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Abstract

The aim of this paper is to harness the mathematical machinery around
presheaves for the purposes of process calculi. Joyal, Nielsen and Winskel
proposed a general definition of bisimulation from open maps. Here we show
that open-map bisimulations within a range of presheaf models are congru-
ences for a general process language, in which CCS and related languages
are easily encoded. The results are then transferred to traditional mod-
els for processes. By first establishing the congruence results for presheaf
models, abstract, general proofs of congruence properties can be provided
and the awkwardness caused through traditional models not always pos-
sessing the cartesian liftings, used in the break-down of process operations,
are side-stepped. The abstract results are applied to show that hereditary
history-preserving bisimulation is a congruence for CCS-like languages to
which is added a refinement operator on event structures as proposed by
van Glabbeek and Goltz.

∗This author is supported by EPSRC grant GR/L62290: Calculi for Interactive Systems:
Theory and Experiment.
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Introduction

Joyal and Moerdijk’s open maps [18] led to an abstract view of bisimulation [19],
applicable to models for concurrency once they are presented as categories, along
the lines of the handbook chapter [29]. A central idea was to define bisimula-
tion through a span of open maps and explore its consequences over models for
concurrency ranging from “interleaving” models like transition systems to “in-
dependence” models like event structures, and later on Petri nets [23], in which
concurrency or parallelism of actions is expressed by some relation of indepen-
dence.

This paper takes up the suggestion of [19] to study presheaf models for con-
current computation. There are several reasons for doing this.

One reason is that, once one passes the barrier of unfamiliarity, presheaves
form an intuitively appealing model of nondeterministic computation. Nondeter-
ministic computations are identified with presheaves over a path category; objects
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of the path category specify the possible shapes of computation paths while its
morphisms specify how one path can be extended to another. Because the presheaf
category is equivalent to the category obtained by freely adjoining all colimits to
the original path category, an individual presheaf is obtained, in effect, by identi-
fying subpaths within a collection of computation paths.

As was argued in [19] presheaf models are promising generalisations of existing
models. This is because well-known models like synchronisation trees and labelled
event structures embed fully and faithfully into appropriate presheaf categories,
and, for general reasons, presheaves support operations such as those coming from
Kan extensions [21, 2]. One particular Kan extension, resulting in a functor be-
tween presheaves over pomsets, was advanced as a good candidate for an operation
of refinement of the kind proposed for event structures. Here it is shown that this
Kan extension acts, when restricted to presheaves associated with event struc-
tures, in the same way as the refinement operation on event structures proposed
by Goltz and van Glabbeek in [12]. To highlight the gain of working at a more
abstract level than is common in concurrency theory, we can often exploit an im-
portant general result [6, 3] that any colimit-preserving functor between presheaf
categories automatically preserves open maps. In particular, this result specialises
to show that the refinement, obtained as a Kan extension, preserves open maps
and so open-map bisimulation.

One point of approaching models for concurrency as categories is that opera-
tions fundamental to process calculi appear automatically, as built out of universal
constructions. An obvious question is whether these universal constructions pre-
serve open maps and therefore bisimulation. Our approach here is to prove that
operations on presheaves preserve open maps and then transfer these preserva-
tion properties to concrete models like synchronisation trees and event structures,
through canonical embeddings using results such as Proposition 5.5.1 Working
with presheaves also avoids some obstructions to a treatment of weak bisimula-
tion on independence models [10], though this topic is not dealt with here.

A more general, and probably the most important, motivation for presheaf
models is the hope they give of making concurrency less separate a study. Through
presheaf models we are trying to bring concurrency theory within domain theory,
though with the proviso that this should be understood liberally enough to in-
clude generalisations of domain theory like those envisaged in “axiomatic domain
theory” [24, 9, 11]. The use of presheaves as models for concurrency is not con-
fined to languages expressible in Proc. For instance, following the work in [28] a
treatment of presheaf categories as domains has been devised [7, 4] and applied

1The paper [8] shows that any “P-factorisable functor” preserves open maps and so bisim-
ulation. In contrast we aim to take advantage of the preservation properties of universal
constructions—a strategy proposed in the conclusion of [19].
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to the constructions of presheaf models for more sophisticated languages [5, 3].
Other applications, to nondeterministic dataflow, fairness and weak bisimulation,
can be found in [16, 15, 10].

Specifically, this paper builds on the analysis of the handbook chapter [29],
with open map bisimulation in mind, to axiomatise a presheaf based semantics of
the “general purpose” process language Proc treated there. On top of the cate-
gorical structure which is needed for the semantics of Proc, phrased in terms of
fibrations, we require the satisfaction of two conditions borrowed from categorical
logic, the Beck-Chevalley condition and the Fröbenius Reciprocity law. These two
conditions are important in proving the general congruence results of bisimulation
that are expected. The analysis of the constructions involved in the semantics of
Proc together with the corresponding preservation properties of open map bisim-
ulation form the core of the paper. As an application of the general congruence
results, we show that hereditary history-preserving bisimulation [19, 1] is a con-
gruence for Proc and conclude by proving that the refinement of event structures
proposed in [12] preserves hereditary history-preserving bisimulation.

The paper is organised as follows. In the first section we recall the basic defini-
tions and results from concurrency and category theory that we will need in order
to make the paper reasonably self-contained. Section 2 introduces the language
Proc and discusses the appropriate notion of categorical model for it. Section 3
defines presheaf models for Proc and in the following section the relevant seman-
tic constructions are discussed and proved to preserve bisimulation. Section 5
and 6 present the two applications to hereditary history-preserving bisimulation
and event structures discussed above.

An earlier extended abstract of this paper appeared as [6].

1 Preliminaries

This section recalls three fundamental models for concurrent computation and
provides the categorical background.

1.1 Traditional models

We focus on three traditional models for concurrency: transition systems, synchro-
nisation trees and event structures (see [29] for more background). A transition
system is a structure (S, i, L, tran) where

• S is a set of states with initial state i,

• L is a set of labels,
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• tran ⊆ S × L× S is the transition relation. Usually, a transition (s, a, s′) is
written as s a→ s′.

Let T0 = (S0, i0, L0, tran0) and T1 = (S1, i1, L1, tran1) be transition systems. A
morphism f : T0 → T1 is a pair f = (σ, λ) where

• σ : S0 → S1, such that σ(i0) = i1, and

• λ : L0 ⇀ L1, a partial function, which together satisfy

(s, a, s′) ∈ tran0 & λ(a) defined

=⇒ (σ(s), λ(a), σ(s′)) ∈ tran1, and

(s, a, s′) ∈ tran0 & λ(a) undefined =⇒ σ(s) = σ(s′).

A synchronisation tree is a transition system whose transition graph has the form
of a tree with root the initial state.

Definition 1.1 (The Categories T S and ST ) Define T S to be the category
of objects transition systems and arrows transition systems morphisms. The com-
position of arrows is defined componentwise.

Define ST to be the full subcategory of T S of Synchronisation Trees.

Transition systems and synchronisation trees are often called “interleaving mod-
els” because they represent parallel/concurrent composition by nondeterministi-
cally interleaving the actions of processes. In contrast, event structures represent
a class of “independence models” (among them Petri nets) in which concurrency
is represented directly as a form of causal independence.

Define a (labelled) event structure to be a structure (E,≤, Con, l) consisting
of a set E, of events which are partially ordered by ≤, the causal dependency
relation, a consistency relation Con which is a non-empty family of finite subsets
of events, and a labelling function l : E → L, which satisfy

{e′ | e′ ≤ e} is finite,

{e} ∈ Con,

Y ⊆ X ∈ Con =⇒ Y ∈ Con,

X ∈ Con & e ≤ e′ ∈ X =⇒ X ∪ {e} ∈ Con,

for all events e, e′ and their subsets X, Y . Two events e, e′ ∈ E are said to be
concurrent (causally independent) iff

(e 6≤ e′ & e′ 6≤ e & {e, e′} ∈ Con).

A set, x, of events in E is said to be a configuration if it is
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downwards-closed: ∀e, e′. e′ ≤ e ∈ x =⇒ e′ ∈ x, and

consistent: ∀X. X finite & X ⊆ x =⇒ X ∈ Con.

A morphism of event structures consists of

(η, λ) : E → E ′,

where E = (E,≤, Con, l), E′ = (E ′,≤′, Con′, l′) are event structures,
η : E ⇀ E ′ is a partial function on events, λ : L ⇀ L′ is a partial function on
labelling sets such that

(i) l′ ◦ η = λ ◦ l,

(ii) If x is a configuration of E, then ηx is a configuration of E′ and if for
e1, e2 ∈ x their images are both defined with η(e1) = η(e2), then e1 = e2.

Definition 1.2 (The Category of Event Structures) Define ES to be the cat-
egory of objects event structures and arrows event structures morphisms. The
composition of arrows is defined componentwise.

The definition of morphism on event structures is given rather abruptly—see [29]
for motivation. The categories T S,ST and ES are related by coreflections: the
inclusion functor ST ↪→ T S has a right adjoint unfolding transition systems to
trees; the functor ST → ES identifying a synchronisation tree with an event
structure has a right adjoint serialising an event structure to a synchronisation
tree.

The categories of models described above can be fibred with respect to their
labelling sets.

Definition 1.3 For M ∈ {ST , T S, ES} and L a set of labels, define ML to be
the subcategory ofM of those objects labelled in L and morphisms which have the
identity on L as relabelling part.

1.2 Bisimulation from open maps

We now describe the characterisation of bisimulation via open maps proposed
in [19], to which we refer for a more detailed discussion. We need to fix on an idea
of the computation paths in our model. For instance a (computation) path of a
transition system with labelling set L is reasonably taken to be a finite sequence
of transitions that the transition system can perform. It has the shape of a string
of labels in L.
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Definition 1.4 (Finite strings regarded as a category) Let L be a set. De-
fine L+ to be the partial order of finite non-empty strings over L regarded as a
category. It is convenient to identify strings in L+ with the equivalent subcategory
of ST L consisting of those special synchronisation trees consisting of a finite single
branch of nonzero length.
Define L∗ to be the extension of L+ to all finite strings.

To take account of the added independence structure of event structures, the
shape of their computation paths is taken to be a finite pomset [25].

Definition 1.5 (Labelled pomsets) Let L be a set. The category PomL is
taken to be the subcategory of ESL, for a labelling set L, consisting of those finite
non-empty event structures in which all subsets of events are in the consistency
relation. In other words the objects P of PomL are triples P = (P,≤, l) where P
is a finite non-empty set, ≤ is a partial order on P and l : P → L is a function.
A morphism f : P → Q in PomL is given by a injective function that preserve
the labelling and send downward closed sets of P to downward closed sets of Q.
Define (PomL)⊥ to be the extension of PomL to include the empty pomset as
well.

Both the operation of adjoining the empty string, taking L+ to L∗, and the empty
pomset to PomL are special cases of the “lifting” construction on categories which
will meet in Definition 1.8)—this accounts for the notation in the definition above.

We can obtain a general definition of bisimulation from open maps. Roughly
speaking open maps are morphisms with the property that any extension of a
computation path in the range can be matched by an extension in its domain.

Definition 1.6 (P-open maps) Assume a category of models M and a choice
of path category, a subcategory P ↪→ M consisting of path objects together with
morphisms expressing how they can be extended. Let f : M → M ′ be an arrow in
M. We say that f is a P-open map if, whenever, for m : P → Q a morphism in
P, a “square”

P

m
��

p
// M

f

��

Q
q

// M ′

inM commutes, i.e., q ◦m = f ◦ p, meaning the path f ◦ p in M ′ can be extended
via m to a path q in M ′, then there is a (not necessarily unique) morphism p′ such
that in the diagram

P

m
��

p
// M

f

��

Q

p′
>>}}}}}}}} q

// M ′
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the two “triangles” commute, i.e., p′ ◦m = p and f ◦ p′ = q, meaning the path p
can be extended via m to a path p′ in M which matches q.

Two objects M1, M2 of M are said to be P-bisimilar iff there is a span of
P-open morphisms f1, f2: M

f1

}}{{{{{{{{
f2

""EEEEEEEE

M1 M2 .

In the case of traditional models we obtain known equivalences. In ST L, L∗-
bisimulation coincides with Park and Milner’s strong bisimulation; for event struc-
tures ESL, (PomL)⊥-bisimulation coincides with hereditary history-preserving
bisimulation due to Bednarczyk refining ideas of van Glabbeek and Goltz, Rabi-
novitch and Traktenbrot [1, 12, 26].

The following easy-to-prove preservation property will be used later.

Proposition 1.7 SupposeM has products. Let f1 : M1 → N1 and f2 : M2 → N2

be P-open maps. Then f1 × f2 : M1 ×M2 → N1 ×N2 is P-open.

1.3 Presheaves as non-deterministic processes

Presheaf categories are the central mathematical notion around which this paper
is built. Let P be a category. We shall call P a path category because we are
thinking of its objects as specifying computation path shapes and its morphisms
as path extensions. The category of presheaves over P, often denoted by P̂ or by
SetP

op

, is the category whose objects are contravariant functors from P to Set (the
category of sets and functions) and whose arrows are the natural transformations

between such functors. The category P̂ is the “free cocompletion” of P, in the
sense that it can be obtained to within equivalence of categories, by freely adding
all possible colimits of diagrams in P. The category P̂ is very rich in structure
and is well known to be an example of a topos (for more details on toposes and
functor categories, see [22]).

A category of presheaves, P̂, is accompanied by a functor, the Yoneda em-
bedding, yP : P → P̂, which fully and faithfully embeds P in the category of
presheaves. Given any object P of P, the presheaf yP(P ) is the contravariant
hom-functor, P[−, P ], which to any Q, an object of P, associates the set P[Q, P ]
of arrows of P from Q to P , and to any arrow f : Q→ Q′ associates the function
that by precomposition with f sends any arrow g : Q′ → P to g ◦ f : Q→ P .

Via the Yoneda embedding we can regard P as essentially a full subcategory of
P̂. We have a situation fitting that needed for defining open maps and bisimulation
in P̂, along the lines of Section 1.2. The Yoneda Lemma (see e.g. [21]) provides a

natural bijection between P̂[yP(P ), F ] and F (P ). This justifies the intuition that
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a presheaf F : Pop → Set can be thought of as specifying for a typical path object
P the set, F (P ), of computation paths of shape P . The presheaf F acts on a
morphism m : P → Q in P to give a function F (m) : F (Q) → F (P ) saying how
Q-paths restrict to P -paths.

It turns out that to rule out the unfortunate case of the arrows from the initial,
always empty, presheaf to any other presheaf being open, it is more convenient to
define open map bisimulation for presheaves with respect to a strict extension of
the Yoneda embedding.

Definition 1.8 If P is a category, define P⊥ to be the category P to which a
new initial object, ⊥, has been added. Define y◦

P : P⊥ ↪→ P̂ to be the strict, i.e.,
initial-object preserving, extension of the Yoneda embedding yP.

As we shall see, y◦
P : P⊥ ↪→ P̂ is the universal arrow associated with another char-

acterisation of the presheaf category P̂, as the free connected-colimit preserving
completion of P⊥.2

Definition 1.9 (Open maps for presheaves) If P is a small category and f :
X → Y is an arrow between presheaves over P, define f to be P-open (or simply
open when no confusion arises) if it is open according to Definition 1.6 with respect
to the embedding y◦

P.

By considering open maps with respect to y◦
P rather than yP we obtain that open

maps are necessarily epimorphic (as are L∗- and (PomL)⊥-open maps in con-
trast to L+- and PomL-open maps for transition systems and event structures,
respectively).

Proposition 1.10 An arrow between presheaves over a category P is open if and
only if it is epimorphic (i.e., pointwise a surjective function) and open with respect
to the Yoneda embedding, yP.

A model, like a transition system or a labelled event structure, gives rise to a
presheaf. For a category of models M and a choice of path category forming a
subcategory P ↪→M, there is a canonical functor from the category of modelsM
to the category of presheaves P̂. The functor, cM : M → P̂, takes an object M
of M to the presheaf M[−, M ]—more intuitively, it takes the model M to the
presheaf which for each path object P yields the set of pathsM[P, M ] from P into
M . The canonical functor takes a morphism f : M → M ′ in M to the natural
transformation, M[−, f ] :M[−, M ]→M[−, M ], whose component at an object

2In earlier work [19, 6], we have made use of rooted presheaves of a category P⊥. A rooted
presheaf is a presheaf X over P⊥ in which the set X(⊥) is a singleton. Note that the subcategory
of rooted presheaves over P⊥ is isomorphic to the category of presheaves P̂, and that this is the
connected-colimit completion of P⊥.
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P of P is the functionM[P, M ]→M[P, M ′] taking p to f ◦p—a path p : P →M
in M is taken to a path f ◦ p : P →M in M . More generally for F : P→M any

functor, one can define cF :M→ P̂ to be cF (M)
def
= M[F (−), M ] on objects and

to act by composition on morphisms.
The canonical functors from synchronisation trees ST L to presheaves L̂+ and

from event structures ESL to P̂omL are full and faithful, so canonical embeddings.
Generally, a canonical functor cM is full and faithful whenever the path category
is dense in the category of models M (see MacLane [21], P. 243), as remarked
in [19]. Because such canonical embeddings are also dense they preserve all ex-
isting limits [30]. On the other hand, we cannot expect cM to preserve general
colimits inM. The following proposition asserts that colimits of certain diagrams
are preserved (we shall need it in Section 6).

Proposition 1.11 Let M be a category, P be a category with a functor F : P→
M. Let ∆ : D → M be another functor from a small category D satisfying the
following property of “density with respect to F”: If (M, δD : ∆(D)→M) is a
colimiting cone for ∆, then for any P ∈| P | and p : F (P ) → M , there exists a
D ∈|D | and d : F (p)→ ∆(d) such that:

• p = δDd.

• For any other factorisation

F (P )
p

//

d′ $$JJJJJJJJJ M

∆(D′) ,

δD′

;;wwwwwwwww

there exists m : D → D′ such that

∆(m)d = d′ and δD′∆(m) = δD .

Then cF (M) ∼= colim cF ∆.

Remark: Proposition 1.11 above can be made into an “if and only if” statement
if we replace the condition on m by one saying that any two factorisations are
connected by a chain of spans

D = D0
m1←− D1

m2−→ D2 ← · · · mn−→ Dn = D′

in D with pi : F (Pi)→ ∆(Di) such that:

δDi−1
mi = δDi

(for i odd) δDi
mi = δDi−1

(for i even)
mipi = pi−1 (for i odd) miPi−1 = pi (for i even) .
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Open map bisimulation is clearly preserved whenever the canonical functors
are full and faithful and is reflected too in the case of synchronisation trees and
event structures.

Proposition 1.12 (Joyal-Nielsen-Winskel)

(i) Two synchronisation trees, over labelling set L, are L∗-bisimilar (i.e.strong
bisimilar) iff their corresponding presheaves, under the canonical embedding,
are related by a span of L+-open maps.

(ii) Two event structures, over labelling set L, are (PomL)⊥-bisimilar (equiva-
lently, hereditary history-preserving bisimilar) iff their corresponding presheaves,
under the canonical embedding, are related by a span of PomL-open maps.

Having established the link between categories of models and categories of presheaves
over appropriate path categories, we can look for general constructions on presheaves,
useful in modelling processes, that preserve openness and hence bisimulation. Left
Kan extensions will be among such constructions. Before we introduce this pow-
erful operation we mention a simple property, straightforward to verify, of the
canonical embeddings cST L

of synchronisation trees and cESL
of event structures,

that we shall need in Section 5.

Proposition 1.13 The canonical embeddings, cST L
and cESL

preserve coproducts
and initial objects.

1.4 Left Kan extensions

We introduce the notion of Left Kan extension, a construction which we use
extensively.

Definition 1.14 (Left Kan Extensions) If C G←− A F−→ B are functors, one
says that a pair (H, α) is a left Kan extension of G along F if

• H : B → C is a functor

• α : G ⇒ HF is a natural transformation satisfying the following universal
property:

for every other pair (K, β) with β : G⇒ KF there exists a unique γ : H ⇒
K such that β = γF · α.

By the usual abuse of language we will often call the functor H the left Kan
extension of G along F and write LanF (G) to indicate it.

10



Note that the triangle

A F //

G
&&MMMMMMMMMMMMM B

LanF (G)
��

C

need not commute, not even up to natural isomorphism. Still, this happens in
many cases of interest.

Proposition 1.15 If F is full and faithful and (LanF (G), α) exists then α is a
natural isomorphism.

If C is cocomplete and A is essentially small, then LanF (G) always exists for
any F and G and can be computed “pointwise” (see [2]) as a colimit. Left Kan
extensions compose in the sense that if (H, α) is the left Kan extension of G along

F for C G←− A F−→ B and (K, β) is the left Kan extension of H along F ′, for

C H←− B F ′
−→ D, then (K, βF · α) is the left Kan extension of G along F ′F :

LanF ′F (G) ∼= LanF ′(LanF (G)) .

Let P be a category. We mentioned earlier that P̂ is the free colimit completion
of P. In more detail:

Proposition 1.16 The Yoneda embedding yP : P → P̂ satisfies the universal
property that for any functor F : P→ E , where E is a cocomplete category, there
is a colimit-preserving functor G : P̂ → E , unique to within isomorphism, such
that F ∼= G ◦ yP:

P
yP //

F
��

======== P̂

G

��

E
To within isomorphism, the functor G is given as the left Kan extension LanyP(F ).

Conversely, if G : P̂ → Q̂ is a colimit-preserving functor then, to within isomor-
phism, G is LanyP(G ◦ yP).

In fact, LanyP(F ) has right adjoint a functor taking Y in E to the presheaf
E [F (-), Y ]; the right adjoint is also a left Kan extension, being LanF (yP) to within
isomorphism.

A key result that we use in this paper is the following theorem which entails
that the left Kan extensions described above preserve open maps, a powerful tool
in showing operations preserve bisimulation:

11



Theorem 1.17 Let F : P̂ → Q̂ be a colimit preserving functor and let f be a
P-open map, then F (f) is a Q-open map.

A proof of the above theorem appears in [3]. We shall not be interested only in
colimit-preserving functors and in [3] a similar preservation property for a larger
class of functors is also proved.

Theorem 1.18 Let F : P̂ → Q̂ be a connected-colimit preserving functor, i.e.,
a functor which preserves colimits of connected diagrams, and let f be a P-open
map, then F (f) is a Q-open map.

The operations that we use for modelling process constructors on presheaves all
fall within the class of connected-colimit preserving functors. This will enable us
to establish that open-map bisimulation in presheaf models is a congruence for a
general process language, once and for all.

We present the connection between the strict extension of the Yoneda embed-
ding y◦

P and connected-colimit preserving functors.

Proposition 1.19 (See [3]) Let P be a small category. With respect to the em-

bedding y◦
P : P⊥ → P̂, the category P̂ is the free connected-colimit completion of P⊥.

Moreover if F : P⊥ → E is a functor, with E a category with connected-colimits,
then the universal extension of F is Lany◦

P
(F ) : P̂→ E .

Recall the Kan extensions arising in an important special case. A functor
F : P → Q gives rise to a triple of adjoint functors F! a F ∗ a F∗ (see [22]) that
can be described as

F! = LanyP(yQF ), F ∗ = LanyQF (yP), F∗ = LanF ∗yQ(yQ) .

Instantiating this to F = I : P ↪→ P⊥, the obvious embedding of P in P⊥, we
deduce the following.

Proposition 1.20 If I : P ↪→ P⊥ is the obvious embedding of P into P⊥, then I∗
preserves connected-colimits.

Proof: As we wrote I∗ = LanI∗yP⊥ (yP). A straightforward calculation shows that
I∗yP⊥ = y◦

P, hence by Proposition 1.19, I∗ is connected-colimit preserving. 2

Notice that I∗ can be defined more concretely as acting on a presheaf X in the
following way:

I∗(X)(P ) =

{
X(P ) if P 6= ⊥
{∗} otherwise.

Later, we shall make great use of the following definition.
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Definition 1.21 Let F : P⊥ → Q⊥ be a functor that preserves the initial ob-

ject. Consider the composite functor P
IP // P⊥

F // Q⊥
y◦
Q

// Q̂ . Define F l def
=

LanyP(y
◦
QFIP) : P̂→ Q̂ and F r def

= Lany◦
Q
FIP(yP).

Proposition 1.22 With respect to Definition 1.21 above we have that:

1. F l a F r.

2. F r is connected-colimit preserving.

3. F l is colimit-preserving and F l ∼= I∗
Q(FIP)!

∼= I∗
QF!IP,!, where IQ : Q ↪→ Q⊥.

Proof:

1. By Proposition 1.16 (with F instantiated to y◦
QFIP).

2. Since left Kan extensions compose, we have that F r def
= Lany◦

Q
FIP(yP)

∼=
Lany◦

Q
(LanFIP(yP)) and hence, by Proposition 1.19, we can deduce that F r

preserves connected colimits.

3. As remarked earlier, left Kan extensions with respect to the Yoneda embed-
ding correspond to colimit preserving functors, to within isomorphism. Re-
call from the proof of Proposition 1.20, that y◦

Q = I∗
QyQ⊥ . Notice moreover

that colimit-preserving functors, such as I∗
Q, preserve left Kan extensions

(see [2]). Thus we can establish the following chain of isomorphisms:

F l def
= LanyP(y

◦
QFIP) ∼= LanyP(I

∗
QyQ⊥FIP) ∼= I∗

QLanyP(yQ⊥FIP)
def
= I∗

Q(FIP)!
∼= I∗

QF!IP,! .

2

1.5 Fibred categories

Indexing structure plays a fundamental role in the categorical analysis of mod-
els for concurrency [29, 27]. In the context of categorical models for CCS-like
languages we will consider presheaf categories indexed by a category of labelling
sets. There is a tight correspondence between indexed categories and fibrations;
the former represent the class of fibrations for which a definite (coherent) choice
of a cleavage has been made. We introduce in this section the basic terminology
of fibred category theory3 together with pointers to the related notion of elemen-
tary existential doctrine [20] of which the presheaf models of Section 3 will be an
example.

3A more detailed introduction to fibrations can be found in, e.g., [17].
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Definition 1.23 (Cartesian arrows) Let π : E → B be a functor. An arrow in
E , f : e′ → e is cartesian (with respect to π) if for every other arrow g : e′′ → e
such that π(g) = βα with β = π(f), there exists a unique h : e′′ → e′ with g = fh
and π(h) = α:

e′′

∃!h
((

g

))
e′

f
// e

π(e′′)
α // π(e′)

β
// π(e) .

Definition 1.24 (Fibrations) A functor π : E → B is a fibration if for every
β : b′ → b in B and e ∈|E | such that π(e) = b, there exists a cartesian arrow, f ,
of codomain e such that π(f) = β. The arrow f is called a cartesian lifting of e
with respect to β.

Definition 1.25 If π : E → B is a functor, an arrow f : e′ → e of E is said to be
vertical if π(f) = 1e.

Definition 1.26 If π : E → B is a functor and b an object of B. Define the
fibre over b (with respect to π) to be the subcategory Eb of E of those objects e and
arrows f such that π(e) = b and π(f) = 1b.

If π is a fibration then a choice of cartesian arrows induces cartesian lifting functors
between the fibres:

Proposition 1.27 (Cartesian lifting functors) Let π : E → B a fibration.
Let β : b′ → b be an arrow in B. For every object e ∈|Eb | let β∗

e : β∗(e) → e be a
chosen cartesian lifting of e with respect to β. This choice induces the following
cartesian lifting functors β∗ : Eb → Eb′:

• On objects e 7→ β∗(e) as chosen above

• On arrows (f : e→ e) 7→ β∗(f) that is defined to be the unique arrow such
that the following square commutes:

β∗(e)
β∗

e //

β∗(f)
��

e

f

��

β∗(e)
β∗

e

// e.

14



A choice of cartesian arrows for a fibration is called a cleavage and a fibration
with a chosen cleavage is called a cloven fibration. If the choice of the cleavage is

functorial, i.e., (1b)
∗
e = 1e and for b′′

α−→ b′
β−→ b, (βα)∗e = α∗

β∗
e
, then the fibration

is said to be split.
We will make extensive use of the dual notion of cofibration:

Definition 1.28 (Cofibrations and Bifibrations) A functor π : E → B is a
cofibration if the dual functor πop : Eop → Bop is a fibration. A functor that is
both a fibration and a cofibration is called a bifibration.

Dually, one talks of cocartesian arrows, cocartesian liftings, cocartesian lifting
functors and (functorial) cocleavages.

1.6 The Grothendieck construction

Cloven fibrations are equivalent to indexed categories.4 In fact any indexed cate-
gory gives rise (via a construction due to Grothendieck [13]) to a cloven fibration
and vice versa any cloven fibration induces an indexed category.

Definition 1.29 (Indexed categories) Let B be any category. A B-indexed
category in CAT is given by a pseudo-functor F : Bop → CAT , that is F as-
sociates to each object of b, a category F (b), to any arrow β : b′ → b a func-

tor β∗ : F (b) → F (b′) with natural isomorphisms, φb : 1F (b)
'−→ (1b)

∗ and

φ(α,β) : α∗β∗ '−→ (βα)∗ for any b ∈| B | and for any two arrows b′′
α−→ b′

β−→ b
of B satisfying the coherence conditions given by commutativity of the following
diagrams:

α∗(1b)
∗

φα,1b
''PPPPPPPPPPPPP α∗α∗φboo

(φb)α∗
//

1α∗
��

(1b′)
∗α∗

φ1
b′ ,α

vvnnnnnnnnnnnnn

α∗

α∗β∗γ∗ (φα,β)γ∗
//

α∗φβ,γ

��

(βα)∗γ∗

φβα,γ

��

α∗(γβ)∗
φα,γβ

// (γβα)∗ ,

with γ being another arrow of B, γ : b→ b′′′.

Definition 1.30 (Grothendieck construction) Given a B-indexed category F :
Bop → CAT , define the following category Groth(F ):

4See for example [14] for a precise account of this statement.
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• Objects: Pairs 〈c, b〉, with c ∈|F (b) | and b ∈|B |.

• Arrows: A pair 〈f, β〉 is an arrow from 〈c′, b′〉 to 〈c, b〉 if β : b′ → b is an
arrow in B and f : c′ → F (β)(c) is an arrow in F (b′). If 〈f, α〉 : 〈c′′, b′′〉 →
〈c′, b′〉 and 〈g, β〉 : 〈c′, b′〉 → 〈c, b〉 then their composite is the pair 〈h, βα〉
where h is the following arrow

c
f−→ F (α)c′

F (α)g−→ F (α)F (β)c′′
φα,β−→ F (βα)c′′ .

The coherence conditions of Definition 1.29 ensure associativity of composi-
tion.

The obvious projection π : Groth(F )→ B that projects any pair onto its the second
component is a fibration. A cartesian lifting for 〈c, b〉 with respect to β : b′ → b is
given by the pair 〈1F (β)c, β〉.

Our main example of a bifibration will be given by an elementary existential
doctrine in the sense of Lawvere [20] whose categories of attributes will be presheaf
categories. We will consider the following two conditions on fibrations, which
usually arise in the context of categorical logic [22, 20].

Definition 1.31 Let P : Bop → CAT be a pseudo-functor. If β : b′ → b is an
arrow in B, we write β∗ for P(β). Suppose that for any β, β∗ has a left adjoint
β!.

• Beck-Chevalley Condition: Say that P satisfies the Beck-Chevalley con-
dition if for every pullback square in B

b′′′��
α

��

β
// b′��

α

��

b′′
β

// b

with α monic, the following square commutes up to a natural isomorphism:

P(b′′′)

α!

��

P(b′)
β
∗

oo

α!

��

P(b′′) P(b) .
β∗

oo

• Fröbenius Reciprocity Law: Suppose now that for every b ∈| B |, P(b)
has binary products. Say that P satisfies the Fröbenius Reciprocity Law if

16



for every β : b′ → b and c ∈| P(b) | the following square commutes up to a
natural isomorphism:

b′

β

��

P(b′)

β!

��

P(b′)
β∗(c)×−

oo

β!

��

b P(b) P(b) .
c×−

oo

We round off this section with a few facts about fibrations and indexed categories
that we need later.

Proposition 1.32 Let P : Bop → CAT be a pseudo-functor satisfying the Beck-
Chevalley condition, then for any monic arrow β : b′ � b,

β∗β!
∼= 1P(b′) .

If P satisfies also the Fröbenius reciprocity law, then for any monic arrow β :
b′ � b, the functor β! preserves products.

Proof: For the easy proof of the first statement see [22] P.175. The second,
categorical folklore it seems, can be proved easily, as follows. Let c′, d′ be two
objects of P(b′), then

β!(c
′ × d′) ∼= β!(β

∗β!c
′ × d′) (from the property above)

∼= β!c
′ × β!d

′ (by Fröbenius reciprocity law)

2

We use the last result to prove a fact about products (Proposition 1.34) that will be
useful later in Section 4 to prove that parallel compositions respect bisimulation.
We first need a lemma.

Lemma 1.33 Let P : Bop → CAT be a pseudo-functor, satisfying both the Beck-
Chevalley condition and the Fröbenius Reciprocity law. Let the following square
be a pullback of monomorphisms in B:

a //
β

//
��

α

��

b��
γ

��

c //

δ
// d .

If X and Y are two objects of P(d) such that δ!δ
∗X ∼= X and γ!γ

∗Y ∼= Y , then

X × Y ∼= δ!α!α
∗δ∗(X × Y ) .

17



Proof:

X × Y ∼= δ!δ
∗X × Y (by hypothesis)

∼= δ!(δ
∗X × δ∗Y ) (by Fröbenius)

∼= δ!δ
∗X × δ!δ

∗Y (by Proposition 1.32)
∼= X × δ!δ

∗Y (by hypothesis)
∼= X × δ!δ

∗γ!γ
∗Y (by hypothesis)

∼= X × δ!α!β
∗γ∗Y (by Beck-Chevalley)

∼= X × δ!α!α
∗δ∗Y (since δα ∼= γβ)

∼= δ!α!(α
∗δ∗X × α∗δ∗Y ) (by Fröbenius)

∼= δ!α!α
∗δ∗(X × Y ) (since α∗ and δ∗ are right adjoints).

2

Proposition 1.34 Let P : Bop → CAT be a pseudo-functor, satisfying both the
Beck-Chevalley condition and the Fröbenius Reciprocity law. If a diagram

a c
πb //

πaoo b

d
OO

i

OO

f
l

oo
r

//
OO

k

OO

e
OO

j

OO

is a limiting cone in B, then for any object X ∈|P(d) | and Y ∈|P(e) |, there is
an isomorphism in P(c),

k!(l
∗X × r∗Y ) ∼= π∗

ai!X × π∗
b j!Y .

Proof: Observe first of all that the limit of the diagram

a c
πb //

πaoo b

d
OO

i

OO

e
OO

j

OO

is obtained by taking three pullbacks, i.e., the limiting cone can be constructed
as follows,

a c
πb //

πaoo b

d
OO

i

OO

· @@

δ

@@��������
πd

oo ·^^
γ

^^<<<<<<<<

πe
// e

OO

j

OO

f
]]

α

]]<<<<<<<<
AA

β

AA��������
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where all the quadrilaterals in the diagram above are pullbacks. Without loss of
generality we can assume that l = πdα, r = πlβ and k = δα = βγ. We deduce the
following natural isomorphism:

δ!δ
∗π∗

ai!
∼= δ!δ

∗δ!π
∗
d (by Beck-Chevalley)

∼= δ!π
∗
d (by Proposition 1.32)

∼= π∗
ai! (by Beck-Chevalley).

Similarly one deduces that γ!γ
∗π∗

b j!
∼= π∗

b j!. Hence,

π∗
ai!X × π∗

b j!Y ∼= δ!α!α
∗δ∗(π∗

ai!X × π∗
b j!Y ) (by Lemma 1.33)

∼= k!(α
∗δ∗π∗

ai!X × α∗δ∗π∗
b j!Y )

∼= k!(α
∗δ∗δ!π

∗
dX × α∗α!β

∗π∗
eY ) (by Beck-Chevalley)

∼= k!(α
∗π∗

dX × β∗π∗
eY ) (by Proposition 1.32)

∼= k!(l
∗X × r∗Y ) .

2

Proposition 1.35 Let π : E → B be a fibration (cofibration). Let ∆ be a class
of diagram shapes (i.e., a class of categories). Suppose that for every object b of
B, the fibre Eb has limits (colimits) of diagrams of shape δ for every δ ∈ ∆ and
suppose that B has limits (colimits) of diagrams of shape δ for every δ ∈ ∆ too.
Then E has limits (colimits) of diagrams of shape δ for every δ ∈ ∆.

Proof: We simply give the description of how to build a limiting cone in E for
a diagram of shape δ ∈ ∆. Let F : δ → E be a functor. Consider πF : δ → B.
By assumption there exists a limiting cone for πF . Let b = lim πF and for
any d ∈| δ |, let βd : πF (d) → b be the corresponding edge of the cone. Let
(β∗

d : β∗
d(F (d)) → F (d))d∈|δ| be a family of cartesian arrows. This family induces

a functor, β∗
(−)F : δ → Eb. By assumption there exists a limiting cone to such a

functor. Let (e, fd : e→ β∗
dF (d)) be such a cone, then by post-composing with the

corresponding cartesian arrows one obtains a limiting cone (e, β∗
dfd : e → F (d))

in E . 2

Morphisms of transition systems, synchronisation trees consist of pairs, one
component of which is a partial function between labelling sets. By projecting
to this component we obtain functors pT S : T S → Set∗, pST : ST → Set∗ and
pES : ES → Set∗ from the categories of models to Set∗, the category of sets and
partial functions.

Proposition 1.36 (Implicit in [29]) The functors pT S : T S → Set∗ and pST :
ST → Set∗ are bifibrations. The functor pES : ES → Set∗ is a cofibration. There
exist cartesian liftings of all monomorphisms.

Notation: If L and M are two sets, we write L×∗ M for the categorical product
of L and M as objects of Set∗. Concretely L×∗ M can be realised as the disjoint
union of sets L+M +L×M , while L×M as the usual cartesian product of sets.
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2 A general process language and its categorical

models

We introduce the process language Proc of [29] within which a class of CCS-like
languages can be expressed. The distinctive feature of Proc is that its parallel
composition operator is a general product out of which different parallel compo-
sitions can be constructed with the help of restriction and relabelling operations.
As noted in [29], if the terms of Proc are to be interpreted in categories of labelled
structures (such as labelled transition systems, event structures) it is convenient
to regard such categories as fibred over the labelling sets, more precisely over the
category Set∗ of sets and partial maps. Viewed in this way we obtain the univer-
sal characterisations of the operators associated with restriction and relabelling
in terms of (co)cartesian liftings. Prefixing requires a more ad hoc treatment.

Define the terms of the language Proc:

t ::= Nil | at | t0 ⊕ t1 | t0 × t1 | t�Λ | t{Ξ} | x | rec x.t

where a is a label, Λ is a subset of labels, while Ξ is a total function from labels
to labels, and x is drawn from some infinite set of a variables that we denote by
V ars.

The handbook chapter [29] presented an analysis of the categorical status of
the operations involved in the semantics of Proc. The structure, left somewhat
implicit there, leads to an axiomatisation of the categories which are models of
Proc. We emphasise the role of partial relabelling functions as substitution oper-
ators and impose upon them the Fröbenius reciprocity law and the Beck-Chevalley
condition of Section 1.5

Definition 2.1 (Models for Proc) A categorical model for Proc is given by a
functor π :M→ Set∗ such that:

• M has binary products (×).

• For every set L, the fibreML has initial object (0L), binary coproducts (+L)
and colimits of ω-chains.

• For every inclusion i : L ↪→ M of sets, there exists a cartesian lifting functor
i∗ :MM →ML.

• For every total function f : L→M , there exists a cocartesian lifting functor
f! :ML →MM .

• For every set L and label a ∈ L, there exists a prefixing endofunctor

Prea,L :ML →ML

20



which preserves ω-colimits as well as existing cocartesian lifting functors for
partial maps f : L ⇀ M , that are defined on a, i.e., if f is a partial map
from L to M such that f(a) is defined and such that f! exists, then the
following square commutes, up to coherent isomorphism:

ML

Prea,L
//

f!

��

ML

f!

��

MM Pref(a),M

//MM .

• Whenever applicable, i.e., whenever the required (co)cartesian arrows exist,
the Fröbenius reciprocity law and Beck-Chevalley condition of Definition 1.31
hold.

In [29] several models were considered, ranging from ‘interleaving’ models, like
transition systems and synchronisation trees, to ‘non-interleaving’ models, like
event structures, Petri nets or transition systems with independence. Here we
recall briefly, how the structure required in the definition above is used to give
semantics to terms of Proc .

We first derive some properties of models. In fact a model for Proc, as de-
scribed in Definition 2.1, is not necessarily a cofibration. Still it has enough
cocartesian liftings for us to deduce the following corollary (of the proof) of Propo-
sition 1.35:

Corollary 2.2 If π : M → Set∗ is a model for Proc, then M has an initial
object, binary coproducts and colimits of ω-chains.

2.1 Denotational semantics of Proc

The operation ⊕ will be used to model the nondeterministic sum. This operation
contrasts with the categorical sum in that the labelling set of the nondeterministic
sum is obtained as a union rather than a disjoint union of the labelling sets of the
two components.

Definition 2.3 Let π : M → Set∗ be a model for Proc . If M is an object of
ML and N an object of ML′, define M ⊕N ∈|ML∪L′ | to be

M ⊕N = iL,!(M) +L∪L′ iL′,!(N) .

For any two sets L, L′, this construction induces a functor (−⊕−) :ML×ML′ →
ML∪L′. However, because of the choice of taking the union and not the disjoint
set of labelling sets, this does not lift to a functorM×M→M; it does not have
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a well defined action on arrows. In fact it is not possible to define what f⊕g must
be for two arbitrary arrows f : M → M ′ and g : N → N ′ of M. A definition is
possible, however, when π(f) and π(g) agree on π(M) ∩ π(N). This occurs for
arrows in a common fibre when π(f) and π(g) will be the same identity function.
More generally one can define a bifunctor ⊕ :Min ×Min →Min where Min is
the subcategory ofM of those arrows, f , such that π(f) is an inclusion of sets.

Let π : M → Set∗ be a model as in Definition 2.1. We describe the deno-
tational semantics of Proc inductively on the structure of the well typed terms,
assuming an environment ρ : V ars→|M|, a function to the objects ofM:

Nil: [[Nil]]ρ = 0∅ an initial object ofM
Variables: [[x]]ρ = ρ(x)

Sum: [[t1 ⊕ t2]]ρ = [[t1]]ρ ⊕ [[t2]]ρ

Product: [[t1 × t2]]ρ = [[t1]]ρ × [[t2]]ρ

Restriction: [[t1�Λ]]ρ = i∗([[t1]]ρ), where i : Λ ∩ π([[t1]]ρ) ↪→ π([[t1]]ρ)

Relabelling:For Ξ : L → M a relabelling function, [[t1[Ξ]]]ρ = Ξ′
!([[t1]]ρ), where

Ξ′ : π([[t1]]ρ)→ π([[t1]]ρ) ∪M is defined as Ξ′(a) =

{
a if a 6∈ L

Ξ(a) if a ∈ L .

Prefixing: [[at]]ρ = Prea,L∪{a}(i!([[t]]ρ)), where π([[t]]ρ) = L and i : L ↪→ L ∪ {a}.
Recursion: Let t be any term, and let x be a variable (possibly free in t). Given
any environment ρ the term t and the variable x determine an endofunctor

txρ : Min → Min

M 7→ [[t]]ρ[M/x] .

From txρ, the following ω-chain is derivable:

T : ω → M
0 7→ [[t]]

ρ[[[Nil]]
ρ
/x]

n 7→ [[t]]ρ[T n−1/x] for n > 0

Define [[recx.t]]ρ = colim T . Since all the constructions involved in the denotation
of a term t are ω-colimits preserving functors, then colimT is a fixed point for txρ.

The interpretation of the terms of Proc as objects ofM has not involved Fröbenius
reciprocity or the Beck-Chevalley condition. As we shall see in the next section
these two conditions come into play when equipping models with a notion of
bisimulation. Then the presence of these conditions will matter: they constrain
the action that the cartesian arrows have on objects of M and are needed in
showing that bisimulation is a congruence.
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3 Presheaf models for Proc

As we saw in the previous section, the denotation of a term of Proc is given
mainly in terms of universal constructions: (co)products, (co)cartesian liftings
and fixed points. (The ad hoc treatment of prefixing is the exception.) Since we
have an abstract definition of bisimulation via open maps we can hope to obtain
abstract proofs of congruence with respect to bisimulation. But this task seems
impossible with respect to the general definition of model for Proc. However,
by specialising to presheaf models we can exploit the richness of constructions
there to obtain a very general congruence theorem. The canonical embeddings
from traditional models to presheaf categories preserve and reflect bisimulation as
well as the process algebra operations. Consequently, the congruence results for
presheaf models can be transferred to traditional models, as we do in Section 5
for the event structure model of Proc.

We begin by describing what we need to build a presheaf model for Proc. We
require a family of path categories, indexed by sets of labels. Partial relabelling
functions L ⇀ M will be associated with functors mapping computation paths
over L to (possibly empty) computation paths over M . We will again need functors
to represent prefixing, but this time they will be derived from more basic functors
associated with lifting.

Definition 3.1 (Path structure for Proc) A path structure for Proc con-
sists of a functor P(−) from Set∗ to Cat, the category of small categories, which

sends λ : L ⇀ M to λ : (PL)⊥ → (PM)⊥ such that:

1. The functors λ, for λ : L ⇀ M , preserve initial objects.

2. For each set L and element a ∈ L, there is an explicitly given prefixing
functor
prea,L : (PL)⊥ → PL satisfying commutativity of the following diagram,
where IM , IL are the obvious embeddings:

(PL)⊥
prea,L

//

λ
��

PL
� � IL // (PL)⊥

λ
��

(PM)⊥ preλ(a),M

// PM
� �

IM

// (PM)⊥

for any λ : L ⇀ M that is defined on a.

A process with labelling set L is to denote a presheaf over PL.
With the Grothendieck construction of Section 1.6 in mind, one sees that a

path structure for Proc defines a split cofibration in Set∗.
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Example 3.2

1. Define (−)+ : Set∗ → Cat to be the functor that associates to each set L the
partial ordered set (regarded as a category) L+ of finite non-empty strings of
elements of L, and to each partial map λ : L ⇀ M the monotone map (i.e.,
the functor) λ : L∗ → M∗ that pointwise relabels every string over L to a
string over M according to λ, sending every letter on which λ is undefined
to the empty string (ε). The prefixing functors are defined by usual prefixing
of strings, i.e., prea,L(σ) = aσ.

2. Define Pom(−) : Set∗ → Cat to be the functor that associates to each set
L the category of non-empty pomsets labelled in L. If λ : L ⇀ M , then
λ : (PomL)⊥ → (PomM)⊥ is the following functor:

• On objects: Given a (possibly empty) pomset P = (P,≤, l), λ(P ) =
(P ′,≤′, l′) with P ′ = {e ∈ P | λ(l(e)) is defined}, ≤′=≤ ∩(P ′ × P ′)
and l′(e) = λ(l(e)).

• On arrows: If f : P → Q is an arrow in (PomL)⊥, λ(f) is simply
the restriction of f to P ′ and Q′.

The prefixing functors are again the obvious ones, i.e., the prefixing prea,L(P )
of a pomset P is obtained by adding a new event, labelled ‘a’, which is placed
below all the events of P in the causal order relation.

Recall from the Definition 1.21 that from every functor F : P⊥ → Q⊥, that
preserves the initial object, between small categories one can derive a pair of
adjoint functors F l a F r : P̂ → Q̂, with F r being connected-colimit preserving.
Hence, using the Grothendieck construction, from a path structure for Proc we
can derive a bifibration, whose fibres will the be the categories P̂L.

3.1 The Grothendieck construction for presheaf models

Given a path structure P(−), we can glue together all the fibres, consisting of
categories of presheaves over PL, to form a fibration over Set∗ which we call
Groth(P(−)):

Objects: pairs 〈X, L〉 with L ∈ |Set∗| and X a presheaf over PL,

Arrows: pairs 〈f, λ〉 : 〈X, L〉 → 〈Y, M〉 with λ : L ⇀ M and f : X → λ
r

(Y ).

The composition of arrows is 〈g, µ〉◦〈f, λ〉 = 〈λr

(g)◦f, µ◦λ〉. Clearly the projection
〈X, L〉 7→ L is the object part of a functor π : Groth(P(−)) → Set∗. Intuitively,
the Grothendieck construction glues the various fibres together; it adds arrows
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between presheaves (possibly over different fibres), to allow for the possibility of
a partial relabelling of actions. The adjunctions ensure that the Grothendieck
fibration is in fact a bifibration [17]; the cocartesian lifting of λ with respect to

X is (ηX , λ) : X → λ
l

(X) where ηX : X → λ
r

λ
l

(X) is the component of the unit
of the adjunction at X. Since the fibres are presheaf categories they satisfy all
the colimit completeness requirements in Definition 2.1. Moreover by applying
Proposition 1.35 we can deduce that Groth(P(−)) has binary products.

Even if the functor P(−) induces a split cofibration, whose fibres are the cate-
gories (PL)⊥, for a set L, when extended to Groth(P(−)) this property is lost. On

the other hand, since the λ
r

’s are defined by composition, Groth(P(−)) is a split
fibration.

Definition 3.3 (Presheaf Models for Proc) A presheaf model for Proc, con-
sists of a path structure P(−) as in Definition 3.1 satisfying the extra condition that
the induced bifibration Groth(P(−)) satisfies both the Fröbenius Reciprocity law and
the Beck-Chevalley condition.

Presheaf models for Proc, P(−), induce categorical models in the sense of Defini-
tion 2.1.

Theorem 3.4 If P(−) is a presheaf model for Proc, then Groth(P(−)) is a model
in the sense of Definition 2.1, where the prefixing functors are defined as follows,
for any a ∈ L:

Prea,L : P̂L

IL,∗
// (̂PL)⊥

prea,L,!
// P̂L ,

where we recall that prea,L,! = Lany(PL)⊥
(yPLprea,L

) and IL,∗ is defined as in Sec-
tion 1.4.

To prove the theorem we need the following lemma:

Lemma 3.5 Let F : P⊥ → Q⊥ be a functor and let IP : P→ P⊥ and IQ : Q→ Q⊥
be the obvious embeddings, then the following square commutes up to a natural
isomorphism:

P̂
IP,∗

//

F l

��

P̂⊥

F!

��

Q̂
IQ,∗

// Q̂⊥ .

Proof: Observe that all the arrows in the above square are connected-colimit
preserving functors. It is now an easy calculation to show that

F!IP,∗y
◦
P
∼= IQ,∗F

ly◦
P .

Thus F!IP,∗ is isomorphic to IQ,∗F
l. 2
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Proof:[of Theorem 3.4] The only thing which we need to check is that the prefixing
functors satisfy the condition given in Definition 2.1. The check is provided by
the following chain of isomorphisms:

λ
l

Prea,L = λ
l

prea,L,!IL,∗ (by definition of Pre)
∼= I∗

Mλ!IL,!prea,L,!IL,∗ (by Proposition 1.22)
∼= I∗

MIM,!preλ(a),M,!λ!IL,∗ (by Definition 3.1)
∼= preλ(a),M,!λ!IL,∗ (since IM is an embedding)
∼= preλ(a),M,!IM,∗λ

l

(by Lemma 3.5)
∼= Preλ(a),Mλ

l

(by definition of Pre).

2

We can now equip our model with a canonical notion of bisimulation. We first
bring two objects over a common fibre and then see whether they are open map
bisimilar there.

Definition 3.6 (Open map bisimulation in Groth(P(−))) Let 〈X, L〉 and 〈Y, M〉
be two objects in Groth(P(−)). We say that they are (open map) bisimilar if

iL
l
(〈X, L〉) and iM

l
(〈Y, M〉) are related by a span of PL∪M -open maps, where iL

and iM are the set inclusions L
iL
↪→ L ∪M

iM←↩ M .

Notation: In the remainder of this paper, we shall write 〈X, L〉 ∼ 〈Y, M〉 to
mean that they are open map bisimilar, and X ∼L Y to say that both X and Y
are in | P̂L | and that they are PL-open bisimilar. Hence we have that

〈X, L〉 ∼ 〈Y, M〉 if and only if iL
l
(X) ∼L∪M iM

l
(Y ) .

From the above definition we immediately see that moving objects across different
fibres along cocartesian liftings preserves bisimulation. But we can deduce more:
bisimulation is a congruence with respect to the process operations. Its proof
relies mainly on Theorems 1.17 and 1.18. We begin by observing that for any
〈X, L〉 in Groth(P(−)), there exists a least subset L′ of L with inclusion function
i : L′ ↪→ L, such that, 〈irX, L′〉 ∼ 〈X, L〉.

Proposition 3.7 Let 〈X, L〉 ∈|Groth(P−) |. Let M
i

↪→ L
j←↩ N be two inclusions,

such that 〈irX, M〉 ∼ 〈X, L〉 ∼ 〈jr
X, N〉, then if

M ∩N
� � l //

� _

k
��

M� _

i
��

N
� �

j
// L

is the obvious pullback square of inclusions,

〈jr
k

r

X, M ∩N〉 = 〈lrirX, M ∩N〉 ∼ 〈X, L〉 .
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Proof: The equality holds obviously. For bisimilarity we need to show that
i
l
l
l

l
r

i
r
X ∼L X. By assumption i

l
i
r
X ∼L X, hence by Theorem 1.18, j

r
i
l
i
r
X ∼N

j
r
X. By the Beck-Chevalley condition, j

r
i
l
i
r
X ∼= k

l

l
r

i
r
X, hence by composing

with j
l
, j

l
k

l

l
r

i
r
X ∼L j

l
j

r
X ∼L X. Since the square of inclusions is a commutative

one, we know that j
l
k

l ∼= i
l
l
l
, thus

i
l
l
l

l
r

i
r
X ∼L X .

2

Corollary 3.8 For any 〈X, L〉 ∈|Groth(P−) |, there exists a least subset L′ of L
such that 〈irX, L′〉 ∼ 〈X, L〉, where i : L′ ↪→ L is the inclusion function.

Proof: Take L′ to be equal to the intersection of all M ⊆ L, such that 〈iM
r
X, M〉 ∼

〈X, L〉, where iM : M ↪→ L is the inclusion function. 2

Definition 3.9 For any 〈X, L〉 ∈|Groth(P−) |, say that X reduces to M , if M is
a subset of L, and 〈X, L〉 ∼ 〈irX, M〉. If L′ is the least subset of L for which X
can be reduced to, say that X has support L′.

That a presheaf X over paths PL reduces to a presheaf over paths PL′ with L′ ⊆ L
means that X is described to within bisimulation as a presheaf over PL′.

The above results yield the following characterisations of bisimilarity.

Proposition 3.10 Two objects 〈X, L〉, 〈Y, M〉 ∈| Groth(P−) | are bisimilar iff

they both reduce to L ∩M and i
r
X ∼L∩M j

r
Y , for L

i←↩ L ∩M
j

↪→ M .

Corollary 3.11 Two objects 〈X, L〉, 〈Y, M〉 ∈|Groth(P−) | are bisimilar iff they

have the same set N as support with L
i←↩ N

j
↪→ M and i

r
X ∼N j

r
Y .

As we shall see all the operations involved in the semantics of Proc preserve
bisimulation.

Before going into the semantics of Proc in presheaf models we recall the
following instantiation of Proposition 1.32 to Groth(P(−)).

Proposition 3.12 Let P(−) : Set∗ → Cat be a presheaf model for Proc . Let
i : L � M be a monomorphism in Set∗, i.e., an injective (total) function. Then
the following facts hold:

• i
r
i
l ∼= 1

P̂L
.

• i
l
preserves products in the fibres, i.e., for every two presheaves X, Y ∈| P̂L |,

i
l
(X × Y ) ∼= i

l
(X)× i

l
(Y ) .5

5We use the same symbol “×” to indicate the product of two objects in a category, irrespective
of the fact that sometime, as here, products taken in different categories appear in the same
expression. We believe the reader can disambiguate from the context.

27



4 Semantic constructions in Groth(P(−))

We analyse the constructions used in Groth(P(−)) to give the semantics of Proc
according to Section 2.1 and show that they preserve bisimulation.

Products: As we have already said the category Groth(P(−)) has products.
They can be constructed (cf. Proposition 1.35) using the products in the fibres as
follows. Given 〈X, L〉, 〈Y, M〉 ∈ |Groth(P(−))|. Define

〈X, L〉 × 〈Y, M〉 = 〈πL
r(X)× πM

r(Y ), L×∗ M〉

where L
πL↼ L×∗ M

πM⇀ M are the projections of the product in Set∗.

Proposition 4.1 If 〈X, L〉 is open map map bisimilar to 〈X ′, L′〉 and 〈Y, M〉 is
open map bisimilar to 〈Y ′, M ′〉 then the product 〈X, L〉 × 〈Y, M〉 is open map
bisimilar to the product 〈X ′, L′〉 × 〈Y ′, M ′〉.

Proof: Let N = L×∗ M and N ′ = L′ ×∗ M ′. Consider the diagram

L� _

iL
��

N� _

iN
��

πM //
πLoo M� _

iM
��

L ∪ L′ N ∪N ′αoo
β

// M ∪M ′

L′?�

i′L

OO

N ′?�

iN′

OO

πM′
//

πL′
oo M ′ ,

?�

iM′

OO

with α and β the obvious projecting partial functions. Observe that since the
set N ∪ N ′ is included in (L ∪ L′) ×∗ (M ∪M ′), then both the upper diagram
and the lower one are limiting cones of vertex N and N ′, respectively. Hence by

Proposition 1.34 we have the following two isomorphisms in P̂N∪N ′ :

iN
l
(πL

rX × πM
rY ) ∼= αriL

l
X × β

r

iM
l
Y

iN ′
l
(πL′ rX ′ × πM ′ rY ′) ∼= αriL′

l
X ′ × β

r

iM ′
l
Y ′ .

Consequently, we have to prove that assuming iL
l
X ∼L∪L′ iL′

l
X ′ and iM

l
Y ∼M∪M ′

iM ′
l
Y ′ we have

αriL
l
X × β

r

iM
l
Y ∼N∪N ′ αriL′

l
X ′ × β

r

iM ′
l
Y ′ .

By Theorem 1.18, we deduce that αriL
l
X ∼N∪N ′ αriL′

l
X ′ and β

r

iM
l
Y ∼N∪N ′

β
r

iM ′
l
Y ′. Hence, by Proposition 1.7

αriL
l
X × β

r

iM
l
Y ∼N∪N ′ αriL′

l
X ′ × β

r

iM ′
l
Y ′ .

2
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Note that the above proof makes essential use of the Beck-Chevalley condition
and the Fröbenius Reciprocity law (via Proposition 1.34).
Sum: Let 〈X, L〉, 〈Y, M〉 ∈ |Groth(P(−))|. Define

〈X, L〉 ⊕ 〈Y, M〉 = 〈iL
l
(X) + iM

l
(Y ), L ∪M〉

where L
iL→ L ∪M

iM←M are the obvious set inclusions.

Proposition 4.2 The functor ⊕ preserves open map bisimulation; if 〈X, L〉 is
open map bisimilar to 〈X ′, L′〉 and 〈Y, M〉 is open map bisimilar to 〈Y ′, M ′〉 then
〈X, L〉 ⊕ 〈Y, M〉 is open map bisimilar to 〈X ′, L′〉 ⊕ 〈Y ′, M ′〉

Proof: The proof is a straightforward application of Theorem 1.17. Let N =
L ∪M , N ′ = L′ ∪M ′, L′′ = L ∪ L′ and N ′′ = N ∪ N ′. Consider the following
diagram of inclusions:

L� _

iL
��

� � jL // N� _

iN
��

M� _

iM
��

? _
jMoo

L′′ � � jL′′
// N ′′ M ′′? _

jM′′
oo

L′?�

iL′

OO

� �

jL′
// N ′?�

iN′

OO

M ′ .? _

jM′
oo

?�

iM′

OO

By assumption iL,!X ∼L′′ iL′,!X
′ and iM,!X ∼M ′′ iM ′,!X

′, hence

iN,!(jL,!X + jM,!Y ) ∼= iN,!jL,!X + iN,!jM,!Y
∼= jL′′,!iL,!X + jM ′′,!iM,!Y

∼N ′′ jL′′,!iL′,!X
′ + jM ′′,!iM ′,!Y

′

∼= iN ′,!jL′,!X
′ + iN ′,!jM ′,!Y

′

∼= iN ′,!(jL′,!X
′ + jM ′,!Y

′) .

2

Remark: This sum construction is not the coproduct because of the choice of
labelling set for the sum. It can be shown that, if [iL, iM ] : L + M → L ∪M is
the mediating map from the coproduct of sets, then

〈X, L〉 ⊕ 〈Y, M〉 ∼= [iL, iM ]
l

(〈X, L〉+ 〈Y, M〉).

Restriction: Let Λ be a set and let 〈X, L〉 ∈ |Groth(P(−))|. Then consider the
inclusion map i : Λ ∩ L ↪→ L and define the restriction of X to Λ ∩ L to be

〈X, L〉�Λ = 〈ir(X), Λ ∩ L〉 .
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Proposition 4.3 The functor (−)�Λ preserves open map bisimulation; if 〈X, L〉
is open map bisimilar to 〈X ′, L′〉 then 〈X, L〉�Λ is open map bisimilar to 〈X ′, L′〉�Λ

Proof: Consider the diagram of inclusions

Λ ∩ L
� � k //

� _

jL

��

L� _

iL
��

Λ ∩ (L ∪ L′) � � l // L ∪ L′

Λ ∩ L′ � � m //
?�

jL′

OO

L′ .
?�

iL′

OO

Both squares are readily seen to be pullbacks, therefore by Beck-Chevalley, jL
l
k

r ∼=
l
r
iL

l
and jL′

l
mr ∼= l

r
iL′

l
. Assuming, iL

l
X ∼L∪L′ iL′

l
X ′, we can deduce

jL
l
k

r

X ∼= l
r

iL
l
X

∼Λ∩(L∪L′) l
r

iL′
l
X ′ (by Theorem 1.18)

∼= jL′
l
mrX ′ .

2

Relabelling: Let Ξ : L→ M be total. Take 〈X, L〉 as usual, define the relabelling
to be

〈X, L〉[Ξ] = 〈Ξl
(X), M〉 .

Relabelling preserves bisimulation:

Proposition 4.4 If 〈X, L〉 is open map bisimilar to 〈X ′, L′〉 then 〈X, L〉[Ξ] is
open map bisimilar to 〈X ′, L′〉[Ξ]

Proof: Again this is a straightforward application of Theorem 1.17. Consider the
commuting diagram

L
ΞL //

� _

iL
��

ΞLL� _
jL

��

L ∪ L′ ΞL∪L′
// ΞL∪L′(L ∪ L′)

L′ ΞL′
//

?�

iL′

OO

L′ .
?�

jL′

OO
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Knowing that iL,!X ∼L∪L′ iL′,!X
′, we obtain

jL,!ΞL,!X ∼= ΞL∪L′,!iL,!X

∼ΞL∪L′L∪L′ ΞL∪L′,!iL′,!X
′

∼= jL′,!ΞL′,!X
′ .

2

Prefixing: Prefixing is dealt with by using the functors Prea,L defined as in
Theorem 3.4. The preservation property of bisimulation is automatically ensured.

Proposition 4.5 Let a ∈ L∩L′. If 〈X, L〉 is open map bisimilar to 〈X ′, L′〉 then
Prea,L(〈X, L〉) is open map bisimilar to Prea,L′(〈X ′, L′〉)

Recursion: Letting F : Groth(P(−)) → Groth(P(−)) be a functor, define rec(F )
to be the colimit colim ωF where

ωF : ω → Groth(P(−))
n 7→ F n(〈0, ∅〉).

Here 0 is the unique, up to isomorphism, presheaf over P∅. Any F n(〈0, ∅〉)
consists of a pair 〈Xn, Ln〉 with Xn ∈ |P̂Ln|, and we can express the colimit as a

pair 〈X, L〉, where L is the colimit in Set∗ of the Ln and X is the colimit in P̂L of
all the cocartesian liftings of the Xn, along the edges of the cocone in : Ln → L.

We already observed that the operations on Groth(P(−)) associated with the
term constructors are functors but for the sum (−⊕−); the sum nevertheless be-
comes functorial if one restricts to Groth(P(−))in, the subcategory of Groth(P(−))
with morphisms given by pairs 〈f, i〉 where i is an inclusion of sets. Having
F : Groth(P(−))in → Groth(P(−))in, we can define rec(F ) as above. Notice that
L = ∪nLn and every in : Ln → L is an inclusion of sets.

All our constructions are continuous with respect to ω-chains (particular kinds
of connected diagram) and restrict to Groth(P(−))in. Hence rec(F ) determines a
fixed point where F is derived from a denotation of a term t as in Section 2.1.
So, the construction above yields a denotation for a recursively defined process in
terms of an ω-colimit of presheaves over a common path category. We would like to
deduce the bisimulation of recursive processes rec x.t, rec y.u from bisimulation
between the open terms t and u. Such open terms give rise to endofunctors
on Groth(P(−))in We start by extending the notion of open map, and therefore
bisimulation, to functors. Following Definition 3.6 and 3.9, we first say when an
arrow 〈f, i〉 in Groth(P(−))in (and hence in Groth(P(−))) is open.

Definition 4.6 An arrow 〈f, i〉 : 〈X, L〉 → 〈Y, M〉 in Groth(P(−))in is open if the

transpose f ′ : i
l
X → Y of f , with respect to the adjunction i

l a i
r
, is PM -open.
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Proposition 4.7 If 〈f, i〉 : 〈X, L〉 → 〈Y, M〉 is open in the sense of Definition 4.6
above, then f is PL-open and Y reduces to L.

Proof: By the adjunction f = i
r
(f ′)ηX , where ηX is the unit at X of the ad-

junction i
l a i

r
. But we know that ηX is an isomorphism, since i is a monomor-

phism (cf. Proposition 3.12), hence f is the composite of two open maps and
therefore is open. So we have that X ∼L i

r
Y , hence i

l
X ∼M i

l
i
r
Y . Therefore

Y ∼M i
l
X ∼M i

l
i
r
Y . 2

An obvious question is whether the Proposition 4.7 above can be made into an
“if and only if” statement. However, we seem to need an extra assumption
on the presheaf model to obtain the converse implication. For instance, using
Lemma 6(ii) of [19] we can obtain the following:

Proposition 4.8 Let P(−) : Set∗ → Cat be a presheaf model such that for any
injective total function (i.e., any monomorphism of Set∗), i : L→M and for any
two objects P ∈|PL | and Q ∈|PM |,

PM [Q, iP ] 6= ∅ only if Q ∼= iP ′ for some P ′ ∈|PL | .

Then, for any Y ∈| P̂M | with support L, the counit, εY , of the adjunction i
l a i

r

is PM -open.

It is now seen that the proposition above induces the converse of Proposition 4.7,
since f ′ = εY i

l
f . Notice that both the presheaf models of Example 3.2 satisfy the

condition required by Proposition 4.8.
Back to recursion:

Definition 4.9 Let F, G : C → Groth(P(−))in be two functors. Let α : F
.−→ G

be a natural transformation. Say that α is open if for every c ∈| C |, αc is open
according to Definition 4.6.

We consider two endofunctors F, G on Groth(P(−))in bisimilar if there is an-
other endofunctor R and a span of open natural transformations α : R

.→ F and
β : R

.→ G relating them.

Proposition 4.10 Let C be a category with initial object 0. Every natural trans-
formation α : R

.−→ F , with R, F : C → C endofunctors induces a natural
transformation ωα : ωR

.−→ ωF where ωR (ωF ) are defined inductively by:

• ωR(0) = 0 (ωF (0) = 0)

• ωR(n + 1) = R(ωR(n)) (ωF (n + 1) = F (ωF (n))
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• ωR(0 ≤ 1) = 0R0 (ωF (0 ≤ 1) = 0F0)

• ωR(n+1 ≤ n+2) = R(ωR(n ≤ n+1) (ωF (n+1 ≤ n+2) = F (ωF (n ≤ n+1))

Proof: Inductively define

• (ωα)0
def
= 10

• (ωα)n+1
def
= αF n0R((ωα)n) = F ((ωα)n)αRn0 where the second equality holds

by naturality of α.

To check that ωα is a natural transformation, we need to show that the following
square commutes for any n ≥ 0:

Rn0
ωR(n≤n+1)

//

(ωα)n

��

Rn+10

(ωα)n+1

��

F n0
ωF (n≤n+1)

// F n+10 .

The proof goes routinely, by induction. The base case follows immediately by
initiality of 0. Assuming n > 0, we see that

(ωα)n+1ωR(n ≤ n + 1) = (ωα)n+1R(ωR(n− 1 ≤ n))
(by definition of ωR)

= αF n0R((ωα)n)R(ωR(n− 1 ≤ n))
(by definition of ωα)

= αF n0R((ωα)nωR(n− 1 ≤ n))
(by functoriality of R)

= αF n0R(ωF (n− 1 ≤ n)(ωα)n−1)
(by inductive hypothesis)

= αF n0R(ωF (n− 1 ≤ n))R((ωα)n−1)
(by functoriality of R)

= F (ωF (n− 1 ≤ n))αF n−10R((ωα)n−1)
(by naturality of α)

= ωF (n ≤ n + 1)(ωα)n

(by definition).

2

We deduce:

Proposition 4.11 Let F, R be endofunctors of Groth(P(−))in and let α : R
.→ X

be a natural transformation. Then there is a natural transformation ωα : ωR
.→

ωF . Moreover if α is open and X preserve open morphisms, then ωα is open.
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Proof: Proposition 4.10, instantiated to Groth(P(−))in, proves the first part. The
second part is immediately verified by inspecting the definition of ωα. 2

Open maps are preserved in passing to the colimit, in particular:

Proposition 4.12 Let F, R : ω → P̂ be functors and α : R
.→ F a natural

transformation such that for every n, αn is a P-open map. Then the map colim α :
colim R → colim F , uniquely determined by the universal property of colimits, is
a P-open map.

Proof: Let the following be a commutative square with P and Q objects of P:

P
p

//

m
��

colim R

colimα
��

Q q
// colim F .

(1)

Since colim R and colim F are colimits of ω-chains there exists a number n and
arrows

pn : P → R(n) and qn : Q→ F (n)

such that the following diagram commutes:

P
pn

//

m

��

p

((

R(n)

αn

��

Rn,∞
// colim R

colim α
��

Q qn
//

q

66
F (n)

Fn,∞
// colim F ,

where Rn,∞ and Fn,∞ are edges of the corresponding colimiting cones. By as-
sumption, αn is P-open, hence there exists rn : Q → R(n) splitting the leftmost
square in two commutative triangles. Then

r
def
= Rn,∞rn

is an arrow from Q to colimR that splits the Diagram (1) in two commutative
triangles.

If every αn is an epimorphic natural transformation, then obviously, since
colimits in presheaf categories are calculated pointwise, colim α is epimorphic as
well. 2
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Since the calculation of colimits of ω-chains in Groth(P(−))in is reduced to calcu-
lating them in the colimiting fibre, the above proposition yields:

Proposition 4.13 Let ωF , ωR : ω → Groth(P(−))in and ωα : ωR
.→ ωF , be as in

Proposition 4.11, with ωα open, then the (adjoint transpose of the) arrow

colim ωα : colim ωR → colim ωF ,

uniquely determined by the universal property of the colimit, is an open map in
the fibre over the colimiting labelling set.

Proof: We have already remarked that colimits of ω-chains

· · · → 〈Xn, Ln〉 → 〈Xn+1, Ln+1〉 → · · · ,

in Groth(P(−))in are obtained by taking first the union

L = ∪n∈ωLn

of the all the labelling sets in the chain and then calculating the colimit of the
chain induced in the fibre over L, by cocartesian liftings of all the Xn. We now
make this explanation more precise, in order to show that the functor part of
colim α arises from a situation satisfying the hypothesis of Proposition 4.12. We
need some notation first. Let’s write 〈Rn, Ln〉 for ωR(n), 〈Fn, Mn〉 for ωF (n). For
every n, let 〈rn, in〉 and 〈fn, jn〉 be ωR(n ≤ n + 1) and ωF (n ≤ n + 1), where, for

simplicity we already assume that rn : (in)
l

Rn → Rn+1 and fn : (jn)
l

Fn → Fn+1,
rather than taking their transposes. For every n, let 〈αn, kn〉 be (ωα)n, where

again we take αn : (kn)
l

Rn → Fn. Naturality of ωα means that the following
square commutes (where the indicated isomorphisms are uniquely determined by
the universal property of left Kan extensions):

(jnkn)
l

Rn = (kn+1in)
l

Rn
' //

∼=
��

(kn+1)
l

(in)
l

Rn

(kn+1)
l
rn

// (kn+1)
l

Rn+1

αn+1

��

(jn)
l

(kn)
l

Rn

(jn)
l
αn

��

(jn)
l

Fn fn

// Fn+1 .

Now, writing
in,∞ : Ln → L = ∪n∈ωLn ,
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for every n, and 〈R∞, L〉 for colim ωR, we have that R∞ can be calculated as the

colimit of the following chain in P̂L:

· · · // (in,∞)
l

Rn
' // (in+1,∞)

l

(in)
l

Rn

(in+1,∞)
l
rn

// (in+1,∞)
l

Rn+1
// · · · .

Similarly one calculates colim F , moreover from the commutativity of the above
diagram it follows that for every n, the following diagram commutes too (where
k : L ↪→M is the inclusion function):

k
l

(in,∞)
l

Rn
' //

∼=
��

k
l

(in+1,∞)
l

(in)
l

Rn

k
l
(in+1,∞)

l
rn

// k
l

(in+1,∞)
l

Rn+1

∼=
��

(jn,∞kn)
l

= (kin,∞)
l

Rn

∼=
��

(jn+1,∞kn+1)
l

= (kin+1,∞)
l

Rn+1

∼=
��

(jn,∞)
l

(kn)
l

Rn

(jn,∞)
l
αn

��

(jn+1,∞)

l

(kn+1)
l

Rn+1

(jn+1,∞)
l
αn+1

��

(jn,∞)
l

Fn
' // (jn+1,∞)

l

(jn)
l

Fn

(jn+1,∞)
l
fn

// (jn+1,∞)
l

Fn+1 .

Hence α∞ : k
l

R∞ → F∞ is the unique mediating morphism between two colimiting
cones connected by a natural transformation that is pointwise an open map, since
every vertical arrow in the diagram above is either an isomorphism (hence an open
map) or the transformation along a colimit preserving functor of an open map
(hence an open map because of Theorem 1.17). This falls within the hypothesis
of Proposition 4.12, and so α∞ is PM -open. 2

Consequently, if two endofunctors F, G ranging over Groth(P(−))in are bisimilar
and preserve open maps, then the colimits rec(F ), rec(G) are bisimilar. A term
with a free variable, built-up from the constructions of this section, will deter-
mine an endofunctor on Groth(P(−))in which preserves open maps by this section
propositions. It follows that if two open terms t and u are bisimilar, i.e., induce
bisimilar functors, then the recursive definitions rec x.t and rec y.u are bisimilar.

5 Concrete models revisited

We have already mentioned the full embeddings

ST L ↪→ L̂+

ESL ↪→ P̂omL
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The first is actually an equivalence of categories. The second is a strict inclusion
(for instance the terminal presheaf cannot be represented as an event structure)
that not only preserves but reflects bisimulation (see Proposition 1.12). We con-
sider the presheaf models Groth((−)+) and Groth(Pom(−)) of Example 3.2. We
can now transfer the results from the presheaf models to the concrete models of
synchronisation trees and event structures by noting that the canonical embed-

dings between fibres, ST L → L̂+ and ESL → P̂omL, extend to full and faithful
embeddings from ST and ES to the corresponding presheaf models. In particular
we again have that the embedding ST ↪→ Groth((−)+) is an equivalence. We
illustrate then the situation with event structures.

We recalled in Proposition 1.36 that the functor pES : ES → Set∗ is a cofibra-
tion. We now provide a cocleavage which is functorial (cf. end of Section 1.5) and
hence makes pES : ES → Set∗ into a split cofibration.

Let E = (E,≤, Con, l : E → L) be an event structure and let α : L ⇀ L′ be a
partial function. define α!(E) = (E ′,≤′, Con′, l′ : E ′ → L′) to consist of:

• E′ = {e ∈ E | α(l(e)) is defined}

• ≤′=≤ ∩(E ′ ×E ′)

• Con′ = {x ∈ Con | x ⊆ E′}

• l′(e′) = α(l(e′)), for every e′ ∈ E′.

It is straightforward to verify that α!(E) is an event structure and that the pair
〈1′, α〉, with 1′ : E ⇀ E ′ the truncation of the identity functions on events to E ′,
is an event structure morphism.

Proposition 5.1 Given an event structure E = (E,≤, Con, l : E → L) and a
partial function α : L ⇀ L′, the event structures morphism 〈1′, α〉 is a cocartesian
arrow.

We will write α!,E for 〈1′, α〉. There is an induced cocartesian lifting functor
α! : ESL → ESL′. If we restrict the construction above to pomsets we obtain the
functor α : (PomL)⊥ → (PomL′)⊥ of Example 3.2.

It is easy to verify that this choice of cocartesian lifting functors is functorial:

Proposition 5.2 Given an event structure E = (E,≤, Con, l : E → L) and a
partial function α : L ⇀ L′, the following hold:

1. If α = 1L, then α!,E is the identity morphism 〈1E , 1L〉 : E → E.

2. If β : L′ → L′′ is another partial function, then β!,α!(E)α!,E = (βα)!,E.
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Notation: If 〈f, α〉 : E → E is an event structure morphism, write fα for the
unique function such that 〈f, α〉 = 〈fα, 1′L〉α!,E. That is, fα is the restriction of f to
the elements of α!(E) that, by the way, is equal to the set {e ∈ E | f(e) is defined}.
Call fα the transpose of f .

With this notation in mind, define c : ES → Groth(Pom(−)) to be

• On objects: c(E,≤, Con, l : E → L) = 〈cL(E), L〉

• On arrows: If 〈f, α〉 : E → E ′ with α : L ⇀ L′, then c(〈f, α〉) = 〈c(f), α〉
where

c(f) : cL(E) = ESL[−, E]→ ESL′[α(−), E ′] = αr(cL′(E ′))

is defined by composition and transposition (recall that on pomsets, α! is
another name for α), i.e., c(f)P (p) = (fp)α.

This defines a functor because from Proposition 5.2 one has that (1Ep)1L
= p

and (g(fp)α)β = (gfp)βα and from these equalities one deduces that c〈1E, 1L〉 =
〈1E, 1L〉 and c(〈g, β〉〈f, α〉) = c(〈gf, βα〉). Moreover, again from Proposition 5.2,
one sees that for any arrow 〈f, 1L〉 : E → E ′, (fp)1L

= fp, hence c acts as cL

when restricted to ESL.

Proposition 5.3 The functor c : ES → Groth(Pom(−)) is a dense full embed-
ding.

Proof: Straightforward from the fact that c extends the cL’s that were dense
full embeddings and the fact that via cocartesian liftings, every arrow between
objects of Groth(Pom(−)) in different fibres is uniquely determined by an arrow
in a fibre. 2

It is known that every dense full embedding preserves limits [30]. Moreover a
direct calculation shows that c respects relabelling (i.e., cocartesian liftings) and
cartesian liftings of inclusions.

Proposition 5.4 Let α : L ⇀ M be a partial function, then there is a natural
isomorphism

cMα!
∼= αlcL .

Let λ : L ↪→ M be an inclusion map, then

cLλ∗ ∼= λ
r

cM ,

where λ∗ is the right adjoint of λ! defined on objects as follows:

λ(E,≤, Con, l) = (E ′,≤′, Con′, l′) ,
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where E ′ = {e ∈ E|∀e′ ≤ e ∃a ∈ L λ(a) = l(e′)}, ≤′=≤ ∩E′ × E ′, Con′ = {x ∈
Con | x ⊆ E′} and l′(e) = a, where a is the unique element of L, such that
λ(a) = l(e).

We have already noticed that cL preserves coproducts (Proposition 1.13). After
Proposition 1.35 we know that coproducts in a cofibred category are built using
coproducts in the fibres and cocartesian liftings, hence c preserves coproducts.
Summarising:

Proposition 5.5 The embedding c : ES → Groth(Pom(−)) preserves all limits
that exists in ES, coproducts, cocartesian liftings and cartesian liftings of inclu-
sion.

A denotational semantics of Proc in ES was given in [29] and corresponds to
the one described abstractly in Section 2.1. Proposition 5.5 above ensure that
(after the embedding with c) the semantics in ES correspond to the one in
Groth(Pom(−)), hence the following:

Theorem 5.6 Let ES[[ · ]] and Groth(Pom(−))[[ · ]] stand for the respective seman-
tics of Proc. Let ρ : V ars→|ES | be an environment function, then

c(ES[[t]]ρ)
∼= Groth(Pom(−))[[t]]c◦ρ .

By Proposition 1.12(ii), open maps and bisimulation coincide, via the canoni-
cal embeddings, in ESL and the fibre over L in Groth(Pom(−)). Hence we can
transfer the congruence property deduced for the presheaf semantics to deduce,
in particular, that hereditary history-preserving bisimulation is a congruence for
the language Proc.

Theorem 5.7 Hereditary history-preserving bisimulation is a congruence for the
language Proc with respect to the event structure semantics of the language Proc.

6 Refinement for event structures

As a further example of an application of Theorem 1.17, we prove the refine-
ment operator for event structures proposed in [12] preserves hereditary history-
preserving bisimulation (abbreviated to hhpb).

Definition 6.1 (cf. [12], Section 2) A refinement function is a function r from
L to |PomM |, objects of PomM ; so any element a ∈ L is sent to a non-empty
pomset r(a) over M .
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Definition 6.2 (A refinement functor) A refinement function as in the defi-
nition above induces a refinement functor

R : PomL → PomM

acting as follows:

• On objects: If P = (P,≤P , λP , L) is a pomset over L, then define R(P ) =
(R(P ),≤R(P ), λR(P ), M) with:

– R(P ) = {(x, x′)|x ∈ P ∧ x′ ∈ r(λP (x))}
– (x, x′) ≤R(P ) (y, y′) if either x ≤P y and x 6= y or x = y and x′ ≤r(λP (x))

y′

– λR(P )(x, x′) = λr(λP (x))(x
′).

• On arrows: If f : P → Q in PomL, define R(f)(x, x′) = (f(x), x′).

One can see r as inducing a refinement functor, say RES , on event structures as
well. If (E,≤, Con, l) is an event structure over L, RES(E) is defined on E, ≤
and l as for pomsets, while X ∈ ConRES (E) iff {x ∈ E | ∃x′ .(x, x′) ∈ X} ∈ Con.

As remarked in [19], the functor R!, obtained as a left Kan extension, is a good
candidate for the extension of this refinement to presheaves including those cor-
responding to event structures. But does the functor R! act like the operation of

refinement RES on event structures? More precisely, if we let cL : ESL → P̂omL

and cM : ESM → P̂omM denote the canonical embeddings, do we have that the
following square commutes (up to a natural isomorphism)?

ESL
cL //

RES

��

P̂omL

R!

��

ESM cM

// P̂omM

We embark on proving that it does.

Lemma 6.3 Let E be an event structure in ESL, let Q be a pomset over M and
let RES : ESL → ESM be a refinement functor. Then for any q : Q → RES(E)
there exists a pomset Pq ∈|PomL | and a morphism p : P → E such that

• There exists a morphism pq : Q→ RES(P ) = R(P ) such that q = RES(p)pq.

40



• For any other factorisation

Q
q

//

p′q ##FFFFFFFFFF RES(E)

RES(P ′)
RES (p′)

99ssssssssss

there exists a unique mediating morphism of pomsets, m : P → P ′, such
that

p′q = RES(m)pq and p′m = p .

Proof: Define P = {e ∈ E|∃(e, f) ∈ R(E) ∃y ∈ Q q(y) = (e, f)}, with the
order relation induced by Q, i.e., e ≤P e′ if either e = e′ or there exist y ≤Q

y′ with q(y) = (e, f) and q(y′) = (e′, f ′). The verification of the properties is
straightforward. 2

Proposition 6.4 Let iL : PomL → ESL and iM : PomM → ESM be the inclu-
sion functors, then

RES ∼= LaniL(iM ◦R).

Proof: Recall that PomL is dense in ESL, i.e., for every E ∈|ESL |,

E ∼= colim iL/E → PomL
iL−→ ESL.

Using the Lemma 6.3 above it is not difficult to verify that

RES(E) ∼= colim iL/E → PomL
R−→ PomM

iM−→ ESM . (2)

From this we can deduce that RES ∼= LaniL(iM ◦R). In fact RES ◦ iL = iM ◦R and
moreover if F : ESL → ESM is a functor and α : F ◦ iL

.−→ R ◦ im is a natural
transformation, there exists a unique β : RES .−→ F such that

βiL = α. (3)

To show this, observe first of all that if β is a natural transformation satisfying
(3), then for any E ∈|ESL | and f : P → E,

βE ◦RES(f) = F (f) ◦ αP . (4)

In fact
βE ◦RES(f) = F (f) ◦ βiL(P ) (by naturality of β)

= F (f) ◦ αP (by equation (3)).
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But since, for any E ∈|ESL |, (2) holds, there exists a unique βE : RES(E)→ F (E)
satisfying βE ◦ RES(f) = F (f) ◦ αP . Commutativity of the naturality squares
follows as well from the universal property of colimits. We need to prove that for
any g : E → E′ in ESL, the following diagram commutes:

RES(E)
βE //

RES(g)
��

F (E)

F (g)

��

RES(E ′)
βE′

// F (E ′) .

It is enough to show that for any f : P → E, F (g) ◦ βE ◦RES(f) = βE′ ◦RES(g) ◦
RES(f). This follows by the following calculation:

F (g) ◦ βE ◦RES(f) = F (g) ◦ F (f) ◦ αP (by equation (4))
= F (gf) ◦ αP (by functoriality of F )
= βE′ ◦RES(gf) (by equation (4))
= βE′ ◦RES(g) ◦RES(f) (by functoriality of RES)

2

We then have a functor R : PomL → PomM that can be extended as follows:

PomL
iL //

R
%%JJJJJJJJJJ ESL

cL //

RES=LaniL
(iM R)

��

P̂omL

LanyPomL
(yPomM

R)=R!

��

PomM

iM
$$IIIIIIIIII

ESM cM

// P̂omM .

We want to show that the square on the right commutes up to a natural isomor-
phism. We show first of all that

cMRES ∼= LaniL(cM iMR) = LaniL(yPomM
R) .

From this in fact it will follow that (using that left Kan extensions compose,
cf. Section 1.4),

LanyPomL
(yPomM

R) ∼= LancL
(LaniL(yPomM

R)

∼= LancL
(cMRES) .

Hence, since cL is full and faithful (cf. Proposition 1.15)

LanyPomL
(yPomM

R)cL
∼= LancL

(cMRES)cL
∼= cMRES .

To prove that cMRES ∼= LaniL(cM iMR), we apply Proposition 1.11.
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Proposition 6.5 There is a natural isomorphism

cMRES ∼= LaniL(cM iMR) .

Proof: The proof is an immediate consequence of Proposition 1.11 and of Lemma 6.3.
In fact, as we saw in the proof of Proposition 6.4, LaniL(iMR) can be expressed
as the colimit (2) and Lemma 6.3 ensures that the conditions of Proposition 1.11
are met. 2

Now we can use Theorem 1.17 to deduce that R! preserves open map bisimulation.

Proposition 6.6 For any refinement function r : L →|PomM |, the associated

refinement functor R! : P̂omL → P̂omM preserves open map bisimulation; if
X and Y are two PomL-open bisimilar presheaves, then R!(X) and R!(Y ) are
PomM -open bisimilar.

As a consequence, using Proposition 1.12, we have:

Corollary 6.7 For any refinement function r : L →| PomM |, the associated
refinement functor RES : ESL → ESM preserves hereditary history-preserving
bisimulation; If E and E′ are two hereditary history-preserving bisimilar event
structures in ESL , then RES(E) and RES(E ′) are hereditary history-preserving
bisimilar.

Proof:

E hhpb E ′ =⇒ cL(E) PomL-open bisimilar to cL(E ′)

=⇒ R!cL(E) PomM -open bisimilar to R!cL(E ′)

⇐⇒ cMRES(E) PomM -open bisimilar to cMRES(E ′)

⇐⇒ RES(E) hhpb RES(E ′) .

2

Acknowledgements Thanks are due to Gordon Plotkin who suggested im-
provements.
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Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Dirigé par Alexan-
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