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Abstract

A rather new approach towards compositional verification of concurrent systems is
the quotient technique, where components are gradually removed from the concurrent
system while transforming the specification accordingly. When the intermediate specifi-
cations can be kept small using heuristics for minimization, the state explosion problem
is avoided and there are already promising experimental results for systems with an in-
terleaving semantics, including real-time systems. This paper extends the quotienting
approach to deal with a synchronous framework in the shape of state/event systems. A
state/event system is a concurrent system with a set of interdependent components operat-
ing synchronously according to stimuli (input events) provided by an environment while
producing output events in return for the environment. A compositional modal logicM
suitable for expressing general safety and liveness properties subsystems is introduced. A
quotient construction for bulding components from a state/event system into the specifi-
cation is presented and heuristics for minimizing formulae are proposed. The techniques
are demonstrated on an example. The correctness of the techniques are justified by proofs
in an appendix.

∗Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
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1 Introduction

Within the last decade, model checking and especially reachability checking has become a
widely used technique for verifying finite state systems. However, a major problem in applying
model checking on even moderate sized systems is the state explosion problem, arising from
the possible combination of independent transitions. It has been shown that this problem is P-
space complete, and thus in theory intractable. However, by inventing various heuristics used
in analyzing and verifying systems, it has been possible to verify systems with a large number
of components.

One such attack on the state explosion problem is BDD’s, see [7, 9, 8, 1], which provides a
canonical form for boolean formulae that is often substantially more compact than formulae on
conjunctive and disjunctive normal form, and very efficient algorithms have been developed
for manipulating formulae based on their BDD representation.

Another alternative is compositionality, where the motivation is to reason about the behaviour
of a large system based on knowledge of its components. In those cases where a global inves-
tigation can be avoided efficiency is gained. In [4, 1, 2], compositional reasoning has proven
to be a successful technique in verification of concurrent systems and embedded software.
The Compositional Backwards Reachability technique (CBR) presented in [1], is used by the
commercial verification tool VisualSTATETM . This tool uses the state/event model, in which
a concurrent system with a set of interdependent state/event machines operate synchronously
according to stimuli provided by an environment. A transition in a state/event machine is la-
belled with en input evente, an output evento and a guardg, which is a the set of global
states in which the transition is enabled. The machines operate synchronuosly in lock–step,
i.e. whenever an inpute is provided by the environment all machines that are able to take a
step will do so, hereby returning a set of outputs to the environment.

VisualSTATETM makes it possible to produce and verify embedded software e.g. in mobile
phones. It performs reachability checks and checks for possible deadlocks. Furthermore Visu-
alSTATE can generate code for state/event systems.

In this paper we apply the quotient framework in which the idea is to repeadetly remove one
state/event machine in a parallel composition while transforming the specification accordingly.
The method is applicable to verifying problems of the following form:

(M1|...|Mn) |= ϕ, (1)

whereMi is a state/event machine andϕ is the property for the state/event system. A machine
is removed by applying a quotient operator,/, to the formula, reducing the problem to

(M1|...|Mn−1) |= ϕ/Mn, (2)

in the sense that (1) is true if and only if (2) is.
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If, after each factorization step, a set of minimization heuristics are applied on the quotient the
model checking problem may be be significantly reduced.

The modal logicM′:

ϕ ::= tt|ff |g|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|〈e〉ϕ|[e]ϕ|X,

whereg is a set of global states,e is an input event,〈e〉, [e] denotes existential and univer-
sal quantification over events andX is an identifier, may be used to express both safety and
liveness properties of state/event systems. Although the individual state/event machines have
guards on their transitions, the global semantics of a state/event system will be one where all
internal conditions are resolved. Another way to say this is that a state/event system as a whole
is dependency closed.

Unfortunately,M′ is not compositional. In the process of removing machines, the lefthand
side of the verification problem above,( 2), may appear not to be dependency closed. More
precisely the remaining state/event machines may be contraining the machines just removed.
Hence, we need an extended logic,M where assumptions about other components are ac-
counted for.

M1 M2 M3

Figure 1: This figure shows the dependency graph for a system consisting of three state/event
machinesM1, M2 andM3. An arrow from one machineMi to another machineMj indicates
thatMi depends onMj , i.e., thatMi has a transition with a guard that refers to a state inMj .
The systemM1|M2|M3 is dependency closed and thus the logicM′ is ideal as a specifica-
tion formalism. However, if we in the quotient procedure remove machineM3 the remaining
systemM1|M2 is no longer dependency closed and the logicM is used instead.

To illustrate this idea we look at the subsystemM1|M2|M3 in Figure 1. This system is depen-
dency closed, i.e., it does not have constraints on any other machine and thus the logicM′ is
ideal for expressing properties. However, if we in the quotient procedure remove machineM3,
the remaining systemM1|M2 is no longer dependency closed. More precisely, the transitions
in M1|M2 may be constraining the local states ofM3. Therefore we extend the modalities in
logicM′ to the following ones:〈u 7→ e〉 and[u 7→ e], whereu is a set of states in the context
of the current subsystem. Intuitively, for a states to satisfy a formula〈u 7→ e〉ϕ it should
hold thats has ane–transition which can indeed be performed when the context is in one of
the states inu and such that the derived states′ satisfiesϕ. Similary thexboksueϕ formula is
satisfied by a states if, all e–derivatives,s′, that may be reached froms under the assumption
that the context is in state inu, satisfiesϕ.
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Outline

The state/event model is introduced and formally defined in section 2. In Section 3 we in-
troduce the logicsM andM∗. Section 4 presents the quotient contruction for building a
state/event machine into a specification together with heuristics for minimizing formulae. An
example of the use of the quotient technique is given in section 5, and section 6 draws some
conclusions and depicts further work. The proofs of correctness of the quotient construction
for S/E systems appear in appendix A.

2 State/event systems

This section will give an introduction to state/event systems, which will be called S/E systems
in the following. A S/E system consists ofn machinesM1, ..., Mn over an alphabet of input
eventsE and output eventsO. The presence of output events have no impact on verification
at all and henceforth we will not be considering outputs in this model. Each machineMi

is a triple(Σ{i}, s0
i ,→{i}) of local states, an initial state and a set of transitions. The set of

transitions is a relation:

→{i}⊆ Σ{i} × E × G{i} × Σ{i}

whereG{i} is the set of guards not containing references to machinei. These guards are
generated from the following simple grammar:

g ::= lj = p|¬g|g ∧ g|tt (3)

The atomic predicatelj = p is read as “machinej is at local statep” and tt denotes a true
guard. The global state set of the S/E system is the product of the local state sets:

Σ = Σ{1} × Σ{2} × ... × Σ{n}.

In addition to using the given syntax for guards, we find it useful to use set notation. In set
notation, a guard is simply a set of allowed states. For instance, let

Σ1 = {1, 2, 3}
Σ2 = {a, b, c}
Σ3 = {α, β, γ}

(4)

be state spaces. Theng = Σ2 × {β} would be a guard on a transition inM1, allowingM2 to
be in any state, and requiringM3 to be in stateβ. It is important to note that although a set can
express more complex guards than the above syntax could, every guard in set notation must
still be equivalent to some guard built from the syntax.
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Projection

It is sometimes necessary to extract requirements on only a few machines from a larger guard.
For instance, using the state spaces in (4), the guardg′ = Σ1 × {b} would be a condition on
M1 andM2. With current constructs, we cannot say e.g. thatM2 in stateb does not conflict
with g′ since formally,b 6∈ g′. We use projection to remedy this.

Definition 2.1 (Projection)
Letg ⊆ ΣI be a guard on machines with index setI = {i1, i2, . . . , il}, and letJ = {j1, j2, . . . , jm}
be a subset ofI. Then the projection ofg ontoJ , denotedΠJ(g), is the guard defined by

ΠJ(g) =
{

(s1, s2, · · · , sm) ∈ ΣJ |
∃ (t1, t2, · · · , tl) ∈ g : ∀p ∈ {1, · · ·m}
∀k ∈ {1, · · · , l} ∀j ∈ J :
(tk, sp ∈ Σj ⇔ tk = sp)

}

Completeness

In our setting we only use S/E machines with complete transition relations. A transition system
is complete if there is always transition that can be taken, i.e. given a states ∈ Σi, an event
e ∈ E and the guardsg1, ..., gm on thee-transitions ofs, it holds thatg1 ∨ ... ∨ gm = tt
or, using set notation,

⋃
i={1..m} gi = Σ{1...n}\{i}. An incomplete transistion relation can be

made complete in the following way: Suppose a states is not complete. Then by adding the
transitions

e,¬g1∧...∧¬gm−−−−−−−−→ s we obtain a system having exactly the same set of reachable states.

Composition

A S/E system can be composed of individual S/E machines.

Definition 2.2 (Composition)
Let MI andMJ be S/E machines, whereI, J ⊆ {1 . . . n} andI ∩ J = ∅ Then we define the
compositionMI∪J to be(ΣI × ΣJ , s0

I × s0
J ,→I∪J) where→I∪J is defined as follows:

s̄
e g−→I s̄′t̄ e h−→J t̄′

s̄t̄
e ΠI∪J({s̄}×g ∩ h×{t̄})−−−−−−−−−−−−−→I∪J s̄′t̄′

where s̄, s̄′ ∈ ΣI and t̄, t̄′ ∈ ΣJ

It can easily be shown that completeness is preserved by composition.

Definition 2.3 (Dependency closed system)
Let M = (ΣI , so,→I) be a S/E machine. Then,M is dependency closed if all guards in→I

are true.
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3 Logic

In order to express interesting properties of S/E-systems, we employ a series of modal logics
M, in which there is a specific logicMI for each setI of machine indices. Each specific logic
applies to machines with the same index set as the logic. This allows us to apply the quotient
operator to a property, that a set of machines must satisfy in order to obtain a property that a
subset of those machines must satisfy.

Syntax

Let I be a set of machine indices. Then we define logicMI as

ϕ ::= tt|ff |g|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|〈u 7→ e〉ϕ|[u 7→ e]ϕ|X,

whereX is an identifier,e is an event,g ⊆ ΣI andu ⊆ ΣĪ

Semantics

Let I denote a set of machine indices, andϕ be a formula in logicMI and lets̄ be a state in
MI . Then the statement̄s |=I ϕ is read “statēs satisfies formulaϕ under logicMI . Usually
the specific logic will be clear from the context, so we simply writes̄ |= ϕ. The semantics for
s̄ |= ϕ is given by

s̄ |= tt
s̄ |= g iff s̄ ∈ g
s̄ |= ϕ1 ∧ ϕ2 iff s̄ |= ϕ1 and s̄ |= ϕ2

s̄ |= ϕ1 ∨ ϕ2 iff s̄ |= ϕ1 or s̄ |= ϕ2

s̄ |= 〈u 7→ e〉ϕ iff ∃s̄′, g : s̄
e g−→ s̄′ s.t. u ⊆ g ∧ s̄′ |= ϕ

s̄ |= [u 7→ e]ϕ iff ∀s̄′, g : (s̄
e g−→ s̄′ s.t. u ⊆ g) ⇒ s̄′ |= ϕ

s̄ |= X iff s̄ |= D(X)

We will use the statementMI |= ϕ to mean̄s0
I |= ϕ, wheres̄0

I is the initial state ofMI .

In our logic we express reachability properties as follows: Letg ∈ G. Then the property that
a state satisfyingg is reachable is expressed as the minimal fixpoint solution to the following
equation:

Reach(g) = g ∨
∨
e∈E

〈e〉Reach(g)
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4 Quotienting

This section will describe the quotient technique, and the use of equation systems and mini-
mization heuristics when utilizing the technique.

Defining the quotient operator presents two challenges:

1. The machine being factored out may have guards restricting other machines.

2. There may be other machines that guard the machine being factored out (we say that the
machine isguarded).

In the following, we formally define and state the correctness of the quotient operator.

Formal definition of quotient

Definition 4.1 (Quotient operator)
Let I andJ be sets of machine indices whereJ ⊆ I. Let s̄ ∈ ΣJ , and letϕ be a formula in
MI . Then,ϕ/s̄ is a formula inMI\J . It is defined inductively on the structure ofϕ as follows:

g/s̄ = {t̄ ∈ ΣI\J |{t̄} × {s̄} ⊆ g}
(ϕ1 ∧ ϕ2)/s̄ = ϕ1/s̄ ∧ ϕ2/s̄

(ϕ1 ∨ ϕ2)/s̄ = ϕ1/s̄ ∨ ϕ2/s̄

(〈u 7→ e〉ϕ)/s̄ =
∨

j|s̄
e gj−−→J s̄j

(
µj ∧ 〈u × s̄ 7→ e〉(ϕ/s̄j)

)

([u 7→ e]ϕ)/s̄ =
∧

j|s̄
e gj−−→J s̄j

(
µj ⇒ [u × s̄ 7→ e](ϕ/s̄j)

)

X/s̄ = X s̄, whereX s̄ = D(X)/s̄

whereµj = ΠI\J
(
[u × ΣI\J ] ∩ gj

)

4.1 Equation systems

When utilizing the quotient technique, it is necessary to use equation systems. When wanting
to factor out some machineM =

〈
(s0, ..., sk), s0,→

〉
, it is necessary to factor out each state

in the S/E machineM . This is done with equation systems. LetX be an identifier andϕ ∈ L
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then

X/M =




x0 = ϕ/s0

x1 = ϕ/s1
... =

...
xk = ϕ/sk

wherex0 is the “top formula” which represents the result we want to compute. We might
obtain one or more equations that evaluate tott or ff .

4.2 Minimization heuristics

In the following letϕ, g ∈ MI , u ⊆ ΣĪ ande ∈ E.

Simple evaluation:ϕ ∨ tt 7→ tt andϕ ∧ tt 7→ ϕ

Trivial diamond elimination:〈u 7→ e〉tt 7→ tt

Trivial box elimination:[u 7→ e]ff 7→ ff

Trivial diamond elimination and trivial box elimination are possible because we use complete
S/E systems. According to the definition of completeness a complete S/E system is able to
perform a transition at any time.

Dead Event Elimination:〈u 7→ e〉ϕ 7→ ϕ if s̄
e g−→I s̄ for all s̄ ∈ ΣI .

Dead Event Elimination may be a powerful reduction heuristic in those cases where we have
sort–information of the system in focus.

Trivial Disjunction Elimination:
∨

i gi 7→ tt if
∨

i gi ≡ tt

Definition 4.2 (Context Equivalence)
Let G be the set of guards in machines not yet factored out, and letu1 andu2 be sets of states
in the subsystem already factored out. Thenu1 andu2 are said to be context equivalent modulo
G, u1 =G u2, if the following holds:

∀g ∈ G : u1 ⊆ g iff u2 ⊆ g

Context Dependent Reduction I:Let G be the set of guards in machinesMi, i ∈ Ī. Then

〈u1 7→ e〉ϕ ∨ 〈u2 7→ e〉ϕ 7→ 〈u1 7→ e〉ϕ if u1 =G u2.

Context Dependent Reduction II:Let G be the set of guards in machinesMi, i ∈ Ī. Then

[u1 7→ e]ϕ ∨ [u2 7→ e]ϕ 7→ [u1 7→ e]ϕ if u1 =G u2.

Recursion Elimination:Let X be an identifier. Then,X = 〈e〉X 7→ ff when computing the
minimal fixpoint.
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Theorem 4.3 (Correctness of quotient)
Let M1| · · · |Mn be a S/E system, letI = {1...i} be a set of machine indices, and lets̄ ∈ ΣI\{i},
si ∈ Σi andϕ ∈ MI . Then it holds that

(s̄, si) |= ϕ ⇐⇒ s̄ |= ϕ/si︸︷︷︸
LI\{i}

5 Example

As an example we shalle consider a lecture room withn blackboardsB1, . . . , Bn which are
placed side by side and are able to move up and down independently, see Figure 2. The

out

[O1, . . . , On]
out

OUT

HIDDEN

DOWNi

Oi

[HIDDEN ]

[HIDDEN ]

[HIDDEN ]

downi

downi

downi

stopi

stopi

plumpi

UPi

STOPi

upi

upi

upi

dunki

MAXi

Bi : OH :

Figure 2: The i’th boardBi and the overhead projectorOH.

i′th board has five states:MAXi for being in the higehst possible position,UPi represents
upwards movement,STOPi for not moving at all (alsoSTOPi is the initial state),DOWNi
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for moving downwards and finallyOi for being in the lowest possible position. On the wall
behind the boards there is a wide overhead screen (OH) which is initially HIDDEN , i.e. its
alignement is vertical but may “tip” out to a suitable angle when all the boards are in position
Oi. Similarly, the boards can only move up when the overhead screen isHIDDEN .

We want to prove that it is possible to get the overhead screen to the positionOUT . We
therefore get the following specification:

X = [OH@OUT ]∨
∨

e∈E∪out

〈e〉X

whereEi = {upi, downi, stopi, plumpi, dunki} andE =
⋃

i=1...n

Ei.

Now, the idea is to first factor out the overhead projector followed by all the boards one by
one. It turns out that it is possible to keep the quotient down to only one single equation after
eacf factorization step, and thus making the verification very feasible.

Factoring out the overhead projector gives two variablesXH andXO:

XH = [
∧

i=1...n

Bi@Oi ∧ 〈H 7→ out〉XO] ∨
∨

e 6=out

〈H 7→ e〉XH

XO = (OH@OUT )/OUT = tt

By substitutingtt for XO in XH and applying trivial diamond elimination we get a new spec-
ification,X, for the boards

X =
∧

i=1...n

Bi@Oi ∨
∨

e 6=out

〈H 7→ e〉X

HereH denotes{HIDDEN}
Now, let us factor out thei′th boardBi. We get the following five equations:

XH/MAXi = ff ∨ 〈(MAXi, H) 7→ downi〉(XH/DOWNi)∨∨
ei∈Ei\{downi}

〈(MAXi, H) 7→ ei〉(XH/MAXi)∨
∨

ej∈E\Ei

〈(MAXi, H) 7→ ej〉(XH/MAXi)

XH/UPi = ff ∨ 〈(UPi, H) 7→ downi〉(XH/DOWNi)∨
〈(UPi, H) 7→ dunki〉(XH/MAXi)∨
〈(UPi, H) 7→ stopi〉(XH/STOPi)∨∨
ei∈Ei\{downi,dunki,stopi}

〈(UPi, H) 7→ ei〉(XH/UPi)∨
∨

ej∈E\Ei

〈(UPi, H) 7→ ej〉(XH/UPi)
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XH/STOPi = ff ∨ 〈(STOPi, H) 7→ upi〉(XH/UPi)∨
〈(STOPi, H) 7→ downi〉(XH/DOWNi)∨∨
ei∈Ei\{upi,downi}

〈(STOPi, H) 7→ ei〉(XH/STOPi)∨
∨

ej∈E\Ei

〈(STOPi, H) 7→ ej〉(XH/STOPi)

XH/DOWNi = ff ∨ 〈(DOWNi, H) 7→ upi〉(XH/UPi)∨
〈(DOWNi, H) 7→ stopi〉(XH/STOPi)∨
〈(DOWNi, H) 7→ plumpi〉(XH/Oi)∨∨
ei∈Ei\{upi,stopi,plumpi}

〈(DOWNi, H) 7→ ei〉(XH/DOWNi)∨
∨

ej∈E\Ei

〈(DOWNi, H) 7→ ej〉(XH/DOWNi)

XH/Oi = ff ∨ 〈(Oi, H) 7→ upi〉(XH/UPi)∨∨
ei∈Ei\{upi}

〈(MAXi, H) 7→ ei〉(XH/Oi)∨
∨

ej∈E\Ei

〈(Oi, H) 7→ ej〉(XH/Oi)∨
∧

j∈{1...n}\{i}
Bj@Oj

Now, since no boardBj , j 6= i will ever use any of the events inEi we may use the principle
of Dead Event Elimination to simplify the equationa above. Moreover, we observe that all
lefthand sides also appear unguarded on most righthand sides and thus we may conclude that:

XH/MAXi ⇔ XH/UPi ⇔ XH/STOPi ⇔ XH/DOWNi ⇔ XH/Oi

Hence, we get the following new specification:

X =
∧

j∈{1...n}\{i}
Bj@Oj ∨

∨
ej∈E\Ei

〈(Li, H) 7→ ej〉X

whereLi ∈ {MAXi, UPi, STOPi, DOWNi, Oi}.
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No boardBj ever constrains boardBi, i.e. Bj does not distinguish between the statesMAXi,
UPi, STOPi, DOWNi, andOi and thus we may reduceX to

X =
∧

j∈{1...n}\{i}
Bj@Oj ∨

∨
ej∈E\Ei

〈H 7→ ej〉X

HereH denotesEi × {HIDDEN}.

Thus, after having factored out all the boards we will obtain the single equation

Y =
∧
j∈∅

Bj@Oj ∨
∨
ej∈∅

〈H 7→ ej〉Y 7→ tt ∨ ff 7→ tt

Thus we have succeded in verifying the system while avoiding the burden of the state explosion
problem.

6 Conclusion and further work

In this paper we have addressed the state explosion problem by defining and proving the cor-
rectness of the quotient technique in Left Restricting state/event systems. We have found the
simple diamond operator〈e〉 insufficient to deal with systems that are not dependency closed.
Therefore we have developed an extended modal logic featuring an extended diamond opera-
tor 〈ū 7→ e〉. Our work should provide a good framework for extending the quotient technique
to deal with cyclic dependencies.

Hierachical systems is a new feature in VisualSTATE where states in the system can be ex-
pressed as subsystems. Currently the compositional backwards reachability approach used
in VisualSTATE fails to handle these systems effectively. The quotient technique might be a
solution to this problem.

So far implementation of the technique and the gathering of experimental results is subject to
further work.
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A Proving correctness of the quotient technique

To ensure that the the quotient technique yields correct results, we need to prove that if we have
a compound statēs = (s1, . . . , si, . . . , sn) in some set of machines, it holds thats̄ satisfies a
formulaϕ if and only if the smaller state(s1, . . . , si−1, si+1, . . . , sn) satisfiesϕ

si
. However, we

look at the simpler case where the S/E system is Left Restricting.

A.1 Factoring out unguarded machines

Theorem A.1 (Correctness of quotient)
Let M1| · · · |Mn be a Left Restricting S/E system, letI = {1...i} be a set of machine indices,
and lets̄ ∈ ΣI\{i}, si ∈ Σi andϕ ∈ LI . Then it holds that

(s̄, si) |= ϕ ⇐⇒ s̄ |= ϕ/si︸︷︷︸
LI\{i}

s̄1 s̄is̄j

h1

e ee

hmhk

sk
i

[tt]

si
e

[tt]

e

Mi

e

[tt]

s1
i sm

i

M{1,...,i−1}

s̄

Figure 3: Illustrates the S/E system used in the proof of correctness of quotient. Here we
focus one-transitions froms̄ andsi. The guards one-transitions froms̄ arett since this is
a Left Restricting S/E system, andM{1,...,i−1} is the leftmost S/E machine. The guards on
e-transitions fromsi need not bett.

Proof
This proof is by structural induction inϕ. For convenience, the states under consideration are
illustrated in figure 3.

Induction hypothesis: Let M1| · · · |Mn be a Left Restricting S/E system. For any indexi ∈
{1, . . . , n}, let t̄ andti be states inM{1,... ,i−1} andMi, respectively. Then,

(t̄, ti) |= ϕ1 ⇔ t̄ |= ϕ1

ti

(t̄, ti) |= ϕ2 ⇔ t̄ |= ϕ2

ti
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Base step:ϕ = g
Show(s̄, si) |= g ⇔ s̄ |= g

si
.

We show the biimplication by starting from the right:

s̄ |= g
si⇔ s̄ |= {
t̄|t̄ × {si} ∈ g

}
⇔ s̄ ∈ {

t̄|t̄ × {si} ∈ g
}

⇔ (s̄, si) ∈ g
⇔ (s̄, si) |= g

Inductive step: ϕ = g ∧ ϕ1

Show(s̄, si) |= g ∧ ϕ1 ⇔ s̄ |= g∧ϕ1

si
.

We show the biimplication by starting from the right. IH denotes application of the induction
hypothesis.

s̄ |= g∧ϕ1

si⇔ s̄ |= g
si
∧ s̄ |= ϕ1

si
IH⇔ (s̄, si) |= g ∧ (s̄, si) |= ϕ1

⇔ (s̄, si) |= g ∧ ϕ1

Inductive step: ϕ = ϕ1 ∨ ϕ2

Show(s̄, si) |= ϕ1 ∨ ϕ2 ⇔ s̄ |= ϕ1∨ϕ2

si
.

s̄ |= ϕ1∨ϕ2

si⇔ s̄ |= ϕ1

si
∨ s̄ |= ϕ2

si
IH⇔ (s̄, si) |= ϕ1 ∨ (s̄, si) |= ϕ2

⇔ (s̄, si) |= ϕ1 ∨ ϕ2

Inductive step: ϕ = 〈e〉ϕ1

Show(s̄, si) |= 〈e〉ϕ1 ⇔ s̄ |= 〈e〉ϕ1

si
.

We show the biimplication from left to right. From the semantics of diamond and the fact that
the system is Left Restricting we have,

(s̄, si) |= 〈e〉ϕ1

⇔ ∃j, k :
[
(s̄, si)

e [tt]−−→ (
s̄j , s

k
i

)
∧ (

s̄j , s
k
i

) |= ϕ1

]
IH⇔ ∃j, k :

[
s̄

e [tt]−−→ s̄j ∧ si
e hk−−→ sk

i ∧ s̄ ∈ hk

∧s̄j |= ϕ1

sk
i

]
By combining the underlined statements to a diamond formula, we continue the biimplication:

∃k :
[
s̄ |= (

hk ∧ 〈e〉ϕ1

sk
i

) ∧ si
e hk−−→ sk

i

]
⇔ s̄ |= ∨

k|si

e hk−−→sk
i

hk ∧ 〈e〉ϕ1

si

⇔ (s̄) |= 〈e〉ϕ1

si
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Which concludes the proof. 2 Proof

Again, structural induction onϕ is used. Since the proof is largely similar to that of The-
orem A.1, only the case of extended diamond is shown. For convenience, the states under
consideration are illustrated in figure 4.

s̄1 s̄j

e ee

hmhk

sk
i

si

Mi

s1
i sm

i

Mi+1| · · · |MnM1| · · · |Mi−1

ū

h1

e
e

gj

s̄

e

g1 gp

s̄p

Figure 4: Illustrates the situation where machinesM1 to Mi−1 have been factored out. Only
the e-transitions from statesi in Mi and statēs in Mi+1| · · · |Mn are shown. The rectangle
represents the information̄u provides about the state ofM1| · · · |Mi−1.

Induction Hypothesis: Let M1| · · · |Mn be a Left Restricting S/E system. For any index
i ∈ {1, . . . , n}, let t̄i andt̄ be states inMi andM{i,... ,n} respectively. Then,

(ti, t̄) |= ϕ1 ⇔ t̄ |= ϕ1

ti

Caseϕ = 〈ū 7→ e〉ϕ1

Show(si, s̄) |= 〈ū 7→ e〉ϕ1 ⇐⇒ s̄ |= 〈ū 7→e〉ϕ1

s̄i
.

We show the biimplication by beginning with the left-hand side: From the semantics of ex-
tended diamond, we have:

(si, s̄) |= 〈ū 7→ e〉ϕ1

⇔ ∃k, j :
[
(si, s̄)

e f−→ (
sk

i , s̄j

)
∧ (

sk
i , s̄j

) |= ϕ1 ∧ ū ∈ f
]

wheref = ΠĪ

((
ΠĪ (hk)×{si}

)∩gj

)
is the guard resulting from composingM{i} andMI\{i}

according to Definition 2.2. Note that̄u lies in f if and only if ū ∈ hk andū ∈ ΠĪ(gj) and
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si ∈ Π{i}(gj). Using also the inductive hypothesis, this expands the biimplication to include

∃k, j :
[
si

e hk−−→ sk
i ∧ s̄

e gj−−→ s̄j

∧
(
s̄j |= ϕ1

sk
i

)
∧ ū ∈ hk

∧ ū ∈ ΠĪ(gj) ∧ si ∈ Π{i}(gj)
]

Observing that
(
ū ∈ ΠĪ(gj)∧si ∈ Π{i}(gj)

) ⇔ {ū}×{si} ∈ gj, we combine the underlined
statements:

∃k :
[
si

e hk−−→ sk
i ∧ ū ∈ hk

∧s̄ |= 〈{ū} × {si} 7→ e〉ϕ1

sk
i

]

Let µk =

{
ΣI\{i} , ū ∈ hk

∅ , else
.

We now use the fact that̄s |= µk if and only if ū ∈ hk, and at the same time change the
existential quantifier into a disjunction. The remaining steps are as follows:

∨
k|si

e hk−−→sk
i

s̄ |= (
µk ∧ 〈ū × {si} 7→ e〉ϕ1

sk
i

)
⇔ s̄ |= ∨

k|si

e hk−−→sk
i

(
µk ∧ 〈ū × {si} 7→ e〉ϕ1

sk
i

)
⇔ s̄ |= 〈ū 7→e〉ϕ1

si

2
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