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Model-Checking Real-Time Control Programs
Verifying LEGO  MINDSTORMS  Systems Using UPPAAL

Torsten K. Iversen K˚are J. Kristoffersen Kim G. Larsen Morten Laursen
Rune G. Madsen Steffen K. Mortensen Paul Pettersson Chris B. Thomasen

BRICS∗, Department of Computer Science, Aalborg University,
Fredrik Bajersvej 7E, DK-9220 Aalborg East, Denmark.

E-mail: {torsten,jelling,kgl,morten,rune,kondrup,paupet,chris }@cs.auc.dk

Abstract

In this paper, we present a method for automatic veri-
fication of real-time control programs running on LEGO
RCX bricks using the verification toolUPPAAL. The con-
trol programs, consisting of a number of tasks running con-
currently, are automatically translated into the timed au-
tomata model ofUPPAAL. The fixed scheduling algorithm
used by the LEGO RCX processor is modeled inUP-
PAAL, and supply of similar (sufficient) timed automata
models for the environment allows analysis of the overall
real-time system using the tools ofUPPAAL. To illustrate
our techniques we have constructed, modeled and verified
a machine for sorting LEGO bricks by color.

1 Introduction

Real-time systems consist of a control program operat-
ing in a time-sensitive environment (a piece of hardware
or a physical plant). As such it is imperative that the ser-
vices of the control program are offered in a timely manner
in order that the behavior of the environment is supervised
and controlled appropriately. The interaction between the
(discrete) control program and the (potentially analog) en-
vironment takes place via various sensors and actuators (see
Figure 1).

Designing and verifying real-time systems not only re-
quires a model of the tasks constituting the control program,
but also calls for a model of the environment which is suf-
ficiently detailed for the properties of concern. As the in-
teraction between the tasks of the control program and the
environment is assumed to be time-sensitive it is important

∗BasicResearchIn ComputerScience, Centre of the Danish National
Research Foundation.
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Figure 1. In our framework the tasks and
scheduler are automatically translated to
timed automata. Sensors and actuators are
modeled by integer variables containing their
readings and settings. The user provides a
timed automaton model of the environment.

that our model also takes into account the overhead intro-
duced by the particular algorithm applied for scheduling
tasks.

In this paper, we present a method for automatic veri-
fication of real-time control programs running on LEGO
RCX bricks using the verification tool UPPAAL [9]. The
LEGO RCX brick (see Figure 9) is part of LEGO
MINDSTORMS and LEGO ROBOLAB. The RCX
brick is essentially a big LEGO brick with a small pro-
cessor inside. The brick has six communication ports to the
environment: three sensor inputs and three actuator outputs.
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*** Task 0 = main
000 PlaySound 1 51 01
002 Delay 100 43 02 64 00
006 Jump 0 72 87 00

Figure 2. A simple RCX  program that peri-
odically plays a sound.

An infrared port enables communication between RCX
bricks and allows for easy download of programs

The control programs — consisting of a number of tasks
running concurrently — are automatically translated into
the timed automata model of UPPAAL. The fixed schedul-
ing algorithm used by the LEGO RCX processor is
modeled in UPPAAL, and supply of similar (sufficient)
timed automata models for the environment allows analysis
of the overall real-time system using the tools of UPPAAL.

Related work includes the work of Corbett [4] and
Björnfot [3], which both address the problem of analyzing
Ada programs using verification tool such as HyTech [5]
and UPPAAL [9]. More closely related is our work [7] where
we synthesize RCX control programs from UPPAAL mod-
els. The work by Hune in [6] is even closer related. On one
hand our modeling of the scheduling algorithm is simpler
which on the other hand allows us to verify scenarios with
more detailed models of the environment.

In Section 2, we present the preliminaries of this pa-
per, including a brief description of the programming lan-
guage(s) used to program the RCX bricks, and a brief
summary of UPPAAL. Section 3, describes our translation
of control programs and modeling of the scheduler. Section
4 and 5 then applies our method to the modeling and veri-
fication of a sorting machine for LEGO bricks1. UPPAAL

is successfully applied to prove that indeed the bricks are
sorted correctly. Additionally UPPAAL succeds in pointing
out an error in a setting where the model of the environ-
ment doesnot satisfy the assumptions made by the control
program.

2 Preliminaries

2.1 The RCX

We shall consider control programs execut-
ing on the LEGO RCX brick [11], part of the
LEGOMINDSTORMS and LEGO ROBOLAB
series. The RCX brick is basically a big LEGO brick
with a built in (small) processor. It has a speaker, three
sensor input ports, three actuator output ports, and an

1Ordinary, old-fashioned, LEGO bricks.

task main{
while( true ) {

PlaySound( 1 );
Sleep( 100 );

}
}

Figure 3. A simple NQCprogram that periodi-
cally plays a sound.

S0 S1 S2

T0

y<=42

T1

P:
i:=i+1 x==5

a!

Q:
a?

Figure 4. A simple UPPAAL model.

infrared port for communication between bricks and for
easy downloading of programs from an external computer.

The RCX brick is equipped with an interpreter capable
of handling programs with up to ten tasks and 32 integer
variables. It interprets an assembly like low level language
which we will call RCX byte code. An small RCX byte
code program with one task that plays a beep sound every
ten second is shown in Figure 2.

2.2 Not Quite C

The RCX brick is shipped with a graphical program-
ming language. We have chosen to use a programming
language with a textual C like syntax called Not Quite C,
NQC[2]. It enables programming of the RCX at a higher
level of abstraction than the RCX byte code language and
is more appropriate for our purposes than a graphical lan-
guage.

A NQCprogram, like a RCX byte code program, is
restricted to ten tasks and 32 global integer variables. In
addition, theNQCprograms may be defined using sub rou-
tines. A NQCprogram always starts by executing a dedi-
catedmain task. The remaining tasks are started by other
tasks. A simpleNQCtask with the same behavior as the
RCX byte code program in Figure 2 is shown in Figure 3.

2.3 UPPAAL

UPPAAL2 is a modeling, simulation, and verification tool
for real-time systems modeled as networks of timed au-
tomata [1] extended with data types such as bounded integer

2See the web sitehttp://www.uppaal.com/.
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NQCcompiler rcx2uppaal

Figure 5. Overview of translation from NQC
programs to timed automata.

variables, arrays etc. For a thorough description of UPPAAL

see [9].
Figure 4 shows an UPPAAL model consisting of two par-

allel timed automataP andQ with two and three locations
respectively (i.e.S0 to S2andT0 to T1). They use the two
clocksx andy , an action channela, and an integer variable
i . Initially all clocks and integer variable values are zero.

When automataP takes the transition fromS0 to S1 the
integer variablei is incremented by one. ForP to go from
locationS1to S2the clockx is required to be exactly 5 (by
the guardx==5 ). On the same transition, the automaton
must also synchronize on channela with automataQ, as the
edge is labeled with the actiona! . Furthermore, automaton
Q can not delay in locationS0 for more than 42 time units
because of the location invarianty<=42 .

UPPAAL can check reachability and invariance prop-
erties of boolean combination of automata locations, and
clocks and integers constraints. In UPPAAL, E<>φ ex-
presses that it is possible to reach a state satisfyingφ. Du-
ally, A[] φ expresses invariance ofφ. For example, property
E<>Q.T1 specifies that automataQ can reach location. The
propertyA[] (y>42 imply Q.T1) states that automataQ
is always operating in locationT1 when clocky is greater
than 42. The two properties are both satisfied in the model.

3 From RCX to Timed Automata

In this section we describe an automated procedure for
translatingNQCcontrol programs into the timed automata
modeling language of the UPPAAL tool. The procedure is
illustrated in Figure 5. It is performed in two steps.

The first step is to compile the inputNQCprogram, con-
sisting of a set ofNQCtasks and (global) variables, into an
RCX byte code program. This is done by theNQCcom-
piler [2].

In the next step, the programrcx2uppaal uses the
produced RCX byte code and a set of timing parameters
specifying the timing requirements for performing the vari-

RCX_start
RCX_timer<1

RCX_inSched
RCX_timer<=CS

RCX_inTask

RCX_active[0]:=1,
RCX_currentTask:=0,
RCX_timer:=0

RCX_active[RCX_currentTask]==0,
RCX_timer==CS

RCX_timer:=0,
RCX_currentTask:=RCX_currentTask+1

RCX_active[RCX_currentTask]==1,
RCX_timer==CS
RCX_timer:=0 RCX_Go!

RCX_timer:=0,
RCX_currentTask:=RCX_currentTask+1

RCX_Go?

Figure 6. Timed automata model of a round-
robin scheduler.

ous run-time instruction of the RCX brick. From this in-
put a network of timed automata is produced in which each
task of the RCX program is modeled as a timed automaton
reflecting its operational and timing behavior. The (global)
variables are modeled as (global and bounded) integer vari-
ables. In addition, thercx2uppaal program also takes as
input timed automata models of the RCX scheduling algo-
rithm and the components in the surrounding environment
of the RCX brick, affecting the sensors and actuators con-
nected to its input and output ports. The scheduler model is
instantiated with timing parameters, merged with the model
of the environment and the model of the RCX program to
produce the final output: a network of timed automata in the
input format of the UPPAAL tool.

In the reminder of this section we describe the scheduler
model, the translation of RCX programs, and the model
of interaction with the environment in more detail.

3.1 The RCX Scheduler

The RCX brick scheduler executes the task programs
in round-robin order. The method described here is not
restricted to a particular scheduling algorithm. We use a
round-robin scheduler in the presentation as it is simple,
well-known, and moreover the actual algorithm used in the
RCX bricks.

A timed automata model of the round-robin scheduler is
shown in Figure 6. It uses the bit arrayRCXactive , the
(bounded) integer variableRCXcurrentTask , and the
clock RCXtimer to implement round-robin scheduling.
The variableRCXcurrentTask is always assigned the
value of the executing task (or the task to be executed next
if no task is executing). The bit arrayRCXactive has one
element for each task indicating if the corresponding task is
active (i.e. waiting to be executed) or not. We usea[i] to
denote the value of elementi in arraya. Taski is active if
RCXactive[ i] = 1, otherwise inactive.

When the scheduler is started, it first executes the
special taskmain (or task 0). This is reflected in Fig-
ure 6 by the assignmentsRCXactive[0]:=0 and
RCXcurrentTask:=0 on the transition from location

3



idle

started

done
RCX_timer<=SetTime

end

RCX_currentTask==n

RCX_timer:=0

RCX_Go?

x:=value

RCX_timer==SetTime

RCX_Go!

Figure 7. Timed automata model of the Set
instruction.

RCX start to RCX inSched, which activates task0 and
make it the next to be executed.

After initialization, the scheduler executes the ac-
tive tasks in fixed order by repeatedly incrementing
RCXcurrentTask by one and executing the corre-
sponding task. If taskRCXcurrentTask is active (i.e.
if RCXactive[RCX currentTask] =1), the scheduler
takes the left loop (to locationRCX inTask) and starts the
task by signaling the taskRCXGo! after a delay ofCS
time units, whereCS is the overhead time required by the
scheduler. When the task has finished executing a single
instruction it signalsRCXGo? to the scheduler which pro-
ceeds by incrementingRCXcurrentTask by one. If task
RCXcurrentTask is inactive the scheduler performs the
similar but simpler right loop, in which the signaling on
channelRCXGo is not performed (i.e. the task is not ex-
ecuted).

The maximum number of tasks in the RCX brick is
restricted to ten. If the number of tasks isi and i < 10,
the tasksi, . . . , 9 remain inactive throughout the execu-
tion. To ensure that the tasks are executed in round-robin
order, the domain of the variableRCXcurrentTask is
0, . . . , 9. In UPPAAL, integer variables are always as-
signed modulo their domain3. Therefore, incrementing
RCXcurrentTask by one results in zero if the value is
nine, which is exactly the desired behavior.

3.2 The RCX Program

An RCX program consist of a set of task programs
and variables. The variables are compiled into (bounded)
integer variables in the UPPAAL modeling language. The

3As a side-effect, the UPPAAL verifier generates a warnings when a
variable is assigned a value outside its domains.

idle

started
RCX_timer<=DelayTime

wait
timer<=D

end

RCX_currentTask==n

RCX_timer:=0,
RCX_active[i]:=0

RCX_Go?

RCX_timer==DelayTime

timer:=0
RCX_Go!

timer==D

RCX_active[i]:=1

Figure 8. Timed automata model of the
Delay(D) instruction.

task programs are compiled into timed automata by replac-
ing each RCX byte code instruction with a correspond-
ing timed automata model of the instruction. In this sec-
tion we describe how this is done by exemplify with two in-
structions. For a detailed description of how all the RCX
instructions are modeled as timed automata we refer to
[10, 8, 6]. See also Figure 15 in the Appendix, which shows
the timed automata generated from the RCX task in Fig-
ure 2.

Most instructions are translated into a structure similar to
theSet instruction, show in Figure 7, which assigns vari-
ablex to a given value. The instruction is started on the first
transition (to locationstarted) were it synchronizes with the
schedulerRCXGo if RCXcurrentTask =i. Thus, the
starting time of the instruction is controlled by the sched-
uler. The actual effect of the instruction is modeled on the
two next transitions were the variablex first is assigned.
The automaton then delays in locationdonefor the time re-
quired to perform theSet operation in the RCX brick.
Finally, in the last transition, the instruction returns the con-
trol to the scheduler and waits to perform its next instruc-
tion. Thus, theend location coincides with thestart loca-
tion of the next instruction.

Perhaps the most interesting RCX instruction is
Delay(D) , which delays the task forD time units. Its
timed automata model for taski is shown in Figure 8. The
instruction is executed in two stages. In the first stage (the
two first transitions in Figure 8) the task in-activates itself
by resetting its entry (i.e. entryi) in theRCXactive bit
array to zero. It then delays in locationstarted for the time
required to perform these operations (i.e.DelayTime ), re-
sets the (local) clocktimer , and returns the control to the
scheduler. In the second stage, in locationwait, the task
delays forD time units before (re-)activating itself (i.e. as-
signingRCXactive [i] to 1) and proceeding to location

4



end.
Another 30 RCX instructions occur in theNQCcom-

piler output4: the arithmetic and logical instructions are
similar to theSet instruction; the control flow instruc-
tions, such asTest , SetLoop , andJump are straight for-
wardly modeled as branching timed automata; and the con-
trol instructions, such asStartTask andStopTask are
variations of theSet instruction automaton updating the
RCXactive array. The only instructions not covered by
our rcx2uppaal program are the two RCX datalog in-
structionsSetLog andDataLog used to log variable val-
ues during program execution5. However, for our purposes
it is sufficient to model them as empty instructions consum-
ing the correct time, as the datalog can not be accessed by
the program or have any affect on the environment.

3.3 The Environment Interface

In addition to the RCX program, theNQCcompiler also
generates a set of global variables for the interface between
the tasks and the environment of the RCX brick. The
rcx2uppaal program compiles these integers to variables
in the timed automata modeling language extended with
(bounded) integers used in UPPAAL.

Each port is typically modeled by a a tuple of
variables, e.g. input port 1 is described by the triple
(RCXInType 1, RCXInMode 1, RCXIN 1), where
RCXInType 1 specifies the type of sensor connected
to port 1, RCXInMode 1 how the sensor values are
to be interpreted, andRCXIN 1 is the actual sen-
sor value. Thus, if a light sensor is connected to
port 1, RCXInType 1=SENSORTYPE LIGHT,
RCXInMode 1=SENSORMODEPERCENT, and
RCXIN 1=50 should be interpreted as a light inten-
sity of 50%.

All communication between the RCX program and its
environment goes through the tuples modeling the environ-
ment interface. The interaction is implemented using the
ordinary instructions, such as theSet instruction described
above.

4 LEGO Example: a Brick Sorter

To demonstrate our techniques we have built a sorting
machine for LEGO bricks. A conveyor belt equipped with
a color sensor in one end and a kicking arm at the other end
is carrying black and red LEGO bricks from left to right,
(see Figure 9). The idea is that the red bricks should pass
uninterrupted by the kick arm and thus run all the way to

4There are more than 32 RCX byte code instructions but all of them
do not occur in the output of theNQCcompiler.

5The datalog instructions are mainly used for debugging purposes.

Light Sensor
RCX Brick

Kick Off Arm

Red Brick

Black Bricks

Figure 9. The LEGO  brick sorter. The con-
veyor belt moves the bricks from left to right.
Leftmost on the belt a black brick is just about
to pass the light intensity sensor. In the mid-
dle of the belt another black brick is on the
way towards the kick off arm. In front of the
machine (on the table) is a third black brick
that has already been kicked off. At the very
right end of the belt we see a red LEGO 
brick, that is just about to leave the belt (as it
is supposed to). The actual RCX  brick can
be seen behind the belt.

the very end of the belt, while all the black ones should be
kicked off by the arm.

4.1 Overview of Brick Sorter

The LEGO test setting is sketched in Figure 10. The
conveyor belt is running from left to right driven byMo-
tor A. Shortly after being placed at the very left end of the
belt a brick will pass a light intensity sensor (Sensor 1).
When the brick passes the sensor its color is registered in
the following way: the undisturbed sensor displays a light
intensity of 50% (during daytime). Now, a black brick in
front of the sensor reduces the light intensity to a value of
35%, while a red brick causes no significant change in light
intensity. Thus, by comparing the readings of the sensor
value with a suitable threshold, say 42%, we will be able to
observe when a black brick passesSensor 1. Notice that
in this way the red bricks are ignored, but this is just fine,
since precisely these bricks arenot supposedto be kicked
of the belt.

When the presence of a black LEGO brick is observed
by Sensor 1 a timer will be reset, such that the kick arm

5



Sensor 1

Motor A

Sensor 3

Motor C

Figure 10. The brick sorter (top view). The
positions of black and red bricks correspond
to those in Figure 9 .

(situated atMotor C) will be invoked at just the right mo-
ment. For simplicity we have restricted the model to han-
dle at most two black bricks at a time betweenSensor
1 and the kick arm, and thus we can do with two timers
(Timer(1) andTimer(2) ).

4.2 Control Programs: Observe and Kick

There are two control tasks,main andkick off , (see
Figure 11 and 12). Initially themain task configuresSen-
sor 1 (using the integerIN 1) andSensor 3 (using the in-
tegerIN 3), then starts the conveyor belt (Motor A) and in-
vokes thekick off task. Hereafter it enters a loop where
it indefinitely waits for a black brick to passSensor 1. The
role of the booleanb is to keep track of which timer to re-
set (Timer(1) or Timer(2) ). The role of the booleans
active1 andactive2 is to let thekick off task know
which timer to trigger on next. At each appearance of a
black brick a timer is reset. The last wait-statement ensures
thatSensor 1 will postpone looking for a new brick until
the current one has passed completely. Without this wait
statement the sensor might observe the same brick several
times, and hereby lead the kickoff task into the misunder-
standing about the number of bricks on the conveyor belt.

The kick off control task is triggered by timers ex-
ceeding the value 25 (corresponding to 2.5 seconds), which
is the estimated time for a black brick to move fromSensor
1 to the position of the kick arm. The additional tests on
booleansactive1 andactive2 are necessary because
the two timers are always running, and thus a timer value
above 25 is not in itself enough information to determine
that there is a black brick in front of the kick arm. In fact,
without active1 (or active2 ) the kick arm would be
kicking back and forth in the air constantly even with no
bricks on the belt. Now,kick off will run Motor C in
reverse direction for 0.6 seconds causing the kick arm to
pass by the belt (hereby hopefully hitting a black brick).
Then the direction is changed to forward andMotor C is
run again until the kick arm hitsSensor 3 (a touch sen-
sor). This use of a touch sensor ensures that the kick arm

int b=0, active1=0, active2=0;
int DELAY=25;
int LIGHT_LEVEL=42;

task main{
Sensor(IN_1, IN_LIGHT);
Sensor(IN_3, IN_SWITCH);
Fwd(OUT_A,1);
start kick_off;
while(true){

wait(IN_1<=LIGHT_LEVEL);
if(b==0){

ClearTimer(1);
active1=1;

}
if(b==1){

ClearTimer(2);
active2=1;

}
b=-b+1;
wait(IN_1>LIGHT_LEVEL);

}
}

Figure 11. The main control task, which is re-
sponsible for observing LEGO  bricks run-
ning on the belt and resetting appropriate
timers in order for the kick off task to know
when to invoke the kick arm.

is brought to halt in exactly the same position for all kicks
it performs. If alternatively, the arm was just stopped after
some part of the kick, the arm might come out of adjustment
after a number of kicks.

The timed automata models generated by our program
rcx2uppaal from the two tasksmain and kick off
are shown in Figure 16 and 17 of the Appendix6.

4.3 Environment: Bricks and Arms

The timed automaton in Figure 13 models a black
LEGO brick. This particular brick will start to pass by
the light intensity sensor no later than 100.000 time units
(corresponding to one second) after system initiation. This
is done by setting the integer representing the light inten-
sity, IN 1, to the value 35% which is precisely what hap-
pens when a black LEGO brick start to pass bySensor 1.
The brick will remain in this location for 25.000 time units
corresponding to a quarter of a second whereafter the light
intensity is set back to 50%, this modeling the duration for
the brick to pass the sensor. Next the black brick will let

6The figures are mainly intended to illustrate the size of the generated
automata.
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task kick_off{
while(true){

wait(Timer(1)>DELAY && active1==1);
active1=0;
Rev(OUT_C,1);
Sleep(6);
Fwd(OUT_C,1);
wait(IN_3==1);
Off(OUT_C);
wait(Timer(2)>DELAY && active2==1);
active2=0;
Rev(OUT_C,1);
Sleep(6);
Fwd(OUT_C,1);
wait(IN_3==1);
Off(OUT_C);

}
}

Figure 12. The kick off task which will alter-
nate between reacting on values of Timer(1)
and Timer(2) . The presence of booleans
active1 and active2 is necessary since the
timers are running all the time, also when no
bricks are on the belt.

time pass until a total time of 250.000 time units, (2.5 sec-
onds), since it was first noticed by the sensor has elapsed.
Hereafter ,the brick will during 20.000 time units (0.2 sec)
accept a synchronization on actionkick with the kick arm
hereby being pushed off the belt. In case no synchronization
is made the brick will time–out modeling that it has finally
past the kick arm and eventually will fall off at the end of
the belt.

All black bricks can be modeled as in Figure 13, the only
difference being the starting interval modeled by the invari-
ant in locationB0 and the guard on the transition to location
B1. Also red bricks follow this skeleton, the only differ-
ence from black bricks being that the light intensity is set
to a value larger than 42. The parameterized template fa-
cility in U PPAAL provides an easy way to create a number
of black and red bricks. It is important to note that due to
progression of time a brick will eventually reach one of the
two locationsKicked off andPassed. Which one of these
two locations the brick reaches depends on it being kicked
away or not. The properties to check in the verification pre-
sented in the next section will then be very simple: namely
that black bricks will never reach the locationPassedand
that red bricks will never reachKicked off.

The timed automaton in Figure 14 models the physical
kick arm. It will wait for three integer variables to be set to
appropriate values after which it starts moving. After 6.000
time units it is willing to kick off a brick during 500 time

B1

k <= 25000 

B3
k <= 250000 

Passed

Kicked_off

B0

k <= 100000 

Sort4
k <= 270000 

k == 25000 

RCX_IN_1 := 50 

kick ? 
k == 270000 

k == 250000 

k >= 0 

RCX_IN_1 := 35 , 
k := 0 

Figure 13. A timed automaton modeling a
black brick. This brick will enter the area of
Sensor 1 no later than 100.000 time units (cor-
responding to one second) after the system
initiation.

units. Now, the arm will either reverse direction if told, or it
will crash into the gate it is attached to (see Figure 9). It will
be part of the verification to check that the kick arm under
no circumstances will crash into the gate.

K0 K1

s<=6000

K3

s<=24000

CRASH

K4

s<=6000

K5

K2

s<=6500

RCX_OutDir_C==-1,
RCX_OutMode_C==1,
RCX_OutPwr_C==1

s:=0Hurry?

s==24000

RCX_OutDir_C==1,
RCX_OutMode_C==1,
RCX_OutPwr_C==1

s:=0 Hurry?s==6000

RCX_IN_3:=1,s:=0

RCX_OutMode_C==0

RCX_IN_3:=0

Hurry?

s==6000

s==6500

s:=0s:=0

kick!

Figure 14. A timed automaton modeling the
physical kick arm.

5 Verification

The purpose of the brick sorter is to have all black bricks
(and only those) kicked off the belt. Thus, it should hold
for a black brick that the locationKicked off is reachable
and that the locationPassedis not reachable. That is, for
a black brick named BlackBrick1 the following properties
should hold.
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E<>(BlackBrick.Kicked_off)
A[]not(BlackBrick.Passed)

We have verified both these properties although our knowl-
edge of the time progression in the brick timed automaton
tells us that checking the last property would suffice. Du-
ally, for the red brick we will have to verify the properties

E<>(RedBrick.Passed)
A[]not(RedBrick.Kicked_off)

As for the black brick, the satisfaction of this property to-
gether with the progression of time ensures that the brick
will eventually reach the end of the belt.

5.1 Verification Results

We have analyzed several versions of the UPPAAL model
of the brick sorter. The most simple scenarios are when
just a single brick (either red or black) is placed on the
conveyor belt. These scenarios were checked by UPPAAL

within 10 seconds (and fortunately the answers were the ex-
pected ones as well!).

A more interesting scenario is when two black bricks
may simultaneously be on the conveyor belt. We will as-
sume that the first brick passesSensor 1 at time 0. As for
the the second brick we only make the assumption, that it
will appear on the belt no later than 250.000 time units af-
ter the first brick7. Although UPPAAL is insensitive to large
constants in clock guards the presence of the scheduler has a
somewhat negative influence on the performance of the ver-
ification. The problem is that the scheduler chops the time
into small tiny pieces of length 18 time units thus yielding a
remarkable number of states that made verification impos-
sible in practice. However, by limiting the entrance time for
the second black brick to an interval of 50 time units verifi-
cation can be done within a few seconds. Consequently, we
chopped the time interval from 25.000 to 300.000 into small
pieces of duration 50 time units and verified the system for
all these during less than 10 hours.

As mentioned earlier the control program is developed
to handle at most two black bricks on the conveyor belt at
a time, and as such we have no reason to expect correct be-
havior in other scenarios. On the other hand, it may be of in-
terest to figure out exactly what will happen if a third black
brick is added on the belt, in a situation where two black
bricks are already there. We therefore extended the UP-
PAAL model of the environment by a third black brick8 and
to our surprise the result of the verification was that the extra
brick was indeed kicked off the belt, whereas the two first

7In case the second brick is put on the conveyor belt later than 250.000
time units after the first brick, the experiment would correspond to two
one–brick–scenarios.

8Again, the third black brick having a starting time less than 250.000
time units after the first brick.

bricks were wrongly doomed to pass the kick arm without
ever being hit by it. The diagnostic trace facility of UPPAAL

was then used in the process of understanding this behavior,
the reason being as follows. Brick 1, 2 and 3 set timers 1,
2 and 1, and thus the first brick is ’forgotten’ by the con-
trol program since the third brick overwritesTimer(1) .
Now, Timer(2) will time out first, and ideally the sec-
ond brick ought to be kicked off the conveyor belt correctly.
However, theKick off task (see Figure 12), is waiting
for Timer(1) (connected to the third brick) to time out
first and consequently the third brick (and only this one) is
kicked off the belt. This erroneous behavior predicted by
UPPAAL, matches the experimentally observed behavior.

6 Conclusion

In this paper, we have presented a method for auto-
matic verification of real-time control programs running on
LEGO RCX bricks using the verification tool UPPAAL.
The control programs — consisting of a fixed number of
tasks running concurrently — are automatically translated
into the timed automata model of UPPAAL. The fixed
scheduling algorithm used by the LEGO RCX proces-
sor is modeled in UPPAAL, and supply of similar (sufficient)
timed automata models for the environment allows analysis
of the overall real-time system using the tools of UPPAAL.

To illustrate our techniques we have constructed a ma-
chine for sorting LEGO bricks by color. UPPAAL is suc-
cessfully applied to prove that indeed the bricks are sorted
correctly. Additionally UPPAAL succeds in pointing out an
error in a setting where the model of the environment does
not satisfy the assumptions made by the control program.

In the brick sorting example in this paper only a single
RCX brick is necessary. However, when systems become
too complex for a single RCX, the IR ports may be used
to make two or more RCXes collaborate. We have de-
veloped and analyzed a protocol for the communication be-
tween two RCXes which allows a task on one RCX to
access variables and ports on the other. This so-called IR-
protocol is application independent.

Finally, we are convinced that our framework is appli-
cable to real-time control programs and systems in gen-
eral and not only to RCX programs and LEGO MIND-
STORMS systems.
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Figure 15. The timed automaton model gener-
ated by rcx2uppaal for the programs shown
in Figure 2 and 3.
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Figure 16. The timed automaton model of the
main task shown in Figure 11.
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Figure 17. The timed automaton model of the
the kick off task in shown Figure 12.
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