
B
R

IC
S

R
S

-99-48
R

.P
agh:

F
aster

D
eterm

inistic
D

ictionaries

BRICS
Basic Research in Computer Science

Faster Deterministic Dictionaries

Rasmus Pagh

BRICS Report Series RS-99-48

ISSN 0909-0878 December 1999

Copyright c© 1999, Rasmus Pagh.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/99/48/

Faster Deterministic Dictionaries

Rasmus Pagh∗

Abstract

We consider static dictionaries over the universe U = {0, 1}w on a
unit-cost RAM with word size w. Construction of a static dictionary with
linear space consumption and constant lookup time can be done in linear
expected time by a randomized algorithm. In contrast, the best previous
deterministic algorithm for constructing such a dictionary with n elements
runs in time O(n1+ε) for ε > 0. This paper narrows the gap between
deterministic and randomized algorithms exponentially, from the factor of
nε to an O(log n) factor. The algorithm is weakly non-uniform, i.e. requires
certain precomputed constants dependent on w. A by-product of the result
is a lookup time vs insertion time trade-off for dynamic dictionaries, which
is optimal for a certain class of deterministic hashing schemes.

1 Introduction

We consider the amount of time needed to deterministically construct a static
dictionary, i.e. a data structure for storing any subset S of universe U such
that lookups (queries of the form “x ∈ S?”) can be carried out efficiently. Static
dictionaries show up in many applications and are an important part of a number
of data structures. It is therefore of interest to have static dictionaries which are
space economical, support fast lookups, and can be constructed efficiently.

Our model of computation is a unit-cost word RAM [9] with a standard
instruction set, including multiplication and bit operations. Throughout this
paper S will refer to an arbitrary set of n elements from the universe U = {0, 1}w,
where w is the word size (a RAM model where a single unit of data fits into one
machine word is often referred to as trans-dichotomous). As is usual in this model,
we regard the elements of U both as non-negative integers and as bit strings.

It is known that static dictionaries with worst case constant lookup time
and a space consumption of O(n) words can be constructed in this model. We
therefore focus on dictionaries with these properties, henceforth referred to as

∗BRICS (Basic Research in Computer Science, Centre of the Danish National Research
Foundation), Department of Computer Science, University of Aarhus, Denmark. E-mail:
pagh@brics.dk

1

efficient. Until recently, all algorithms for constructing efficient dictionaries in
time time better than O(n3) were randomized, forcing the use of randomness
in many applications. The aim of this paper is to show that randomized static
dictionaries can be replaced with efficient deterministic ones which have nearly
the same construction time.

1.1 Related work.

Tarjan and Yao [15] gave a rigorous basis for understanding some heuristics which
had been used for table compression, resulting in the “double displacement”
dictionary which is efficient for w = O(log n). In this case, it was shown how to
construct the dictionary in time O(n2).

A breakthrough was made by Fredman, Komlós and Szemerédi [7], who
showed how to use universal hash functions [4] to build an efficient dictionary
for any word size. Two construction algorithms were given: A randomized one
running in expected time O(n), and a deterministic one with a running time of
O(n3w). Raman [13] sped up the choice of universal hash functions in the de-
terministic algorithm, obtaining O(n2w) deterministic construction time. Alon
and Naor [1] used small bias probability spaces to derandomize a variant of the
FKS scheme, achieving construction time O(nw log4 n). However, in this variant
a lookup requires evaluation of a linear function in time Θ(w/ logn), so the dic-
tionary is not efficient unless w = O(logn). Another variant of the FKS scheme
reduces the number of random bits to O(logn+log w), while achieving O(n) time
construction with high probability [5].

For w = nΩ(1), fusion trees [8] improve the above deterministic bounds to n1+ε

for any fixed ε > 0, as observed by Andersson [2]. The fusion tree construction
algorithm is weakly non-uniform in that it requires access to a constant number
of precomputed word-size constants depending (only) on w. These constants may
be thought of as computed at “compile time”.

Miltersen [11] introduced the use of error-correcting codes in a novel approach
to the construction of perfect hash functions. For any fixed ε > 0, this yields an
efficient dictionary requiring O(n1+ε) construction time, also by a weakly non-
uniform algorithm. The lookup time is inversely proportional to ε. Extending
the result of Miltersen, Hagerup exhibited a trade-off between construction time
and lookup time [10]. The algorithm achieves construction time O(n logn) and
lookup time O(log log n) simultaneously. For lookup time o(log log n) it needs

construction time n 2(log n)1−o(1)
.

1.2 This work.

We show how to construct efficient static dictionaries in deterministic time
O(n log n). We first develop a randomized variant of the Tarjan-Yao dictionary,
which is efficient for w = O(log n). The construction algorithm is derandomized

2

using conditional expectations, resulting in a deterministic O(n log n) algorithm.
The resulting algorithm is quite simple compared with the O(n log5 n) time al-
gorithm in [1]. Finally, universe reduction techniques, including error-correcting
codes, are applied to extend the result to arbitrary word sizes.

As a consequence of the result we are able to state an improved trade-off
between lookup time and insertion time for deterministic dynamic dictionaries.
By a result of Dietzfelbinger et al. [6] the trade-off is optimal for a certain class
of data structures based on hashing.

What is actually shown in the following is how to construct an efficient perfect
hash function for S.

Definition 1 A function h : U → {0, . . . , r}, where r = O(n), is an efficient
perfect hash function (for S) if it is 1-1 on S, can be stored using O(n) words of
memory and evaluated in constant time.

Such a function immediately yields an efficient solution to the static dictionary
problem.

2 Randomized double displacement

In this section we develop a randomized, but derandomization-friendly, variant
of the double displacement perfect hash functions of Tarjan and Yao [15]. The
resulting perfect hash function is efficient for w = O(log n). Following Tarjan and
Yao, observe that words of length O(logn) can be regarded as constant length
strings over an alphabet of size n. The trie (with n-way branching) of such strings
permits lookup of elements (and associated values) in constant time. Although
each of the O(n) nodes of such a trie uses a table of size n, only O(n) entries
contain important information (an element or a pointer). That is, to store all
tables within O(n) words, we just need to construct a perfect hash function from
the O(n2) table entries to a range of size O(n). Since it is simple to map all tables
into a universe of size O(n2), Tarjan and Yao proceed to look at the case where
w ≤ 2 log n + O(1).

Without loss of generality we assume w ≥ 2 log n+k, where k is a constant to
be determined (If words are shorter, we conceptually pad them with zeros). We
split words into parts of α = dlog(2n)e and β = w−α bits, denoting the parts of
a word x by x′ and x′′, respectively. The universe may be viewed as a 2α times
2β grid, where the column and row numbers of x are given by x′ and x′′.

The idea of Tarjan and Yao is to perform a “double displacement” rearrange-
ment process, permuting the elements of the grid such that elements of S end
up in distinct columns. Then a perfect hash function for S is immediate: map
x to the column that x is moved to by the displacement process. Let ⊕ denote
the operation of bitwise exclusive-or. The double displacement process has two
steps:

3

0β

0
α

00
...0

0 =

1β = 11...11

1
α

11
...1

1 =

= 00...00

x

00
...0

1

00...01

x’’

x’

Figure 1: Grid view of U

1. Displace each column by moving element x in column c to the row x′′ ⊕ ac.

2. Displace each row by moving element x in row r to the column x′ ⊕ br.

These steps use “displacement values” a0α , . . . , a1α ∈ {0, 1}β and b0β , . . . , b1β ∈
{0, 1}α. The resulting hash function is x 7→ x′ ⊕ bx′′⊕ax′ .

Tarjan and Yao use another group operator (integer addition) instead of ⊕,
and use a grid of height O(n log log n). But the significant departure from the
Tarjan-Yao approach comes with the way the displacement values are chosen.
They use a “first-fit” sequential search strategy, whereas we will be choosing the
displacement values in a random fashion. The selection process will be controlled,
in that each random choice is checked, and if necessary re-done, until it is (close
to) as “good” as could be expected.

Our measure of goodness when choosing a column displacement value is the
number of “row collisions” introduced. More precisely, suppose that displacement
values for columns p1, . . . , pi−1 have been found, and denote by S ′

pj
= {x ∈

S | x′ = pj} the elements in column pj. The set of row collisions introduced by
choosing displacement value api

is Ci = {(x, y) ∈ S ′
pj
× S ′

pi
| j < i, x′′ ⊕ apj

=

y′′ ⊕ api
}. Since any pair (x, y) ∈ S ′

pj
× S ′

pi
has probability 2−β of colliding when

api
is chosen uniformly at random from {0, 1}β, the expected number of row

collisions is E[|Ci|] = 2−β|S ′
pi
|∑j<i |S ′

pj
|. Pick any ε with 0 < ε < 1. We have

|Ci| ≤ (1+ ε)E[|Ci|] with probability at least 1−1/(1+ ε). Hence, in an expected
constant number of random attempts we can find api

such that

|Ci| ≤ (1 + ε) 2−β|S ′
pi
|
∑

j<i

|S ′
pj
| . (1)

Row displacements are chosen according to the same criterion as the column
displacements: We allow at most 1 + ε times the expected number of column

4

collisions. The only new thing is an insistence that row displacements are found
in non-increasing order of the number of elements in the rows, i.e. in an order
p̃1, . . . , p̃2β such that |S ′′

p̃j
| ≥ |S ′′

p̃j+1
| for j = 1, . . . , 2β − 1, where S ′′

p̃j
= {x ∈

S | x′′⊕ax′ = p̃j} denotes the elements in row p̃j after the column displacements.
Suppose displacement values for rows p̃1, . . . , p̃i−1 have been found, and we want
to find displacement value bp̃i

. For rows with at most one element, the expected
number of collisions introduced by a random displacement is at most 1/2 (since
2α ≥ 2n), so we find a displacement value with at most (1 + ε)/2 collisions (that
is, no collisions). When |S ′′

p̃i
| > 1, we can bound the number of new column

collisions, denoted by |C̃i|, as follows:

2α|C̃i|
1 + ε

≤ |S ′′
p̃i
|
∑

j<i

|S ′′
p̃j
| by reasoning similar to (1)

≤
∑

j<i

|S ′′
p̃j
|2 since |S ′′

p̃i
| ≤ |S ′

p̃j
| for j < i

≤ 4
∑

j<i

(|S′′
p̃j

|
2

)

≤ 4
∑

i

|Ci| since |S ′′
p̃j
| > 1 for j ≤ i

≤ 4(1 + ε)2−β
(

n
2

)
. by (1)

Choosing k ≥ 1 + 3ε, the requirement that α + β ≥ 2 log n + k, implies |C̃i| = 0,
as desired. This means that a double displacement hash function constructed in
the way described will indeed be perfect for S.

Figure 2 details an implementation of the scheme described above. The func-
tion DoubleDisplacementε sets up two calls to the displacement procedure Rand-
Displε to find the column and row displacement values. We outline the argument
that RandDisplε runs in expected linear time. The order in which to choose the dis-
placement values (array P) can be found in linear time (using bucket-sort). The
array T contains at any time the number of elements so far displaced to each col-
umn/row, and we also maintain a counter t of the number of displaced elements
(the total work for maintaining this information is clearly O(n)). This allows
computation of the number of collisions introduced when displacing row/column
P [i] in time O(|S[P [i]]|). By our analysis, the repeat loop needs an expected
constant number of iterations before finding a good displacement value, so the
total work done in this loop is expected O(n). The work done in the rest of the
algorithm is clearly O(n), so we are done.

Lemma 2 For 2(log n + ε) + 1 ≤ w ≤ 2 log n + O(1), DoubleDisplacementε(S)
computes the O(n) parameters of a double displacement perfect hash function for
S. The computation takes expected time O(n) and uses O(n) words of storage.

5

function RandDisplε(S[0], . . . , S[b − 1] ⊆ {0, 1}γ)
Find permutation P such that

|S[P [j − 1]]| ≥ |S[P [j]]| for 1 ≤ j < b;
for x ∈ {0, 1}γ do T [x] := 0;
t := 0;
for i := 0 to b − 1 do

repeat
D[P [i]] :=Random({0, 1}γ);
c :=

∑
x∈S[P [i]] T [x ⊕ D[P [i]]];

until c ≤ (1 + ε)2−γt|S[P [i]]|;
for x ∈ S[P [i]] do

T [x ⊕ D[P [i]]] := T [x ⊕ D[P [i]]] + 1;
t := t + |S[P [i]]|;

end;
return D;

end;

function DoubleDisplacementε(S ⊆ {0, 1}w)
if w < 2 log |S| + 1 + 3ε then return ’Error’;
α := dlog(2|S|)e; β := w − α;
Define x′ and x′′ to be the first α and

the last β bits of a word x, respectively;
for i ∈ {0, 1}α do S′[i] = {x′′ | x ∈ S, x′ = i};
(A[0α], . . . , A[1α]) :=RandDisplε(S′[0α], . . . , S′[1α]);
for i ∈ {0, 1}β do S′′[i] = {x′ | x ∈ S, x′′ ⊕ A[x′] = i};
(B[0β], . . . , B[1β]) :=RandDisplε (S′′[0α], . . . , S′′[1α]);
return (A,B);

end;

Figure 2: Randomized double displacement

function Hash(A, B, x′, x′′)
return x′ ⊕ B[x′′ ⊕ A[x′]];

end;

Figure 3: The double displacement hash function

6

Corollary 3 For w = O(log n), an efficient perfect hash function for S can be
constructed by a randomized algorithm in expected time O(n), using O(n) words
of storage, and such that the only randomization occurs in two calls of RandDisplε.

3 Derandomizing double displacement

In this section we obtain a deterministic version of RandDisplε running in time
O(n log n). Corollary 3 then implies

Theorem 4 For w = O(logn), an efficient perfect hash function for S can be
constructed deterministically in time O(n log n), using O(n) words of storage.

Let us restate the problem solved in the the randomized part of RandDisplε
in a slightly more abstract way: Given a table T indexed by {0, 1}γ, and a set
A ⊆ {0, 1}γ, find d ∈ {0, 1}γ such that

∑

x∈A

T [x ⊕ d] ≤ (1 + ε)2−γ|A|
∑

i∈{0,1}γ

T [i] . (2)

The right hand side is 1 + ε times the expected value of the left hand side for
d ∈ {0, 1}γ chosen uniformly at random. We show how to find d deterministically
in time O(γ|A|), such that (2) holds with ε = 0. Since γ = log n + O(1) in the
algorithm, the time for finding a displacement value is O(log n) times the expected
time in the randomized algorithm.

To find d efficiently we maintain an extension of T indexed by all bit strings
of length at most γ. Let pδ(j) denote the δ-bit prefix of j ∈ {0, 1}γ, and for
e ∈ {0, 1}δ define De = {j ∈ {0, 1}γ | pδ(j) = e}, the bit strings of length γ with
e as a prefix. The extension of T is defined by

T [i] =
∑

j∈Di

T [j] . (3)

We can think of the extension of T as a binary trie whose leaves (indexed by
strings of length γ) contain the original table entries, and where an internal node
contains the sum over all leaves in its sub-trie. The extension can be initialized
and maintained during n updates of the leaves with total work O(γn).

Starting with e0 = ε, we will show how to find a sequence of bit strings
e0, . . . , eγ , where ek ∈ {0, 1}k, such that the expected value of

∑
x∈A T [x ⊕ d]

when choosing d ∈ Dek
uniformly at random is at most 2−γ|A|∑i∈{0,1}γ T [i].

Then d = eγ is the displacement value sought. For e0 the requirement is clearly
met, so the key step is to extend ek to ek+1 such that the expected value does
not increase. By linearity of expectation we can always extend ek by 0 or 1 such
that this is the case. The right extension can be found because the expectations
are easy to compute.

7

function Displ(S[0], . . . , S[b − 1] ⊆ {0, 1}γ)
Find permutation P such that

|S[P [j − 1]]| ≥ |S[P [j]]| for 1 ≤ j < b;
for k := 0 to γ, x ∈ {0, 1}k do T [x] := 0;
for i := 0 to b − 1 do

e := ε;
E := 2−γ |S[P [i]]|T [ε];
for k := 1 to γ do

if
∑

x∈S T [pk(x) ⊕ (e · 0)] ≤ E then e := e · 0
else e := e · 1;

D[P [i]] := e;
for k := 0 to γ, x ∈ S[P [i]] do

T [pk(x ⊕ D[P [i]])] := T [pk(x ⊕ D[P [i]])] + 1;
end;

return D;
end;

Figure 4: Derandomized displacement procedure

Lemma 5 For any e ∈ {0, 1}δ, δ ≤ γ, the expected value of
∑

x∈A T [x⊕d], when
choosing d ∈ De uniformly at random, is 2δ−γ

∑
x∈A T [pδ(x) ⊕ e].

Proof. For any x we have
∑

d∈De
T [x ⊕ d] = T [pδ(x) ⊕ e] by definition, so

the expected value of T [x ⊕ d] when choosing d ∈ De uniformly at random is
2δ−γT [pδ(x) ⊕ e]. The lemma follows by linearity of expectation. 2

Using the formula of the lemma, the γ bits of d can be found in time O(γ|A|),
as desired. Figure 4 shows the derandomized displacement procedure.

4 Universe reduction

In this section we show how to perform a universe reduction by finding a function
ρ : {0, 1}w → {0, 1}r, r = O(log n), which is 1-1 on S, can be stored in O(1) words
and is evaluable in constant time.

4.1 Previous results.

There are universal classes of hash functions [4] with range {0, 1}2 log n from which
suitable ρ can be found. Indeed, a constant fraction of the functions of such a
class will fulfill the requirements, so a random search for a reduction function can
be carried out in expected time O(n). However, the best known deterministic
search algorithm is that of Raman [13], running in time O(n2w). A much faster

8

search algorithm is that of Alon and Naor [1], but the resulting reduction function
is not shown to be evaluable in constant time (and probably is not).

A novel approach to deterministic universe reduction, due to Miltersen [11],
is the use of error-correcting codes. By applying an error-correcting code e,
replacing each element x ∈ U by e(x) ∈ {0, 1}4w, the Hamming distance between
any two elements can be made Ω(w). It is then relatively easy to find a set
D of O(log n) distinguishing bit positions, such that for any distinct elements
x, y ∈ S, e(x) and e(y) differ on D. Using (bitwise) and, the distinguishing bits
can be filtered out. Exploiting word parallelism, Hagerup has shown how to find
such distinguishing positions very efficiently [10, Lemma 3]. We summarize these
results as follows:

Theorem 6 (Miltersen, Hagerup) Suppose e : {0, 1}w → {0, 1}4w is a good
error-correcting code. There exists d ∈ {0, 1}4w with Hamming weight O(log n)
such that ρd : x 7→ e(x) and d is 1-1 on S. The bit string d can be computed
from {e(x) | x ∈ S} in time O(n log n) by a deterministic algorithm using O(n)
words of storage.

In order to make ρd evaluable in constant time using standard instructions, Mil-
tersen shows that a good error-correcting code can be implemented using multi-
plication: e(x) = cw ·x, for suitable cw ∈ {0, 1}3w (the choice of which is a source
of weak non-uniformity).

4.2 Gathering bits.

Miltersen does not address the issue of mapping injectively to O(log n) consecutive
bits (which is what we would like), since he can work directly on the distinguishing
bits where they appear. What we would like is to “gather” the distinguishing
bits in an interval of O(log n) positions, using only standard instructions. For
any D ⊆ {0, . . . , r − 1}, define SD = {x ∈ {0, 1}r | xi = 1 ⇒ i ∈ D}, the set of
r-bit strings which have zeros outside the positions given by D.

Lemma 7 Let d ∈ {0, 1}4w have Hamming weight O(log n), and define D =
{i | di = 1}. There is a function ρ′ : {0, 1}4w → {0, 1}r, r = O(log n) that is 1-1
on SD and can be evaluated in constant time. The description of ρ′ occupies O(1)
machine words and can be computed in time o(n) by a deterministic algorithm
using o(n) words of storage.

Proof. Without loss of generality we can assume w = O(4
√

n): If this is not the
case, use the method of Fredman and Willard to gather the bits with positions in
D within O(log4 n) consecutive positions by multiplying with a suitable integer
cD [8, p. 428-429]. The algorithm for finding cD uses the fact that the algorithm
of Theorem 6 can be modified to output the bits of d separately. The running
time is polylogarithmic.

9

Partition D into a constant number of sets D1, . . . , Dk of size at most 1
4
log n.

Using the algorithm of Raman [13] we can find hash functions ρ1, . . . , ρk with

range {0, 1} 1
2

log n, perfect for SD1, . . . , SDk
, in time O((4

√
n)2w) = o(n). Masking

out the bits of D1, . . . , Dk, evaluating the hash functions and concatenating the
results can be done in constant time. This defines the desired function ρ′. 2

5 Results

Combining Theorem 6 and Lemma 7, we have the following result on universe
reduction:

Lemma 8 There is a function ρ : {0, 1}w → {0, 1}r, r = O(log n), which is 1-1
on S and can be evaluated in constant time. The description of ρ occupies O(1)
machine words and can be computed in time O(n logn) by a weakly non-uniform,
deterministic algorithm using O(n) words of storage.

Together with Theorem 4 this yields the main result:

Theorem 9 An efficient perfect hash function for S can be constructed by a
weakly non-uniform deterministic algorithm using time O(n logn) and O(n) words
of storage.

6 Dynamization

Allowing randomization, the FKS static dictionary can be made dynamic, sup-
porting insertions and deletions in amortized expected constant time [6]. Without
a source of random bits, the task of simultaneously achieving fast updates and
very fast queries seems considerably harder. Miltersen’s static dictionary can be
dynamized, giving update time O(nε) and lookup time O(1). Hagerup uses the
transformation result of [12] (Theorem A) to dynamize his static dictionary [10].
This gives a lookup time vs insertion time trade-off. We follow the same path
and obtain a dynamic dictionary with an improved trade-off:

Theorem 10 For any function l(n) = O(
√

log n), where l(n) is computable in
time and space O(n), there is a deterministic dynamic dictionary using O(n)
space, supporting lookups in time O(l(n)), insertions in time O(n1/l(n)) and dele-
tions in time O(logO(1) n).

The requirement l(n) = O(
√

log n) is not essential, but gives a simpler expression
for the insertion time. For l(n) = Ω(

√
log n/ log log n) the data structure of

Beame and Fich [3] is superior to any approach using static dictionaries as a
black box.

10

It might be argued that insertion time 2Ω(
√

log n) makes Theorem 10 uninter-
esting. However, if the frequency of insertions compared to lookups is small, the
total time for a sequence of operations may still be good. To study this asymptot-
ically, we assume that for any sequence of n operations, starting with the empty
dictionary, at most a fraction 1/f(n) of the operations are not lookups. For
f(n) = 2Ω(

√
log n) we can choose l(n) = log n/ log(f(n)) in Theorem 10, making

the total time for n operations O(n logn/ log(f(n))).
In fact, the trade-off between insertion time and lookup time in Theorem 10

is optimal for a rather general class of data structures based on hashing. Data
structures in this class, described in [6], are rooted trees with at most one element
in each of O(n) leaves. Each inner node contains a hash function which maps
from U to the children of the node. A search is guided by the hash functions
in the obvious way. Rebuilding of the data structure is done by finding a new
minimal perfect hash function for an entire subtree – this is assumed to take linear
time in the size of the subtree. The lower bound of [6, Theorem 4.6] implies the
following amortized lower bound for this class of “hash trees”:

Theorem 11 (Dietzfelbinger et al.) Consider sequences of n insertions into an
initially empty hash tree, interleaved with arbitrary lookups. If, for some l(n) =
O(

√
log n), the total time for performing such insertions is O(n1+1/l(n)), and if

|U | > (2n/l(n))l(n), then in the worst case a lookup requires time Ω(l(n)).

It should be noted that the data structure of Theorem 10 does not fall into the
class of hash trees. However, the amortized lower bound of Theorem 11 can be
matched with hash trees, using our hash functions as a black box in the upper
bound of [6, Theorem 4.6].

The best known randomized dictionaries are hash trees with the special prop-
erty that the hash functions used when rebuilding are random. Further arguments
that the restrictions on hash trees are reasonable can be found in [6]. However,
data structures as the one in [3] show that in some cases there are ways to cir-
cumvent the lower bound.

The worst case time for deletions in Theorem 10 may be improvable, but in an
amortized sense the deletions are free, since insertions dominate the total update
time.

7 Conclusion and open problems

We have seen that the gap between deterministic and randomized algorithms for
the static dictionary problem is rather small. If we take time n logO(1) n (and
linear space) as the paradigm for what is practical with massive data sets, this is
the first construction algorithm for efficient dictionaries, which has an asymptot-
ically practical worst-case behavior (where the worst case is taken over the input
and any random choices). The dynamization of the dictionary is optimal for a

11

natural class of “hash tree” data structures, and we argued that it is competitive
with randomized dictionaries for skewed distributions on queries and updates.

Whether the gap between deterministic and randomized algorithms can be
closed (at least for word lengths not too large) is the obvious open question. One
approach, similar to the one used here, is to set the bits in the description of a
perfect hash function one by one, each in constant time. Since a perfect hash
function can be described in O(n + log w) bits, this would give a linear time
algorithm except for large word lengths.

Another natural question is whether weak non-uniformity is necessary in order
to deal with large word lengths. A discussion of weak non-uniformity can be found
in [11].

An unpublished manuscript by Sundar [14] claims an amorized lower bound
of Ω((log log n − log log w)/ log log log n) time per operation in a deterministic
dynamic dictionary, so there is no hope of matching the expected performance of
the best randomized dictionaries deterministically (even in the cell probe model).
However, in the case where there are sufficiently more lookups than updates, there
still is hope. Perhaps the most interesting possibility suggested by the results of
this paper is a deterministic dynamic dictionary with logarithmic update time
and very fast (constant time?) lookups. Such a data structure would be an
attractive alternative to search trees.

Acknowledgments: The author would like to thank Gerth Stølting Brodal,
Gudmund Skovbjerg Frandsen, Peter Bro Miltersen and Theis Rauhe for helpful
discussions in connection with this work.

12

References

[1] N. Alon and M. Naor. Derandomization, witnesses for Boolean matrix multipli-
cation and construction of perfect hash functions. Algorithmica, 16(4-5):434–449,
1996.

[2] Arne Andersson. Faster deterministic sorting and searching in linear space. In
37th Annual Symposium on Foundations of Computer Science (Burlington, VT,
1996), pages 135–141. IEEE Comput. Soc. Press, Los Alamitos, CA, 1996.

[3] Paul Beame and Faith Fich. Optimal bounds for the predecessor problem. In
Proceedings of the 31th Annual ACM Symposium on Theory of Computing (STOC
’99), pages 295–304, New York, 1999. ACM Press.

[4] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. J.
Comput. System Sci., 18(2):143–154, 1979.

[5] Martin Dietzfelbinger, Joseph Gil, Yossi Matias, and Nicholas Pippenger. Polyno-
mial hash functions are reliable (extended abstract). In Proceedings of the 19th In-
ternational Colloquium on Automata, Languages and Programming (ICALP ’92),
volume 623 of Lecture Notes in Computer Science, pages 235–246, Berlin, 1992.
Springer-Verlag.

[6] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer Auf Der
Heide, Hans Rohnert, and Robert E. Tarjan. Dynamic perfect hashing: Upper
and lower bounds. SIAM Journal on Computing, 23(4):738–761, August 1994.

[7] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table
with O(1) worst case access time. J. Assoc. Comput. Mach., 31(3):538–544, 1984.

[8] Michael L. Fredman and Dan E. Willard. Surpassing the information-theoretic
bound with fusion trees. J. Comput. System Sci., 47:424–436, 1993.

[9] Torben Hagerup. Sorting and searching on the word RAM. In STACS 98 (Paris,
1998), pages 366–398. Springer, Berlin, 1998.

[10] Torben Hagerup. Fast deterministic construction of static dictionaries. In Proceed-
ings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
1999), pages 414–418, New York, 1999. ACM.

[11] Peter Bro Miltersen. Error correcting codes, perfect hashing circuits, and de-
terministic dynamic dictionaries. In Proceedings of the Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 1998), pages 556–563, New York, 1998.
ACM.

[12] Mark H. Overmars and Jan van Leeuwen. Worst-case optimal insertion and
deletion methods for decomposable searching problems. Inform. Process. Lett.,
12(4):168–173, 1981.

13

[13] Rajeev Raman. Priority queues: small, monotone and trans-dichotomous. In
Proceedings of the 4th European Symposium on Algorithms (ESA ’96), volume 1136
of Lecture Notes in Computer Science, pages 121–137. Springer-Verlag, Berlin,
1996.

[14] R. Sundar. A lower bound on the cell probe complexity of the dictionary problem.
Manuscript, 1993.

[15] Robert Endre Tarjan and Andrew Chi Chih Yao. Storing a sparse table. Commu-
nications of the ACM, 22(11):606–611, November 1979.

14

Recent BRICS Report Series Publications

RS-99-48 Rasmus Pagh.Faster Deterministic Dictionaries. December
1999. 14 pp. To appear inThe Eleventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’00 Proceedings,
2000.

RS-99-47 Peter Bro Miltersen and Vinodchandran N. Variyam. Deran-
domizing Arthur-Merlin Games using Hitting Sets. December
1999. 21 pp. Appears in Beame, editor,40th Annual Sympo-
sium on Foundations of Computer Science, FOCS ’99 Proceed-
ings, 1999, pages 71–80.

RS-99-46 Peter Bro Miltersen, Vinodchandran N. Variyam, and Osamu
Watanabe. Super-Polynomial Versus Half-Exponential Circuit
Size in the Exponential Hierarchy. December 1999. 14 pp.
Appears in Asano, Imai, Lee, Nakano and Tokuyama, editors,
Computing and Combinatorics: 5th Annual International Con-
ference, COCOON ’99 Proceedings, LNCS 1627, 1999, pages
210–220.

RS-99-45 Torben Amtoft. Partial Evaluation for Designing Efficient
Algorithms—A Case Study. December 1999.

RS-99-44 Uwe Nestmann, Hans Ḧuttel, Josva Kleist, and Massimo
Merro. Aliasing Models for Mobile Objects. December 1999. To
appear in a special FOOL ’99 issue ofInformation and Compu-
tation.

RS-99-43 Uwe Nestmann.What Is a ‘Good’ Encoding of Guarded Choice?
December 1999. To appear in a special EXPRESS ’97 issue of
Information and Computation. This revised report supersedes
the earlier BRICS report RS-97-45.

RS-99-42 Uwe Nestmann and Benjamin C. Pierce.Decoding Choice En-
codings. December 1999. To appear inJournal of Information
and Computation.

RS-99-41 Nicky O. Bodentien, Jacob Vestergaard, Jakob Friis, K̊are J.
Kristoffersen, and Kim G. Larsen. Verification of State/Event
Systems by Quotienting. December 1999. 17 pp. Presented at
Nordic Workshop in Programming Theory, Uppsala, Sweden,
October 6–8, 1999.

