀y ∈ x : v = x then(y) = x else(y)
)

= x ′′

If m1,m2 are what can be observed on transitions: γsc
m1−→sc γ

′
sc and δsc

m2−→sc δ
′
sc,

then m1 ≈ m2 because arithmetic operations on secret values and environment
lookup and modification is indistinguishable by assumption on the cryptographic
runtime.

2

The main result trace-security now comes as an easy corollary from Theorem 1.3:

Corollary 1.1 (Trace security). For all well-typed and branch terminating SMCL
programs P , and for all trace sequences (Tr1((x1, s1)), . . .) initiating from the start
configuration of P the following must hold: Tri((xi, si)) = Tri((xi, ŝi)) ∀ Tri((xi, si)) ∈
(Tr1((x1, s1)), . . .) for all sets of secret states s and ŝ.

Proof. Follows immediately from Theorem 1.3. 2

1.6.3 Interpreting the Theorem

Corollary 1.1 implies that doing computations on secret values does not convey any
information about the values computed on. This is because the steps of the compu-
tation are independent of secret values. The steps referred to are the control flow of
the program which does not change based on secret values, but only changes based on
public values.

Trace security, i.e. the independence of control flow from secret values makes
SMCL programs immune to a wide variety of attacks which exploits the information
signaled through variations in traces introduced by secret values. Examples of attacks
are (cache) timing attacks, terminations attacks, noninterference attacks, electric power
consumption attacks, and electromagnetic radiation attacks.

The variation of traces generally comes from alternatives in control flow introduced
by loops, conditions, and recursive functions. SMCL removes the security threats by
simply removing the control flow which depends on secret values. SMCL explicitly
forbids non-constant loops which depends on secret values, recursive functions cannot
have a stop-condition which depends on a secret value because we require that both
branches of a secret conditional terminates, and secret conditionals has been made
immune to these kinds of attacks by executing both branches. Agat [5] uses a different
approach (to avoid timing attacks) by cross-padding the branches with dummy instruc-
tions to make sure that their execution time is the same. However this approach is
not useful in SMCL because the adversary has access to the instruction pointer of the
corrupted parties.

Evaluation of both branches removes timing attacks because the execution time is
independent of the condition. Cache-timing attacks are also eliminated because which
branch gets executed is independent of the condition, and thus the state of the cache
contains no information about the value of the condition.
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1.6.4 Correctness

As a complement to the identity property we would also like SMCL programs to be
correct, which is captured by the commutativity property. The commutative property
states that open operations and computations commute:

Tr1

x̄2 x̄
′
2

x̄
′
1

s̄1

x̄1 x̄
′
1

s̄
′
1

Tr2

x̄1

This property evidently expresses that the secret representation is sound. Note that
Tr1 and Tr2 will in general clearly be different, but the commutativity property implies
that Tr1 terminates exactly when Tr2 does.

Definition 1.13 (The Commutativity Property). An SMCL program P has the com-
mutativity property if the result of the program evaluated on values E(P (x1, s1)) =
(x′1, s1

′) and the same program evaluated on values E(P (x1, x2)) = (x′1, x
′
2) where

x2 = open(s1) and x′2 = open(s′1). Where E is the evaluation function defined by
the operational semantics in Section 1.4.

Theorem 1.4 (The Commutativity Property). All well-typed SMCL programs have
the commutativity property if all the operations provided by the underlying runtime have
the commutativity property.

Proof. By coinduction in the semantics of SMCL. 2

1.6.5 Towards Semantic Security

The security properties provide some basic guarantees about the behavior of SMCL
programs. With these guarantees, any computation (without while loops) can be
made invulnerable to attack by being structured as an ideal computation:

s̄ s̄
′

x̄

s̄
′′

Here, all information is kept in secret variables and only at the very end are the outputs
x made public. However, as shown in Section 1.7, computations on secret values
are quite expensive. Thus, a pragmatic computation will keep information in public
variables as much as possible without compromising the overall security requirements.
The commutativity property ensures that the ideal computation and the pragmatic
computation will produce the same output, but the programmer now has the burden
of (manually) proving that these two computations will only reveal the same relevant
secret information. Since such proofs are difficult to construct, the SMCL compiler
provides a simple annotation language to aid the programmer.
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The open operation should be annotated with secret variables: open(e|x , y, z ) .
The meaning of this annotation is that the programmer recognizes responsibility for
compromising the secret values of these variables, and the compiler should check that
all compromised variables are mentioned, so the programmer is fully aware of his proof
obligations. A program is then only accepted as well-annotated if all potential semantic
information leaks are explicitly allowed by such annotations. To be conservative, which
is a good attitude when security is concerned, any secret variable whose value may
have influenced the opened value is viewed as potentially compromised. Thus, for any
open operation the SMCL compiler computes the set of secret variables that have ever
contained a value that may have influenced the value currently being opened. From
this set of potentially compromised secret variables we subtract the corresponding sets
from all previously executed open operations whose values have not since changed.
The resulting set of newly compromised secret variables must explicitly be mentioned
in the open operation. The set of variables which must be mentioned may grow fast
thus for ease of annotation we also subtract the variables which may have influence
any already mentioned variable. The corresponding analysis is a mixture of a def-
use analysis, a liveness analysis, and an available expressions analysis [72]. A simple
constant folding analysis also takes care of cases such as multiplying a secret value
by the constant zero. This is essentially a bookkeeping procedure where we try to
reduce the annotation burden as much as possible. Of course, little is gained if the
programmer blindly use these annotations to accept responsibility for the behavior of
the pragmatic computation: The idea is that it will be easier to prove equivalence to the
ideal computation when the compiler has verified that the program is well-annotated.

1.7 Efficiency

Our experiences with SMCR show that Secure Multipart Computations are feasible
in practice. However, secret computations are quite expensive as they are based on
complex protocols that involve several rounds of communications between the server
parties. To illustrate this, we consider a program which computes the sign of a poly-
nomial given coefficients a , b , and c and a data point x . We provide three versions
of this program shown in Figure 1.20 and Figure 1.21. To enable proper timings, the
client network communications have been replaced with simple assignments. The ideal
version keeps everything secret until the output is revealed. The pragmatic version has
x as a public value and chooses to allow the value of the polynomial to be public as
well as its sign. The public version merely performs an ordinary computation.

In Figure 1.22, we show the timing results from running the compiled versions
of these programs on SMCR with 3, 5, and 7 server parties distributed on an equal
number of Intel P4 1,8 Ghz with 512 MB of memory (the timings are for one execution
of the programs and do not include the time for preprocessing, which is a part of the
protocols that SMCR uses for multiplications and comparisons). The time needed for
preprocessing depends on the number of multiplications done in the computation. The
SMCR can be instructed to preprocess a number of multiplications and furthermore
use idle time to maintain a pool of preprocessed multiplications. The numbers 1, 2,
and 3 denote the threshold that is used in the respective case. Our conclusion is
that SMC primitives are expensive but feasible. The slowdown from the public to
the pragmatic version is significant but many practical application exists where the
slowdown is acceptable. An example is offline auctions where ample time is available
for executing the auction. The slowdown from the pragmatic to the ideal version
is stunning, but it is to a large extent an unavoidable price for obtaining the full
invulnerability of our security properties. In practice, applications will be written
in the pragmatic style—making a convincing case for automated proof support like
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sint x = 17;
sint a = 42;
sint b = -5;
sint c = 87;
sint p =

a *(x *x ) + b*x + c ;
sint sign = 0;
int output ;
if (p < 0) sign = -1;
if (p > 0) sign = 1;
output = open (sign |p );

Ideal version

sint x = 17;
sint a = 42;
sint b = -5;
sint c = 87;
int p =

open (a *(x *x ) + b*x + c |a ,b ,c );
int sign = 0;
int output ;
if (p < 0) sign = -1;
if (p > 0) sign = 1;
output = sign ;

Pragmatic version

Figure 1.20: The ideal and pragmatic versions of the polynomial program

our simple annotation language. It should also be noted that there are still many
opportunities for developing optimizations at the SMCL level and optimizing SMCR.
In the next section we will explore a language level optimization for reducing the
number of multiplications.

int x = 17;
int a = 42;
int b = -5;
int c = 87;
int p = a *(x *x ) + b*x + c ;
int sign = 0;
int output ;
if (p < 0) sign = -1;
if (p > 0) sign = 1;
output = sign ;

Public version

Figure 1.21: The public version polynomial program

ideal pragmatic public

(3,1) 12 sec 30 ms <1 ms

(5,2) 17 sec 65 ms <1 ms

(7,3) 30 sec 132 ms <1 ms

Figure 1.22: The timing result in SMCR of the three versions of the polynomial
program
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1.8 Optimization

Secure multiparty computation enables computation on secret values. Secret values
may be added, subtracted, multiplied, and compared like ordinary integers in some
sub-field of Z, usually Z32. However, compared to non-secret computations there is
one huge difference, speed. The time it takes to perform a algebraic operation on secret
values is large compared to performing the same operation on public values, making
SMC an expensive choice for a substantial set of problems.

One possible strategy to combat the large execution time is to lower the time it
takes to perform each operation. This strategy is the topic of much research in the
cryptographic community [17,35,51,96]. Another orthogonal strategy is to explore the
fact that some operations on secret values are substantially faster to compute than
others. E.g. in SMCR it takes 1 millisecond to perform one multiplication whereas an
addition can be done as fast as on non-secret values. Thus it is approx. a factor of
1000 times slower to compute a multiplication of two secret numbers than adding the
same two numbers.

This observation lead us to look for ways to rewrite algebraic expressions which
preserve the result of a computation but reduce the execution time. As a motivating
example we have looked at the following expression over the variables x, y, z containing
secret values:

(x ∗ y) + ((1 − x ) ∗ z )

another expression which evaluates to the same result, but is faster to compute is:

(x ∗ (y − z )) + z

here we have eliminated one multiplication and kept the number of other operations
constant, which made the execution time considerable faster.

What enabled us to save one multiplication was the rewriting of the expression into
a variant ((x ∗ y) − (x ∗ z )) + z where we could apply the distributive law, to move
the common factor x outside the subtraction. However, given an expression it is not
obvious to a man or machine where the distribute law can be applied or which sequence
of applications results in the expression with the least number of multiplications and
thus the fastest execution time.

This leaves us with the interesting question of, how to generate different variants of
an expression where we can apply the distributive law. Given an expression we propose
the following solution:

1. Generate all variants of the expression under the associative, commutative, and
distributive laws.

2. Define and apply a cost function which counts the number of multiplications.

3. Choose the variant with the lowest cost according to the cost function.

This straight-forward and brute-force solution might seem inefficient at first. It does
have an exponential worst case complexity, but the number of variables and constants
in expressions found in programs are usually quite small. Our hope is that by applying
a number of heuristics the algorithm turn out to be a pragmatic tool, which results in
faster programs.

We will mainly focus on the basic algorithm, and prove that all the variants of ex-
pressions we generate are valid variants under the three laws. In the end of this section
we will briefly look at some simple heuristics which may improve the performance, but
there is still room for future work on better heuristics.

To prove the correctness of the generated variants, we define the three laws on
binary algebraic expressions. The intention is that binary algebraic expressions will
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correspond to mathematical expressions. We then define rooted binary trees which
corresponds to the representation of expressions in the SMCL compiler and define
transformations on trees corresponding to each of the three laws. We also define a
mapping between binary algebraic expressions and rooted binary trees. We will show
that each of the binary algebraic expressions generated by applications of the three
laws corresponds uniquely to a rooted binary tree generated by applications of the tree
transformations corresponding the three laws.

In the next Subsection we formally define binary algebraic expressions, rooted
binary trees, and a mapping between binary algebraic expressions and rooted binary
trees. These general definitions will be the foundation of the Subsections 1.8.2, 1.8.3,
and 1.8.4 where we will formally define the associative, distributive, and commutative
laws on binary algebraic expressions and define transformations of rooted binary trees
for each of the three laws. In Subsection 1.8.5 we present the proof. In Subsection 1.8.6
we discuss and describe some heuristics.

1.8.1 General Definitions

We start by formally defining binary algebraic expressions, rooted binary trees, and a
mapping from binary algebraic expressions to rooted binary trees. We also define some
auxiliary concepts like fixpoint and sub-expression/sub-tree substitution and prove some
lemmas, which will be useful in later subsections.

A binary algebraic expression is a string of balanced parenthesis and constants
consts (integer literals and variables), composed using binary operators binops.

Definition 1.14 A binary algebraic expression e in the set of binary algebraic expres-
sions E over a set of constants consts and a set of binary operators binops is any string
constructed as follows

1. a ∈ consts is a binary algebraic expression

2. If ◦ ∈ binops, and e1, e2 are binary algebraic expressions then (e1) ◦ (e2) is a
binary algebraic expression.

From now on we will refer to binary algebraic expressions as just expressions.
We define a rooted binary tree as an inductive structure of either a leaf a ∈ consts

or a root consisting of two rooted binary trees t1, t2 and a binary operator ◦.

Definition 1.15 A rooted binary tree t in the set of rooted binary trees T is con-
structed as follows:

1. A leaf, (a) where a ∈ consts

2. A root, (t1, ◦, t2) where t1, t2 ∈ T and ◦ ∈ binops

From now on we will refer to rooted binary trees as just trees.
An expression e can be encoded as a tree. We write the tree encoding of an expres-

sion e as [[e]].

Definition 1.16 The tree encoding [[e]] of an expression e is defined by the function:

1. If e = a ∈ consts then [[e]] = (a)

2. If e = (e1) ◦3 (e2), [[e1]] = (t1, ◦1, t2), and [[e2]] = (t′1, ◦2, t
′
2) then we define the

tree encoding of e as [[e]] = ((t1, ◦1, t2), ◦3, (t
′
1, ◦2, t

′
2)) ∀i ∈ [1, 3] : ◦i ∈ binops
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We will need the fact that the tree encoding has an inverse, called the inverse
tree encoding written [[e]]

−1
where [[e]]

−1
= e, given an expression e. The inverse tree

encoding is well-defined if the tree encoding is bijective.

Lemma 1.3 The tree encoding [[e]] : E → T is a bijective function from the set of
expressions to the set of trees.

Proof. By induction in the structure of the tree. 2

Here E → T denote the type of the tree encoding function. The type is given as aid
for the reader.

We generate all variants under each of the three laws by iteratively applying the law
or corresponding tree transformation. The process is guaranteed to reach a fixpoint
because expressions and trees are finite. To compute the fixpoint of a function we
define the fixpoint function fix : (α→ α)→ α. Where (α→ α)→ α is the type of the
function and α is a type variable.

Definition 1.17 The fixpoint function fix : (α → α) → α computes the least fixpoint
of a function f : α→ α, and has the following property:

f(fix(f)) = fix(f)

To define sub-expression/sub-tree substitution, we recursively define the sets of
sub-expressions Γ(e) and sub-trees Ψ(t) for expression e and tree t respectively by
decomposing the expression or tree and collect all sub-expressions or sub-trees.

Definition 1.18 The set of sub-expressions Γ(e) of an expression e is defined as:

Γ(e) =

{

{e1, e2} ∪ Γ(e1) ∪ Γ(e2) if e = (e1) ◦ (e2)
∅ if e ∈ consts

Definition 1.19 The set of sub-trees Ψ(t) of a tree t is defined as:

Ψ(t) =

{

{t} ∪Ψ(t1) ∪Ψ(t2) if t = (t1, ◦, t2)
{t} if t = (a)

Sub-expression and sub-tree substitution are recursively defined in terms of the sets
of sub-expressions and sub-trees respectively. The substitution recursively decompose
the expression or tree until the sub-expressions or sub-tree to be substituted is located
and then perform the substitution.

Definition 1.20 Sub-expression substitution on an expression e written e
[

γ → e′
]

,
where γ ∈ Γ(e) and e′ is an expression, is defined as:

e
[

γ → e′
]

=







e′ if e = γ
e1

[

γ → e′
]

◦ e2
[

γ → e′
]

if e 6= γ ∧ e = (e1) ◦ (e2)
e if e 6= γ ∧ e ∈ consts

Definition 1.21 Sub-Tree substitution on trees written t[ψ → t′], where ψ ∈ Ψ(t) and
t′ is a tree, is defined as:

t
[

ψ → t′
]

=







t′ if t = ψ
(t1

[

ψ → t′
]

, ◦, t2
[

ψ → t′
]

) if t 6= ψ ∧ t = (t1, ◦, t2))
t if t 6= ψ ∧ t = (a)

The following lemma intuitively says that substitution composes with tree encoding.

Lemma 1.4 If e, e′ are expressions and γ ∈ Γ(e) is a sub-expression in e, ψ ∈ Ψ(t) is
a sub-tree in t, where t = [[e]], [[γ]] = ψ, and t′ = [[e′]] then [[e

[

γ → e′
]

]] = [[e]]
[

ψ → t′
]

.

Proof. Proof by induction in the structure of the of e 2
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1.8.2 Definition of Associativity

First we give a general definition of associativity for a binary operator ◦ on a set S,
and then we define associativity for expressions and trees.

A binary operator ◦ on a set S is called associative if it satisfies the associative law:

((x ) ◦ (y)) ◦ (z ) = (x ) ◦ ((y) ◦ (z )) ∀x , y, z ∈ S

Associativity for expressions is defined similarly. We define the associative ex-
pression transformation fa as a function which takes an expression from the set of all
expressions E and returns an expression also in E.

Definition 1.22 The associative expression transformation fa : E → E is defined as
follows:

fa(e) =







(e1) ◦ ((e2) ◦ (e3)) if e = ((e1) ◦ (e2)) ◦ (e3)
((e1) ◦ (e2)) ◦ (e3) if e = (e1) ◦ ((e2) ◦ (e3))
e else

We note that fa is its own inverse fa = f−1
a .

Similarly we define associativity for trees by the associative tree transformation ∆a

as a function which takes a tree from the set T of all trees and returns a tree also in T.

Definition 1.23 The associative tree transformation ∆a : T→ T is defined as follows:

∆a(t) =







(a, ◦, (b, ◦, c)) if t = ((a, ◦, b), ◦, c)
((a, ◦, b), ◦, c) if t = (a, ◦, (b, ◦, c))
t else

We note that ∆a is its own inverse ∆a = ∆−1
a .

We define the associative expression relation as a relation on expressions, which
makes two expressions equivalent if one has a sub-expression which can be rewritten
using the associative expression transformation to obtain the other.

Definition 1.24 The associative expression relation ∼a⊆ E × E is a relation on ex-
pressions. We say that e and e′ are associative expression equivalent written e ∼a e

′,
if there is a γ ∈ Γ(e) such that e′ = e

[

γ → fa(γ)
]

.

Similarly we define the associative tree relation as a relation on trees, which makes
two trees equivalent if one has a sub-tree which can be rewritten using the associative
tree transformation to obtain the other.

Definition 1.25 The associative tree relation, written ∼∆a
⊆ T × T, is a relation

defined on trees t, t′. We say that t and t′ are associative tree equivalent if there is a
ψ ∈ Ψ(t) and t′ = t

[

ψ → ∆aψ
]

.

We define the associative transitive expression relation as the transitive extension
of the associative expression relation.

Definition 1.26 Expressions e, e′ are in the associative transitive expression relation
∼∗

a⊆ E× E written e ∼∗
a e

′, if there exists ei for i ∈ [1, n] for some n such that:

e ∼a e1 ∼a e2 ∼a . . . ∼a en ∼a e
′

We say that e and e′ are associative transitive expression equivalent if e ∼∗
a e

′.

Similarly we define the associative transitive tree relation as the transitive extension
of the associative tree relation.
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Definition 1.27 Trees t, t′ are in the transitive associative relation ∼∗
∆a
⊆ T × T,

written t ∼∗
∆a

t′, if there exists ti for i ∈ [1, n] for some n such that:

t ∼∆a
t1 ∼∆a t2 ∼∆a

. . . ∼∆a
tn ∼∆a

t′

We say that t and t′ are associative transitive tree equivalent if t ∼∗
∆a

t′.

We will need the fact that the associative transitive expression relation is an equiv-
alence relation, because we will in effect be computing the equivalence class of this
relation.

Lemma 1.5 The associative transitive expression relation is an equivalence relation.

Similarly we will be computing the equivalence class of the associative transitive
tree relation, and so we need to know that the relation is an equivalence relation.

Lemma 1.6 The associative transitive tree relation is an equivalence relation.

1.8.3 Definition of Commutativity

First we give a general definition of commutativity for a binary operator ◦ on a set S,
and then we define commutativity for expressions and trees.

A binary operator ◦ on a set S is called a commutative operator if it satisfies the
commutative law:

(x ) ◦ (y) = (y) ◦ (x ) ∀x , y ∈ S

Commutativity for expressions is defined similarly. We define the commutative
expression transformation fc as a function which takes an expression from the set of
all expressions E and returns an expression also in E.

Definition 1.28 The commutative expression transformation fc : E → E is defined
as follows:

fc(e) =







(e1) ◦ (e2) if e = (e2) ◦ (e1)
(e2) ◦ (e1) if e = (e2) ◦ (e1)
e else

We note that fc is its own inverse fc = f−1
c .

Similarly we define commutativity for trees by the commutative tree transformation
∆c as a function which takes a tree from the set T of all trees and returns a tree also
in T.

Definition 1.29 The commutative tree transformation ∆c : T → T is defined as
follows:

∆c(t) =







(a, ◦, b) if t = (b, ◦, a)
(b◦, a) if t = (a, ◦, b)
t else

We note that ∆c is its own inverse ∆c = ∆−1
c .

We define the commutative expression relation as a relation on expressions, which
makes two expressions equivalent if one has a sub-expression which can be rewritten
using the commutative expression transformation to obtain the other.

Definition 1.30 The commutative expression relation ∼c⊆ E × E is a relation on
expressions. We say that e and e′ are commutative expression equivalent written e ∼c

e′, if there is a γ ∈ Γ(e) such that e′ = e
[

γ → fc(γ)
]

.
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Similarly we define the commutative tree relation as a relation on trees, which
makes two trees equivalent if one has a sub-tree which can be rewritten using the
commutative tree transformation to obtain the other.

Definition 1.31 The commutative tree relation, written ∼∆c
⊆ T × T, is a relation

defined on trees t, t′. We say that t and t′ are commutative tree equivalent if there is
a ψ ∈ Ψ(t) and t′ = t

[

ψ → ∆cψ
]

.

We define the commutative transitive expression relation as the transitive extension
of the commutative expression relation.

Definition 1.32 Expressions e, e′ are in the commutative transitive expression rela-
tion ∼∗

c⊆ E× E written e ∼∗
c e

′, if there exists ei for i ∈ [1, n] for some n such that:

e ∼c e1 ∼c e2 ∼c . . . ∼c en ∼c e
′

We say that e and e′ are commutative transitive expression equivalent if e ∼∗
c e

′.

Similarly we define the commutative transitive tree relation as the transitive ex-
tension of the commutative tree relation.

Definition 1.33 Trees t, t′ are in the transitive commutative relation ∼∗
∆c
⊆ T × T,

written t ∼∗
∆c

t′, if there exists ti for i ∈ [1, n] for some n such that:

t ∼∆c
t1 ∼∆c t2 ∼∆c

. . . ∼∆c
tn ∼∆c

t′

We say that t and t′ are commutative transitive tree equivalent if t ∼∗
∆c

t′.

We will need the fact that the commutative transitive expression relation is an
equivalence relation, because we will in effect be computing the equivalence class of
this relation.

Lemma 1.7 The commutative transitive relation is an equivalence relation.

Similarly we will be computing the equivalence class of the commutative transitive
tree relation, and so we need to know that the relation is an equivalence relation.

Lemma 1.8 The commutative transitive tree relation is an equivalence relation.

1.8.4 Definition of Distributivity

The distributive law can be decomposed into two, the left-distributive and the right-
distributive laws, which have the nice properties that they are one-to-one and their
own inverse. We therefore start with a general definition of left-distributivity and
right-distributivity for two binary operators ◦1 and ◦2 on a set S, and then we define
left-distributivity and right-distributivity for expressions and trees.

Given two binary operators ◦1 and ◦2 on a set S, we say that the operator ◦1

• is left-distributive over ◦2 if, given any elements x , y , and z ∈ S:

x ◦1 (y ◦2 z ) = (x ◦1 y) ◦2 (x ◦1 z )

• is right-distributive over ◦2 if, given any elements x , y , and z ∈ S:

(y ◦2 z ) ◦1 x = (y ◦1 x ) ◦2 (z ◦1 x )
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Left- and right-distributivity for expressions is defined similarly. We define the left-
and right-distributive expression transformations fld and frd as functions which takes
an expression from the set of all expressions E and returns an expression also in E,
respectively.

Definition 1.34 The left-distributive expression transformation fld : E → E is de-
fined as follows:

fld(e) =







(e1) ◦1 ((e2) ◦2 (e3)) if e = ((e1) ◦1 (e2)) ◦2 ((e1) ◦1 (e3))
((e1) ◦1 (e2)) ◦2 ((e1) ◦1 (e3)) if e = (e1) ◦1 ((e2) ◦2 (e3))
e else

Definition 1.35 The right-distributive expression transformation frd : E → E is de-
fined as follows:

frd(e) =







((e2) ◦2 (e3)) ◦1 (e1) if e = ((e2) ◦1 (e1)) ◦2 ((e3) ◦1 (e1))
((e2) ◦1 (e1)) ◦2 ((e3) ◦1 (e1)) if e = ((e2) ◦2 (e3)) ◦1 (e1)
e else

We note that fld and frd are their own inverse fld = f−1

ld
and frd = f−1

rd
.

Similarly we define left- and right-distributivity for trees by the left- and right- tree
transformations ∆ld and ∆rd as functions which takes a tree from the set T of all trees
and returns a tree also in T, respectively.

Definition 1.36 The left distributive tree transformation ∆ld : T → T is defined as
follows:

∆ld(t) =







(a, ◦1, (b, ◦2, c)) if t = ((a, ◦1, b), ◦2, (a, ◦1, c))
((a, ◦1, b), ◦2, (a, ◦1, c)) if t = (a, ◦1, (b, ◦2, c))
t else

Definition 1.37 The right distributive tree transformation ∆rd : T→ T is defined as
follows:

∆rd(t) =







((b, ◦2, c), ◦1, a) if t = ((b, ◦1, a), ◦2, (c, ◦1, a)))
((b, ◦1, a), ◦2, (c, ◦1, a)) if t = ((b, ◦2, c), ◦1, a)
t else

We also note that ∆ld and ∆rd are their own inverse ∆ld = ∆−1
ld

and ∆rd = ∆−1
rd

.
We define the left- and right-distributive expression relation as a relation on expres-

sions, which makes two expressions equivalent if one has a sub-expression which can be
rewritten using the left- or right-distributive expression transformation, respectively to
obtain the other.

Definition 1.38 The left-distributive expression relation ∼ld⊆ E× E is a relation on
expressions. We say that e and e′ are left-distributive expression equivalent written
e ∼ld e

′, if there is a γ ∈ Γ(e) such that e′ = e
[

γ → fld(γ)
]

.

Definition 1.39 The right-distributive expression relation ∼rd⊆ E × E is a relation
on expressions. We say that e and e′ are right-distributive expression equivalent writ-
ten e ∼rd e

′, if there is a γ ∈ Γ(e) such that e′ = e
[

γ → frd(γ)
]

.

Similarly we define the left- and right-distributive tree relation as a relation on
trees, which makes two trees equivalent if one has a sub-tree which can be rewritten
using the left- or right-distributive tree transformation to obtain the other.
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Definition 1.40 The left-distributive tree relation ∼∆ld
⊆ E×E is a relation on trees.

We say that t and t′ are left-distributive tree equivalent written t ∼∆ld
t′, if there is a

ψ ∈ Ψ(t) such that t′ = t
[

ψ → ∆ld(ψ)
]

.

Definition 1.41 The right-distributive tree relation ∼∆rd
⊆ E × E is a relation on

trees. We say that t and t′ are right-distributive tree equivalent written t ∼∆rd
t′, if

there is a ψ ∈ Ψ(t) such that t′ = t
[

ψ → ∆rd(ψ)
]

.

We define the left- and right-distributive transitive expression relation as the tran-
sitive extension of the left- and right-distributive expression relation, respectively.

Definition 1.42 Expressions e, e′ are in the left-distributive transitive expression re-
lation ∼∗

ld⊆ E × E written e ∼∗
ld e′, if there exists ei for i ∈ [1, n] for some n such

that:
e ∼ld e1 ∼ld e2 ∼ld . . . ∼ld en ∼ld e

′

We say that e and e′ are left-distributive transitive expression equivalent if e ∼∗
ld e

′.

Definition 1.43 Expressions e, e′ are in the right-distributive transitive expression
relation ∼∗

rd⊆ E × E written e ∼∗
rd e

′, if there exists ei for i ∈ [1, n] for some n such
that:

e ∼rd e1 ∼rd e2 ∼rd . . . ∼rd en ∼rd e
′

We say that e and e′ are rd-distributive transitive expression equivalent if e ∼∗
rd e

′.

Similarly we define the left- and right-distributive transitive tree relation as the
transitive extension of the left- and right-distributive tree relation, respectively.

Definition 1.44 Trees t, t′ are in the left-distributive transitive relation ∼∗
∆ld
⊆ T×T,

written t ∼∗
∆ld

t′, if there exists ti for i ∈ [1, n] for some n such that:

t ∼∆ld
t1 ∼∆ld

t2 ∼∆ld
. . . ∼∆ld

tn ∼∆ld
t′

We say that t and t′ are left-distributive transitive tree equivalent if t ∼∗
∆ld

t′.

Definition 1.45 Trees t, t′ are in the right-distributive transitive relation ∼∗
∆rd
⊆ T×

T, written t ∼∗
∆rd

t′, if there exists ti for i ∈ [1, n] for some n such that:

t ∼∆rd
t1 ∼∆rd

t2 ∼∆rd
. . . ∼∆rd

tn ∼∆rd
t′

We say that t and t′ are right-distributive transitive tree equivalent if t ∼∗
∆rd

t′.

We will need the fact that the left- and right-distributive transitive expression rela-
tions are equivalence relations, because we will in effect be computing the equivalence
classes of the relations.

Lemma 1.9 The left- and right-distributive transitive relations are equivalence rela-
tions.

Similarly we will be computing the equivalence classes of the left- and right-
distributive transitive tree relations, and so we need to know that the relations are
equivalence relations.

Lemma 1.10 The left- and right-distributive transitive tree relations are equivalence
relations.
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1.8.5 Correctness

We prove that all trees generated using the tree transformation defined for each of the
associative, commutative, and distributive laws will correspond uniquely to the expres-
sions generated using the expression transformation for the three laws, respectively.

The proof is similar for all three laws, except that for the distributive law we prove
it separately for left-distributivity and right-distributivity. We introduce the variable l
to range over the three laws. We will use it as subscript on the various concepts defined
above, thus l ∈ {a, c, ld, rd}.

We want to prove a property of iterative application of the respective laws. We
build up the proof in a number of steps, by relating a number of concepts under the tree
encoding. First we relate the expression transformation and the tree transformation in
Lemma 1.11, then we relate the expression relation and the tree relation in Lemma 1.12,
and we relate the transitive expression relation with the transitive tree relation in
Lemma 1.13. Finally we introduce the expression equivalence generator and the tree
equivalence generator, and relate the fixpoints of these, also under the tree encoding
in Theorem 1.5.

e′ [[ · ]] // [[e′]]

e

fl

OO

[[ · ]] // [[e]]

∆l

OO
e′ [[e′]][[ · ]]−1oo

e

∼l

OO

[[ · ]] // [[e]]

∼∆l

OO
e′ [[e′]][[ · ]]−1oo

e

∼∗

l

OO

[[ · ]] // [[e]]

∼∗

∆l

OO

Figure 1.23: (Left) Applying the expression transformation and then the tree
encoding gives the same result as applying the tree encoding and then the tree
transformation. (Middel) If e, e′ are expression equivalent then the correspond-
ing trees are tree equivalent. (Right) If e, e′ are transitive expression equivalent
then the corresponding trees are transitive tree equivalent

Figure 1.23 shows the initial three properties as commutative diagrams. We begin
with the left diagram, which informally states that applying the expression transfor-
mation and then the tree encoding gives the same result as applying the tree encoding
and then the tree transformation.

Lemma 1.11 Let e be an expression, then ∆l[[e]] = [[fl(e)]].

Proof. The proof is by structural induction on e, where we apply the definition of ∆l

and fl. 2

The middel diagram informally says that if an expression and a tree are related by
the tree encoding then so are the equivalent expression and tree.

Lemma 1.12 If e, e′ are expressions and e ∼l e
′, [[e]] ∼∆l

[[e′′]], and ψ = [[γ]], where
γ and ψ are the sub-expression and sub-tree where the transformations are applied,
respectively, then e′ = [[e′′]]

−1

Proof. The proof uses the definition of ∼l, substitution, Lemma 1.4, and the inverse
tree transformation. 2

The diagram on the right of Figure 1.23 is the transitive extension of the middle
diagram. Here we apply the transitive equivalences ∼∗

l and ∼∗
∆l

on expressions and
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trees and show that if the starting expression and tree are related by the tree encoding
then so are the results.

Lemma 1.13 If e, e′ are expressions and e ∼∗
l e

′ then [[e]] ∼∗
∆l

[[e′]].

Proof. The proof proceeds by induction on the number of transformations and uses
Lemma 1.12. 2

{e1, . . . , en} {[[e1]], . . . , [[en]]}[[ · ]]−1oo

e

fix(f∼l
({e}))

OO

[[ · ]] // [[e]]

fix(f∼∆l
({[[e]]}))

OO

Figure 1.24: Applying the tree encoding to the expression e and then computing
the fixpoint of the tree equivalence generator gives a set of trees that are related
by the inverse tree transformation to the set of expressions computed by the
fixpoint of the expression equivalence generator applied to e.

We define the expression equivalence generator as a function f∼l
: 2E → 2E which

takes a set of expressions as argument and computes the set of expressions which are
equivalent to each of the expressions in the argument under the expression relation ∼l.

Definition 1.46 The expression equivalence generator is a function f∼l
defined as:

f∼l
(X) = ∪∀e∈X{e

′ | e′ ∼l e}

We define the tree equivalence generator as a function f∆l
: 2T → 2T which takes

a set of trees as argument and computes the set of trees which are equivalent to each
of the trees in the argument under the tree relation ∼∆l

.

Definition 1.47 The tree equivalence generator is a function f∆l
defined as:

f∆l
(X) = ∪∀t∈X{t

′ | t′ ∼∆l
t}

All the expressions generated by computing the fixpoint of the expression equiva-
lence generator are transitive expression equivalent to the element in the argument set.
Similar for the fix point of the tree equivalence generator.

Lemma 1.14 fix(f∼l
({e})) = {e1, . . . , en} ⇒ e ∼∗

l ei where i ∈ [1, . . . , n]. Similar for
fix(f∆l

({[[e]]})) = {[[e1]], . . . , [[en]]} ⇒ [[e]] ∼∗
∆l

[[ei]] .

Proof. By induction in the number of fixpoint iterations, which is finite, because the
number of expressions equivalent to a given expression is finite. 2

Lemma 1.14 does most of the work for Theorem 1.5, which proves that each of
the trees in the set computed by the fixpoint of the tree equivalence generator is the
tree encoding of an expression in the set computed by the fixpoint of the expression
equivalence generator, and vice versa.
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Theorem 1.5 If fix(f∼l
({e})) = {e1, . . . , en} where e and ei for i ∈ [1, n] are expres-

sions then fix(f∆l
({[[e]]})) = {[[e1]], . . . , [[en]]}.

Proof. Assume for contradiction that the above is not true. Let A = fix(f∼l
({e})) and

B = fix(f∆l
({[[e]]})). Then either:

i ∃e′ s.t. e′ ∈ A ∧ [[e′]] 6∈ B

ii ∃e′ s.t. e′ 6∈ A ∧ [[e′]] ∈ B

Case i. We assume that ∃e′ s.t. e′ ∈ A ∧ [[e′]] 6∈ B. According to Lemma 1.14 we
know that e ∼∗

l e
′, and according to Lemma 1.13 there exists a sequence of transfor-

mations such that [[e]] ∼∗
∆l

[[e′]]. By the definition of fix we see that [[e′]] ∈ B, which
contradicts the assumption that [[e′]] 6∈ B.

Case ii. We assume that ∃e′ s.t. e′ 6∈ A ∧ [[e′]] ∈ B. According to Lemma 1.14
we know that ∃e s.t. [[e]] ∼∗

∆l
[[e′]], now by Lemma 1.13 there exists a sequence of

transformations such that e ∼∗
l e

′. By the definition of fix we see that e′ ∈ A, which
contradicts the assumption that e′ 6∈ B. 2

We now conclude that all the trees generated by computing the fixpoint of the
tree equivalence generator and thus the tree transformation does indeed correspond
to all the expressions generated by iteratively applying one of the three laws. All
combinations of expressions generated under all three laws can now be generated by
computing the fixpoint of the union of the individual fixpoints i.e. fix(

⋃

l
fix(f∼l

({e}))).

1.8.6 Heuristics

The algorithm described above is worst-case exponential in the number of operators.
Fortunately large expressions are rare in practise, because the tend to make code less
readable and we are only interested in a limited number expressions, those containing
multiplications. The last part gives us a good start for defining heuristics to keep
the combinatorial number of expressions generated in our search within the limits of
reasonable time and space.

We will use the term sub-expression to mean expression or sub-expression from on.

The algorithm is relying on the distributive law, if the distributive law cannot not
apply for a sub-expression, no matter how we rewrite it, then we can treat the sub-
expression as a constant. If a sub-expression does not contain multiplications then
there is no need to create the combinations for that expression, and we can just treat
it as a constant in the transformations defined in Subsection 1.8.5. Another point
heuristic can be applied if the sub-expression does not contain the same factor in more
than one place, then there is no potential for collapsing multiple occurrences.

The cost function is simple but efficient, we just count the number of multiplications
in the expressions. This does not take into account how many other operations that
might have been introduced by the transformations, which may be a concern since one
multiplication is worth 1000 additions in terms of speed. However only the distributive
transformations may potentially add more operators. If that is the case then it is
because we use the distributive law to distribute a factor over some operator, which
produces two more multiplications. So if this distribution does not enable some larger
reduction of multiplications somewhere else in the expression, then it will be deemed
more expensive by the cost function than the original expression. We believe that the
cost function is simple and adequate.
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1.9 Related Work

To the best of our knowledge, SMCL is the first imperative programming language for
general Secure Multiparty Computation. We discuss its relation to two other languages
for SMC, and we survey the areas of language-based information-flow security and
cryptography and explain their relationship to our work.

1.9.1 Languages for SMC

Closely related is the Fairplay project [62], which has developed two DSLs for secure
function evaluation (that is the special case of SMC where the input is only provided in
the beginning), the Fairplay [62] and FairplayMP [14] systems. Both Fairplay systems
consists of a compiler from a C like procedural language called the Secure Function
Definition Language (SFDL) to one-pass boolean circuits described in the Secure Hard-
ware Definition Language (SHDL). This separation of concern is similar to our approach
where we compile SMCL to Java with calls to the SMCR API. The runtime for Fair-
play and FairplayMP have the same level of security as the SMCR, both are immune
to attacks from passive (semi-honest) attackers.

SFDL exists in a version for each of the two systems. The versions have a num-
ber of things in common: They are DSLs with a C like syntax, all values are secret
boolean, integer, enumerations, or C like structs. They also support arrays and the
usual logic and arithmetic operations on booleans and integers except for multiplication
and division on integers.

Both versions allow specification of input and output to the parties, however in
Fairplay this is restricted to two parties whereas FairplayMP allows any number of
parties to participate. FairplayMP divides parties according to the role they play in
the computation, in much the same way SMCL [69] does. In FairplayMP there are
three different kinds of parties: The Input Parties(IP), The Computation Parties(CP),
and the Output Parties(OP). IPs provides input, CP carries out the construction and
evaluation of the boolean circuit, and the OPs learns a result of the evaluation. This
division has the same benefits as our model of clients and a server does.

The main difference between SMCL and both versions of Fairplay is that SMCL
allows both public/private and secret values which may potentially boost efficiency and
allows not only secure function evaluation but general loops and recursive functions on
public/private values.The Fairplay systems only allow Secure Function Evaluation. A
reactive system can be built on top of Fairplay, by intergrating it with a general purpose
language, however it is not obvious how that would work and Fairplay does not address
the security problems that will arise from such an integration like we do with SMCL.

A minor difference is how to range over clients/IPs of the same kind. In SMCL one
can define groups of clients. A group is lifted to a unique datatype in SMCL, whereas
in FairplayMP it is easily realized using structs. Which to prefer is a matter of taste.

Another closely related language is the SMC language [87]. The language is a
declarative language for SMC based on constraint programming. A public program
is distributed among the parties in the computation along with an interpreter, each
party inputs his secret values and the interpreter calculates the result. Computations
are specified as arithmetic circuits and lacks branches on secret values. The computer
of each party is considered secure in contrast to SMCL where the computation is done
at the server parties, which we do not consider secure. SMCL is more expressive, offers
stricter security guarantees, and provides a higher abstraction level.
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1.9.2 Language-Based Security

Language based information-flow security aims at developing language mechanisms for
protection against deliberate or accidental release of information. A thorough survey of
language-based security is given by Sabelfeld and Myers in [78]. To SMCL the protec-
tion of confidential information is of vital importance and SMCL applies information-
flow control to enforce security. Below we discuss relevant areas of language-based
security.

Noninterference

Denning [36] was the first to present a solution to the noninterference problem in
terms of a static analysis which prevents explicit as well as implicit flow of information,
however Denning did not provide a formal argument of noninterference.

Volpano and Smith [103] recast the work of Denning in terms of a type system
for a simple imperative language and prove that well-typed programs obey the non-
interference property. The type system is based on the lattice proposed by Denning.
The partial ordering on the lattice extends naturally to a subtype relation. Types are
divided into security levels and variable- and command types. A variable has a type
τ -var if it contains values of security level τ or lower, while a command has type τ -
cmd if no assignments occur in the command to a variable of security level lower than
τ . The command-types are similar to the program counter label used by others like
Sabelfeld in [110]. The work by Volpano and Smith has ignited a wide variety of work
on the use of security types for enforcing noninterference. The term security types has
been coined by Sabelfeld and Myers in [78] to denote annotation based approaches, e.g.
type systems, to noninterference. The work has been extended in various directions to
languages with first-order procedures [101], multiple threads [81, 88], and concurrent
programs [102]. The type system based approach has been applied to wide range of
settings like the calculi SLam [49] and DCC [2], the functional language FlowCaml [75],
and recently VHDL [98].

Another approach to noninterference is the use of an “information-flow logic”.
Amtoft et al. propose a Hoare-like logic [9, 10] on top of which they present an inter-
procedural and modular information-flow analysis where noninterference is enforced
as an end-to-end guarantee in object-oriented programs and programs with pointers.
The logic supports programmer assertions that specify more precise information-flow
policies. The technique has increased precision compared to previous type-based ap-
proaches like the ones by Volpano and Smith [101] and Zdancewic [110].

SMCL is a security-typed language which is firmly based on the work by Denning
and by Volpano and Smith and is in line with the work done by others [43,78,98,110].
SMCL basically employs a two-level lattice of security levels, a type system based
on [101, 103] (in the current implementation), which together with a semantics where
the trace is independent of secret values to enforce noninterference.

In the decentralized label model (DLM) of [66], information is marked by labels.
A label is a set of components consisting of an owner section and a reader section.
The purpose of labels is to protect the confidentiality of the owner principals that may
grant other principals the right to read their values. The DLM guarantees that the
privacy of principals is never compromised. SMCL is also concerned with protecting
the privacy of client input, and it appealing and compelling that the DLM would be
suitable for SMCL to guarantee that the values from some kind of clients do not flow
to certain other clients. SMCL already has the notion of groups of clients and it seems
like the combination of groups and DLM make an interesting match. We leave research
into their synergies as future work.
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Declassification

The noninterference property is often too restrictive in practice. Any practically in-
teresting program leaks some kind of acceptable information, e.g. a password checker
even leaks information when rejecting a candidate password. To accommodate this
intentional leak of information, a way to lower or declassify the security level is needed.
Allowing declassification without unintentional release of information has been the fo-
cus of recent attention and the paper by Sabelfeld and Sands [82] provides a good
survey of declassification. According to the survey downgrading may be classified ac-
cording to what information is revealed (The PER model [80], delimited release [79],
relaxed noninterference [61], and quantitative abstractions [27]), by whom (The DLM
and robust declassification [111]), where (non-disclosure [64]), and when.

Partial information flow analysis regulates what may be downgraded. The Partial
Equivalence Relation (PER) model [80] (a PER on a domain is an equivalence rela-
tion on a subset) uses PERs to model the adversary’s ability to distinguish between
values. The PER model is powerful and captures a wide variety of approaches like
delimited release [79], relaxed noninterference [61], and quantitative abstractions [27].
Downgrading in SMCL can quite possibly be formulated in a PER model. The pro-
grammer is alerted by the compiler of the possible implicit leaks which may result from
a downgrade. An interesting future direction of research is to relate the warnings to
the quantitative approach and deduce how much of the information is released.

Who is downgrading the data is important since an adversary may use the de-
classification mechanism to reveal more secure information than intended. The DLM
prevents this by only allowing the owner to downgrade information as specified in the
data security labels. This is resembling SMCL where a downgrade can only occur if all
server parties (or at least a number of parties equal to the threshold) agree. Another
approach is the robust declassification by Zdancewic and Myers. [111], where declassifi-
cation may only be carried out by the designated owner of the data. In a later paper by
Myers et al. [67], owner-ship information is used as integrity information, and declas-
sification is deemed safe in areas of high integrity. The connection between integrity
and owner-ship is further explored by Zdancewic, who use the DLM extended with
integrity labels to determine robust declassifications in [110]. In SMCL all program
points are of high integrity since an adversary may alter the computation completely
and try to open exactly the secret value he wishes. He will not succeed unless he can
corrupt a sufficiently large subset of server parties, in which case he would learn the
secret anyway.

The approach based on intransitive noninterference by Mantel and Sands [63] and
the non-disclosure approach by Matos and Boudol [64] are similar to downgrading in
SMCL. The usual noninterference property does not hold in the presence of declassifi-
cation, but as observed by both Mantel and Sands and Matos and Boudol the property
can be enforced in maximal paths along which there is no declassification, and then we
can restart the bisimulation game in the context of any new low-equivalent stores. Our
notion of trace security achieves the same goal using similar techniques: localization
of declassification and enforcing the identity property between declassifications. The
trivial information flow relation is left implicit in SMCL since we only use a two-level
security lattice.

Information may be downgraded over time. The SMCR is based on computa-
tional security, so the values transmitted from clients to the server are encrypted using
public-key cryptography. Thus an adversary may reveal these values if he has sufficient
patience to break these cryptographic systems.

Recently there has been some effort to combine the four dimensions of declassifica-
tion. Askarov and Sabelfeld [11] propose a localized delimited release as a combination
of the what and where dimension.
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Timing Attacks

Timing channels can present a serious threat. The problem of preventing timing attacks
has received significant attention, and we will only consider those approaches closely
related to SMCL.

Volpano and Smith [102] propose a notion of protected branches with atomic ex-
ecution time. Their approach guarantees absence of timing leaks observable in the
program, but does not prevent external timing leaks and forbid the use of loops in
secret conditionals. Agat [5] observed that branches of secret conditionals must have
the same timing characteristics in order to prevent timing attacks. Agat proposed to
use transformation as a tool to remove timing attacks. In secret conditionals time
parameters from the semantics are used to guide a cross padding of instructions with
dummy instructions to ensure the same execution time of the two branches. The tech-
nique has inspired others like Barbosa and Page [13] who analyze functions (branches)
to find the least set of dummy assignments that make their execution time equivalent.
In some sense we employ the simplest possible variant of this approach: execute both
branches in sequence and join the effects on the store. Our approach is potentially
a lot slower than the approach by Barbosa and Page, but we cannot apply dummy
assignments because the adversary may inspect the instruction pointer and thus learn
which branch is being executed, so to eliminate this possibility we must execute both
of the branches.

Tolstrup and Nielson [97] consider VHDL programs for which they define a semantic
definition of security against timing attacks based on bisimulation and use a type system
to enforce the condition. In SMCL there is no need for transformations and a type
system is only needed to prevent loops on secret values. The lack of timing channels
is vacuously true due to the semantics of SMCL. The model of Köpf and Basin [59]
is a general and abstract semantic model based on automata for observable input and
output, which is suitable for many situations but not entirely for SMCL, since the
capability of the adversary is not just a function of the input and output, but also of
the instruction pointer and state of the computation at any time.

1.9.3 Information-Flow Aware Languages

A number of general-purpose programming languages have been extended with support
for information-flow security. The decentralized label model has been used as basis
for the Java extension JIF [66] where the Java type system is extended with labels
and principals, however JIF programs are executed under the assumption of a trusted
execution platform that enforces the rules of the language. This assumption is much
to strong for SMC. Other examples are FlowCaml [75] which is an extension of Caml
with security-types, and information-flow inference for ML [75]. SMCL is similar to
these in the sense of employing security types, but the goal of SMCL is to make it easy
to write secure SMC programs.

In [112] Zdancewic proposes secure program partitioning as a mean of allowing mu-
tual distrusting hosts to execute a program. A program is partitioned into a number of
slices according to security types and trust declarations. Confidentiality of information
is obtained by restricting the computation on values to the host who owns the values
or any host trusted by the owner. This has some resemblance to SMCL since both
operate in a scenario of untrusted hosts, but whereas program partitioning is aiming at
removing the need for a universally trusted host, SMCL realizes such a host through a
combination of secure multiparty computation and language-based security. A limita-
tion of program partitioning seems to be that functions on secret values not owned by
any of the parties are not possible to compute, without revealing the values to at least
one of the parties.
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The InCert project [31] suggests to develop a programming language that enables
the development of secure applications operating on multiple data sources controlled
by different principals without violating the security policies of the involved principals.
SMCL may be viewed as realizing parts of this ambitious goal for the special case of
the strictest possible security policy where no principal must learn anything about any
other.

1.9.4 Validation of Cryptographic Protocols

Much effort has been done in the area of validating cryptographic protocols [3,42], and
a domain-specific language for verifying such protocols has been proposed by Gordon
and Jeffery [45].

A language which tackles similar security threats as SMCL is CAO [12]. CAO is a
DSL for cryptographic software and it would be possible to implement the SMCR in
CAO, thus ensuring the absence of timing attack at the basic level.

1.9.5 Conclusion

We have presented an overview and discussed the relation between SMCL and related
work. SMCL is an imperative programming language for general Secure Multiparty
Computation in contrast to Fairplay and FairplayMP which are focused on Secure
Function Evaluation, and SMC which lacks branches on secret values. SMCL applies
techniques from within the area of language-based information-flow security in a novel
way. Furthermore we have found no apparent relationship between SMCL and lan-
guages for verification of cryptographic protocols, besides that they may be used to
verify the implementation of SMCR.

1.10 Conclusion and Future Work

We have given a conceptual analysis of the domain of SMC programming in Section 1.2
and identified the following key concepts within the area of SMC programming:

• Architecture: The client-server view forms the fundamental computing paradigm
of SMC, providing a separation between private, public, and secret computations
and between logical and physical parties.

• Values : Values are either secret, private, or public, which also determines their
runtime representation and separates the efficiency of primitive operations by
several orders of magnitude.

• Communication: Clients communicate with the server only, either by using tun-
nels or by reacting to remote procedure calls from the server.

• Expressiveness : A general SMC framework must be able to perform any compu-
tation; i.e., it must be Turing-complete on private and public values.

• Security: Writing reliable SMC programs that do not leak unintended informa-
tion, is a tedious and error-prone task that can benefit from automated assis-
tance.

In Section 1.3 we described the design and implementation of the Secure Multiparty
Computation Language, a high-level, domain-specific language, which allows program-
mers to express concepts such as clients, server, and operations on secret values directly.
We have discussed the basic concepts of SMCL, how they are connected, their restric-
tions and use. We have presented the seminal Millionaire’s problem in SMCL and how
it may be generalized in different ways.
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We have developed a concurrent semantics, described in Section 1.4, for the entire
SMCL language which is carefully crafted to ensure security of SMCL programs, along
with the effect-based type system for SMCL which prevents SMCL programs from
getting “stuck” and approximate our concept of hoistability. An SMCL program can
get “stuck” as the result of an insecure operation. The type system also provides better
precision than previous type systems for noninterference, and we prove of its soundness.

The notion of security for SMCL programs is defined in Section 1.6 in terms of the
concept of trace security which is based on a formalization of physical measurements
and we show that SMCL programs are trace-secure under the reasonable assumption
that all the operations of runtime we use are trace-secure. We also discuss a simple lan-
guage of checked annotations for describing potential information dependencies among
variables in SMCL programs.

We present an optimization which potentially reduces the number of multiplications
on secret values in an SMCL program and prove that it is correct. A multiplication on
secret values may be up to 1000 times as slow as multiplications on non-secret values.

As future work we intend to develop a version of SMCL embedded in the Python
programming language. Python has been chosen as host language because of its dy-
namic nature and because we want to take advantage of the VIFF framework [34] which
is a new API for SMC written in Python. Furthermore we will investigate ideas for
enhanced semantic security which involves automatic generation of a security proof for
a given program.



Chapter 2

Secure Multiparty Computation (Language)

Goes Live

The best way to predict the future is to invent it
— Xerox PARC

2.1 Introduction

In this Chapter, we present the implementation of a secure system for trading quantities
of a certain commodity among many buyers and sellers, a so-called double auction. In
the particular case where our system has been deployed, it was used by Danish farmers
to trade contracts for sugar beet production on a nation-wide market. The system
was implemented using secure multiparty computation. This allowed us to ensure that
each bid submitted to the auction was kept encrypted from the time it left the bidder’s
computer, no single party had access to the bids at any time. Nevertheless the system
could efficiently compute the price at which contracts should be traded. This was, to
the best of our knowledge, the first large-scale practical application of secure multiparty
computation.

Below, we first explain the application scenario and the reasons why multiparty
computation turned out to be a good solution. We then explain how the SMCL lan-
guage contrubuted to the solution. Finally, we describe the system that was imple-
mented and report on how it performed.

2.2 The Application Scenario

In this section we describe the practical case in which our system has been deployed.
In the paper by Bogetof et al. [19], preliminary plans for this scenario and results from
a small-scale demo were described.

In Denmark, several thousand farmers produce sugar beets, which are sold to the
company Danisco, the only sugar beets processor on the Danish market. Farmers have
contracts that give them rights and obligation to deliver a certain amount of beets to
Danisco, who pay them according to a pricing scheme that is an integrated part of the
contracts. These contracts can be traded between farmers, but trading has historically
been very limited and has primarily been done via bilateral negotiations.

In recent years, however, the EU drastically reduced the support for sugar beet
production. This and other factors meant that there was now an urgent need to
reallocate contracts to farmers where productions pays off best. It was realized that
this was best done via a nation-wide exchange, a double auction.

63
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Market Clearing Price Details of the particular business case can be found
in [15]. Here, we briefly summarize the main points while more details on the actual
computation to be done are given later. A double auction includes several buyers and
sellers and the goal is to find the so called market clearing price, which is a price per
unit of the commodity that is traded. What happens is that there is a grid of prices and
each buyer places a bid by specifying, for each potential price, how much he is willing
to buy at that price. Similarly sellers say how much they are willing to sell at each
price.1 All bids go to an auctioneer, who computes, for each price, the total supply and
demand in the market. Since we can assume that supply grows and demand decreases
with increasing price, there is a price where total supply equals total demand, and this
is the price we are looking for. Finally, all bidders who specified a non-zero amount to
trade at the market clearing price get to sell/buy the amount at this price.

Ensuring Privacy of Bids A satisfactory implementation of such an auction
has to take some security concerns into account: Bids clearly reveal information, e.g.
on a farmer’s economic position and his productivity, and therefore farmers would be
reluctant to accept Danisco acting as auctioneer, given its position in the market. Even
if Danisco would never misuse its knowledge of the bids in the ongoing renegotiations
of the contracts (including the pricing scheme), the mere fear of this happening could
affect the way farmers bid and lead to a suboptimal result of the auction. On the
other hand, the entitled quantities in a given contract are administrated by Danisco
(and adjusted frequently according to the EU administration) and in some cases the
contracts act as security for debt that farmers have to Danisco. Hence running the
auction independently of Danisco is not acceptable either. Finally, the solution of
delegating the legal and practical responsibility by paying e.g. a consultancy house to
be the trusted auctioneer would have been a very expensive solution.

The solution decided on was to implement an electronic double auction, where the
role of the auctioneer would be played by three parties, namely representatives for
Danisco, DKS (the sugar beet growers’ association) and the SIMAP research project
(the project in terms of which the work of designing and implementing the solution
has been carried out). By interacting with each other, these three parties together
could form a “virtual auctioneer”, computing the market clearing price and quantities
to trade, just as described above. This was implemented using secure multiparty com-
putation technology: each bidder sends his bid in appropriately encrypted form to the
three parties, who then compute on the data while it is still in protected form. There-
fore, no single party ever has access to any bid in the clear. Still, by collaborating, the
parties can produce the required output.

A three party solution was selected, partly because it was natural in the given
scenario, but also because it allowed using very efficient cryptographic protocols to do
the secure computation.

Motivation It is interesting to ask what motivated DKS and Danisco to try using
such a new and untested technology? One important factor was simply the obvious
need for a nation-wide exchange for production rights, which had not existed before,
so the opportunity to have a cheap electronic solution – secure or not – was certainly
a major reason. We do believe, however, that security also played a role. An on-line
survey carried out in connection with the auction showed that farmers do care about
keeping their bids private (see tables in 2.1 and 2.2). And if Danisco and DKS would
have tried to run the auction using conventional methods, one or more persons would
have had to have access to the bids, or control over the system holding the bids in

1In real life, a bidder would only specify where the quantity he wants to trade changes,
and by how much. The quantities to trade at other prices then follow from this.
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cleartext. As a result, some security policy would have had to be agreed, answering
questions such as: who should have access to the data and when? who has responsibility
if data leaks, and what are the consequences?

Since the parties have conflicting interests, this could have lead to very lengthy
discussions, possibly bringing the whole project to a halt. In an interview with the
involved decision makers from Danisco and DKS these confidentiality issues were well
recognized. Using a consultancy house as mediator would have been more expensive
as mentioned, and the parties would still have had to agree on whether the mediator’s
security policy was satisfactory. As it happened, there was no need for this kind of
negotiation, since the multiparty computation ensured that no one needed to have
access to bids at any point.2

Figure 2.1: Farmers’ confidentiality expectations. (Numbers from survey based
on questions asked to the farmers after they had submitted their bids.)

Security and Risks One must of course consider which attacks such a system
might be subjected to, and in particular whether the participants themselves might
attack the system. With respect to the three parties doing the secure computation,
the situation was as follows: neither party seriously suspected that any of the others
would actively and maliciously attack the system. On the other hand, giving all the
sensitive data in the clear to one party was not acceptable, and moreover, none of
the parties wanted the responsibility of having to store the sensitive data – this would
immediately lead to all the practical problems described above, with security policies
and procedures.

A suitable solution was therefore a protocol where one assumes that all parties
act as they are supposed to, but where no party ever gets access to any sensitive
information. This is known as semi-honest security and this is the model we chose for
our system. In a nutshell, semi-honest security can be described as a model where one

2In an interview with the decision makers, they recognized that this fact made it easy to
communicate the security policy to the farmers.
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Figure 2.2: Farmers’ satisfaction with the provided level of confidentiality.
(Numbers from survey based on questions asked to the farmers after they had
submitted their bids.)

can “choose not to know” any sensitive data and therefore does not have to assume
sole responsibility for keeping them secret.

With respect to malicious attacks from bidders, we estimated that the risk of this
happening in our particular case was not large enough to motivate the extra cost of
protecting against it: Bidders have a clear interest in the auction working properly, and
would anyway have to reverse engineer an applet supplied by the system to even start
an attack. Still, in other scenarios, or perhaps in future auctions, malicious attacks from
the client side might well be a valid concern, and we therefore show below protocols
that protect against malicious bidders.

Alternative Cryptographic Solutions One might also ask if the full power
of secure multiparty computation was actually needed? Our solution ensures that no
single player has any sensitive information, and it might seem that one could solve
the problem more efficiently in a similar trust model using a trick often used in voting
protocols: one party P1 receives the bids in encrypted form from the bidders, however,
the bids are encrypted with the public key of another party P2. Then P1 sends the
encryptions, randomized and in permuted order to P2 who decrypts the bids and com-
putes the market clearing price. While this achieves some security because P2 does
not know who placed which bids, we have to remember that bids contain much more
information than what is conveyed by the result (the market clearing price), e.g. one
can see the quantities people were willing to buy or sell at other prices than the clearing
price. In principle, this type of information is highly valuable for a monopolist such
as Danisco in order to exercise its market power, e.g. in terms of setting the price of
an extension or a reduction of the total processing capacity. To what extend such a
situation is relevant in practice is not easy to answer. Our conclusion was that using
full-blown multiparty computation is a better solution because it frees us from even
having to consider the question.
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2.3 The Auction Implementation

In the system that was deployed, a web server was set up for receiving bids, and three
servers were set up for doing the secure computation. Before the auction started, pub-
lic/private key pairs were generated for the computation servers, and a representative
for each involved organization stored the private key material on a USB stick, protected
under a password.

Each bidder logged into the webserver and an applet was downloaded to his PC
together with the public keys of the computation servers. After the user typed in his
bids, the applet secret shared the bids, and encrypted the shares under the computation
server’s public keys. Finally the entire set of ciphertexts were stored in a database by
the webserver.

As for security precautions on the client side, we did not explicitly implement any
security against cheating bidders, as mentioned and motivated in a previous section.
Moreover, we considered security against third-party attacks on client machines as
being the user’s responsibility, and so did not explicitly handle this issue.

After the deadline for the auction had passed, the servers were connected to the
database and each other, and the market clearing price was securely computed, as well
as the quantity each bidder would buy/sell at that price. The representative for each of
the involved parties triggered the computation by inserting his USB stick and entering
his password on his own machine to access his private key.

The system worked with a set of 4000 possible values for the price, we denote theses
the price indices, and each price index corresponds to a price. We will freely use the
word price to refer to the price index associated with the price. The possible values
for the price are assumed to be ordered in the natural order from smallest to largest.
The upper bound on the number of possible values for the price means that the market
clearing price can be found using about 12 secure comparisons.

The bidding phase ran smoothly, with very few technical questions asked by users.
The only issue was that the applet on some PC’s took up to a minute to complete the
encryption of the bids. It is not surprising that the applet needed a non-trivial amount
of time, since each bid consisted of 4000 numbers that had to be handled individually.
A total of 1229 bidders participated in the auction, each of these had the option of
submitting a bid for selling, for buying, or both.

The secure computation we implemented is slightly more complicated than the one
we described in a previous section. This is because we have to take into account the
possibility that there may not exist a price for which supply matches demand exactly.
However, there must exists a maximal price for which demand is at least supply, and
likewise a minimal price for which supply is at least demand. These will be an upper,
respectively a lower bound on the market clearing price (MCP). The parties doing
the computation are told these upper and lower bounds and must then decide what
MCP should be, based on these bounds and rules that are agreed on in advance. The
computation therefore involves the following steps:

decrypt to shares (buyers) the servers shares of buy bids are decrypted

decrypt to shares (sellers) the servers shares of sell bids are decrypted

first search an upper bound on the MCP is located

second search a lower bound on the MCP is located

marginal search bids which may help resolve the MCP if the upper and lower bound
do not match are located

open marginal bids bids which may help resolve the MCP if the upper and lower
bound do not match are opened
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Figure 2.3: Timings

open final bids (buyers) for each bidder the buying bids to be realised based on
the MCP are opened

open final bids (sellers) for each bidder the selling bids to be realised based on the
MCP are opened

Figure 2.3 shows how much time is spent on the computation for different sizes of
input (we did not time the real auction, as we did not find it appropriate to compute
anything else than what was told to the participants. Timings where however performed
in exactly the same setup, except that random bids where used). Both the timing runs
as well as the actual auction used three Dell laptops (Latitude D630) with 4 GiB RAM
(Java being allocated 1500 MiB on each machine), Intel Centrino Dual Core 2.2 GHz
processor, running Windows XP Pro, and connected through an Ethernet LAN using
a 100 Mbps switch.

In the figure, the number of prices is constant, but the number of bidders vary.
Since the number of secure comparisons we need for the search steps only depend on
the number of prices, we expect that the time needed to decrypt shares will dominate
the time for searching when the number of bidders is large enough. Figure 2.4 shows
that this happens when the number of bidders reaches 500. This is not surprising,
as the input to the computation, with e.g. 1229 bidders, consist of about 9 million
individual numbers.

The lesson to learn here is that the optimized comparison protocol we have de-
veloped is efficient enough that it is not a limitation in our scenario, except perhaps
in cases with a very small number of bidders. The potential for further optimization
therefore lies in the procedure with which shares of bids are encrypted and decrypted.
The low-level tools used for this (to do public-key cryptography and pseudo-random
functions [44]) were standard off-the-shelf, and there may therefore be faster solutions
even without changing the protocols. It should be noted, however, that all this only
holds for a double auction (where the number of comparisons does not depend on
the number of bidders). For a standard first- or second-price auction, the number of
comparisons grows with the number of bidders, and here the comparison time is very
critical for a large auction.
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Figure 2.4: Detailed Timings

The actual computation was done January 14, 2008. As a result of the auction,
about 25 thousand tons of production rights changed owner. To the best of our knowl-
edge, this was the first large-scale and genuinely practical application of secure multi-
party computation.

2.4 The SMCL Contribution

In this section we will give an overview of how the double auction logic has been
implemented using SMCL. SMCL has been a natural choice as implementation language
since it is domain-specific and makes the implementation of the double auction clear
and concise, compared to a similar implementation in e.g. Java. SMCL also provides
strong security guarantees - any well-typed SMCL program does not reveal information
about secret values through its control-flow which prevents side-channel attacks.

The complexity of the application scenario made it infeasible to implement the
entire system in SMCL. However it has never been the goal that entire systems should
be implemented using SMCL because it is a domain-specific language. The anticipated
usage scenario for SMCL has been for SMCL programs to be a part of a larger system.
In the case of the double auction we have chosen to implement the core auction logic
in SMCL, and implement the rest of the system using a mixture of mainly Java and
PHP. The decision is based on the principle of using the best tool to the task, and
SMCL is in our opinion by far the best tool for the auction logic since it provides clear
syntax and strong security guarantees. However SMCL is not ideal for doing e.g. GUI
programming or database operations, in such cases a general purpose language like
Java is better suited.

We start by describing the actual auction logic in more detail, which will help
understand the implementation. Figure 2.5 shows an example of aggregated demand
and aggregated supply as a function of the price indices, remember that the indices
range from 0 to 3999. The aggregated demand agrDemand [i] or aggregated supply
agrSupply [i] for a price index i is the sum of the demand or supply at that price from
each farmer. Note that the aggregated demand is monotone decreasing function and
the aggregated supply is a monotone increasing function.
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The goal of the auction is to identify the market clearing price, which is where
demand meets supply, i.e. the price where the aggregated demand equals (or is closest
to) the aggregated supply. The MCP is located in the interval denoted X ′ in Figure 2.5.

To identify the interval X ′ we identify the two boundaries p1 and p2 . We identify
them by first defining the excess supply z[i] as the difference in the aggregated demand
and supply at price index i: z[i] = agrDemand[i] − agrSupply[i]. The excess supply
is a monotone decreasing function of the price, because the demand diminishes and
the supply increases as the price goes up. Which means that the excess supply will
have the maximum value for the smallest price indices and the minimum value for the
highest indices.
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Figure 2.5: Aggregated demand and supply displayed as a function the price
indices i

Now p1 is the upper bound on the market clearing price. z1 is the excess supply
at the price index p1 . p2 is a lower bound on the market clearing price. z2 is the
excess supply at the price index p2 .

Definition of p1 and z1 . Let X be the subset of price indices {1, . . . , 4000} where
z[i] is zero or positive. Let imin be the element in X such that z[imin] is minimal in
{z[i] | i ∈ X} and define X ′ = {i ∈ X | z[i] = z[imin]}. Then we define p1 = max(X ′),
thus p1 is an upper bound on the price index in X ′. We also define z1 = z[p1 ]. X
might be empty in the case where the supply exceeds the demand, in which case p1
and z1 are not defined.

Definition of p2 and x2 . Let Y be the subset of the indices {1, . . . , 4000} where
z[i] is less than or equal to zero. Let imax be the element in Y such that z[imax] is
maximal in {z[i] | i ∈ Y } and define Y ′ = {i ∈ Y | z[i] = z[imax]}. Then we define
p2 = min(Y ′), which means that p2 is an lower bound on the price index in Y ′. We
also define z2 = z[p2 ]. Y might be empty in the case where the demand exceeds the
supply, in which case p2 and z2 are not defined.

The market clearing price might not be unique but can be an entire interval as
indicated in Figure 2.5, where all the prices in the interval X ′ are candidates to be
the MCP. We denote these candidates as the marginal prices. The marginal prices
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will be the same no matter which we chose. However, the consequences might be very
different, because there might be large differences in how the aggregated demand and
supply are structured in terms of contracts. E.g. is it a few big contracts sold at one
price index and many small contracts at another, or how large amount of productions
rights are traded at given prices. These are political issues that needed to be resolved
prior to running the auction. The policy agreed upon, where used in an interactive
iterative process where the bids for some of the marginal prices where revealed to all
parties, and a final market clearing price index was chosen. The process of selecting
which marginal prices will be the market clearing price will not be described in details.

We have found it useful to add an ad-hoc language extension to SMCL to make
the integration with the Java based SMCR runtime simpler. We have added single-
inheritance class based objects to SMCL, as exemplified in Figure 2.6 where we define
a number of classes that will be used as datastructures in the double auction. A class
in extended SMCL corresponds directly to a class in Java, except that we can use the
usual SMCL datatypes in classes as well, e.g. in Contract where the field amount has
the SMCL type sint. The addition of classes does not affect the security properties of
SMCL because classes can be straight forwardly encoded in SMCL using records.

The classes in Figure 2.6 defines the concept Farmer which is the super type of
a SellingFarmer and a BuyingFarmer, each representing a farmer who wants to sell
and buy sugar beet contracts respectively. A Farmer has a name which identifies him
uniquely. A SellingFarmer has an array of SellBids called bids , there is a bid for each
of the 4000 possible values of the price, and a SellBid consists of the amount and the
id of the contract to be sold at that price if it is chosen as the marked clearing price.
Both the amount and the contract id is represented as secret values because the farmer
does not want to reveal which contracts are sold at which price. A BuyingFarmer has
an array of sints called bids , one bid for each of the 4000 possible values of the price.
A bid describes how many tons of productions rights the farmer would like to buy at
the specified price.

class abstract Farmer {
String name ;

}
class SellingFarmer

extends Farmer {
SellBid[ ] bids ;

}
class SellBid {

sint amount ;
sint contractId ;

}
class BuyingFarmer

extends Farmer {
sint[ ] bids ;

}

class AuctionResult {
int mcp ;
int p1 ;
int p2 ;
int p3 ;
int z1 ;
int z2 ;
int z3 ;
int k ;
Contract[ ] contracts ;

}
class Contract {

int id ;
int amount ;

}

Figure 2.6: Classes used in the Double Auction example

The double auction is implemented as the server DoubleAuction shown in Fig-
ure 2.7. Here we define the tunnels buyingFarmers and sellingFarmers , which will be
connected to a database containing the bids from farmers as described in Section 2.3.
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The server also contains the main function where execution of the server begins and a
number of auxiliary functions used to implement various parts of the auction. In this
section we will only focus on the main auction logic and we will elide parts of functions
where possible for brevity and clarity. The entire implementation is provided in the
Appendix A without further comments.

declare server DoubleAuction: {
tunnel of BuyingFarmer buyingFarmers ;
tunnel of SellingFarmer sellingFarmers ;
. . .

Figure 2.7: Double Auction implemented in SMCL

A part of the main function of the server is shown in Figure 2.8. We first compute
the aggregated demand and supply, then search for the market clearing price, and finish
with a search for the marginal bids. The computation of the aggregated demand and
supply is straight forward and can be found in Appendix A.3.

function void main : {
sint[ ] agrDemand = computeAgrDemand ();
sint[ ] agrSupply = computeAgrSupply ();
AuctionResult res = searchPrice (agrDemand , agrSupply );
// compute marginal bids
. . .
return ;

}

Figure 2.8: Main function of the Double Auction server

The upper and lower bounds P1 , P2 are computed by the function searchPrice
shown partly in Figure 2.9. We have elided the part of function which computes various
values used for bookkeeping and auditing for clarity. searchPrice uses the functions
search1 and search2 to compute s1 and s2 which are candidates for p1 and p2
respectively. Both search1 and search2 work in similar ways so we only show search1
in Figure 2.10 and provide search2 in the appendix as Figure A.8. search1 does
binary search and returns the maximal price index such that the excess supply is zero
or positive. If the excess supply is less than zero for all indices then zero is returned.
Notice that we compare the value of the aggregated demand and the aggregated supply
secretly, so we don’t reveal information about the demand or supply. We open the result
of the comparison to make the search faster. This is allowed since any of the parties
involved will be able to deduce this information from the MCP, since the difference
between demand and supply is monotone.

When we have computed s1 and s2 we have to handle a number of special cases,
depending on for how many indices the excess supply is zero. The cases can be catego-
rized into two overall categories: s1 = s2 and s1 ! = s2 . In the first case s1 is equal
to s2 if there is exactly one index where the excess supply is zero, or if there are no
such indices and the excess supply is either positive or negative for all indicies. Which
is handled by line 6-19 in Figure 2.9. If the excess supply is zero then save p1 , z1 ,
p2 , z2 accordingly. If the excess supply is positive then the excess supply is positive
for all indices, and p2 and z2 are undefined. Similar if the excess supply is negative,
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function AuctionResult searchPrice(sint[ ] agrDemand ,
sint[ ] agrSupply) {

AuctionResult res = new AuctionResult();
int s1 = search1 (agrDemand , agrSupply );
int s2 = search2 (agrDemand , agrSupply );
if (s1 == s2 ) {

6: int tz = open(agrDemand [s1 ]− agrSupply [s1 ] |
agrDemand , agrSupply , s1 );

if (tz == 0) {
res .setP1 (s1 );
res .setP2 (s1 );
res .setZ1 (tz );
res .setZ2 (tz );

} else if (tz > 0) {
res .setP1 (s1 ); // p2 , z2 undefined
res .setZ1 (tz );

} else {
res .setP2 (s1 ); // p1 , z1 undefined
res .setZ2 (tz );

19: }
} else {

res .setP1 (s1 );
res .setP2 (s2 );
res .setZ1 (open(agrDemand [s1 ]− agrSupply [s1 ] |

agrDemand , agrSupply , s1 ));
res .setZ2 (open(agrDemand [s2 ]− agrSupply [s1 ] |

agrDemand , agrSupply , s2 ));
}
. . .
return res ;

}

Figure 2.9: The searchPrice function computes the indicies of the potential

then p1 and z1 are undefined.
In the second case where s1 ! = s2 there might no or more than one indices at

which the excess supply is zero. In either case we save p1 and p2 , and open the excess
supply, and save it as well.

Figure 2.11 shows the signatures for some of the functions mentioned in the code.
We have omitted their definitions, since their implementation relies on a tight integra-
tion with Java for doing user input.
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function int search1 (sint[ ] agrDemand , sint[ ] agrSupply ) {
int low = 1;
int high = agrSupply . length + 1;
while ( low + 1 < high ) {

int mid = ( low + high + 1) / 2;
sbool res = agrDemand [mid - 1] == (agrSupply [mid - 1]);
if ( open (res | res )) {

low = mid ;
} else {

high = mid ;
}

}
return low - 1;

}

Figure 2.10: Binary search for the upper bound on the index of the market
clearing price

function void promptComputeMarginal(AuctionResult res ) {}
function void openMarginalBids(int k , int base ,

AuctionResult res , sint[ ] agrDemand ) {}

Figure 2.11: Function signatures for tightly integrated functions

2.5 Conclusion

How successful have we been with the auction system and does the technology have
further potential in practice?

Other than the fact that the system worked and produced correct results, it is
noteworthy that about 80% of the respondents in an on-line survey said that it was
important to them that the bids were kept confidential 2.1, and also that they were
happy about the confidentiality that the system offered. Of course, one should not
interpret this as support for the particular technical solution we chose, most farmers
would not have any idea what multiparty computation is. But it is nevertheless in-
teresting that confidentiality is seen as important. While it is sometimes claimed that
ordinary people do not care about security, we believe our experience shows that they
sometimes do care. Our impression is that this has to do with the fact that money
is involved, and also that other parties are involved with interests that clearly conflict
with yours. For instance, given the history of the sugar beet market, there is little
doubt that “confidentiality” for the farmers include confidentiality against Danisco.
Danisco and DKS have been satisfied with the system, and at the time of writing, the
auction has already been run successfully a second time.

During the experiment we have therefore become convinced that the ability of mul-
tiparty computation to keep secret everything that is not intended to be public, really is
useful in practice. As discussed earlier, it short-circuits discussions and concerns about
which parts of the data are sensitive and what common security policy one should have
for handling such data.

It is sometimes claimed that the same effect can be achieved by using secure hard-
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ware: just send all input data privately to the device which then does the computation
internally, and outputs the result. Superficially, this may seem to be a very simple so-
lution that also keeps all private data private. Taking a closer look, however, it is not
difficult to see that the hardware solution achieves something fundamentally different
from what multiparty computation does, even if one believes that the physical protec-
tion cannot be broken: Note that we are still in a situation where some component of
our system – the hardware box – has access to all private data in cleartext. If we had
been talking about an abstract ideal functionality, this would – by definition – not be
a problem. But a real hardware box is a system component like any other: it must
be securely installed, administrated, updated, backed up, etc. In this sense the secure
hardware solution is not fundamentally different from a solution using an ordinary cen-
tral server to receive the bids and do the computation. In particular, both solutions
have a component which becomes a single point of attack, and may therefore be less
robust than a distributed solution against outsider attacks. Also, both solutions have
all the practical problems we pointed out earlier with agreeing on common procedures
and security policies if parties have conflicting interests.

We believe that a much more natural use of secure hardware is for each party in
a multiparty computation to use it in order to improve his own security, i.e. to make
sure that the protocol messages is the only data his system leaks.

Another standard alternative to SMC is to pay a trusted party such as a consultancy
house to do the computation. We said earlier that the parties in our scenario decided
against this because it would have been much more expensive. One could claim, of
course, that this was only because the alternative was to have a research team do
the whole thing for free – and that hence the experiment does not show that SMC is
commercially viable. While the experiment has certainly not produced a business plan,
we wish to point out that a SMC based solution only has to be developed once and
costs can then be amortized over many applications. In some cases one may not even
need to adapt the system – for instance, in the case of the sugar beet auction it is very
likely that the same auction will be run once a year for some time to come.

In conclusion, we expect that multiparty computation will turn out to be useful in
many practical scenarios in the future.





Chapter 3

The Future of SMCL - PySMCL

Civilization advances by extending the number of important operations we can
perform without thinking

— Alfred North Whitehead

3.1 Introduction

In this Chapter we present the current status on our preliminary work on an em-
bedded domain-specific language for secure multiparty computation called PySMCL.
PySMCL is embedded in the Python programming language and is designed based on
our experience with the domain-specific language SMCL described in Chapter 1.

The goal of PySMCL is to provide and further develop the advantages of SMCL
in a fully fledged programming language. Python has been chosen as host language
because of its dynamic nature which we exploit in the implementation of PySMCL and
because we want to take advantage of the VIFF framework [34] which is a new API
for SMC written in Python.

SMCL guarantees that computations performed by SMCL programs does not reveal
secret information. However there is still room for improvement. An SMCL program
can be seen as a protocol which UC-realizes some ideal functionality in the sense of the
Universally Composable (UC) model [24], which is a cryptographic proof framework. In
the UC model one defines what is called an ideal functionality which is a specification of
the computation to be done along with a definition of exactly which information should
be reveal and to who. The ideal functionality reveals by definition exactly the intended
information and nothing more. In the UC model, one also define a concrete protocol,
which is said to UC-realize an ideal functionality if there is a so called simulation proof
that the protocol reveals exactly the information revealed by the ideal functionality.
Our ultimate goal is to automatically generate such proof from a PySMCL program,
and the proof should be verifiable by and an automatic theorem prover like HOL [93],
Isabelle [94], or Coq [92].

In this Chapter we present the challenges in doing so in the context of PySMCL
and we describe our preliminary solutions to these challenges, which includes plans for
a static verifier and a preprocessor for the language.

The rest of the Chapter is organized as follows. Section 3.2 describes how we
envision PySMCL will be used. Section 3.3 gives a high-level description of the language
and we present some example programs. Section 3.4 discuss the security guarantees
that the static verifier should enforce. In Section 3.5 we present our implementation
strategy. In Section 3.6 we define a core calculus for PySMCL, and we conclude and
discuss future work in Section 3.7.

77
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3.2 Usage Scenario

The programmer writes his program in PySMCL specifying a desired computation using
high-level constructs specialized for the SMC domain, without considering low-level
VIFF or SMC protocol details. The programmer then runs the PySMCL preprocessor
and verifier which perform static analysis and turns the PySMCL code into Python code
which uses VIFF. The programmer will annotate functions which uses SMC constructs
with small Python annotations which basically instructs the preprocessor to process
the function. In this way we only process functions which uses PySMCL, and as we
will show in Section 3.5 we can preserve the dynamic nature one would expect from a
DSL embedded in Python.

The verifier will be tracking the flow of secret and random values, and generating
warnings for the programmer if information is unintentionally revealed.

If the verifier will provide feedback to the programmer if it finds potential security
problems. The feedback could include help towards fixing the problem, and/or help
towards proving that the issue in question is actually not a security problem. A help
could be proof stub with premises and conclusion to be filled out by the programmer
and supplied with the rest of the autogenerated proof to a proof assistant. If the
verifier does not find errors, the translated program is executed as an ordinary Python
program which uses the VIFF framework.

A PySMCL program is generally executed by a number of parties who will collab-
orate on carring out the specified computation – a PySMCL program is similar to the
server in a SMCL program. We use a configuration file to specify where the parties
will be located (e.g. their IP numbers) and which variant of the VIFF run-time to use
(that is, which concrete SMC protocols should be used). The file must be supplied
to the preprocessor, and may also define additional information as we will discuss in
Section 3.4.

3.3 The Language

In this Section we informally describe the language by means of two examples. The
seminal Millionaire’s problem [109] and the Cake bringer example.

The Millionaire’s problem involves a number of millionaires who want to find out
which is richer, but all of them refuse to disclose their net worth. We implement a
solution to the problem in PySMCL.

01: @secure_function

02: def who_is_richest():

03: millionaires = Group(ConfigFile)

04: max = 0

05: rich = Id()

06: for millionaire in Secret(millionaires):

07: netWorth = millionaire.get("How much money have you got?")

08: if (netWorth > max):

09: max = netWorth

10: rich = millionaire

11: return openresult(rich)

Figure 3.1: The generalized Millionaire’s problem in PySMCL

The implementation is shown in Figure 3.1 where we define the secure function
who_is_richest. PySMCL will be a syntactic subset of Python which gives us the
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advantage that all the tools for manipulating Python code can be reused and the de-
velopment time of the PySMCL infrastructure can be reduced. We use Python annota-
tions like @secure_function to specify secure functions which should be preprocessed
and verified as PySMCL code. In secure functions we also allow the programmer to
create domain-specific values like Groups of participants or secret Secret values. We
implement these value constructors as Pythons object instantiation calls or function
calls, and the preprocessor will add suitable definitions for the objects and functions.
The set of annotations and domain-specific value constructors is not fixed at this stage,
but will be developed as needed, as a result of writing test programs for concrete ap-
plications during the design and implementation of PySMCL. We will present a model
of the language in Section 3.6.

In line 03 we define the variable millionaires which is initialized with a group
of millionaires. The identifier ConfigFile refers to a configuration file which defines
a number of identities (IP-addresses, etc.) for the parties who will be in the group.
An identity is implemented as a class which provides some methods for communicating
with a party. We define the variables max and rich on line 04 and 05, and initialized
them to zero and the empty identity Id(), respectively. The empty identity is the
identity of nobody.

We now iterate through the group of millionaires, we do this in a secret manner
where we keep the identity of the millionaire secret. We can keep the identity of the
millionaire secret by having all the millionaires send a value and only keep the right
one, as described in Section 1.3. For each millionaire we ask him how much money
he has, and the millionaire inputs a number which is stored in the variable netWorth.
We call the method get on the millionaire identity object which will make the supplied
value provided by the party secret according to the protocol specified in ConfigFile.
There is also a public_get method which does not make the value secret. The verifier
will apply a flow sensitive analysis which will track secret values through the program
and thus mark netWorth as secret because the result of get is secret.

For each millionaire we check whether he is currently the richest and if so, we
update the max and the rich variables, which both becomes secret. The verifier will
check that the comparison will be a boolean. We need to treat the conditional specially
because the check netWorth > max is secret, and if handled improperly the conditional
might leak information about the netWorth and max. We denote such conditionals as
secret conditionals. We use the same technique as in SMCL where we execute both
branches, and recombine the results using conditional assignment. Line 09 of the secret
conditional will be rewritten to max=b1*netWorth+(1-b1)*max, where b1 is the result
of the comparison. Like in SMCL the verifier will be able to check for side-effects in
the branches and reject programs with side-effects in branch of secret conditionals.

We use the function openresult to disclose the identities in rich to all the million-
aires who then learns which one is the richest, as intended. We also provide the open

function which also reveals the value of its argument, but is treated differently by the
verifier. openresult is treated as revealing the intended result of the function which
corresponds exactly to the value computed by the corresponding ideal functionality.
But as shown in Section 1.7 we can get significant speed improvements by revealing
some information during the computation. Whether the function now UC-realizes the
intended ideal functionality now relies on the programmer who should be able to prove
that the revealed information can be computed from the result of the ideal function-
ality. The open function is for such cases, where we want to reveal some information
which is not the result of the function in the UC sense but can be computed based on
the result. The verifier will create proof stubs for each use of an open function which
should be filled out by the programmer. The stubs can be given to a proof assistant for
automatic verification along with the rest of the proof which proves that the function
UC-realizes the functionality specified by the function arguments and the openresult
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calls.
We integrate secure functions with the rest of Python by allowing calls to Python

function which does not pass secret values and calls to other secure functions which
can be verified. Multiplying random values “hides” secret values, and may be revealed
without compromising the secret value. The exact rules for hiding are to be worked out
in the final version of PySMCL. They depend on the nature of the underlying runtime,
and could also depend on an interval analysis of the values.

PySMCL provides secret variants of the usual operations on integers and booleans,
and we use operator overloading in Python to get the usual syntax for these.

PySMCL provides a unified interface to the different variants of the VIFF runtime.
These variants implement different SMC protocols, so the unified interface means that
the programmer does not need to know any details on how the cryptographic protocols
are implemented.

3.3.1 The Cake Bringer Example

Imagine a group of cryptographers having weekly meetings. At every meeting one of
the participants is supposed to bring a cake.

Some people may feel “more willing” to bring a cake on a certain day, and thus
we will choose who brings the cake at random among those persons. But if nobody
feels “more willing”, then a random person is chosen among everybody. Of course,
the willingness of an individual is strictly confidential, and no-one should be able to
influence the randomness of the choice.

Note that the purpose of such a computation could also be more serious, such as
selecting a volunteer among a set of participants for doing a certain task that must be
done, but where we do not want to expose in public people’s willingness to volunteer.

Below follows a PySMCL program for this task. The identifier ConfigFile is
assumed to point to a configuration file that contains the actual identities (e.g. IP-
numbers) of the parties in the group called participants.

@secure_function

def who_brings_cake():

participants = Group(ConfigFile)

willing = []

for participant in participants:

willing.append(participant.get("willing"))

how_many_willing = sum(willing)

if how_many_willing == 0:

cake_bringer = choose_random(participants)

else:

cake_bringer_nr = rand() % how_many_willing

count = 0

for (i, w) in enumerate(willing):

if w:

count += 1

if cake_bringer_nr == count:

cake_bringer = i

return openresult(cake_bringer)

3.4 The Verifier

In this Section we give a high-level description of which security guarantees the verifier
is expected to ensure and how it is expected to provide them.
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We expect the verifier to give the same security guarantees as SMCL, verified
and preprocessed programs does not leak information through the computation. The
verifier should ensure that verified programs does not end in a configuration, where
no domain-specific evaluation rule apply and which is a not a value. By this we mean
that domain-specific evaluations should not get “stuck”, however we have no intention
on ensuring the same for the entire Python language. We believe this gives a good
balance between the dynamic nature of Python and our intended security properties
for PySMCL programs. The verifier will also ensure that verified programs have no side-
effects in the branches of secret conditionals. Side-effects in secret conditionals like I/O
or assignment to public variables (implicit flow [36]) are a security threat. Furthermore
the verifier should take secret random values into account. Random values can be use
for hiding secret values.

The verifier should also be able to provide semantic security, where information is
unintentionally leaked through the open function. We intend to do so by giving the
programmer feedback when information is opened. There are three possibilities:

• The opening is marked as intentional, by using the openresult function. This
should be done when the opened value is a part of the result that the programmer
intends the program to compute. Such openings are always considered valid.

• The opening is done using the open function, and the verifier can determine
that the opening is harmless, for instance if an information flow analysis shows
that due to hiding with random numbers, the opened value contains no sensitive
information. In this case the verifier will do nothing further.

• The opening is done using the open function, but the verifier cannot determine
that the opening is harmless. The verifier interprets this to mean that the pro-
grammer claims the opening is harmless. In technical terms, this means that
the programmer claims that the opened value can be simulated with an indistin-
guishable distribution, based only on the intended results of the program. More
concretely, this can be the case, for instance, if the opened value directly follows
from the intended results (but the programmer gets an efficiency improvement
from revealing the value at an earlier stage).

In such a case, the verifier will generate a warning, informing the programmer
about the proof burden that has to be carried out in order for the opening to
be proved secure, and providing as much help as possible towards giving such a
proof. This help can include an overview of the intended results and a summary
of the information flow analysis. Our ultimate goal is to let the verifier generate a
(semi) automatic proof that the entire program is secure, where the programmer
will fill out the proof stubs generated for these cases of the open function.

The verifier does not have explicit type annotation available as in SMCL. Thus
the verifier performs a static conservative approximating analysis making a distinction
between, and following the data flow through the control flow graph of secret vs. public
values, input vs. output, random values, and integers. Within integers we also want
a distinction between integers used to represent booleans, and actual integers. In
PySMCL the boolean values true and false are represented as the integers 0 and 1.
To make the distinction we imagine using a variant of range analysis [72].

In PySMCL, one can define groups of parties, and assign a group to a given iden-
tifier. This is useful when iterating through all parties in a group and perform “the
same” operation for all of them. For an example of this, refer to the “Millionaire’s
example” in Section 3.1. A group is a set of abstract identities at compile-time, and
are concretely defined in a configuration file when the program is run.

The group notion also introduces a possibility to refine the concept of what is public
and secret. More precisely, one can reveal a value to only a certain group of parties.
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As usual, this is considered secure if the programmer specifies that revealing this value
to the group is part of the purpose of the program.

On the other hand, the value in question should remain unknown to parties outside
the group, and the verifier must take this into account. For instance, it is a potential
security breach if variable a is opened only to group A and later b which depends on a

is opened to everyone. The verifier will therefore include A group analysis which keeps
track of which groups of parties know about which values.

In some applications it is useful to work with the full generality of the VIFF frame-
work. A typical example would be a situation where a set of secret values are stored in
a database in encrypted form and each party needs to retrieve its shares of the secret
values. This is the case, for instance, for some types of auctions [16]. In such an appli-
cation, we would retrieve the input from the database, convert it to the representation
used in the protocol and then proceed as usual. To accommodate for this, PySMCL
allows functions to be annotated as semi-secret functions which are not verified in the
same way as secret functions are, but may use low-level primitives from VIFF and
Python in general to construct the result. The verifier will assume that the result is
a secret value and the programmer takes the full responsibility for the security of the
function. The secret value returned must of cause be internally represented in whatever
form the underlying protocol uses for secret data.

3.5 Implementation Strategy

In this Section we describe how we intend to implement the preprocessor and the veri-
fier. The implementation will make use of function decorations as shown in Figure 3.2.
A function decorator like decorator is a higher order function which receives the func-
tion f as arguments and returns a possibly different function which is then named f.
This is often used for wrapping functions with logging hooks etc.

We will use function decorators in combination with a careful choice of how domain-
specific values are constructed to implement the functionality of PySMCL fully in
Python, and letting PySMCL programs be syntactically valid Python programs, in
order to minimize the learning curve, and to utilize Python’s built-in parser. We
implement a function decorator @secure_function which uses the inspect module
(available in Python) to get access to the source code and thereby the parse tree
of the decorated function. From the parse tree we construct a control flow graph
for the various analysis and then translate the tree into Python code which uses the
VIFF framework and then returns the translated tree. The translation will translate
primitive operations into appropriate function calls in the VIFF framework, perform
optimizations on the arithmetic network, and desugar certain expressions, for example
turning secret conditionals into a sequence of statements that computes both branches
secretly.

We expect to use (at least) the decorators @secure_function and @return_secret

where the first is used for functions that should be subject to verification, and the second
is used for functions that return secret values but should not be verified, as described
in Section 3.4.

@decorator

def f():

pass

Figure 3.2: An example of a function decorator in Python

Using function decorators also has the advantage that using PySMCL functionality
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will not require any extra compilation step, as the verification and preprocessing is done
dynamically as the file is loaded by the Python interpreter. However, we will provide
a special program that one can run on the program files for querying the verification
engine about what it has inferred at different program points without actually running
the program. This will also give the programmer feedback on which values the verifier
has inferred should be secret. This information will usually be necessary in order to
remove security problems from a program before running it on data that are actually
security-critical.

3.6 Core PySMCL

Reasoning about formal properties of PySMCL programs is a daunting and com-
plex task, because PySMCL is embedded in the large and dynamic Python language.
Python provides many features which are useful when writing PySMCL programs, like
interfacing to external data sources or visualizing output on the screen. Many of these
features are not particularly important when it comes to the properties of the new
features introduced by PySMCL and how they interact.

We have chosen to alleviate this problem by considering a smaller and more tractable
model of PySMCL, which we call Core PySMCL. In this Section we present an initial
version of Core PySMCL. The calculus can be a future vehicle for formal reasoning
over various properties of PySMCL, like formalization of the different analysis we have
proposed in Section 3.4.

The abstract syntax of the calculus is a syntactical subset of Python. We use the
notational shorthand e which means a possibly comma separated list of expressions:
e1, . . . , en. It will be clear from the context if commas should be present or not.

Core PySMCL is based on a model, where we have a set of parties which carries
out the computation. The abstract syntax of Core PySMCL is presented in Figure 3.3.
A Core PySMCL program consists of a sequence of declarations, and a statement.
Declarations are either a class, a group, or an identity declaration. A class declaration
is similar to a class declaration in Python. Group and identity declarations describe
the identities of the participating parties.

The set of statements and expressions is a standard while-language augmented
with domain-specific operations like constructors and destructors of secret values:
Secret (e), e1.get(e2), open (e1,e2), and openresult (e1,e2).

In Figure 3.3, the intuition/semantics is briefly hinted in the comments. Below, we
(informally) describe the semantics in more detail.

3.6.1 Semantics

The execution of the program is initiated by evaluating the declarations followed by
the statement.

Group and identity declarations refer to a configuration file which maps groups
and identities to actual machines and specifies which cryptographic protocol should be
used, e.g. Shamir secret sharing.

When executing the statement, we assume that classes Secret , Group , and Id are
implicitly defined, and support the operations on them defined by Figure 3.3. We also
assume that the functions open , openresult , srand , and rand have been defined
in a suitable way.

To evaluate Secret (e), we first evaluate e, which should be a number. The number
is then made secret according to the protocol specified for the program. Similar, if e1

in e1.get(e2) evaluates to an identity, the computation specified by e2 is carried out by
that party and the result is made secret according to the protocol for the program.
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open (e1,e2) and openresult (e1,e2) are both inverses to e1.get(e2) in the sense
that if e1 evaluates to a value then the value is made public only to the group computed
by evaluating e2. If e2 is not specified, then the value is made public to everybody.
Although the two open functions are the same syntactically and semantically, they are
considered different by the verifier, which consider (only) values opened by openresult

as part of the intended result from the program which are always legal to open.
Operations on groups are set inclusion (e1.in(e2)) and set union (e1.union(e2)).

How a secret random value is computed by srand() depends on the specified protocol.

3.6.2 Execution Order

A large part of the PySMCL semantics is inherited from the semantics of Python and
SMCL. However, both of them have a strictly sequential execution order of statements
which is not the case in PySMCL. PySMCL is translated into Python code which uses
the VIFF framework, and VIFF is based on asynchronous communication among the
parties. Moreover it will schedule as many computations as possible to be executed
concurrently, except when explicitly asked not to (see [34] for details). This means that
even if we write

a = b+c

x = z*y

then it does not necessarily mean that a will be assigned a value before x. VIFF gets
a major efficiency advantage from this behavior, so unless we sacrifice this advantage,
we cannot guarantee that all computations are executed in exactly the order they were
specified.

Our solution to this problem is to leave the scheduling to VIFF except in cases
where it is known to make a difference to security, or perhaps if the programmer asks
for an explicit timing.

More precisely, the security properties of a secure program depend only on the
order in which it is specified to take input and produce output, and on the way the
outputs depend on the inputs. Therefore, a PySMCL program is guaranteed to execute
input and open statements in the order they are specified, where, however, consecutive
openings or consecutive inputs may be done in parallel. We also guarantee, of course,
that the outputs are the correct (possibly randomized) function of the inputs.

We will implement possibilities for the programmer to specify a specific required
ordering of other types of statements, if future work on the implementation suggests
that this is a feature we need.

3.6.3 Example

Figure 3.4 presents an example program written in Core PySMCL. In the example we
first define the identities of party A and B and then we retrieve secret values from
both using the get method and store them in variables a and b respectively. Here . . .
abbreviates code which allows the party to input a value. We then compute whether
a is bigger than b , and open the result to the group of A and B .
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x identifier
C class name

P ::= d S program

d ::= class C (x ): md class definition
| x1 = Group (x2 ) group declaration
| x1 = Id (x2 ) identity declaration

md ::= def f (x ): S method definition

S ::= x = e assignment
| x 1 = x2(e) function application
| if e: S1 else S2 conditional
| while e: S while loop
| S1 sequence

S2

| return e return

e ::= x identifier
| n number
| C (e) object instantiation
| e .f (e) method application
| [x ] group
| e1.in(e2) subgroup inclusion
| e1.union(e2) union of groups
| e1.get(e2) retrieve secret value from party e1

| e1.public get(e2) retrieve public value from party e1

| Secret (e) result of e becomes secret
| open (e1,e2) result of e1 becomes public for group e2

| openresult (e1,e2) result of e1 becomes public for group e2

| srand () random secret number
| rand () random public number
| lambda x : e function expression

Figure 3.3: Abstract syntax for Core PySMCL

A = Id(C )
B = Id(C )
a = A.get(. . .)
b = B .get(. . .)
bigger = a > b
open both = open(bigger , [A,B ])

Figure 3.4: Example program
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3.7 Conclusion and Future Work

We have presented the current status on our preliminary work on the domain-specific
language PySMCL embedded in Python. Our goal of PySMCL is to extend the security
guarantees of SMCL to cover semantic security based on an explicit definition of the
intended ideal functionality in the program.

We have described how we intend to embed PySMCL in Python in a seamless way
by using function decorators and a carefull choice of domain-specific value constructors.
The sketched implementation of PySMCL will be faithful to the dynamic nature of
Python by not requiring a separate compilation/verification step as verification and
preprocessing is done dynamically as the file is loaded by the Python interpreter

We also provided a core calculus for PySMCL which we expect will be a useful
stepping stone for defining formal versions of the suggested analysis along with proofs
of the security properties of PySMCL programs.
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Chapter 4

Growing A Syntax

Perfection is achieved not when there is nothing left to add,
but when there is nothing left to take away. . .

— Antoine de St. Exupery, Wind, Sand, and Stars, 1939

Eric Allen Ryan Culpepper Janus Dam Nielsen

Jon Rafkind Sukyoung Ryu

Abstract

In this paper we present a macro system for the Fortress programming
language. Fortress is a new programming language designed for scientific
and high-performance computing. Features include: implicit parallelism,
transactions, and concrete syntax that emulates mathematical notation.

Fortress is intended to grow over time to accommodate the changing
needs of its users. Our goal is to design and implement a macro system
that allows for such growth. The main challenges are (1) to support exten-
sions to a core syntax rich enough to emulate mathematical notation, (2)
to support combinations of extensions from separately compiled macros,
and (3) to allow new syntax that is indistinguishable from core language
constructs. To emulate mathematical notation, Fortress syntax is specified
as a parsing expression grammar (PEG), supporting unlimited lookahead.
Macro definitions must be checked for well-formedness before they are ex-
panded and macro uses must be well encapsulated (hygienic, composable,
respecting referential transparency). Use sites must be parsed along with
the rest of the program and expanded directly into abstract syntax trees.
Syntax errors at use sites of a macro must refer to the unexpanded program
at use sites, never to definition sites. Moreover, to allow for many com-
mon and important uses of macros, mutually recursive definitions should
be supported.

Our design meets these challenges. The result is a flexible system
that allows us not only to support new language extensions, but also to
move many constructs of the core language into libraries. New grammar
productions are tightly integrated with the Fortress parser, and use sites
expand into core abstract syntax trees. Our implementation is integrated
into the open-source Fortress reference interpreter.To our knowledge, ours
is the first implementation of a modular hygienic macro system based on
parsing expression grammars.

89
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4.1 Introduction

A programming language can be thought of as a vocabulary of words and a set of
rules that define how to combine words into meaningful constructs [55]. One goal of
language design is to create a vocabulary and a set of rules that allow the program-
mer to express ideas clearly and concisely. But the set of concepts needed over the
lifetime of a programming language is difficult to anticipate and is often dependent on
the development of new systems that programs must interact with (for example, new
domain-specific languages, new programming platforms, new virtual machines, etc.).

The Fortress programming language is intended to grow over time to accommo-
date the changing needs of its users [7]. One mechanism to allow for such growth is
syntactic abstraction: It is possible to add new syntactic constructs to the language in
libraries, defining new constructs in terms of old ones. In this manner, the language can
gracefully adapt to unanticipated needs as they become apparent. Parsing of new con-
structs can be done alongside parsing of primitive constructs, allowing programmers to
detect syntax errors in use sites of new constructs early. Programs in domain-specific
languages can be embedded in Fortress programs and parsed along with their host
programs. Moreover, the definition of many constructs that are traditionally defined
as core language primitives (e.g. for loops) can be moved into Fortress’ own libraries,
thereby reducing the size of the core language.

Designing such a syntactic abstraction mechanism for Fortress is hard. In part, this
difficulty is due to our design goal of growability: New syntax should be indistinguish-
able from old syntax from the user’s perspective. This requirement imposes several
constraints on Fortress macros: Macro definitions must be checked for well-formedness
before they are expanded; otherwise syntax errors in the definition of a macro might not
be exposed until the macro is used. Macro uses must be well encapsulated (hygienic,
composable, respecting referential transparency); otherwise it would be impossible to
safely use a macro without understanding the innards of its implementation. Use sites
must be parsed along with the rest of the program and expanded directly into abstract
syntax trees; otherwise new syntax would be distinguishable from old in the sense that
use site errors of new syntax are not signaled alongside those of old syntax. Similarly,
syntax errors at use sites of a macro must refer to the unexpanded program at use
sites, never to definition sites. And because many desirable macro definitions require
recursion, Fortress macros must support recursive and mutally recursive definitions.

Difficulties also arise from another design goal of Fortress: The concrete syntax
of Fortress is designed to emulate mathematical notation as closely as possible. For
example, operator precedence in Fortress is not transitive. Moreover, juxtaposition
itself is treated as a mathematical operator, whose meaning is overloaded based on the
types of the arguments. Juxtaposition of numeric variables denotes multiplication, as
in the expression:

a(m + n)

Juxtaposition of a function with an argument denotes function application, as in
the expression:

sin x

It has been the experience of the Fortress design team that defining a grammar
with these properties is most naturally done in the context of a formalism supporting
unlimited lookahead. Fortress syntax is defined in the formalism of Parsing Expres-
sion Grammars (PEGs), which support unlimited lookahead, are unambiguous and are
closed under union [41]. Consequently, any macro system for Fortress must work in
the context of a core syntax defined as a PEG. To make the macro system as expressive
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g1 = 〈 1, 2, 3, 4, 5 〉
g2 = 〈 6, 7, 8, 9, 10 〉
for i ← g1, j ← g2 do

println “(” i “, ” j “)”
end

g1.loop(fn i ⇒
g2.loop(fn j ⇒
println “(” i “, ” j “)” ))

Figure 4.1: Left, a parallel for-loop in Fortress. Right, A desugared version of
the for-loop on the left

as possible, we also allow new syntax to be defined via arbitrary PEGs. Thus, com-
bination of new syntax with old involves composition of PEGs, and rules for resolving
conflicts between separately defined syntax must be provided.

In this paper, we present a macro system for Fortress that meets these design
challenges. Our system works in the context of a core syntax based on mathematical
notation, and new syntax is indistinguishable from old. Indeed, we have found that
constructs currently defined as part of Fortress core syntax can be moved to macro
definitions in libraries. One such example is the Fortress for loop. In the left part
of Figure 4.1, we define two variables g1 and g2 , each referring to a list. Next, the
for loop introduces the variables i and j which iterate through the two lists, and all
pairs of values in the cross product of the two lists are printed. Our system allows for

loops such as this to be transformed into method calls and anonymous functions as in
the right part of Figure 4.1.

4.2 Contributions and Outline

The main contributions of this work are:

• Design of a hygienic macro system in the context of a core language based on
parsing expression grammars

• A design for composing, and resolving conflicts among, separately compiled
macros in the context of parsing expression grammars

• Explanation of the low-level mechanics of a working implementation of our sys-
tem, available as open source in the Fortress reference implementation

• Definition of a core calculus for the Fortress macro system

The rest of the paper is organized as follows. Section 4.3 describes the design objectives
of our system in detail. Section 4.4 describes how new syntactic abstractions can be
described in the presented system through an example. Section 4.5 presents a formal
treatment of the system semantics. In Section 4.6 the implementation of the system
is presented and discussed. In Section 4.7 the macro system is evaluated by discussing
various syntax extensions implemented in the system. A description of related work is
given in Section 4.8, and we conclude in Section 4.9 along with discussing future work.

4.3 A Growable Language

A growable language is one of the key ideas of Fortress. The Fortress syntactic abstrac-
tion mechanism is designed to support the language growth with the goals described
in this section in mind. Throughout this paper, we use the term macro to refer to a
particular language extension.
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New syntax indistinguishable from the core syntax It would be desirable
if a macro syntax is indistinguishable from the core language syntax so that the uses
of the macro do not introduce any visual clutter to the language. We could have
chosen to enclose all macro uses in special brackets which would have made the parsing
and recognition of macros easier. However, the result would have been a language in
which extensions stand out conspicuously from core syntax, reminiscent of user-defined
function definitions in APL [50]. ‘Instead, we aim to design an extensible language with
no apparent differences between the core syntax and macro uses, such as Scheme [4]
and Lisp [54]. However, unlike the S-expressions of Scheme and Lisp, the Fortress core
syntax emulates mathematical notation, which poses additional challenges in achieving
this goal.

Composition of independent macros Composability of independent macros
is especially important to support modular development of a system. Contributions
from different development teams must be self-contained and must not interfere with
each other. For example, suppose that one contribution provides a grammar with the
following macro:

Expr |:= macro1 e : Expr ⇒ <[e]>

which extends (|:=) an existing nonterminal Expr representing an expression with a
new syntax “macro1 e” where e is an expression, and translates (⇒) the new syntax
to e. Now suppose that another contribution provides a grammar with the following
macro:

Expr |:= macro2 e : Expr ⇒ <[e2]>

which extends Expr with “macro2 e” where e is an expression, and translates it to e2.
Then a grammar extending both grammars can use both macros as expressions, even
in combination with each other:

macro1(macro2 7)
macro2(macro1 7)

Expansion into other macros Macros may be defined in terms of other helper
macros. For example, the following macro:

Expr |:= macro3 e : Expr ⇒ <[macro4 e]>

is defined in terms of the following helper macro:

Expr |:= macro4 e : Expr ⇒ <[e]>

Recursion and case dispatch Many interesting macros can be nicely written
using recursive applications of defined macros. The capability of recursively defining
macros (including mutual recursion) and dynamically dispatching on macros improves
expressiveness as we discuss in Section 4.8. For example, the following macro:

Expr|:= macro5 i : Id∗ do block : Expr end⇒
case i of

Empty⇒ <[ block ]>
Cons(first , rest)⇒

<[ do println first
macro5 rest do block end

end ]>
end
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defines a new syntax “macro5 i do block end ” where i is a sequence of identifiers (Id∗)
and block is an expression, and its translation depends on the actual value bound to i .
If i is an empty sequence (Empty), the input sequence matched by the new syntax is
translated to block . Otherwise, it prints the first identifier in i (first ) and recursively
applies the new syntax to the remaining identifiers in i (rest ).

Similar syntax for definition and use of a macro If the syntax for defining
a macro resembles the syntax for using the macro, it would be easy for a programmer
to learn how to use the macro just by looking at its definition. Key features to enable
this similarity between the definition site and use site of a macro include:

• Tokens appear in a macro definition where they appear in a use site of the macro,
in contrast to other syntax specification languages [52, 83] where the terminal
tokens are specified in a separate section.

• Whitespace characters between tokens are interpreted as optional Fortress whites-
pace characters, making the specification of a macro less bloated compared to
using another character sequence to represent the specification of whitespace.

4.4 Syntactic Abstraction by Example

The Fortress syntactic abstraction mechanism provides a way to extend the core lan-
guage syntax. Before formally describing the syntactic abstraction mechanism, we first
provide some examples of how to define and use macros. Figure 4.2 presents a definition
of a simplified syntax of for loops in Fortress.

grammar ForLoop extends {Expression, Identifier }
Expr |:=

for { i : Id← e : Expr , ? Space }∗ do block : Expr end⇒
<[ for2 i ∗ ∗; e ∗ ∗; do block ; end ]>

| for2 i : Id∗; e : Expr∗; do block : Expr; end⇒
case i of

Empty⇒
<[ block ]>

Cons(ia, ib)⇒
case e of

Empty⇒<[ throw Unreachable ]>
Cons(ea, eb)⇒
<[ ((ea).loop(fn ia ⇒ (for 2 ib ∗ ∗; eb ∗ ∗;

do block ; end)))]>
end

end

end

Figure 4.2: A grammar definition of a simplified syntax of for loops in Fortress

A programmer can define a new syntax with a grammar definition. A grammar is
a self-contained language extension which can be composed with other grammars in
a modular way. An example grammar ForLoop is defined in Figure 4.2. A grammar
contains a set of nonterminal definitions and extensions, and may extend any number
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of other grammars, since it often makes sense to use macros from different grammars to
implement new macros, or to create a new language extension by composing different
languages. A new nonterminal is defined as:

NewNonterminal ::= ...

and an existing nonterminal is extended as:

ExistingNonterminal |:= ...

The available nonterminals in an extended grammar may be used as a basis for a nonter-
minal definition or extension. The ForLoop grammar extends an existing nonterminal
Expr which defines all expression constructs in Fortress. It inherits the nonterminals
provided by the extended grammars Expression and Identifier so that it can use the
nonterminals in it. The Expr and Id nonterminals are defined in the Expression and
Identifier grammars respectively and thus are available in ForLoop. We present the
precise definition of nonterminal availability in Section 4.5.1.

A nonterminal definition or extension has an “ordered sequence” of alternative
variants. For example, ForLoop extends Expr with two variants: the for loop vari-
ant and its helper variant for 2 . A variant consists of a pattern, followed by ⇒, and
a transformation expression. A transformation expression is either an expression en-
closed by <[ and ]>, or a case expression with branches, whose right-hand sides are
transformation expressions.

A pattern is defined by a sequence of parts. The pattern language is based on
Parsing Expression Grammars (PEGs) and is described in Section 4.5. A part is either
a simple part or operations over parts. Different kinds of parts make up the pattern
for the for loop variant:

for { i : Id← e : Expr , ? Space }∗ do block : Expr end

The first symbol is the terminal for , followed by a symbol group, another terminal
do , a nonterminal reference “block : Expr”, and then another terminal end . A termi-
nal is any sequence of Unicode [95] characters that is not the name of a nonterminal
available in the containing grammar. A symbol group is a sequence of symbols inside
curly braces. A symbol or a symbol group may be followed by an option operator ?
or a repetition operator + (one or more repetition) or ∗ (zero or more repetition). A
nonterminal reference such as “block : Expr” is a reference to any nonterminal avail-
able in the containing grammar optionally prepended by a label followed by “:”. The
whitespace between symbols represents optional Fortress whitespace. When a space
is required, the nonterminal Space specifies the required space. The pattern language
supports unlimited lookahead in the same way as PEGs, by means of the semantic
predicates: ∧ (must match) and ¬ (must not match), both of which only match input
but does not consume it.

A transformation expression gives meaning to the macro by providing a translation
of the pattern. The transformation expression of the for loop variant:

<[ for2 i ∗ ∗; e ∗ ∗; do block ; end ]>

uses the syntax-unfold operator, ∗∗, to expand the lists of identifiers and expressions as
arguments to the for 2 variant. The syntax-unfold operator is similar to the ellipsis op-
erator [84] found in Scheme [4], and expands into the syntax matched by its arguments.
The for 2 variant is translated into core Fortress syntax by recursively traversing the
identifier and expression lists. The transformation expression uses two nested case dis-
patches on the list structure of the pattern variables i and e . The actual value bound
to a pattern variable is compared to the left-hand side of each case clause: an empty list
is matched to Empty and a nonempty list is matched to Cons. If a list is nonempty,
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g1.loop(fn i⇒
for j ← g2 do

println “(” i “, ” j “)”
end)

Figure 4.3: One unrolling of the for loop from Figure 4.1

the first argument of Cons contains the head of the list and the second argument con-
tains the rest of the list. For each pair of head elements from an identifier list i and an
expression list e, we call the loop method on the head of the expression list, ea , with
an anonymous function whose argument is the head of the identifier list, as the input
to the loop method. The two lists of identifiers and expressions are guaranteed to have
the same length by the structure of the for variant.

Although the transformation is expressed in terms of Fortress concrete syntax,
the act of transforming a use site at parse time is not performed on the concrete
syntax. Instead, the transformation expression is parsed into Fortress Abstract Syntax
Tree (AST) nodes, containing placeholder nodes to represent pattern variables, and
the act of transforming a use site is performed by substituting AST nodes in for the
placeholders. An alternative approach would have been a multi-staged system in which
transformation expressions consist of explicit user-defined computations of resulting
AST nodes. Although such an approach is more flexible, it is also tedious and error
prone. Moreover, it is difficult to check that syntax trees constructed through explicit
computation are well-formed. Earlier work has shown that although a template-based
approach is not as flexible as an approach based on explicit computation, it is usually
possible to express the transformations desired in practice [20, 23].

The for loop example in Figure 4.2 shows that our syntactic abstraction mecha-
nism satisfies the five goals described in Section 4.3:

• New syntax indistinguishable from the core syntax: As Figure 4.1 shows, the use
of the for macro is indistinguishable from other Fortress language constructs.

• Composition of independent macros: The for macro extends the grammars,
Expression and Identifier, so that it can use the nonterminals, Expr and Id,
defined in them.

• Expansion into other macros: The for macro is defined in terms of the for 2

macro.

• Recursion and case dispatch: The for 2 macro is recursively defined using two
nested case dispatches. Using the for2 macro, the for loop in Figure 4.1 can
be rewritten as in Figure 4.3. One more application of the macro will desugar
the for loop as in the right part of Figure 4.1.

• Similar syntax for definition and use of a macro: The syntax for defining the
for 2 macro:

for 2 i : Id∗; e : Expr∗; do block : Expr; end

and the use of it:

for 2 i ∗ ∗; e ∗ ∗; do block ; end

is very similar because tokens appear in the same place in both definition and
use sites of the macro and implicit whitespace specification avoids visual clutter.
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4.5 Syntax Normalization

In this section, we describe how a Fortress source program using macros is turned into
a Fortress AST without macros which can be interpreted by the Fortress interpreter.
For presentation brevity, we focus on a core subset of Fortress, Core Fortress. The
abstract syntax of Core Fortress is presented in Figure 4.4.

A Core Fortress program consists of a possibly empty sequence of grammar def-
initions followed by an expression, called the main expression. Grammar definitions
introduce new syntax to Core Fortress. A grammar definition includes a sequence of
nonterminal definitions or extensions and it may extend other grammars to use non-
terminals defined in the extended grammars in its definition. A nonterminal definition
or extension has an ordered sequence of alternative variants and a variant consists of
a pattern and a transformation expression (Action in Figure 4.4). A transformation
expression is either a term enclosed by <[ and ]>, called a template, or a case expres-
sion over a pattern variable. The nonterminals GrammarName, NTName, PatternVar,
Terminal, and Char range over Unicode strings. An expression is a number, string,
variable, function expression, function application, or parenthesized expression. A term
is a pattern variable, an ellipses term, number, string, variable, function term, function
application term, or parenthesized term. The metavariables n, s, and x range over
numbers, strings, and variables, respectively.

Because grammar definitions introduce new syntax to the language, the program
itself defines how to parse it and turn it into an AST. We call the entire process
from parsing a source program to creating a corresponding AST syntax normalization.
Syntax normalization consists of two stages: parsing and transformation. In the parsing
stage, the source program represented as a Unicode string is turned into what we call a
parsed program. Then, in the transformation stage, the parsed program is transformed
to a program in Core Fortress AST. Each stage is described in detail in the subsequent
subsections.
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Program ::= Grammar∗ Expr

Grammar ::= grammar GrammarName
extends { GrammarName∗ }
( Definition | Extension )∗

end

Definition ::= NTName ::= Variant∗

Extension ::= NTName |:=Variant∗

Variant ::= Pattern ⇒ Action
Pattern ::= Part∗

Part ::= SimplePart ?
| SimplePart ∗
| SimplePart +
| SimplePart
| ¬ Part
| ∧ Part

SimplePart ::= PatternVar : BasePart
| BasePart

BasePart ::= NTName
| Terminal
| [Char:Char]

Action ::= <[Term]> template
| case PatternVar of

Empty ⇒ Action
Cons(PatternVar, PatternVar) ⇒ Action

end

Expr ::= n number
| s string
| x variable
| fn x ⇒ Expr function expression
| Expr Expr function application
| ( Expr ) parenthesized

Term ::= PatternVar
| Term ∗∗
| n
| s
| x
| fn x ⇒ Term
| Term Term
| ( Term )

Figure 4.4: Abstract syntax for Core Fortress
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4.5.1 Parsing

The parsing stage transforms a source program in a Unicode string into a parsed pro-
gram in an AST representation which describes how the program is to be transformed
into an executable Core Fortress program. The transformation is nontrivial because a
program itself defines how it is parsed: the grammar definitions in the program deter-
mines which syntax may occur in the grammar definitions and the main expression.

In order to resolve this self-dependency problem, we take a two-step approach to
parse Fortress programs. In the first step, we parse all the grammars except for the
action part of each variant and the main expression. The action parts and the main
expression are just parsed as Unicode strings. This step is a standard parsing which
generates an AST where expressions are represented as strings. In the second step, we
parse each action part and the main expression. In order to parse the action parts,
we need to compute what we call the set of available macros. In a later subsection,
we show how to compute the set of available macros for a given grammar, and how to
derive a PEG from which a PackRat parser can be generated (for example by using
Rats! [46,47]) and then used to parse the action parts. The action parts and the main
expression are parsed into node expressions. A node expression describes how macros
are invoked to turn a macro syntax into a Core Fortress syntax. The construction
of node expressions is described below. This two-step approach works because the
grammar definitions appear before the main expression. The approach also has the
advantage that we break the dependency in parsing recursive macros.

The parsing stage relies on Parsing Expression Grammars (PEGs) [41] because they
have some advantages over usual Context-Free Grammars (CFG) [26] based parsing
formalisms such as LL and LALR(k). PEGs are unambiguous, are closed under union,
and integrates lexing with parsing. We need the closure property because we want to
combine PEGs for different grammars and the integrated lexing and parsing makes it
easy to achieve our goal of “similar syntax for definition and use”. Furthermore, the
parsers based on PEGs allow a linear execution time compared to the generalized CFG
parsers. We briefly introduce PEGs in the next subsection along with a description of
our pattern language which is effectively a variant of Parsing Expressions.

Parsing Expression Grammars

A Parsing Expression Grammar (PEG) is a 3-tuple (N,T, s), where N is a finite set
of nonterminal definitions, T is a finite set of terminal symbols, s ∈ N is the start
nonterminal definition. A nonterminal definition is a pair (n, cs) where n is a name and
cs is a list of prioritized alternatives, each alternative being a parsing expression [41].
The terminal symbols and the nonterminal names are disjoint. The empty string ǫ, a
terminal symbol a ∈ T , and a nonterminal name n are parsing expressions, and if e, e1,
and e2 are parsing expressions then so are a sequence e1 e2, an optional expression e?,
zero-or-more repetitions e∗, a not-predicate ¬e, and a and-predicate ∧e.

The main difference between PEGs and CFGs is the lack of ambiguity in PEGs
resulting from the prioritized alternatives. In a CFG, the two nonterminal definitions
A = a | ab and A = ab | a are equivalent. However, in a PEG, the second alternative
of the former would never succeed because the first alternative is always taken if the
input string to be recognized starts with a.

The pattern language shown in Figure 4.4 is based on parsing expressions with
some differences. If Parti (1 ≤ i ≤ n) of a sequence of parts, (Part1, Part2, . . .,
Partn), corresponds to a parsing expression ei, then the sequence of parts corresponds
to the sequence of parsing expressions with optional Fortress whitespace in between:
(e1, w, e2, w, . . ., w, en). Here w refers to the nonterminal defining the optional
whitespace in Fortress. This small difference reduces the visual clutter when writing
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grammar A
Nt::=

macroA ⇒ . . .
end

grammar B extends {A}
Nt|:=

macroB ⇒ <[. . .macroA . . .]>
end

grammar C extends {A}
Nt|:=

macroC ⇒ . . .
end

Figure 4.5: Grammars including multiple nonterminal extensions

language extensions. We also allow character classes to be specified (e.g. the character
class of “;” and the lowercase letters from “a” to “z” [;a:z]). Character classes can be
trivially, but tediously, encoded in parsing expressions by explicit enumeration of the
alternatives.

Combining Grammars

In order to create a parser and parse the action parts in a given grammar, we need
to compute the set of available macros. The set of available macro definitions for a
grammar consists of the macros defined by the nonterminal definitions and extensions
in the grammar and inherited from the extended grammars. However, the multiple
“inheritance” of grammars in combination with the prioritized alternatives of PEGs
makes it nontrivial to compose nonterminal extensions.

For example, Figure 4.5 shows three grammars A, B, and C, each of which defines
a single macro. We write <[. . .macroA . . .]> to indicate a template where the macro
macroA occurs somewhere. Grammar B and C extend grammar A which contains the
definition of the nonterminal Nt.

grammar D extends {B}
Nt|:=

macroD ⇒ <[. . .macroB . . .]>
| B .Nt

(* This definition is illegal,
because macroA is not propagated by the grammar B:

Nt|:=
macroD2 ⇒ <[. . .macroB . . .macroA . . .]>

*)
end

Figure 4.6: Grammars should behave as usual module systems

The interesting question is what the semantics of a nonterminal extension should
be. It seems natural to expect that B is able to use all the macros defined in A since it
extends it. However, what if a grammar such as D in Figure 4.6 extends B? Because
D does not extend A directly, we do not allow macroA to be available in the grammar
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grammar E extends {B,C}
Nt|:=

macroE ⇒ <[. . .macroB . . .macroC . . .]>
end

Figure 4.7: Multiple extensions of a single nonterminal

D as the comment enclosed by “(*” and “*)” in Figure 4.6 shows. This behavior is
consistent with the Fortress component system where a component does not reexport
all of its imports by default. A grammar may explicitly propagate an inherited macro
by referring to the nonterminal extension defining the macro. The second alternative of
the nonterminal extension in D gives an example of explicit propagation of an inherited
macro: B .Nt. Whenever macroD is available, macroB is also available.

Grammar B overrides the definition of the Nt nonterminal in grammar A, but
the override does not affect grammar C which also extends A. It is only possible to
completely override a nonterminal if all uses of the grammar containing the overridden
nonterminal is changed to the grammar containing the overriding nonterminal. In the
example above C would have to extend B instead, and there is no guarantee that
another grammar which extends A could be created.

A grammar may extend multiple grammars. Multiple extension induces a lattice
structure in the extension relation. One key issue with multiple extension is how
to combine grammars when there is a “diamond” shape in the lattice as shown in
Figure 4.7. The grammar E extends B and C both of which extend the same grammar
A but define different extensions for the same nonterminal Nt. One approach would
be to collect the macros along the paths from B and C to A following the extension
relation, and then concatenate them:

Nt|:=
macroE ⇒ <[. . .macroB . . .macroC . . .]>
| macroB ⇒ <[. . .macroA . . .]>
| macroA ⇒ . . .
| macroC ⇒ . . .
| macroA ⇒ . . .

The order of macroB and macroC could be reversed, but it has the same problem as
this approach: the syntax defined in A might shadow macroC because the variants
are ordered. It is an unfortunate behavior because we intend to support a user-defined
syntax on top of the existing Fortress syntax. Both macroB and macroC should have
higher priority than macroA.

Our solution to the shadowing problem is to collect the macros along the paths till
the lowest common ancestor of the immediately extended grammars in the extension
relation and concatenate them, and then recursively collect and concatenate the macros
along the paths to the end of the extension relation. For example, we resolve the
nonterminal Nt defined in grammar E as follows:

Nt|:=
macroE ⇒ <[. . .macroB . . .macroC . . .]>
| macroB ⇒ <[. . .macroA . . .]>
| macroC ⇒ . . .
| macroA ⇒ . . .

A thing to note is that the ordering of macros must be specified. The ordering should be
deterministic and preferably the grammar writer should be able to control it. Therefore,
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NodeExpr ::= PatternVar
| case PatternVar of

Empty ⇒ NodeExpr
Cons(PatternVar, PatternVar) ⇒ NodeExpr

end

| Transformer (NodeExpr )

| Ellipses (NodeExpr ,NodeExpr )

| NodeConstructor(NodeExpr )

Figure 4.8: Abstract syntax for node expressions

we have chosen to use the order in which the extended grammars appear in the extends

clause.
Using the solution, we build a PEG from which a parser can be generated and used

to parse the action parts and the main expression. The PEG for a grammar is:

• formed from all definitions from all transitively-extended grammars and the cur-
rent grammar,

• modified by the extensions from the current grammar, if any, and

• modified by the implicit extensions for all nonterminals in the inherited exten-
sions that are not extended in the current grammar.

The first step of constructing the PEG is to gather all of the nonterminal definitions
from all the transitively-extended grammars. A variant in a nonterminal definition
is either a pair of a syntax pattern and a transformer or a reference to an extended
grammar’s extension (propagation of an extension). For the former, the pair is simply
added to the PEG. For the latter, we retrieve the extensions added by that grammar,
process them, and add them to the PEG. The next step is to apply the extensions.
The extensions consist of the explicit extensions (defined in the grammar) and the
implicit extensions inherited from the extended grammars. The PEG for parsing the
main expression is obtained in the same way as for a grammar which extends all the
preceding grammars, but containing no definitions nor explicit extensions.

Construction of Node Expressions

Using the parser generated by a PEG as described in the previous subsection, the ac-
tion parts in the grammars and the main expression are parsed into node expressions.
A node expression is a representation of how macro invocations are applied to obtain a
Core Fortress AST. The abstract syntax of node expressions is presented in Figure 4.8
where a sequence of NodeExpr is represented as NodeExpr . A node expression is a
pattern variable, a case dispatch, a macro invocation represented as a reference to a
Transformer applied to a number of node expression arguments, an ellipses node rep-
resented as a reference to an Ellipses applied to a node expression (the first argument),
or a Fortress expression represented as a reference to a NodeConstructor applied to a
number of node expression arguments. We use Transformer and NodeConstructor to
range over templates and Core Fortress expressions, respectively. The second argu-
ment of the Ellipses node is initialized with its first argument and changes during the
evaluation of the node.

A node constructor is created when an input string is matched by the Core Fortress
syntax. A transformer is created whenever a macro use is parsed by matching the macro
definition against the macro use. A macro definition is matched in the same way as
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a parsing expression is matched against an input string: each part is matched in the
order it appears. If the macro definition contains any references to other nonterminals,
then we parse with respect to the nonterminals and if they succeed the result is a node
expression, and we continue parsing the rest of the macro definition. If all the parts in a
macro definition are matched, then a transformer is created with the node expressions
from any nonterminals as arguments.

Consider an example from Section 4.3, where macro1 is applied to the literal 7:

macro1 7

and parsed against the macro definition:

Expr |:= macro1 e : Expr ⇒ <[e]>

First, we see that there are two parts in the macro definition: macro1 and “e :Expr”.
The first part is a terminal part which must be matched verbatim in the input sequence
and the other part is a binding part where the pattern variable e gets bound to the
result of parsing Expr . Parsing the action part of macro1 returns the node expression
consisting of a pattern variable reference and is transformed to a Transformer T1,
where T1 is a fresh name. Then, parsing the macro use requires parsing 7 against
the Expr nonterminal, which is matched by the Core Fortress syntax and the result is
a node constructor for the Core Fortress abstract syntax 7 . We bind e to 7 in the
environment and pass 7 as an argument to the transformer T1, resulting in the node
expression T1(7) which can be passed on to the transformation phase described in
Section 4.5.2.

4.5.2 Transformation

Transformation is the evaluation of node expressions to construct a Core Fortress AST
without macros which can be interpreted by the Fortress interpreter. Given a parsed
program which contains a set of grammars and a main expression, we transform it to
an executable Core Fortress program by evaluating the node expression first in the
main expression and consequently in transformers.

We define the evaluation of node expressions in terms of a small-step operational
semantics [74]. We define the semantics using a transition system. The transition
system consists of a set of configurations σ ∈ Σ, a set of terminal configurations T ⊆ Σ,
and a transition relation → ⊆ Σ × Σ. A configuration is a node expression along
with two environments: Υ,Γ ⊢ NodeExpr . The transformer environment Υ maps
transformer names to transformer definitions and the node environment Γ maps pattern
variables to node expressions. We write “Γ

[

x 7→ n′
]

” to denote an extension of Γ with

the new bindings “x 7→ n′”. The transformer environment is initialized to contain
all the transformers from all the grammars and does not change during evaluation.
This is possible because the parsing has already resolved the scope of the transformers
introduced by the grammars. The node environment is initially empty. A value v is a
node constructor application, the arguments of which are also values or a list of values.

The evaluation of a node expression is inductively defined by the transition relations
in Figure 4.9. The metavariables t ranges over transformer names, x ranges over pattern
variables, n ranges over node expressions, and c ranges over node constructors. For
brevity, we write “t x .n” for a transformer definition of name t, which takes the pattern
variables x and has the body n. If the node expression is a pattern variable, we look
it up in the node environment. If the node expression is a case-dispatch, we first
evaluate the condition x in the current environments. The result is either an empty
list Empty or a nonempty list Cons(hd , tl) with the first element hd and the rest of
the elements tl . If it is an empty list, we evaluate n1 in the current environments.
If it is a nonempty list, we extend the node environment with the bindings for the
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pattern variables x1 and x2 to hd and tl respectively, and continue the evaluation.
If the node expression is a macro invocation, we look up the transformer definition
in the transformer environment, evaluate the macro arguments, and extend the node
environment with the bindings from the pattern variables to their actual values, and
continue evaluating the body. If the node expression is an ellipses node, the first
argument of the node is replicated by the number of times equal to the length of a
pattern variable within the first argument. The second argument of the ellipses node
keeps track of the intermediate results during the evaluation of the ellipses node. For
brevity, we write “PV (n)” for a set of pattern variables in the node expression n,
“l.nth(i)” for the i-th element of the list l, and “sizeΓ(n)” for the length of the value
bound to any pattern variable within the node n in the environment Γ. If no value
is bound to any pattern variable, sizeΓ(n) returns 0. If the node expression is a node
constructor invocations, we construct the corresponding Core Fortress node.

The evaluation of a node expression may either fail, diverge, or result in an exe-
cutable Core Fortress node. The evaluation may diverge if there is an infinite recursion
in the definition of a transformer.1 We do not consider nontermination a problem,
because it will mainly happen when a macro does not deconstruct input, and pro-
grammers writing programs with recursive functions are used to deal with this kind of
problems.

4.5.3 Hygiene

Fortress macros are hygienic, meaning any bindings introduced by a macro are fresh.
Our hygienic system is a simplification of Clinger’s algorithm [28]. Since our macro
system cannot introduce macros itself, nor can a macro be hidden through a lexically
bound variable, we need not concern ourselves with much of the complexity of the
original hygiene algorithm.

The hygienic transformation works as follows. Before a macro is invoked, no re-
naming is performed. After a macro invocation, a flag is set which indicates that
renaming should take place for the transformation of the current node and all the chil-
dren nodes. During hygienic transformation, identifiers are looked up in a syntactic
environment and replaced with the renamed identifiers they are bound to. The initial
syntactic environment is the identity environment. Once the flag indicating that re-
naming should occur is set, each language construct binding an identifier generates a
unique identifier and maps the original bound identifier to the new unique identifier.
Each binding construct introduces a new syntactic environment which maintains a link
to the previous environment. Identifiers not found in the immediate environment are
recursively looked up in the parent environment until a mapping is found.

Pattern variables in a macro definition are never renamed since they are syntactic
entities being introduced into the macro. In this way, we prevent variables passed to
the macro from being renamed by virtue of the fact that they share names with bound
identifiers introduced by the macro. Consider the following macro definition:

Expr|:= foo e : Expr ⇒ <[ fn d⇒ d+ e ]>

If the macro is invoked as:

foo d

then the result after hygienic transformation should be:

fn d1 ⇒ d1 + d

1Transformation described in this section is similar to Wand’s [58] algorithm. The trans-
formation function implements τ while the parser implements β and D.
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[Pattern Variable]
Γ(x ) = v

Υ,Γ ⊢ x → Υ,Γ ⊢ v

[Case Empty]
Υ,Γ ⊢ x → Υ,Γ ⊢ Empty

Υ,Γ ⊢ case x of → Υ,Γ ⊢ n1

Empty⇒ n1

Cons(x1, x2) ⇒ n2

end

[Case Cons]
Υ,Γ ⊢ x → Υ,Γ ⊢ Cons(hd , tl)

Υ,Γ ⊢ case x of → Υ,Γ [x1 7→ hd ] [x2 7→ tl ] ⊢ n2

Empty⇒ n1

Cons(x1, x2) ⇒ n2

end

[Macro Invocation Arguments]

Υ,Γ ⊢ n→ Υ,Γ ⊢ n′

Υ,Γ ⊢ t(n)→ Υ,Γ ⊢ t(n′)

[Macro Invocation]
Υ(t) = t x .n

Υ,Γ ⊢ t(v)→ Υ,Γ [x 7→ v] ⊢ n

[Ellipses First]
|v|+ 1 = i ≤ sizeΓ(n)

Γ′ = extendΓ(PV (n), i) Υ,Γ′ ⊢ n→ Υ,Γ′ ⊢ n′

Υ,Γ ⊢ Ellipses(n, 〈v〉)→ Υ,Γ ⊢ Ellipses(n, 〈vn′〉)

[Ellipses Last]
|v| = sizeΓ(n)

Υ,Γ ⊢ Ellipses(n, 〈v〉)→ Υ,Γ ⊢ v

[Node Constructor]

Υ,Γ ⊢ n→ Υ,Γ ⊢ n′

Υ,Γ ⊢ c(n)→ Υ,Γ ⊢ c(n′)

where sizeΓ(n) = max (|Γ(xj)|) ∀xj ∈ PV (n)

extendΓ({xj}, i) =

{

xj 7→ Γ(xj) if |Γ(xj)| = 1
xj 7→ Γ(xj).nth(i) if |Γ(xj)| > 1

Figure 4.9: Operational semantics for node expressions
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4.6 Implementation

The syntactic abstraction mechanism is built on top of Rats!, the underlying parser
technology used to parse Fortress programs. A key aspect of Rats! is its composition
framework based on modules. By separating grammar extensions in their own module,
we were able to extend the core Fortress grammar in a modular way.

A new parser is generated for each modified or defined nonterminal in an extension
grammar. All the nonterminals in the grammar are compiled into Rats! syntax and
added into a new module, Muser. A nonterminal that is extended originally has pro-
ductions p1 . . . pn and is modified so that Muser.nonterminal is inserted before p1. All
productions that refered to nonterminal will now implicitly refer to Muser.

The macro system is logically broken up into two stages: parsing, and transforma-
tion. The first stage consists of parsing the grammar declaration into an AST which
contains transformation nodes instead of the template bodies. This stage has two steps:
parsing the grammar declaration and parsing the template bodies. The core fortress
parser is used to parse the grammar declarations and then those results are used to
construct a new parser that is used to parse the templates. The system constructs a
new parser for each unparsed template body and replaces the grammar AST node with
a transformation node which contains the parsed template body. When a component
is parsed, the grammars that it imports define the PEG used to parse the component
body. The resulting AST will have nodes that specify a macro invocation. In stage
two(transformation) the AST will be run through a macro processing engine which
converts macro invocation nodes into their corresponding template bodies.

Template bodies consist of regular Fortress syntax, macro invocations, pattern
variables, and ellipses nodes. During transformation, the macro system will dispatch
according to these four cases. For regular Fortress syntax the engine will recursively
dispatch on child nodes but otherwise do no additional processing unless a macro has
already been invoked in which case the hygiene rules will be applied. Macro invocations
will cause the engine to look up the function defined for that macro and apply it to
the parameters of the macro. Pattern variables are looked up in the current macro’s
environment and replaced with a corresponding expression. Ellipses nodes cause the
engine to replicate the immediate child node of the ellipses node a number of times
equal to the length of a pattern variable that is also inside the ellipses node. The
replicated nodes are then spliced into the parent node.

4.7 Evaluation

We have evaluated the design of our syntactic abstraction system by implementing the
for loop example shown in Figure 4.2, and also a grammar that recognizes regular
expressions and one recognizing XML. These examples show that the system is suit-
able for language extensions and domain specific languages by allowing their care-free
implementation in general. The grammars for XML and regular expressions can be
found as part of the open-source Fortress interpreter [6].

The for loop example demonstrates a weakness of the macro system in that some
macros must be split up to accomodate the parser. The for loop cannot be written
directly because when the ellipses are expanded the intermediate commas are missing
and so the parser would not recognize the syntax as a for loop macro. Instead, the
body of the for loop is written in such a way that no syntactic markers are needed and
a separate macro is invoked with this simpler body. This generally means that most
macros will need two forms and macro writers will have to know about both forms
when invoking another macro inside their template. A solution to this problem would
be to add operations over lists, so that the identifiers and the corresponding expressions
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in the for loop example could be zipped, and expanded with the commas in place. In
general it would be useful if one could mark local helper macros as such, e.g. by using
visibility modifiers like private in Java.

The system has a number of limitations. Syntax extensions are imported at the
component level, and so we do not support lexically scoped syntax extensions like
Scheme [4] or OMeta [105] does. Support for lexical scoping could be added later. A
number of other systems [47,105] based on PEGs allow semantic predicates in parsing
expressions. A semantic action is a boolean-valued expression which must be true in
order for a parsing expression to match. Semantic actions are useful in some situations,
but in our exprience we haven’t had any need for semantic actions in any of our
examples yet.

Currently the specification of syntax is not separated from the specification of
semantics(actions), e.g. like in Bracha’s [21]. Such a separation can be useful, e.g. for
visualizing the source code in IDEs, or supporting different transformations. Explicit
separation of the syntax and transformation is possible and we would like to investigate
this in the future.

The current implementation uses Rats! to generate a parser for each transformation
expression. The overall parsing of a Fortress program performs comparable to the
parsers generated by Rats!, that is linear time. However there is the overhead of
generating a grammar and invoking Rats! on that grammar for each transformation
expression, which currently slows down the parsing first time a macro is used. The
following times are for free because the generated parser is cached. The size of the
transformed Core Fortress program is in worst case exponential in the size of the input.

Much of the syntactic abstraction system functionality falls out from the mech-
anisms inspired by Scheme systems, however the uniform and elegant structure of
s-expressions cannot be reused in the context of Fortress, due to the many nuances
of concrete syntax of Fortress. This prevented us from writing procedural macros ef-
ficiently, the amount of code required to construct a Fortress AST makes them an
unattractive path to take.

4.8 Related work

Our system for syntactic abstraction incorporates ideas from two main lines of research:
extensible grammars for meta-programming; and Lisp and Scheme macro systems.

Meta-programming systems and extensible grammar systems provide frameworks
for constructing languages, extending languages with domain-specific notations, and
translating between languages. Typically, a meta-program manipulates a separate
object-program. Sometimes the meta-program and object-program are written in dif-
ferent languages. In contrast, Lisp and Scheme macros affect subsequent parts of the
same program that contains the macros. Using macros, programmers can write syntax
extensions and domain-specific languages as libraries, with no need for preprocessors
or custom compilers. Fortress takes this approach of supporting extension from within,
rather than making it a separate facility with separate tools.

4.8.1 Extensible Syntax and Meta-programming

There are numerous languages, libraries, and frameworks designed for creating lan-
guage tools, from simple parser generators [52] to comprehensive language definition
frameworks. In this section we discuss a few systems that offer special support for
language extension or translation. Rats! [46, 47] is a tool for producing packrat [41]
parsers from modular grammars. Using the module system a programmer can create
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new languages by applying modifications to existing grammars. Rats! provides parsing
support for Fortress syntactic abstraction system.

OMeta [106] is an embedded language (in COLA [29] or Squeak Smalltalk [90])
which combines pattern matching and parsing. OMeta is based on PEGs which are
generalized to work on arbitrary datatypes not only streams of characters, which leads
to the use of PEGs for pattern matching. The encapsulation of grammars in OMeta
is also inspired by object-oriented constructs but in contrast to grammars in Fortress
they are encapsulated in a “class” like construct which only supports extension of a
single grammar, the reason is mainly for avoiding nameclashes. Single extension is
not a good match for expressing grammar extension since it is often the case that a
grammar extends multiple other grammars. This is solved in OMeta though the use of
the “foreign” production which effectively dispatches to separate grammars. Fortress
solves this issue by allowing a grammar to extend multiple other grammars. “foreign”
in Ometa also does not allow the programmer to selectively provide nonterminals to
the user.

Katahdin [85] is a platform for specification and implementation of programming
languages. A language is specified using a language where both the syntax and se-
mantics are mutable at runtime. Katahdin is based on PEGs with some modifications,
the choice is not prioritized but ordering is resolved based on a longest match strat-
egy. Katahdin allows whitespace everywhere unless not explicitly disallowed, similar to
our approach. However they go a step further and allow the programmer to redefined
whitespace locally. A similar approach would benefit the Fortress syntactic abstraction
system.

MetaBorg [22,23,77,100] is a method of adding domain-specific notation support to
general-purpose languages. The method relies on a syntax definition framework called
SDF [48]. SDF permits definitions of arbitrary context-free grammars, which enables
modular development of syntax. Another component in the MetaBorg tool chain is
a term-rewriting language called Stratego. SDF and Stratego together support the
construction of program transformers; SDF is used to describe the syntax and embed
it into a Stratego program that specifies the transformation rules. The MetaBorg tools
support language extension, but they constitute an external mechanism rather than an
internal, integrated extension mechanism.

Silver [107] is a language description framework based on attribute grammars de-
signed for the modular construction and composition of domain-specific languages. The
semantics of the language is defined by its nonterminals’ attributes. Silver supports a
feature called forwarding [108] that allows the semantics of one syntactic form to be
defined in terms of a translation into another syntactic form.

Cardelli et al. [25] devised an extensible syntax system based on grammar mod-
ifications. Like Lisp and Scheme but unlike most meta-programming systems, their
system allowed programs to manipulate their own syntax; a programmer could intro-
duce a new form and then use it in the same program. Translations in their system
were given in terms of concrete syntax patterns, allowing syntactic abstractions to be
built incrementally. Like Scheme’s hygienic macro systems, their system also preserves
lexical scoping via renaming, but they have an explicit mechanism for requesting a fresh
variable name. Their system is more restrictive than ours in several ways. First, they
use an LL(1) parser, and consequently their parser is efficient, but they cannot handle
many of the syntaxes supported by Fortress. Their system performs transformations
as part of the parsing process, and translations are analyzed to assure the termination
of parsing. In contrast, our system has a separate translation pass, and while parsing
is guaranteed to terminate, the translation pass might not.
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4.8.2 Lisp and Scheme Macros

Fortress borrows several ideas from Lisp and Scheme macros. Fortress syntax exten-
sions are part of Fortress programs, not external metadata requiring special handling.
We also take heed of Scheme’s consideration for proper lexical scoping. Finally, the
semantics of grammars is designed to support the same kind of modularity patterns as
Scheme’s module systems do.

In 1986, Kohlbecker et al. [57] introduced hygienic macro expansion to prevent the
inadvertent variable captures that sometimes occur in naive macro expansion. The
original hygiene algorithm handled only top-level macros. Researchers in the Scheme
community extended hygiene to cover locally defined macros [28, 39], first-order mod-
ules [40,89,104], and dynamically-linked components with macros in the signatures [33].
The original algorithm worked with top-level macros implemented as Lisp functions on
syntax trees, and it involved scanning the result of every macro call to rename newly
introduced identifiers. The algorithm developed by Clinger and Rees [28] eliminated
the repeated code scanning by restricting macros to use fixed templates rather than
arbitrary code to compute their results.

Our syntactic abstraction system implements hygiene in a manner that combines
features of the Kohlbecker algorithm and the Clinger and Rees algorithm. Fortress
macros occur only in grammars defined in APIs, so we do not need the machinery
for locally defined macros, and Fortress macros specify their translations in terms of
templates, so we do not need deep code scans.

The Fortress grammar system is designed to support modular syntax extensions. A
common pattern in Scheme is to define one macro in terms of several auxiliary macros
but only export the main macro. In our system, a syntax extension can be defined
with the help of other extensions, but clients of the one extension are not forced to
accept the auxiliary extensions. In Scheme, this is done through the scoping of the
macro name; in our system, grammars control the extent of changes to nonterminals.

Finally, the entire syntactic abstraction system resides ultimately in the APIs.
Components are separately compiled; a component can be compiled given only the rel-
evant APIs. Syntactic abstractions can refer to types, variables, and functions declared
in the API, and the references they produce in client components are resolved based
on the components the client is linked to. The Scheme component system with macros
in the signatures [33] is arranged the same way and has similar hygiene properties.

4.9 Conclusion and Future Work

A growable language is one of the main ideas of the Fortress programming language.
The Fortress syntactic abstraction mechanism serves a key role to support the language
growth. It allows a user-defined syntax to be indistinguishable from core Fortress
syntax, provides composition of independent macros, and supports mutually recursive
macros using dynamic dispatches. The Fortress syntactic abstraction mechanism is so
flexible that various language constructs can be moved from the core language syntax
into libraries using macros. Type checking macros is an interesting future direction.
Because the syntactic abstraction mechanism described in this paper is a template-
based approach, it is possible to perform a more precise type checking than a multi-
staged system where the transformation is represented as an explicit construction of the
AST nodes. The goal of type checking macros would be to provide the static guarantee
that if a macro definition is well typed then there is no type error at the use sites of
the macro unless the user of the macro provides an input of a wrong type.

The authors sincerely thank the Fortress team for fruitful discussions and support.
Thanks to Robert Grimm for answering our questions about Rats!, and thanks to the
anonymous reviewers for suggestions on improving the paper.



Chapter 5

Towards Strongly Typed Macros

Good fences make good neighbors
— Robert Frost, “Mending Wall”

5.1 Introduction

In this Chapter we present a description of our preliminary work on a strongly typed
macro system based on the work presented in Chapter 4.

Macros written in the macro system described in Chapter 4 may contain type errors,
because no type checking occurs on the macro definitions. Type errors may manifest
themselves in the expanded code and thus become a very surprising experience for the
macro user. Especially if the error happens deeply inside the body of the macro, and
does not depend on the macro arguments in a trivial way. Furthermore there is no
other way to correct the type error but to modify the macro definition which can be
difficult especially if the user did not write the macro himself, or even impossible if
the code is not available. This situation is unsatisfactory because the host language,
Fortress [7], is a strongly typed language.

We want to develop a modular type checking of macro definitions by requiring
the macro definer to annotate macro definitions with types, and then have the type
checker check that the macro definition is type correct under the given annotations.
In this way, we can ensure that all type errors in a macro definition are found at the
declaration site, and that the only type errors that can occur at a use site are those
resulting from the user providing arguments of the wrong types.

As an example we look at the implementation of letcc shown in the left grammar
of Figure 5.1, where the letcc macro takes two arguments; the identifier k and the
expression e . The macro is desugared to a label expression, a function definition, and
the expression e , where we use the identifier k as the name of the function.

We would like to type check such macros, in order to do so we need to assess what
information is needed. In the letcc example we clearly see that expressions provided
as arguments, like e , must be given a type. Therefore it is reasonable to require e
to have some type T, where T is a type variable to allow for generic use of letcc .
We will require the macro definer to provide these types as annotations, but we hope
that we in the future will be able to infer those types, to lighten the burden of the
programmer. We suggest that the annotation is placed after the expression e in the
definition of letcc as in: letcc k : Id e : Expr :T . The type checker can then verify
at each use site that the expression has the type T.

In the letcc example there is a further caveat, the identifier k is provided to the
macro as argument, and the macro user will expect to be able to use the identifier in the
expression e which is the intended behavior. As an example, suppose we apply letcc

109



110 Chapter 5. Towards Strongly Typed Macros

to the arguments f and f (42) as in letcc f f (42) . The identifier will be declared be-
fore we execute the expression, which is what we want. However, the identifier will not
be part of the type environment at the use site, because f is not declared there. We need
to collect this binding information in order to extend the type environment at the use
sites and do the type check. We initially require the programmer to provide the binding
annotations, but we expect to be able to devise an analysis in the future which can
compute the needed binding information. letcc k : Id e : Expr : {k : Object→ T} : T ,
where we use Object as the super type of all types. The grammar on the right of
Figure 5.1 shows the fully type annotated letcc example.

The binding information problem is more complex than sketched here, because the
expression may be used multiple times, in which case the control flow of the macro
body determines which identifiers are declared. An analysis would need to compute a
safe approximation on the binding information available in all contexts. If an identifier
is defined in all context the analysis could compute a type for the identifier as the
largest subtype of all the types it is declared or inferred to have, and issue an error if
an identifier is not declared in all contexts.

grammar LetCC extends

{Expression, Identifier }
Expr |:=

letcc k : Id e : Expr
⇒

<[ label L
fn k(v)⇒ exit L with v
e
end L ]>

end

grammar LetCC extends

{Expression, Identifier }
Expr : T |:=

letcc k : Id e : Expr{k : Object→ T} : T
⇒

<[ label L
fn k(v)⇒ exit L with v
e
end L ]>

end

Figure 5.1: A grammar definition of a syntax for letcc , with and without type
annotations on the left and right, respectively

Another contrived, but interesting example is shown in Figure 5.2, where we define
the mania macro which takes a possible empty sequence of expressions as argument. If
the sequence is empty it returns the declaration of object O with a method foo which
takes an argument of type Boolean and if the sequence is non-empty it returns the
declaration of object O but with a definition of the method foo where the argument
type is Z32. Type checking a program which makes use of the mania macro is difficult
because in some contexts the argument foo has one type and in other contexts it
has another. Figure 5.3 shows an example, where we apply the mania macro to
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the expression 42 , and thus get O defined with a foo function that takes a Z32 as
argument. However on the next line of the program we instantiate O and call the foo
function with the value true which is a Boolean. This is a type error (we assume
Boolean and Z32 have been suitably defined).

grammar Mania extends {Declaration }
Decl |:=

mania e : Expr∗ ⇒
case e of

Empty⇒ <[ object OJK() foo(b : Boolean) = b end ]>
Cons(e1 , e2 )⇒ <[ object OJK() foo(s : Z32) = s end ]>

end

end

Figure 5.2: A macro definition which define the object O with a method foo
who’s type depends on the number of expressions

mania 42
O().foo(true)

Figure 5.3: An unsound and illegal use of the mania macro

The example shows that macros can influence the argument types of methods.
Macros can also influence which types (objects and traits) are defined, the static ar-
guments of objects and traits, the arguments to the object constructor, the extends
relationship, and the set and types of methods. Our solution to this problem is a static
analysis of macros, which we will discuss briefly in Section 5.6.

The two examples above illustrate some interesting challenges when it comes to type
checking macros. Our goal is to find useful solutions to these problems and create a
sound type system. We do so by defining the expansion algorithm as a transformation
function from a core calculus with macros called Basic Core Fortress with Macros
(BCFM) to a core calculus without macros called Basic Core Fortress (BCF). BCF is
already defined as part of the Fortress Language Specification [7]. Then we define a
type system for BCFM and prove that the expansion preserves these types, by means
of progress and preservation theorems.

Type checking is relevant for most syntactic forms, not only expressions but also
trait, object, and function definitions, where all the methods and fields must be type
checked. Our work does not ensure that macro definitions are syntactic well-formed
like in [32], e.g. that a macro does not try to compose an invalid abstract syntax tree
(AST).

The Chapter is organized as follows: In Section 5.2 we restate the Basic Core
Fortress (BCF) calculus for easy reference. Section 5.3 introduces the BCFM calculus.
In Section 5.4 we present a formal description of the complete expansion algorithm
which translates BCFM terms into BCF terms. In Section 5.5 we present a type
system for BCFM and we state the theorems that needs to be proven to show that the
expansion algorithm preserves types. We reflect on what we have learned so far and
future work in Section 5.6, and conclude in Section 5.7.
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5.2 Basic Core Fortress

In this Section we restate Basic Core Fortress (BCF) [7] for easy reference. We will be
using BCF as the target language of the expansion algorithm described in Section 5.4,
and BCF will be the foundation for BCFM described in Section 5.3. Figure 5.4 shows
the abstract syntax of the calculus, which has been designed such that BCF programs
are valid Fortress programs. A BCF program consists of zero or more definitions d
followed by an expression e, called the main expression. We will be using the shorthand
notation x throughout the chapter for a possibly comma separated sequence of x’s, it
will be clear from the context when the commas are present. We write xi when referring
to some element in the sequence x, and if x and y are sequences then we write x : y for
the sequence with elements xi : yi made by applying the operator : to the elements of
x and y pairwise. For brevity we also write ⊳ instead of the reserved word extends .
A definition is either a trait or an object definition. A trait definition td consists of the
reserved word trait followed by the name of the trait, static parameters J α ⊳ N K,
an extends clause ⊳ { N }, a number of method definitions fd, and the reserved word
end . The static parameters is a sequence of type variables α and their upper type bound
N. The upper bound can be the name of a trait TJ τ K instantiated with types τ or the
reserved word Object which is the topmost type of the type hierarchy. An extends
clause consists of a comma separated list of type names N which the trait extends. A
method definition fd consists of the name of the method, static parameters, a comma
separated sequence of arguments ( x : τ ), a return type τ , and the method body e. The
arguments consist of a variable x and a type τ .

An object definition od is similar to a trait definition except for the reserved word
object , and constructor arguments ( x : τ ).

There are five kinds of expressions e; variable x , self reference self , object in-
stantiation OJ τ K( e ), field access e.x , and method invocation e.f J τ K( e ).

The dynamic semantics of BCF programs is not particularly relevant in this work,
and we refer the reader to the Fortress Language Specification [7] for the details. The
static semantics will be presented briefly in Section 5.5.



5.3. Basic Core Fortress with Macros 113

α, β type variables
f method name
x field name
T Trait name
O Object name
τ , τ ′, τ ′′ ::= α type

| σ
σ ::= N

| OJ τ K
N, K, L ::= TJ τ K

| Object
e ::= x expressions

| self

| OJ τ K( e )
| e.x
| e.f J τ K( e )

fd ::= f J α ⊳ N K ( x : τ ):τ = e

td ::= trait TJ α ⊳ N K ⊳ { N } fd end

od ::= object OJ α ⊳N K( x : τ ) ⊳ { N } fd end

d ::= td definitions
| od

p ::= d e program

Figure 5.4: Abstract syntax for Basic Core Fortress

5.3 Basic Core Fortress with Macros

In this Section we formally introduce the Basic Core Fortress with Macros (BCFM)
calculus. BCFM is a superset of the BCF calculus and plays the same role in the syntax
normalization process as node expressions described in Chapter 4. A node expression
is the result of the parsing stage and will undergo expansion in the transformation
stage. Similarly, BCFM programs will be the result of the parsing stage, and subject
to expansion in the transformation stage.

The abstract syntax of BCFM is shown in Figure 5.5. A BCFM program consists
of zero or more macro definitions d , zero or more macro terms mt , and then a macro
term mt, called the main term. The structure is inspired by BCF and the macro terms
mt are intended to expand to BCF definitions d and the main term is intended to
expand to a BCF expression, however we don’t give any guaranties that they will be
well-behaved and expand as intended. We expect a BCFM program to be constructed
by a process very similar to the parsing stage in Chapter 4 and so the programs are
well-behaved by construction.

A macro definition is similar to a Transformer in Chapter 4 which is a named
macro with arguments (a sequence of pattern variables). A macro definition consists
of the keyword macro , a name M , static arguments J α ⊳ N K, a comma separated
sequence of pattern variable typings ( pvt ), a return type τ , and the macro body mt.
We distinguish between expressions and other syntactic forms by defining two different
kinds of pattern variable typings, one for expressions and one for the other syntactic
forms, thus a pattern variable typing pvt is either a pattern variable expression typing
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pv : η : τ or a pattern variable non-expression typing pv . An expression typing consists
of a pattern variable pv , a set of bindings η, and a type τ . A binding x : τ is a variable
x and its type τ . A non-expression typing consists of just a pattern variable pv .

Macro terms are very similar to node expressions in Figure 4.8 extended with
explicit constructors for node constructors nc, empty lists, non-empty lists, and defi-
nitions d. Macro invocation and ellipsis are two exceptions where macro invocations
also have static arguments and the second argument of the ellipsis constructor Ellipsis
is a list where 〈mt 〉 = Cons( mt ,Empty ), 〈 〉 = Empty, and 〈mt1,mt2, . . . ,mtn〉 =
Cons( mt1,Cons( mt2, . . . ,Cons( mtn,Empty ) . . . ) ).

Node constructors nc and definitions are similar to expressions and definitions
in BCF, except they refer to macro terms where the BCF counterparts would refer
to expressions. One could imagine writing a macro which would produce the static
arguments of a method definition, but we have not found any use for it yet and we
want to focus on the core properties of type checking in our macro system.
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α, β type variables
f method name
x field name
pv pattern variable
T Trait name
O Object name
C Trait or

object name
M Macro name
τ , τ ′, τ ′′ ::= α type

| σ
σ ::= N

| OJ τ K
N, K, L ::= TJ τ K

| Object

fd ::= f J α ⊳ N K ( x : τ ):τ = mt

td ::= trait TJ α ⊳ N K ⊳ { N } fd end

od ::= object OJ α ⊳ N K( x : τ ) ⊳ { N } fd end

d ::= td definitions
| od

nc ::= x node constructors
| self
| OJ τ K( mt )
| mt.x
| mt.f J τ K( mt )

mt ::= pv Macro terms
| Empty empty list
| Cons( mt, mt ) list constructor
| case mt of case dispatch

Empty ⇒ mt
Cons( pv, pv ) ⇒ mt

end

| Ellipsis( mt , 〈mt〉 ) ellipsis
| M J τ K( mt ) macro invocation
| d
| nc

pvt ::= pv : η : τ
| pv

md ::= macro M J α ⊳ N K ( pvt ):τ ⇒ mt macro definition

p ::= md mt mt program

Figure 5.5: Abstract syntax for Basic Core Fortress with Macros
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5.4 Expansion Algorithm

In this Section we present the complete expansion algorithm which rewrites BCFM
programs into BCF programs. In comparison to the algorithm presented in Chapter 4
we also include the rules for node constructors besides the rules for the new constructs
in BCFM.

The expansion algorithm is a transformation from BCFM programs to BCF pro-
grams. The algorithm is specified as a small-step operational semantics [74] which is
defined by two transition systems. The first system describes the translation of BCFM
programs p and the second system describes the translation of macro terms.

Both transition systems consist of a set of configurations σ ∈ Σ, a set of terminal
configurations T ⊆ Σ, and a transition relation →⊆ Σ× Σ.

Configurations in the first system are simply BCFM programs which subsumes
BCF programs, and BCF programs are terminal configurations. Configurations in the
second system consists of two environments and a macro term. The environments are
the definition environment Υ and the pattern variable environment Π. The definition
environment Υ contain macro definitions, and the pattern variable environment Π maps
pattern variables to values. A value is a BCF expression or definition. A terminal
configuration in the second system is a configuration where the macro term is a value.
We write “Π [pv 7→ v]” to denote an extension of Π with the new binding “pv 7→ v”.

We start by describing the system for transforming programs, which consists of two
rules [E-Program Terms] and [E-Program Term]:

[E-Program Terms]

md ; ∅ ⊢ mt i → md ; ∅ ⊢ mt ′i

⊢ md mt mt →⊢ md mt ′ mt

[E-Program Term]

md ; ∅ ⊢ mt → md ; ∅ ⊢ mt ′

⊢ md d mt →⊢ md d mt ′

The rule [E-Program Terms] performs one step of the transformation of each of the
macro terms using a definition environment consisting of all the macro definitions and
an empty pattern variable environment. The order in which the terms are reduced does
not matter, we only require that the order is deterministic. The reduction order is also
irrelevant in other rules, and we use the same notation there and only assume that the
used evaluation order is deterministic. Similarly rule [E-Program Term] performs one
step of the transformation of the main term using the same environments.

Macro terms are transformed by using the second transition system, which is de-
scribed in a number of rules for each syntactic construct. The rule [E-Pattern Variable]
is evaluated by simply looking up the pattern variable in the pattern variable environ-
ment. The rules [E-Empty], [E-Cons], and [E-Case] are as one would expect, the empty
list is the empty list, for the non-empty list we evaluate the first argument first mt1

to a value, and then the second argument, for the case dispatch we first evaluate the
argument [E-Case] to a value and if it is the empty list we evaluate mt1 (rule [E-Case
Empty]) and if it is not the empty list we evaluate mt2 in a pattern variable environment
where pv1 is bound to v1 and pv2 is bound to v2 (rule [E-Case Cons]).

[E-Pattern Variable]

Π(pv ) = v

Υ; Π ⊢ pv → Υ; Π ⊢ v
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[E-Empty]

Υ; Π ⊢ Empty

[E-Cons]

Υ; Π ⊢ mt1− > Υ; Π ⊢ mt ′1
Υ; Π ⊢ Cons( mt1, mt2 )→ Υ; Π ⊢ Cons( mt ′1, mt2 )

Υ; Π ⊢ mt2 → Υ; Π ⊢ mt ′2
Υ; Π ⊢ Cons( v, mt2 )→ Υ; Π ⊢ Cons( v, mt ′2 )

[E-Case]

Υ; Π ⊢ mt → Υ; Π ⊢ mt ′

Υ; Π ⊢ casemt of → Υ; Π ⊢ casemt ′ of
Empty⇒ mt1 Empty⇒ mt1

Cons( pv1, pv2 ) ⇒ mt2 Cons( pv1, pv2 ) ⇒ mt2
end end

[E-Case Empty]

Υ; Π ⊢ case Empty of → Υ; Π ⊢ mt1

Empty⇒ mt1
Cons( pv1, pv2 ) ⇒ mt2

end

[E-Case Cons]

Υ; Π ⊢ caseCons( v1, v2 ) of → Υ; Π [pv1 7→ v1] [pv2 7→ v2] ⊢ mt2
Empty⇒ mt1

Cons( pv1, pv2 ) ⇒ mt2
end

The rules for macro invocation [E-Macro Invocation] are almost the same as in
Chapter 4 except that we use the function pvs to compute the sequence of pattern
variables from the sequence of pattern variable typings, we do so by a simple case
match on the two kinds of typing.

[E-Macro Invocation]

Υ; Π ⊢ mt i → Υ; Π ⊢ mt ′i

Υ; Π ⊢M (mt)→ Υ; Π ⊢ M (mt ′)

macro M J α <: N K( pvt ) : τ0 ⇒ mt ∈ Υ pv = pvs( pvt )

Υ; Π ⊢ M (v)→ Υ; Π[pv 7→ v] ⊢ mt

The rules for ellipsis have not changed besides minor notational differences.

[E-Ellipses First]

|v|+ 1 = i ≤ sizeΠ( mt )
Π′ = extendΠ( PV (mt), i ) Υ,Π′ ⊢ mt → Υ,Π′ ⊢ mt ′

Υ; Π ⊢ Ellipses(mt , 〈v〉)→ Υ; Π ⊢ Ellipses(mt , 〈vmt ′〉)
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[E-Ellipses Second]

|v| = sizeΠ( mt )

Υ,Γ ⊢ Ellipses(mt , 〈v〉)→ Υ,Γ ⊢ v

where sizeΓ(n) = max (|Π(pv j)|) ∀pv j ∈ PV (n)

extendΠ({pv j}, i) =

{

pv j 7→ Π(pv j) if |Π(pv j)| = 1
pv j 7→ Π(pv j).nth(i) if |Π(pv j)| > 1

We will not go into details about the rules for transforming node constructors and
definitions because they are straight forward, evaluate the various subterms and thread
the environments along.

[E-Variable]

Υ; Π ⊢ x → Υ; Π ⊢ x

[E-Self]

Υ; Π ⊢ self→ Υ; Π ⊢ self

[E-Object]

Υ; Π ⊢ mt i → Υ; Π ⊢ mt ′i

Υ; Π ⊢ OJ τ K( mt )→ Υ; Π ⊢ OJ τ K( mt ′ )

[E-Method]

Υ; Π ⊢ mt → Υ; Π ⊢ mt ′

Υ; Π ⊢ mt .f J τ K( mt )→ Υ; Π ⊢ mt ′.f J τ K( mt )

Υ; Π ⊢ mt i → Υ; Π ⊢ mt ′i

Υ; Π ⊢ v.f J τ K( mt )→ Υ; Π ⊢ v.f J τ K( mt ′ )

[E-Trait Definition]

Υ; Π ⊢ fd i → Υ; Π ⊢ fd ′
i

Υ; Π ⊢ trait TJ α ⊳N K ⊳ { N } fd end

→

Υ; Π ⊢ trait TJ α ⊳N K ⊳ { N } fd ′ end

[E-Object Definition]

Υ; Π ⊢ fd i → Υ; Π ⊢ fd ′
i

Υ; Π ⊢ object OJ α ⊳N K( x : τ ) ⊳ { N } fd end

→

Υ; Π ⊢ object OJ α ⊳N K( x : τ ) ⊳ { N } fd ′ end

[E-Method Definition]

Υ; Π ⊢ mt → Υ; Π ⊢ mt ′

Υ; Π ⊢ f J α ⊳N K ⊳ ( x : τ ) : τ = mt
→

Υ; Π ⊢ f J α ⊳N K ⊳ ( x : τ ) : τ = mt ′
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5.5 A Type System for BCFM

In this Section we give an overview of our proposal for a type system for BCFM. We
build upon and extend the type system for BCF, where we add new rules for the new
constructs introduced in BCFM. We will only give detailed description of the new rules,
and we refer the reader to the Fortress Language Specification [7] for details on the
type rules which are shared among BCFM and BCF.

We start by describing the various environments we use in the rules, then we
describe the rules of the system, and we finish by stating progress and preservation
theorems for the type system with respect to the expansion algorithm.

The type system makes use of four environments; the definition environment Υ,
the type bounds environment ∆, the type environment Γ, and the pattern variable type
environment Π. The definition environment contains a set of types (object and trait
definitions) and macro definitions. We generally use the definition environment when
we need to ensure the presence of a definition like in rule [T-Macro Invocation] and [T-
Field]. The type bounds environment contains a sequence of type variables and their
bounds α <: N , e.g. see rule [T-Trait Definition]. The type environment maps Fortress
variables to a type x : τ . The pattern variable environment maps pattern variables to
their type pv : τ . We have separated the pattern variables and the Fortress variables
into two distinct type environments to make the distinction between the two clear.

We check the type correctness of a BCFM program using the rule [T-Program]
where we initialize the definition environment by means of a yet to be specified static
analysis which will compute a conservative approximation of the types defined by the
macros defined in the program. A program is type correct if the macro definitions and
the macro terms are well-typed (Ok), and the main term has type τ using the com-
puted definition environment and the empty type bounds, type, and pattern variable
environments.

[T-Program]

Υ = analyze(md ,md)

Υ ⊢ md Ok Υ; ∅; ∅; ∅ ⊢ mt Ok Υ; ∅; ∅; ∅ ⊢ mt : τ

md mt mt : Ok

A macro definition is well-typed if the [T-Macro Definition] rule applies, which is
very similar to the rule for trait and object definitions ([T-Trait Definition] and [T-
Object Definition]) which are the same as for BCF. First we define the type bounds
environment and use it to check that the static arguments N are well-formed (for trait
and object definition we also check the extends clause). We then compute a sequence
of elements consisting of a pattern variable, its bindings, and its type from the pattern
variable typing using the function pvTypes defined as follows:
pvTypes(pv : η : τ, ls) = [pv : η : τ ] pvTypes( ls )
pvTypes(pv , ls) = pvTypes( ls )

If it is an expression typing then we add the pattern variable, the bindings, and the
type to the sequence computed by applying pvTypes recursively on the rest of the
sequence of the pattern variable typing. If the typing is a non-expression typing then
we just apply pvTypes recursively.

We check the well-formedness of the types computed by pvTypes and then compute
the type τ ′ of the macro body under the assumption that the pattern variables have
the type computed by pvTypes, and we check that the declared return type of the
macro τ0 is well-formed and that τ ′ is a subtype of τ0.
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[T-Macro Definition]

∆ = α <: N Υ; ∆ ⊢ N Ok pv : η : τ = pvTypes( pvt )
Υ; ∆ ⊢ τ Ok Υ; ∆; ∅; [pv : τ ] ⊢ mt : τ ′ Υ; ∆ ⊢ τ0 Ok Υ; ∆ ⊢ τ ′ <: τ0

Υ ⊢ macro M J α ⊳N K( pvt ) : τ0 ⇒ mt Ok

[T-Trait Definition]

∆ = α <: N Υ; ∆ ⊢ N Ok

Υ; ∆ ⊢ L Ok Υ; ∆; [self : TJ α K] ; Π; T ⊢ fd Ok oneOwnerΥ( T )

Υ; ∆; Γ; Π ⊢ trait TJ α ⊳N K ⊳ { L } fd end Ok

[T-Object Definition]

∆ = α <: N

Υ; ∆ ⊢ N Ok Υ; ∆ ⊢ τ Ok Υ; ∆ ⊢ L Ok Υ; ∆; Γ [x : τ ] ; Π ⊢ vd Ok

Υ; ∆; Γ [self : OJ α K] [x : τ ] ; Π; O ⊢ fd Ok oneOwnerΥ( T )

Υ; ∆; Γ; Π ⊢ object OJ α ⊳ N K(x : τ ) ⊳ { L } vd fd end Ok

The rules for [T-Method Definition]] and method overriding ([Override]]) are the
same as for BCF.

[T-Method Definition]

C ⊳ { L } ∈ Υ Υ; ∆ ⊢ override(f , { L }, J α ⊳N Kτ → τ0)
∆′ = ∆

[

α <: N
]

Υ; ∆′ ⊢ N Ok Υ; ∆′ ⊢ τ Ok

Υ; ∆′ ⊢ τ0 Ok Υ; ∆′; Γ [x : τ ] ; Π ⊢ mt : τ ′ Υ; ∆′ ⊢ τ ′ <: τ0

Υ; ∆; Γ; Π; C ⊢ f J α ⊳N K(x : τ ) : τ0 = mt Ok

Method overriding: Υ; ∆ ⊢ override(f , { L }, J α ⊳N Kτ → τ)

[Override]

⋃

Li∈{L}

mtypeΥ( f , Li ) = J β ⊳K Kτ ′ → τ ′0

N = [α/β]K τ = [α/β]τ ′ Υ;α <: N ⊢ τ0 <: [α/β]t′0

Υ; ∆ ⊢ override(f , { L }, J α ⊳N Kτ → τ0)

We now present the five new rules we have added for macro term typing; [T-Pattern
Variable], [T-Empty], [T-Cons], [T-Case], and [T-Macro Invocation]. The first four rules
are standard rules as one would expect. If the term is a pattern variable we look it
up in the pattern environment and get its type. If the term Empty then it has the
type Empty. If the term is Cons then it has the type ListJ τ K if all the elements in
the list has type τ . We assume that the types Empty and ListJ τ K are build-in types
s.t. EmptyJ τ K ⊳ ListJ τ K. The rule for case dispatch is also straight forward, first
we check that the argument mt0 has type ListJ τ K, then we check the subterm mt1 in
the same environments, then the subterm mt2 in environments where pv1 and pv2 are
bound to τ ′ and ListJ τ ′ K respectively, and finally we check to see if the types of the
subterms are subtypes of the resulting type of the case dispatch.

The interesting part of macro term typing is the rule for macro invocation [Macro
Invocation]. The rule is very similar to the rule for method invocation because macro
invocation is very similar to method invocation. We start by looking up the macro
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definition in the definition environment Υ. Then we check if the static arguments τ
are well-formed and that they are subtypes of the bounds on the static arguments
where we substitute the static arguments for the type variables τ <: [τ/α]N . Then
we compute the sequence of pattern variables, bindings, and types using pvTypes and
use the bindings to compute the type of the arguments Υ; ∆; Γ η; Π ⊢ mt : τ ′′ and use
the types to check that the computed types are indeed subtypes of the expected types
τ ′′ <: [τ/α]τ ′.

[T-Pattern Variable]

Υ; ∆; Γ; Π ⊢ pv : Π(pv )

[T-Empty]

Υ; ∆; Γ; Π ⊢ Empty : EmptyJ τ K

[T-Cons]

Υ; ∆; Γ; Π ⊢ mt1 : τ Υ; ∆; Γ; Π ⊢ mt2 : ListJ τ K

Υ; ∆; Γ; Π ⊢ Cons(mt1,mt2) : ListJ τ K

[T-Case]

Υ; ∆; Γ; Π ⊢ mt0 : ListJ τ ′ K Υ; ∆; Γ; Π ⊢ mt1 : τ1
Υ; ∆; Γ; Π [pv1 : τ ′] [pv2 : ListJ τ ′ K] ⊢ mt2 : τ2 Υ; ∆; Γ; Π ⊢ τi <: τ

Υ; ∆; Γ; Π ⊢ casemt0 of : τ
Empty⇒ mt1
Cons(pv1, pv2)⇒ mt2

end

[T-Macro Invocation]

macro M J α <: N K( pvt ) : τ0 end ∈ Υ

Υ; ∆ ⊢ τ Ok Υ; ∆ ⊢ τ <: [τ/α]N

pv : η : τ ′ = pvTypes( pvt ) Υ; ∆; Γ η; Π ⊢ mt : τ ′′ Υ; ∆ ⊢ τ ′′ <: [τ/α]τ ′

Υ; ∆; Γ; Π ⊢ M J τ K( mt ) : [τ/α]τ0

The rules for node constructors are the same as the rules for expressions in BCF,
except for a minor naming difference. We write mt where the rules for BCF would have
had an e.

[T-Var]

Υ; ∆; Γ; Π ⊢ x : Γ(x )

[T-Self]

Υ; ∆; Γ; Π ⊢ self : Γ(self)

[T-Object]

object OJ α ⊳ K( : τ ′ ) end ∈ Υ

Υ; ∆ ⊢ OJ τ K Ok Υ; ∆; Γ; Π ⊢ mt : τ ′′ Υ; ∆ ⊢ τ ′′ <: [τ/α]τ ′

Υ; ∆; Γ; Π ⊢ OJ τ K( mt ) : OJ τ K
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[T-Field]

object OJ α ⊳ K( x : τ ) end ∈ Υ
Υ; ∆; Γ; Π ⊢ mt0 : τ0 bound∆( τ0 ) = OJ τ ′ K

Υ; ∆; Γ; Π ⊢ mt0.xi : [τ ′/α]τi

[T-Method]

Υ; ∆; Γ; Π ⊢ mt0 : τ0
mtypeΥ( f , bound∆( τ0 ) ) = { J α ⊳ N Kτ ′ → τ ′0 } Υ; ∆ ⊢ τ Ok

Υ; ∆ ⊢ τ <: [τ/α]N Υ; ∆; Γ; Π ⊢ mt : τ ′′ Υ; ∆ ⊢ τ ′′ <: [τ/α]τ ′

Υ; ∆; Γ; Π ⊢ mt0.f J τ K( mt ) : [τ/α]τ ′0

The rules for method type lookup ([MT-Self], [MT-Super], and [MT-Obj]), sub
typing ( [S-Refl], [S-Obj], [S-Trans], [S-Var], and [S-Tapp]), well-formed types ([W-Obj],
[W-Var], and [W-Tapp]), bound of types, and check for one owner for all visible methods
([One Owner]) are all unchanged compared to BCF. The rules makes use of an auxiliary
function for method name lookup:

Fname( f J α ⊳N K( x : τ ) : τ = mt ) = f .

[MT-Self]

CJ α ⊳ K fd ∈ Υ f J β ⊳N K( : τ ′) : τ ′0 = mt ∈ { fd }

mtypeΥ( f , CJ τ K ) = { J τ/α KJ β ⊳N Kτ ′ → τ ′0 }

[MT-Super]

CJ α ⊳ K ⊳ { N } fd ∈ Υ f 6∈ { Fname( fd ) }

mtypeΥ( f , CJ τ K ) =
⋃

Ni∈{ N }

mtypeΥ( f , J τ/α KNi )

[MT-Obj]

mtypeΥ( f , Object ) = ∅

[S-Refl]

Υ; ∆ ⊢ τ <: τ

[S-Obj]

Υ; ∆ ⊢ τ <: Object

[S-Trans]

Υ; ∆ ⊢ τ1 <: τ2 Υ; ∆ ⊢ τ2 <: τ3

Υ; ∆ ⊢ τ1 <: τ3

[S-Var]

Υ; ∆ ⊢ α <: ∆( α )
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[S-Tapp]

CJ α ⊳ K ⊳ { N } ∈ Υ

Υ; ∆ ⊢ CJ τ K <: J τ/α KNi

[W-Obj]

Υ; ∆ ⊢ Object Ok

[W-Var]

α ∈ dom( ∆ )

Υ; ∆ ⊢ α Ok

[W-Tapp]

CJ α ⊳N K ∈ Υ Υ; ∆ ⊢ τ Ok Υ; ∆ ⊢ τ <: J τ/α KN

Υ; ∆ ⊢ CJ τ K Ok

Bound of type: bound∆( τ ) = σ

bound∆( α ) = ∆( α )
bound∆( σ ) = σ

[One Owner]

∀f ∈ visibleΥ( C ) . f only occurs once in visibleΥ( C )

oneOwnerΥ( C )

definedΥ( C ) = { Fname( Fd ) }
where C fd end ∈ Υ

inheritedΥ( C ) =
⋃

Ni∈{ N }{ fi | fi ∈ visibleΥ( Ni ), fi 6∈ definedΥ( C ) }

where C ⊳ { N } ∈ Υ
visibleΥ( C ) = definedΥ( C ) ∪ inheritedΥ( C )

We want to be able to do a modular type check of BCFM programs which guar-
antees that the resulting BCF programs will also be well-typed. We have already
presented a modular type system for BCFM, and we intend to prove that the transfor-
mation algorithm preserves the types by means of the following progress and preserva-
tion theorems. We assume that BCFM programs are well-behaved by construction –
the sequence of macro terms mt expands to a syntactically valid sequence of definitions,
and the main term expands to a syntactically valid expression.

Theorem 5.1 (Progress) If Υ; ∆; Γ; Π ⊢ mt : τ , for some τ , is a closed macro term
then either mt is a value (a BCF term) or Υ; ∆; Γ; Π ⊢ mt → Υ; ∆; Γ; Π ⊢ mt ′

Theorem 5.2 (Preservation) If Υ; ∆; Γ; Π ⊢ mt : τ and Υ; ∆; Γ; Π ⊢ mt → Υ; ∆; Γ; Π ⊢
mt ′, for some macro term mt ′, then Υ; ∆; Γ; Π ⊢ mt ′ : τ .
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5.6 Reflections and Future Work

In this Section we present some thoughts on the type system, typed macros in general,
and future work.

The type system is an extension of the type system for BCF where we treat macro
definitions and invocations in much the same way as method definitions and invoca-
tions. The interesting feature of the type system is that it allows us to type check
interesting macros like the letcc example from Section 5.1, and that we have identi-
fied the need for the definition environment Υ and binding information on expressions.

The definition environment is needed because the macro definitions in a given
program may introduce different types depending on the syntax of the program. The
types may differ on the name of the types, the static arguments, the sequence of
arguments (for objects), the extends clauses, the set of methods, the types on method
arguments, and return types on methods. The expansion algorithm includes a case
dispatch which gives rise to path sensitivity issues. We might define a set of correlated
macros that when used properly produces a well-formed and well-typed program, the
challenge here will be the same as for other analysis where path sensitivity is an issue.

A conservative approximation to the definition environment Υ can be computed in
at least three different ways:

1. Each time there are two different definitions, then pick the most specific of the
two

2. Compute a new conservative least-upper-bound defnition

3. Issue an error if we discover two possibly different definitions

We go for 2. since it is more precise than 1. which also involves defining what “most
specific” means. We intend to compute a conservative approximation to the definition
environment using the monotone framework, that will involve defining a partial order
for all the parts (name, static arguments, arguments, extends clause, set of methods,
and types on the methods) of a definition which may differ. The specification of the
partial order will make use of the partial order introduced by the subtype relation and
the extends clause. We leave the definition of the partial order as future work.

In the current proposal for the type system we require the macro-definer to annotate
expression arguments with bindings for any free identifiers in the expression. However,
the result of the type check may be unsound if the annotations are not correct. It
would therefore be very useful if we could infer correct annotations to the benefit of
the programmer. It is straight forward to compute the set of free identifiers in an
expression, however their type may depend on the control flow and the contexts in
which the expression occurs. However we believe that it is possible to compute a type
for each such identifier as a greatest lower bound on the possible types. We leave the
specifics of such an algorithm as future work.

The type system supports polymorphic or generic macros by means of type variables
which can be used to give the arguments or the return value some polymorphic type.
However, to what degree are polymorphic macros needed. As we saw in the letcc

example we need parametric polymorphism when specifying what we call control flow
macros. A control flow macro is a macro that introduces some new control flow in a
program, like letcc . As another example lets look at the church encoding of booleans.
We define true ( tru ) and false ( fls ) as two functions which take two arguments each
and returns the first and the second argument, respectively. We define the type of the
arguments to be integers (Z32).

tru = fn t : Z32⇒ fn f :Z32⇒ t
fls = fn t : Z32⇒ fn f :Z32⇒ f
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We first define the notational shorthand IntBool as a type for functions like tru and
fls which takes two integers as arguments and return an integer. We then define the
cond macro which takes three arguments, a function of type IntBool and two integers.
The cond macro will apply the first argument to the two other arguments:

IntBool = Z32→ Z32→ Z32
macro condJK(c : {} : IntBool, t : {} :Z32, f : {} :Z32) : Z32⇒ c(t(f ))

The definition enables us to conditionally choose between two integer expressions:
cond(tru, 42, 84) , that will evaluate to 42 as expected. However, if we apply cond to
three booleans: cond(tru, fls, tru) then it should and would be a type error because
cond is not defined for booleans. We could easily make a new definition for cond which
would allow us to conditionally choose between two booleans, but that would lead to
code duplication.

The better solution would be to use polymorphism:

macro condJ T K(c : {} : T→ T→ T, t : {} : T, f : {} :T) : T ⇒ c(t(f ))

Which is a single definition and allows both uses of the macro: cond(tru, 42, 84) and
cond(tru, f ls, tru) . Thus our conclusion, that control flow macros need parametric
polymorphism.

5.7 Conclusion

We have presented the Basic Core Fortress (BCF) and Basic Core Fortress with Macros
(BCFM) calculi along with a type system for BCFM, which prevents type errors in
expanded macros. We also presented a complete description of the expansion algorithm
from BCFM to BCF and formulated progress and preservation theorems with respect to
the type system and the expansion algorithm. We identified the needs for a conservative
approximation of which types are defined in a program with macros and the need
for computing binding information associated with expression arguments to macro
invocations. We leave the definition of how to compute these as future work along with
the proofs for progress and preservation.





Conclusion

An investment in knowledge always pays the best interest
— Benjamin Franklin

We conclude that it is feasible and useful to create programming languages with strong
security guarantees for secure multiparty computation.

We have designed and implemented a high-level, domain-specific language called
the Secure Multiparty Computation Language (SMCL), which allows programmers to
express key concepts from the domain of secure multiparty computation precisely and
without expert knowledge on how to design and implement cryptographic protocols.

We have developed a concurrent semantics for the entire SMCL language. The
semantics is carefully crafted to ensure security of SMCL programs, along with an effect-
based type system for SMCL which prevents SMCL programs from getting “stuck” and
approximate our concept of hoistability. An SMCL program can get “stuck” as the
result of an insecure operation. The type system also provides better precision than
previous type systems for noninterference, and we prove its soundness.

SMCL programs are always secure against a broad spectrum of attacks, which
exploits physical measurements an adversary may perform during the computation of
an SMCL program. We defined the concept of trace security which is based on a
formalization of physical measurements and we show that SMCL programs are trace-
secure under the reasonable assumption that all the operations of the runtime we use
are trace-secure.

We have also identified the concept of semantic security, where information may
be revealed through values that are intentionally opened. It is the responsibility of the
programmer of SMCL programs to ensure that such information is not a security prob-
lem. The programmer gets some help from the SMCL compiler in terms of warnings
about the relationship among opened variables, however we issue no guarantees.

The lack of guarantees for semantic security lead us to work on the domain-specific
language PySMCL which is embedded in Python. In PySMCL we require explicit
definition of the intended ideal functionality in the program using two different kinds
of open expressions, and we intend to verify that the program does indeed UC-realize
the ideal functionality by automatically generating a machine checkable proof. We
provide a proof stub for a lemma whenever information may leak in ways that are not
explicitly allowed by the ideal functionality. The proof stub must be completed by the
programmer in order to make the whole proof go through

We have described how we intend to embed PySMCL in Python in a seamless way
by using function decorators and a careful choice of domain-specific value constructors.
The sketched implementation of PySMCL will be faithful to the dynamic nature of
Python by not requiring a separate compilation/verification step as verification and
preprocessing is done dynamically as the file is loaded by the Python interpreter

We also provided a core calculus for PySMCL which we expect will be a useful
stepping stone for defining formal versions of the suggested analysis along with proofs
of the security properties of PySMCL programs.

127



128 Conclusion

All of this shows that it is feasible to create programming languages with strong
security guarantees for secure multiparty computation. We have also shown that such
languages can be useful. We have shown example SMCL programs which among others
include generalizations of the seminal Millionaire’s problem and a fully fledged imple-
mentation of a double auction which has been used in the very first large-scale practical
application of secure multiparty computation. This is a huge testimony to the useful-
ness of SMCL. It is noteworthy that about 80% of the respondents in an on-line survey
carried out in connection to the double auction said that it was important to them that
the bids were kept confidential, and also that they were happy about the confidential-
ity that the system offered. Which means that confidentiality is seen as important by
ordinary people, at least when money and clear conflict of interests is involved.

We have also worked on improving the usefulness of programs for secure multi-
party computation by creating an optimization which potentially reduces the number
of multiplications on secret values in an SMCL program and proved that it is correct.
A multiplication on secret values may be up to 1000 times as slow as multiplications
on non-secret values.

We also conclude that syntactic abstraction can enable programming languages to
evolve over time by providing new syntax and semantics as they become needed.

We have designed a syntactic abstraction system for the Fortress programming
language, which allows new syntax and semantics to be added in libraries as they
become needed. The system enables the language to gracefully adapt to unanticipated
needs as they become apparent over time.

Our system for syntax abstraction is based on parsing expression grammars, allows
user-defined syntax to be indistinguishable from core Fortress syntax, and provides
composition of independent extensions. The Fortress syntactic abstraction mechanism
is so flexible that various language constructs can be moved from the core language
syntax into libraries.

We have also designed an extension of the Basic Core Fortress (BCF) calculus called
Basic Core Fortress with Macros (BCFM), and a type system for BCFM, which extend
the static guarantees provided by the type system for BCF to cover BCFM. The type
system ensures that use site type errors are caught at the invocation of macros and
that no type errors occur in the expanded code if the macro definitions in a program
are well typed.

We have stated progress and preservation theorems with respect to the type system
and the expansion algorithm, and identified the needs for a conservative approximation
of which types are defined in a BCFM program and the need for computing binding
information associated with expression arguments to macro invocations. We leave the
definition of how to compute these as future work along with the proofs for progress
and preservation.



Appendix A

SMCL Goes Live

A.1 Implementation of Double Auction

class abstract Farmer {
String name ;

}
class SellingFarmer

extends Farmer {
SellBid[ ] bids ;

}
class SellBid {

sint amount ;
sint contractId ;

}
class BuyingFarmer

extends Farmer {
sint[ ] bids ;

}

class AuctionResult {
int mcp ;
int p1 ;
int p2 ;
int p3 ;
int z1 ;
int z2 ;
int z3 ;
int k ;
Contract[ ] contracts ;

}
class Contract {

int id ;
int amount ;

}

Figure A.1: Classes used in the Double Auction example

declare server DoubleAuction: {
tunnel of BuyingFarmer buyingFarmers ;
tunnel of SellingFarmer sellingFarmers ;

Figure A.2: Double Auction implemented in SMCL
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function sint[ ] computeAgrDemand () {
sint[ ] agrDemand = new sint[4000];
foreach (BuyingFarmer f in buyingFarmers ) {

if (checkBuyingFarmer (f )) {
for (int inx =0; inx < agrDemand . length ; inx ++) {

agrDemand [inx ] += f .getBids (inx );
}

}
}

}

Figure A.3: Implementation of aggregated demand

function sint[ ] computeAgrSupply () {
sint[ ] agrSupply = new sint[4000];
foreach (SellingFarmer f in sellingFarmers ) {

if (checkSellingFarmer (f )) {
for (int inx =0; inx < agrSupply . length ; inx ++) {

agrSupply [inx ] += f .getBids (inx ).getPrice ();
}

}
}

}

Figure A.4: Implementation of aggregated supply
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function void main : {
sint[ ] agrDemand = computeAgrDemand ();
sint[ ] agrSupply = computeAgrSupply ();
AuctionResult res = searchPrice (agrDemand , agrSupply );
if (res .getP1 () == agrDemand . length ) {
display ( ‘‘P1 = 4000, so no computation of’’

+ ‘‘marginal bids is possible’’;

res .setMcp (getInput ());
openFinalBids (res );
return ;

}
// compute marginal bids
int k = 0;
int base = res.getP1();
boolean repeat = promptComputeMarginal (res );
while (repeat ) {

base += k ;
k = searchMarginal (base , agrDemand );
boolean marg = openMarginalBids (k , base , res , agrDemand );
if (!marg ) {

display ( ‘‘No more marginal bids found.’’ );
break;

}
// only continue if we end up at price less than 4000
if (base < agrDemand . length - 1) {

repeat = promptComputeMarginal (res );
}

else {
break ;

}
}
res .setMcp (getInput ());
openFinalBids (res );
return ;

}

Figure A.5: Main function of the Double Auction server
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function AuctionResult searchPrice
(sint[ ] agrDemand , sint[ ] agrSupply ) {
AuctionResult res = new AuctionResult();
int s1 = search1 (agrDemand , agrSupply );
int s2 = search2 (agrDemand , agrSupply );
if (s1 == s2 ) {

int tz = open (agrDemand [s1 ] - agrSupply [s1 ] |
agrDemand , agrSupply , s1 );

if (tz == 0) {
res .setP1 (s1 );
res .setP2 (s1 );
res .setZ1 (tz );
res .setZ2 (tz );

} else if (tz > 0) {
res .setP1 (s1 ); // p2 , z2 undefined
res .setZ1 (tz );

} else {
res .setP2 (s1 ); // p1 , z1 undefined
res .setZ2 (tz );

}
} else {

res .setP1 (s1 );
res .setP2 (s2 );
res .setZ1 ( open (agrDemand [s1 ] - agrSupply [s1 ] |

agrDemand , agrSupply , s1 ));
res .setZ2 ( open (agrDemand [s2 ] - agrSupply [s1 ] |

agrDemand , agrSupply , s2 ));
}
if (res .getP1 () != null && res .getP2 () != null ) {
double p3 = (res .getP2 () + res .getP1 ()) / 2.0;
res .setP3 (p3 );
sint z3 = agrDemand [res .getP2 ()] - agrSupply [res .getP1 ()];
res .setZ3 ( open (z3 | z3 ));

}
// open up and store agrDemand [p1 ], agrSupply [p1 ],
// agrDemand [p2 ], agrSupply [p2 ], agrDemand [p3 ], agrSupply [p3 ]
if (res .getP1 () != null ) {

res .setDemand1( open (agrDemand [res .getP1 ()] | agrDemand , res));
res .setSupply1( open (agrSupply [res .getP1 ()] | agrSupply , res));

}
if (res .getP2 () != null ) {

res .setDemand2( open (agrDemand [res .getP2 ()] | agrDemand , res));
res .setSupply2( open (agrSupply [res .getP2 ()] | agrSupply , res));

}
if (res .getP3() != null ) {
res .setDemand3( open (agrDemand [res .getP2 ()] | agrDemand , res));
res .setSupply3( open (agrSupply [res .getP1 ()] | agrSupply , res));
}
return res ;

}

Figure A.6: The searchPrice function computes the indicies of the potential
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function int search1 (sint[ ] agrDemand , sint[ ] agrSupply ) {
int low = 1;
int high = agrSupply . length + 1;
while ( low + 1 < high ) {

int mid = ( low + high + 1) / 2;
sbool res = agrDemand [mid - 1] == (agrSupply [mid - 1]);
if ( open (res | res )) {

low = mid ;
} else {

high = mid ;
}

}
return low - 1;

}

Figure A.7: Binary search for the upper bound on the index of the market
clearing price

function int search2 (sint[ ] agrDemand , sint[ ] agrSupply ) {
int low = 0;
int high = agrSupply . length ;
while ( low + 1 < high ) {

int mid = ( low + high ) / 2;
sint t = agrSupply [mid - 1] + 1;
sbool res = agrDemand [mid - 1] == t ;
if ( open (res | res )) {

low = mid ;
} else {

high = mid ;
}

}
return high - 1;

}

Figure A.8: Binary search for the lower bound on the index of the market
clearing price
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function int searchMarginal (int p , sint[ ] agrDemand ) {
int low = 0;
int high = agrDemand . length - p - 1;
while ( low + 1 < high ) {

int mid = ( low + high + 1) / 2;
sint t = agrDemand [p + mid ] + 1;
sbool res = agrDemand [p ] == t ;
if ( open (res | res )) {

high = mid ;
} else {

low = mid ;
}

}
return high ;

}

Figure A.9: Implementation of search for marginal prices

function bool checkBuyingFarmer(BuyingFarmer f ) {
return (f .getBids (). length == 4000);

}
function bool checkSellingFarmer(SellingFarmer f ) {
return f .getBids (). length == 4000;

}

Figure A.10: Functions for sanity checks

function void promptComputeMarginal(AuctionResult res ) {}
function void openMarginalBids(int k , int base ,

AuctionResult res , sint[ ] agrDemand ) {}

Figure A.11: Functions stubs for easier integration
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