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BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/99/33/



The Max-Plus Algebra of the Natural Numbers

has no Finite Equational Basis

Luca Aceto∗ Zoltán Ésik† Anna Ingólfsdóttir∗‡

Abstract

This paper shows that the collection of identities which hold in
the algebra N of the natural numbers with constant zero, and binary
operations of sum and maximum is not finitely based. Moreover, it
is proven that, for every n, the equations in at most n variables that
hold in N do not form an equational basis. As a stepping stone in
the proof of these facts, several results of independent interest are
obtained. In particular, explicit descriptions of the free algebras in the
variety generated by N are offered. Such descriptions are based upon
a geometric characterization of the equations that hold in N, which
also yields that the equational theory of N is decidable in exponential
time.

AMS Subject Classification (1991): 08A70, 03C05, 68Q15, 68Q70.
CR Subject Classification (1991): D.3.1, F.1.1, F.4.1.
Keywords and Phrases: Equational logic, varieties, complete ax-
iomatizations, exponential time complexity.

1 Introduction

Since Birkhoff’s original developments, equational logic has been one of the
classic topics of study within universal algebra. (See, e.g., [17, 24, 25] for
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surveys of results in this area of research.) In particular, the research liter-
ature is, among other things, rich in results, both of a positive and negative
nature, on the existence of finite bases for equational theories. (We recall
that a finite basis for an equational theory is a finite set of axioms for it.)
Classic examples of finitely based algebras include any two-element algebra
[14], any finite group [20], and any finite lattice (possibly with operators)
[15]. Moreover, as proven by Murskǐı [19], “almost all” finite algebras have
a finite basis for their identities. On the other hand, R. McKenzie [16] has
recently settled Tarski’s celebrated Finite Basis Problem by proving that
there is no algorithm to decide for a finite algebra whether it is finitely
based. Examples of algebras whose set of identities is not finitely based may
be found in, e.g., [7, 8, 9, 18, 22].

This paper contributes to the study of equational theories that are not
finitely based by showing that the collection of identities which hold in the
algebra N of the natural numbers with constant zero, and binary operations
of sum and maximum is not finitely based. Our interest in this problem
stems from previous work by two of the authors in the field of concurrency
theory, see [2]. In op. cit. a collection of results was given to the effect
that no fully invariant congruence that includes ready simulation [5, 13] and
is included in language equivalence has a finite equational basis over the
language of Basic Process Algebra with Iteration (BPA∗) [3]. This should
be contrasted with the positive result obtained by Fokkink and Zantema in
[11], who showed that bisimulation congruence [21] is finitely based over the
language BPA∗.

In [2], it was left open whether trace congruence has a finite equational
basis over the language BPA [4] when the alphabet of actions is a singleton,
say {a}. Let us recall that, in that case, the signature of BPA contains
a constant a, and binary operations of concatenation and choice. Trace
congruence equates the BPA terms that generate the same finite, prefix-
closed regular language over the letter a. In [2] it was conjectured that the
algebra of BPA terms modulo trace congruence is not finitely based. Since
that algebra is isomorphic to that of the natural numbers with constant 1
(the action a), and operations of sum and maximum (corresponding to the
BPA operations of concatenation and choice, respectively), such a question
is closely related to the existence of a finite equational basis for the collection
of identities which hold in the algebra N. The main aim of this paper is to
provide a negative answer to this intriguing question.

We begin our study of the equational theory of the algebra N by identi-
fying a useful collection of identities that hold in it (Sect. 2). We prove that
the collection of equations in at most one variable that hold in N is finitely

2



based, and we provide evidence that the interplay between the operations
of sum and maximum leads to some non-trivial equations involving two or
more variables. In particular, for each n ≥ 2 we isolate an equation en in n
variables which holds in N. The equations en will play an important role in
the proof of our main result. We then proceed to prove that no finite collec-
tion of equations that hold in N can be used to deduce all of the equations
of the form en. The proof of this technical result follows standard lines, but
the details are rather challenging. More precisely, for every integer n ≥ 2,
we construct an algebra An satisfying all the equations in at most n − 1
variables that hold in N, but such that en does not hold in An. As a con-
sequence of this result, we obtain that not only the equational theory of N
is not finitely based, but, for every n, the equations in at most n variables
that hold in N do not form an equational basis.

As a stepping stone in the proof of the aforementioned result, we obtain
several results which also hold independent interest. In particular, we pro-
vide explicit descriptions of the free algebras in the variety generated by N
(Sect. 3). Such descriptions are based upon a geometric characterization of
the equations that hold in N, and allow us to prove that the equational the-
ory of N is decidable in exponential time via an exponential time reduction
to a linear programming problem.

Notation We shall use standard notions and notations from universal al-
gebra that can be found, e.g., in [6, 12]. For each integer n ≥ 0, we use [n]
to stand for the set {1, . . . , n}, so that [0] is another name for the empty set.

2 The Max-Plus Algebra

Let N = (N,∨,+, 0) denote the algebra of the natural numbers equipped
with the usual sum operation +, constant 0 and the operation ∨ for the
maximum of two numbers, i.e.,

x ∨ y = max{x, y} .

We study the equational theory of the algebra N—that is, the collection of
equations that hold in N. The reader will have no trouble in checking that
the following axioms, that express expected properties of the operations of
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maximum and sum, hold in N:

∨1 x ∨ y = y ∨ x
∨2 (x ∨ y) ∨ z = x ∨ (y ∨ z)
∨3 x ∨ 0 = x

+1 x + y = y + x
+2 (x + y) + z = x + (y + z)
+3 x + 0 = x
+∨ (x ∨ y) + z = (x + z) ∨ (y + z)

This set of equations will be denoted by Ax1. Note that the equation

(x + y) ∨ x = x + y (1)

is derivable from Ax 1, and, using such an equation, it is a simple matter to
derive the idempotency law for ∨, i.e.,

∨4 x ∨ x = x .

We denote by Ax 0 the set consisting of the equations ∨1, ∨2, ∨4, +1–+3
and +∨. Moreover, we let V0 stand for the class of all models of Ax 0, and
V1 for the class of all models of the equations in Ax 1. Thus, both V0 and
V1 are varieties and, by the above discussion, V1 is a subvariety of V0, i.e.,
V1 ⊆ V0.

Since the reduct (A,∨) of any algebra A = (A,∨,+, 0) in V0 is a semi-
lattice, we can define a partial order ≤ on the set A by a ≤ b if and only if
a ∨ b = b, for all a, b ∈ A. This partial order is called the induced partial
order. When A is in the variety V1, the constant 0 is the least element of A
with respect to ≤. Moreover, for any A ∈ V0, the ∨ and + operations are
monotonic with respect to the induced partial order.

The varieties generated by the reducts (N,∨, 0) and (N,+, 0) of N afford
very simple equational axiomatizations. In fact, it is not hard to prove that:

Proposition 2.1 The axiom system ∨1–∨4 completely axiomatizes the va-
riety generated by the algebra (N,∨, 0), and the axiom system +1–+3 com-
pletely axiomatizes the variety generated by the algebra (N,+, 0).

The axiom system Ax 1 suffices to prove all the equations in at most one vari-
able in the equational theory of N. In the proof of the following result, and
in the remainder of this paper, we shall use nx to denote the n-fold sum of
x with itself, and we take advantage of the associativity and commutativity
of the operations. By convention, nx stands for 0 when n = 0.

Proposition 2.2 The axiom system Ax1 completely axiomatizes the collec-
tion of equations in at most one variable which hold in the algebra N.
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Proof: Using the equations in Ax1, we can prove every term containing
at most one variable equal to one of the form nx. To complete the proof,
observe that an equation of the form nx = my holds in N if, and only if,
n = m and x = y. �

Remark 2.1 The axiom system consisting of ∨1–∨3, +1–+3 and (1) gives
an alternative axiomatization of the collection of equations in at most one
variable which hold in the algebra N.

The interplay between the operations of maximum and sum, however, gen-
erates some non-trivial collections of equations in two or more variables. For
example, the following equations en also hold in N, for each n ≥ 2:

en : pn ∨ qn = qn ,

where

pn = x1 + . . . + xn

qn = (2x1 + x3 + x4 + . . . + xn−1 + xn)
∨ (x1 + 2x2 + x4 + . . . + xn−1 + xn)
...
∨ (x1 + x2 + x3 + . . . + xn−2 + 2xn−1)
∨ (x2 + x3 + x4 + . . . + xn−1 + 2xn) .

All the equations we have mentioned so far are regular, i.e., they have exactly
the same variables on both sides. The reader will have no trouble in arguing
that all the equations that hold in the algebra N are regular.

3 Explicit Description of the Free Algebras

In this section we begin our investigation of the equational theory of the
algebra N by giving an explicit description of the free algebras in the variety
V generated by it. Since N satisfies the equations in Ax1, we have:

Proposition 3.1 V is a subvariety of V1, i.e., V ⊆ V1.

We shall describe the finitely generated free algebras in V, since any infinitely
generated free algebra is a directed union of the finitely generated free ones.
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Let n ≥ 0 denote a fixed integer. The set N
n is the collection of all

n-dimensional vectors over N. Let Pf (Nn) denote the collection of all finite
non-empty subsets of N

n, and define the operations in the following way:
for all U, V ∈ Pf (Nn),

U ∨ V = U ∪ V

U + V = {u + v : u ∈ U, v ∈ V }
0 = {0} ,

where 0 stands for the vector whose components are all 0. For U, V ∈
Pf (Nn), we refer to the set U + V defined above as the complex sum of U
and V . For each i ∈ [n], let ui denote the ith unit vector in N

n, i.e., the
vector whose only non-zero component is a 1 in the ith position.

Proposition 3.2 The algebra Pf (Nn) is freely generated in V0 by the n
singleton sets {ui}, i ∈ [n], containing the unit vectors.

Proof: Let A = (A,∨,+, 0) denote an algebra in V0 and let h be a function
mapping {ui} to an element ai ∈ A, for each i ∈ [n]. Each vector c =
(c1, . . . , cn) ∈ N

n induces a linear function

fc : An → A

x = (x1, . . . , xn) 7→ c · x =
∑

i∈[n]

cixi . (2)

The unique extension of h to a homomorphism h] : Pf (Nn) → A is given by
the assignment

U 7→
∨

c∈U

fc(a1, . . . , an), U ∈ Pf (Nn) .

�

Note that the induced partial order on Pf (Nn) is given by set inclusion.

Remark 3.3 Let c = (c1, . . . , cn) ∈ N
n. Then, in Pf (Nn), we can write

{c} =
∑

i∈[n]

ci{ui} .
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Also, each U ∈ Pf (Nn) can be written as

U =
∨

c∈U

{c} .

Thus, any term t in the variables x1, . . . , xn can be rewritten, using the
equations in Ax 0, to the maximum of linear combinations of the variables
x1, . . . , xn, i.e., there are m ≥ 1 and cij ∈ N, for i ∈ [m] and j ∈ [n], such
that the equation

t =
∨

i∈[m]

(
∑

j∈[n]

cijxj) (3)

holds in V0. (The empty sum is defined to be 0.) We refer to terms like
the right-hand side of (3) as normal forms. Thus we may assume that any
equation which holds in a given subvariety of V0 is in normal form, i.e.
of the form t1 = t2 where t1 and t2 are normal forms. Furthermore, an
equation

t1 ∨ . . . ∨ tm = t′1 ∨ . . . ∨ t′m′

holds in a subvariety of V0 if, and only if, for all i ∈ [m] and j ∈ [m′],

ti ≤ t′1 ∨ . . . ∨ t′m′ and t′j ≤ t1 ∨ . . . ∨ tm

hold in the subvariety. We refer to an inequation of the form

t ≤ t1 ∨ . . . ∨ tm ,

where t, t1, . . . , tm are linear combinations of variables, as simple inequa-
tions. By the discussion above, we may assume, without loss of generality,
that every set of inequations that hold in V consists of simple inequations
only.

A simple inequation t ≤ t1 ∨ . . . ∨ tm that holds in V is irredundant if,
for every j ∈ [m],

V 6|= t ≤ t1 ∨ . . . ∨ tj−1 ∨ tj+1 ∨ . . . ∨ tm .

Remark 3.4 Let t be a term in the variables x1, . . . , xn. For later use
(cf. the proof of Corollary 3.18), we remark here that a simple inductive
argument shows that, in the right-hand side of equation (3), the number m
of linear combinations of variables is in 2O(n), and that the length in symbols
of each term

∑
j∈[n] cijxj is in O(|t|), where |t| denotes the length in symbols

of t.
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In order to give an explicit description of the finitely generated free algebras
in V1, we need to take into account the effect of equation ∨3. Let ≤ denote
the pointwise partial order on N

n. As usual, we say that a non-empty set
U ⊆ N

n is an order ideal, if u ≤ v and v ∈ U jointly imply that u ∈ U , for
all vectors u, v ∈ N

n. Each set U ⊆ N
n is contained in a least ideal (U ], the

ideal generated by U . The relation that identifies two sets U, V ∈ Pf (Nn) if
(U ] = (V ] is a congruence relation on Pf (Nn), and the quotient with respect
to this congruence is easily seen to be isomorphic to the subalgebra If (Nn)
of Pf (Nn) consisting of the finite ideals.

For each i ∈ [n], let (ui] denote the principal ideal generated by the unit
vector ui, i.e., the ideal ({ui}].
Proposition 3.5 If (Nn) is freely generated in V1 by the n principal ideals
(ui].

Proof: Since If (Nn) is a quotient of Pf (Nn), it is in V0. Since also ∨3 holds
in If (Nn), we have that If (Nn) is in V1. If A = (A,∨,+, 0) ∈ V1 and h maps
each (ui] to an element ai ∈ A, then consider the unique homomorphism
h] : Pf (Nn) → A extending the assignment {ui} 7→ ai, as given in the proof
of Proposition 3.2. The restriction of this homomorphism to If (Nn) is the
unique homomorphism If (Nn) → A extending h. �

Again, the induced partial order on If (Nn) is the partial order determined
by set inclusion.

Remark 3.6 Infinitely generated free algebras in V0 and V1 have similar
concrete descriptions. When α is any cardinal, the free algebra in V0 on α
generators can be constructed by taking non-empty finite sets of those vectors
u ∈ N

α having a finite number of non-zero components. Again, this algebra
contains a subalgebra (the one determined by the finite order ideals) which
is free in V1.

We note that, if n ≥ 2, then the equation en fails in If (Nn), and a fortiori
in V1. Since for n ≥ 2 the equation en holds in N but fails in V1, in order
to obtain a concrete description of the free algebras in V we need to make
further identifications of the ideals in If (Nn). Technically, we shall start
with Pf (Nn).

Let v1, . . . , vk (k ≥ 1) be vectors in N
n, and suppose that λi (i ∈ [k])

are non-negative real numbers with
∑

i∈[k] λi = 1. We call the vector of real
numbers

∑
i∈[k] λivi a convex linear combination of the vi.
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Definition 3.7 We call a non-empty set U ⊆ Pf (Nn) a convex ideal if for
any convex linear combination

∑
i∈[k] λivi, with vi ∈ U for all i ∈ [k], and

for any v ∈ N
n, if

v ≤
∑

i∈[k]

λivi

in the pointwise order, then v ∈ U .

Note that any convex ideal is an ideal. Moreover, the intersection of any
number of convex ideals is a convex ideal. Thus, any subset U of N

n is
contained in a least convex ideal [U ], the convex ideal generated by U .
When U is finite, so is [U ]. For u ∈ N

n, we shall usually write [u] for the
convex ideal [{u}].

Suppose that c, d ∈ N
n. Then, for any u ∈ N

n, we have c · u ≤ d · u iff
the two integer vectors u and d − c make a non-obtuse angle. We let c ≤ U
mean that for each u ∈ N

n there exists a vector d ∈ U such that c ·u ≤ d ·u,
or equivalently that the simple inequation

c · x ≤
∨

d∈U

d · x

holds in N.

Lemma 3.8 Suppose that U ∈ Pf (Nn) and c ∈ N
n. Then c ∈ [U ] iff c ≤ U .

Proof: For one part, note that if ci ≤ U holds for every i ∈ [k], k ≥ 1, then
so does c ≤ U for every convex linear combination c of c1, . . . , ck.

For the other direction, assume that c is not in [U ]. We proceed to prove
that c ≤ U does not hold, or equivalently that for some u ∈ N

n, (c−d)·u > 0
for all d ∈ U . Below we shall work in the space R

n of all n-dimensional real
vectors. Denote by H the convex hull of [U ], i.e., the least convex set in
R

n containing [U ]. It is clear that c is not in H. Let c0 denote the vector
in H closest to c. (This exists, since H is a closed set.) Let P denote the
hyperplane passing through c0 and perpendicular to c − c0. Let P ′ denote
the hyperplane parallel to P which contains c. Now, P divides the space R

n

into two parts S1 and S2 with S1 containing the origin and c0. We claim
that the entire set H is a subset of S1. Indeed, if e ∈ H and e 6∈ S1, then
take the line passing through e and c0. Since H is convex, H contains the
segment of this line whose endpoints are c0 and e. But this segment contains
a point closer to c than c0, a contradiction. Since the whole set H lies in
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S1, each point of H is an inner point of the half-space determined by P ′

that contains the origin. This means that if d is in H, the angle between
x0 = c − c0 and d − c is obtuse, i.e., (c − d) · x0 > 0. Since H is an order
ideal included in R

n
+, it follows that c0 ≤ c with respect to the pointwise

ordering; otherwise c0 is not the point in H with the shortest distance to c
as assumed.

Next we note that, for all d ∈ U , the function x 7→ (c−d)·x is continuous.
Therefore, for each such d, there is a real number εd > 0 such that (c−d)·x >
0 whenever |x0 − x| < εd (where we use |x0 − x| to denote the length of the
vector x0 − x). Now take ε to be smallest amongst the εd’s. (This exists
because the set U is finite.) Then, for all d ∈ U , it holds that (c− d) · x > 0
whenever |x0 − x| < ε. In particular there must be a vector x with positive
rational coefficients with this property. From this we derive easily that there
must be a u ∈ N

n with (c− d) · u > 0 for all d ∈ U , which was to be shown.
�

When U, V ∈ Pf (Nn), we define U ∼ V iff [U ] = [V ]. By the previous
lemma, it follows that ∼ is a congruence relation on Pf (Nn). Moreover, the
quotient Pf (Nn)/∼ is in V. Indeed, if [U ] 6= [V ], then, by Lemma 3.8, there
is some c ∈ U with c 6≤ V , say. Thus, for some x = (x1, . . . , xn) ∈ N

n,
fc(x) 6≤ ∨d∈V fd(x), so that h(U) 6≤ h(V ) for the unique homomorphism
Pf (Nn) → N determined by the assignment {ui} 7→ xi, i ∈ [n]. (Recall
that the singleton sets containing the unit vectors are the free generators
of Pf (Nn).) Furthermore Lemma 3.8 implies that for such an h, it holds
that h(U) = h(V ) if [U ] = [V ]. Thus, any two not ∼-equivalent sets in
Pf (Nn) can be separated by a homomorphism Pf (Nn) → N. It follows that
Pf (Nn)/∼ embeds in a direct power of N, showing Pf (Nn)/∼∈ V.

It is immediate to see that the quotient algebra Pf (Nn)/ ∼ is isomorphic
to the following algebra CIf(Nn) = (CIf (Nn),∨,+, 0) of all finite convex
ideals in Pf (Nn). For any two I, J ∈ CIf (Nn),

I + J = [{u + v : u ∈ I, v ∈ J}]
I ∨ J = [I ∪ J ]

0 = {0} .

Indeed, an isomorphism Pf (Nn)/ ∼ → CIf (Nn) is given by the mapping
U/∼ 7→ [U ].

Recall that, for each i ∈ [n], ui denotes the ith unit vector in N
n. For

each i ∈ [n], the set [ui] = (ui] = {ui, 0} is the least convex ideal containing
ui.
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Theorem 3.9 CIf (Nn) is freely generated by the n convex ideals [ui] in the
variety V.

Proof: We have already noted that CIf (Nn) is in V. Thus, since V is
the variety generated by N, and since CIf (Nn) is generated by the [ui], to
complete the proof we need to show that any mapping h : {[u1], . . . , [un]} →
N extends to a homomorphism CIf (Nn) → N. But by Proposition 3.2 there
is a homomorphism h′ : Pf (Nn) → N with h′({ui}) = h([ui]), for all i ∈ [n].
By Lemma 3.8, the congruence relation ∼ is included in the kernel of h′,
so that h′ factors through the quotient map Pf (Nn) → Pf (Nn)/∼. Since
Pf (Nn)/∼ and CIf (Nn) are isomorphic, the result follows. �

Remark 3.10 The same proof shows that each CIf (Nn) is free in the va-
riety generated by the structure (R+,∨,+, 0), defined on the non-negative
real numbers. Thus, V is also generated by the structure R+ (which is not
elementarily equivalent to N).

Note that the induced partial order on CIf (Nn) is again the subset order.

Remark 3.11 It is well-known that, for each non-negative integer n, the
free algebra on n generators in the variety generated by an algebra A may
be constructed as an algebra of all n-ary term functions of A. When A is
the structure N, each term function is the pointwise maximum of a finite
non-empty set of linear functions, induced as in (2) by the vectors in a finite
non-empty set in Pf (Nn), or convex ideal in CIf (Nn).

Remark 3.12 When n = 1, the algebras If (N) and CIf (N) are both iso-
morphic to N, yielding another proof of Proposition 2.2.

Remark 3.13 Another representation of the n-generated free algebra in V
consists of all bounded convex ideals of R

n
+. The advantage of this represen-

tation is that, in this free model, the sum operation is complex addition.

Remark 3.14 When α is a cardinal, the free algebra in V on α generators
may be described by using finite convex ideals of vectors in N

α having a finite
number of non-zero components.

Corollary 3.15 For every n ≥ 1 and equation e, we have

CIf (Nn) |= e ⇔ V |= e .
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Proof: If V |= e then CIf (Nn) |= e, since CIf (Nn) is in V. Also, the convex
ideals in CIf(Nn) containing vectors whose components are all 0 except
possibly for the first one, determine a subalgebra of CIf (Nn) isomorphic to
N. Thus, if CIf(Nn) |= e then N |= e, so that V |= e. �

As a corollary of Theorem 3.9, we obtain the following characterization of
the simple inequations which hold in the variety V.

Corollary 3.16 Let c, dj (j ∈ [m],m ≥ 1) be vectors in N
n. Then c ≤

{d1, . . . , dm} iff there are λ1, . . . , λm ≥ 0 such that λ1 + . . . + λm = 1 and
c ≤ λ1d1 + . . . + λmdm with respect to the pointwise ordering. Moreover, if
c ≤ {d1, . . . , dm} is irredundant, then λ1, . . . , λm > 0.

Proof: Use the fact that t ≤ t1 ∨ . . . ∨ tm holds in V iff

t([u1], . . . , [un]) ≤
∨

i∈[m]

ti([u1], . . . , [un])

holds in CIf (Nn). �

The above result offers a geometric characterization of the simple inequations
in the equational theory of N, viz. an inequation c · x ≤ d1 · x ∨ . . . ∨ dm · x
(where x = (x1, . . . , xn) is a vector of variables) holds in N iff the vector c
lies in the ideal generated by the convex hull of the vectors d1, . . . , dm.

Corollary 3.17 It is decidable in polynomial time whether a simple inequa-
tion holds in V.

Proof: Let c1x1 + . . .+ cnxn ≤ ∨
i∈[m](

∑
j∈[n] dijxj) be a simple inequation.

In light of Corollary 3.16, it holds in N iff there is a non-negative solution
(over the real numbers) to the following system of linear equations in the
unknowns λi, γj (i ∈ [m], j ∈ [n]):

(
∑

i∈[m]

dijλi) − γj = cj (j ∈ [n])

∑

i∈[m]

λi = 1 .

Thus our original problem can be restated as asking if there is a feasible solu-
tion to the linear programming problem with the above equality constraints
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and non-negativity conditions. It is well-known that linear programming
problems are solvable in polynomial time [23]. �

Corollary 3.18 The equational theory of V is decidable in exponential time.

Proof: Immediate from Remark 3.4 and Corollary 3.17. �

It is interesting to compare the above result on the complexity of the equa-
tional theory of N with the classic results by Fischer and Rabin [10] on
the complexity of the first-order theory of the real numbers under addi-
tion, and of Presburger arithmetic—the first-order theory of addition on the
natural numbers. There is a fixed constant c > 0 such that for every (non-
deterministic) decision procedure for determining the truth of sentences of
real addition and for all sufficiently large n, there is a sentence of length n
for which the decision procedure runs for more than 2cn steps. In the case of
Presburger arithmetic, the corresponding lower bound is 22cn

. These bounds
apply also to the minimal lengths of proofs for any complete axiomatization
in which the axioms are easily recognized. Such complexity results apply
mutatis mutandis to the first-order theory of the algebra N.

4 The Variety V is not Finitely Based

We now proceed to apply the results that we have developed so far to the
study of the axiomatizability of the equational theory of the algebra N.

The main aim of this paper is to prove the following result to the effect
that the variety V has no finite equational basis.

Theorem 4.1 The variety V has no finite (equational) axiomatization, i.e.,
there is no finite set E of equations, which hold in V, and such that for all
terms t1, t2,

V |= t1 = t2 iff E |= t1 = t2 .

To prove Theorem 4.1 we shall define a sequence of algebras An (n ≥ 2) in
V1 such that following holds:

For any finite set E of equations which hold in V, there is an
n ≥ 2 such that

An |= E but An 6|= en .
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The equations en, n ≥ 2, were defined in Sect. 2.
In fact, as we shall see in due course, the algebra construction that we

now proceed to present also yields the following stronger result.

Theorem 4.2 There exists no natural number n such that the collection of
all equations in at most n variables that hold in V forms an equational basis
for V.

Using Theorem 4.2, it is a simple matter to prove Theorem 4.1.

Proof of Theorem 4.1: Given a finite set E of equations that hold in V,
let n denote an integer larger than the number of variables in any equation
belonging to E. Since the equations in at most n variables that hold in V
do not form an equational basis for V, the equations in E do not give an
equational axiomatization of V either. �

Remark 4.3 Another view of the non-existence of a finite basis for the
variety V is offered in [1]. Ibidem we show that the collection of equations
in two variables that hold in V has no finite equational axiomatization.

5 The Models

Before defining our models, we need some preparation. The weight of a
vector u ∈ N

n, n ≥ 1, is defined as the sum of its components, and the
weight of a finite non-empty set U ⊆ N

n is the maximum of the weights of
its members.

Lemma 5.1 Let v = λ1v1+. . .+λkvk, k ≥ 1, be a convex linear combination
of the vectors vi ∈ N

n and let u ≤ v, where u ∈ N
n. Then the weight of

u is at most the maximum of the weights of the vi. Moreover, if every λi

(i ∈ [k]) is positive, then the weight of u equals the maximum of the weights
of the vi iff all the vectors vi (i ∈ [k]) have equal weight.

The proof is straightforward and is therefore omitted.
For each n ≥ 2, let us say that a vector u ∈ N

n is n-ok if no component
of u is greater than 2, and at most one of the components of u is equal to
2. Moreover, if a component is 2, then it is followed by a 0. Of course, it is
understood that the last component is followed by the first. Moreover, we
say that a non-empty set U ⊆ N

n is n-ok if so are all of its members. Note
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that each n-ok set in N
n is finite and that there are only a finite number of

n-ok sets. We introduce the following notation for some n-ok vectors related
to the equation en:

δ = (1, . . . , 1)
γ1 = (2, 0, 1, 1, . . . , 1, 1)
γ2 = (1, 2, 0, 1, . . . , 1, 1)

...
γn−1 = (1, 1, 1, 1, . . . , 2, 0)

γn = (0, 1, 1, 1, . . . , 1, 2) ,

so that in γi, the 2 is on the ith position and is followed by a 0. All other
components are 1’s. Thus, δ and the γi are the only n-ok vectors of weight
n, and the weight of any other n-ok vector is strictly less than n. In fact, if u
is n-ok, then either there exists an i ∈ [n] such that u ≤ γi in the pointwise
order, or u = δ. Note that

δ =
1
n

γ1 + . . . +
1
n

γn . (4)

Thus, δ belongs to the convex ideal generated by the vectors γi (i ∈ [n]).

Lemma 5.2 The system consisting of any n of the vectors δ, γ1, . . . , γn is
linearly independent.

Proof: By (4), and because of the symmetry of the vectors γi and δ, it is
sufficient to show that the determinant of the matrix M whose ith row is
γi, for i ∈ [n − 1], and whose nth row is δ, is non-zero. To this end, let us
subtract the last row of M from the first n − 1 rows. It is easy to show by
induction on n that the determinant of the resulting matrix is n. �

Lemma 5.3 Suppose that U is a non-empty set of n-ok vectors. Then:

1. The convex ideal [U ] consists of n-ok vectors.

2. If δ ∈ [U ] then either δ ∈ U or γi ∈ U for all i ∈ [n].

3. If γi ∈ [U ], for some i ∈ [n], then γi ∈ U .
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Proof: As for the first claim, it suffices to show that, for any convex linear
combination λ1γ1 + . . . + λnγn and for all u ∈ N

n, if u ≤ λ1γ1 + . . . + λnγn,
then u is n-ok. But by Lemma 5.1 it is clear that the weight of u is at
most n, since each of the γi is of weight n. Also, any component of u lies
between the minimum and the maximum of the corresponding components
of the γi, so that no component of u is greater than 2. If for some i, the
ith component of u is 2, then necessarily λi = 1 and λj = 0, for all j 6= i,
completing the proof.

Suppose now that δ ∈ [U ]. Since the weight of δ is n and the weight of
any vector in U is at most n, it follows by Lemma 5.1 that δ is the convex
linear combination of vectors of weight n in U . Recall that the only n-ok
vectors of weight n are δ and the γi. To complete the proof, we need to show
that it is not possible to construct δ as a (convex) linear combination of a
proper subcollection of the γi. But this is immediate, since by Lemma 5.2
the system consisting of δ and any n − 1 of the γi is linearly independent.

The proof of the last claim is similar. One uses the fact that none of the
vectors γi is a convex linear combination of the vectors δ and γj with i 6= j.

�

We define:

Γ = [{γ1, . . . , γn}]
∆ = Γ − {δ} ,

so that Γ is the convex ideal consisting of all of the n-ok vectors. By (4),
the set ∆ is not a convex ideal.

Corollary 5.4 The set {γ1, . . . , γn} is the unique minimal generating set
of the convex ideal Γ.

Corollary 5.5 If J is a convex ideal properly included in Γ, then J − {δ}
is also a convex ideal.

Proof: If J − {δ} is not a convex ideal, then δ is in [J − {δ}]. But by
Lemma 5.3, this is possible only if J contains all of the γi, contradicting the
assumption that J is properly included in Γ. �

Corollary 5.6 The set consisting of ∆ and all n-ok convex ideals is closed
under intersection.
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Proof: Suppose that I and J are n-ok convex ideals. Then I ∩ J is also an
n-ok convex ideal. If I is properly included in Γ, then I ∩∆ = I −{δ} is an
n-ok convex ideal by Corollary 5.5. �

Lemma 5.7 Suppose that n ≥ 3. Then there exist no non-trivial convex
ideals I and J with I + J = Γ.

Proof: Assume, towards a contradiction, that n ≥ 3, I and J are convex
ideals with I +J = Γ but I, J 6= {0}. Let k denote the weight of I and ` the
weight of J . Then k, ` > 0 and k+ ` = n. Let I ′ denote the set of all vectors
of weight k in I, and define J ′ ⊆ J in the same way. By Corollary 5.4, the
complex sum K of I ′ and J ′ contains all vectors γi, i ∈ [n].

Suppose that I ′, say, contains a vector u which has a component equal
to 2. Then there exists an i ∈ [n] such that u + v = γi for all v ∈ J ′.
Hence J ′ contains a unique vector and γi is the only element of {γ1, . . . , γn}
contained in K, contradicting Corollary 5.4. Thus, I ′ contains no vector
having a component equal to 2, and similarly for J ′.

Since the complex sum of I ′ and J ′ contains the vectors γ1 and γ2, there
are vectors w1, w2 ∈ I ′ and v1, v2 ∈ J ′ such that

w1 + v1 = γ1 and w2 + v2 = γ2 .

This means that, for some b3, . . . , bn ∈ {0, 1},
w1 = (1, 0, b3, . . . , bn) and
v1 = (1, 0, b̃3, . . . , b̃n) ,

where b̃ denotes the complement of b, for every b ∈ {0, 1}. Similarly, since
n ≥ 3, there are c1, c4, . . . , cn ∈ {0, 1} such that

w2 = (c1, 1, 0, c4, . . . , cn) and
v2 = (c̃1, 1, 0, c̃4, . . . , c̃n) .

It is now easy to see that if w1 + v2 is in Γ, then w2 + v1 is not. Indeed, if
w1 + v2 is in Γ, then c̃1 = 0, so that c1 = 1. Thus the first two components
of w2 + v1 are 2 and 1, respectively. This contradicts our assumption that
I + J is equal to Γ. �

We now define our models.
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Definition 5.8 For each n ≥ 2, let An consist of the convex ideals of n-
dimensional vectors included in Γ, the set ∆, and a top element >. The
constant 0 is the set {0}, containing the n-dimensional zero vector. Let
I, J ∈ An. If I or J is >, then we define I ∨J = I +J = >. If both I and J
are different from >, then I ∨ J is the smallest set in An containing I ∪ J .
This set exists by Corollary 5.6. To define I + J , let K be the complex sum
{u+ v : u ∈ I, v ∈ J}. If K is not n-ok, we define I +J = >. If K is n-ok,
then we let I + J be the smallest set in An containing K. We have defined
the algebra An = (An,∨,+, 0).

Remark 5.9 For later use, let us note that if n ≥ 3, then neither ∆ nor
Γ has a non-trivial representation as the sum of two non-zero elements of
An. Indeed, if I + J ∈ {∆,Γ} in An and I, J 6= 0, then both I and J are
different from ∆, and I + J = Γ in CIf (Nn). This contradicts Lemma 5.7.

When n = 2, the set ∆ does not have a non-trivial representation as the
sum of two non-zero elements of An, but we have

[{(1, 0), (0, 1)}] + [{(1, 0), (0, 1)}] = Γ

both in An and in CIf (Nn).

Lemma 5.10 Suppose that I, J ∈ An, and I, J 6= >. Then:

1. If δ 6∈ I ∪ J and {γ1, . . . , γn} ⊆ I ∪ J then I ∨ J = ∆. Otherwise
I ∨ J = [I ∪ J ].

2. Let K denote the complex sum of I and J and suppose that K is n-
ok. If one of I and J is ∆ (so that the other is 0), then I + J = ∆.
Otherwise I + J = [K].

Proof: Suppose that δ 6∈ I ∪J and {γ1, . . . , γn} ⊆ I ∪J . Then ∆ and Γ are
the only two sets in An containing I ∪ J . Since ∆ ⊂ Γ, we have I ∨ J = ∆.
Conversely, if I ∨ J = ∆ in An, then δ 6∈ I ∪ J and [I ∪ J ] = Γ. Thus,
by Corollary 5.4, each γi is in I ∪ J . For the second claim, note that if
I +J = ∆ in An with I, J 6= 0, then it would have to be the case that n ≥ 3
and I + J = Γ in CIf (Nn), so that the result follows from Lemma 5.7. �

Corollary 5.11 The equivalence relation ∼ that collapses ∆ and Γ, and is
the identity relation otherwise, is a congruence relation over An. Moreover,
the quotient algebra of An with respect to this congruence is isomorphic to
that quotient of CIf (Nn) which identifies any two not n-ok convex ideals.

18



As a consequence of the above result, since An/∼∈ V, if for some terms
t = t(x1, . . . , xn) and t′ = t′(x1, . . . , xn) in the variables x1, . . . , xn and for
some I1, . . . , In ∈ An we have N |= t = t′ but t(I1, . . . , In) = I 6= I ′ =
t′(I1, . . . , In) in An, then I, I ′ ∈ {∆,Γ}.
Lemma 5.12 Suppose that t = t(x1, . . . , xn) is a term containing exactly
the variables x1, . . . , xn, and suppose furthermore that Ii ∈ An, i ∈ [n]. For
each i, define Ji = Ii, if Ii is a convex ideal, and Ji = Γ, if Ii = ∆. Moreover,
let Ji be any not n-ok convex ideal if Ii = >. Denote I = t(I1, . . . , In) in
An and J = t(J1, . . . , Jn) in CIf (Nn). Then:

1. I = > iff J is not n-ok. Moreover, if Ii = >, for some i ∈ I, then
I = >.

2. I ∈ {∆,Γ} iff J = Γ. Moreover, I ⊆ J .

3. If I 6∈ {>,∆,Γ}, then I = J .

Proof: All the statements follow by a straightforward induction argument
using Lemma 5.10. �

Proposition 5.13 For each n ≥ 2, An ∈ V1.

Proof: The facts that both ∨ and + are commutative and that 0 is a neutral
element for both operations are obvious. The associativity of ∨ is immediate
from its definition and Corollary 5.6. To establish the associativity of the
sum operation, by Corollary 5.11, or by Lemma 5.12, we only need to show
that for all I, J,K ∈ An such that I, J,K 6= >, it holds that I+(J +K) = ∆
iff (I + J) + K = ∆. But this is immediate by Lemma 5.10. Finally, we
check that for all I, J,K ∈ An,

(I ∨ J) + K = ∆ ⇔ (I + K) ∨ (J + K) = ∆ . (5)

If (I ∨ J) + K = ∆, then, by Lemma 5.10, either I ∨ J = ∆ and K = 0, or
I = J = 0 and K = ∆. In either case, (I + K)∨ (J + K) = ∆. Assume now
that the right-hand side of (5) is ∆. If one of I, J,K is ∆ then the other two
are 0 and the claim follows. If none of I, J,K is ∆, then, by Lemma 5.12,
all of them are convex ideals and (I + K) ∨ (J + K) = Γ in CIf (Nn). But
then, since CIf (Nn) is in V1, (I ∨ J) + K = Γ holds in CIf (Nn). Thus, by
Lemma 5.7 and the fact that (I + K) ∨ (J + K) = ∆ in An, one of the
following two cases applies:
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- K = 0, or

- n = 2 and I ∨ J = K = [{(1, 0), (0, 1)}].
In the former case, (I ∨ J) + K = ∆ in An. In the latter, (I + K)∨ (J + K)
would be Γ in An. �

Lemma 5.14 Let I1, . . . , Ik ∈ An − {∆}, k ≥ 1. The following statements
hold in An.

1. I1 ∨ . . . ∨ Ik is the smallest set in An which contains I1 ∪ . . . ∪ Ik.

2. If the complex sum

K = {u1 + . . . + uk : ui ∈ Ii}

is n-ok, then I = I1 + . . .+ Ik is the smallest set in An which contains
K.

Proof: The first claim is immediate from the definition of the ∨ operation
and Corollary 5.6. For the second claim, we distinguish between two cases.
If I 6= ∆,Γ, then by Lemma 5.12, I is the same as the sum of the Ii in
CIf (Nn), i.e., the smallest convex ideal containing K. It is clear that I is
also the smallest set in An which contains K. If I = ∆, or if I = Γ and
n ≥ 3, then by Remark 5.9, except for one, all the Ii are zero, so that the
result is immediate. If n = 2 and I = Γ, then two cases arise. The case
that all the Ii are 0, except for one, is handled as before. The second case
is that, for some j ∈ [k],

I1 + . . . + Ij = Ij+1 + . . . + Ik = [{(1, 0), (0, 1)}] .

But in that case K is also Γ. �

Note that > is the top element of An in the induced partial order, and for
all elements I, J ∈ An other than >, I is below J in the induced partial
order if and only if I ⊆ J .

Proposition 5.15 For each n ≥ 2, An satisfies any equation in at most
n − 1 variables which holds in N.
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Proof: It suffices to show that An |= t ≤ t′ for any irredundant simple
inequation t ≤ t′ such that N |= t ≤ t′ and both t and t′ contain the same
m < n variables, so that t = t(x1, . . . , xm) and t′ = t′(x1, . . . , xm), say. By
Propositions 2.2 and 5.13, we only need consider the case m > 1. (Note
that, in this case, n ≥ 3.) Moreover, by Corollary 5.11, or by Lemma 5.12,
we only need to show that for all I1, . . . , Im in An, it is not possible that
δ ∈ I and ∆ = J , where I = t(I1, . . . , Im) and J = t′(I1, . . . , Im).

Assume, towards a contradiction, that for some Ii, i ∈ [m], we have δ ∈ I
and ∆ = J , and that t ≤ t′ is a simple inequation in fewest variables for
which this holds. Note that this implies that Ii 6= 0 for every i ∈ [m]. Let
us write

t′ = t1 ∨ . . . ∨ tk ,

where the tj are distinct simple terms, and define

Jj = tj(I1, . . . , Im) ,

for all j ∈ [k]. It is not possible that one of the Ii is ∆, for that would imply
t = x1 and m = 1. Thus, all of the Ii are convex ideals. Also, since Γ has no
non-trivial representation as the sum of two non-zero elements of An (see
Remark 5.9), we have I 6= Γ. (Thus, since δ ∈ I, I is a convex ideal and
I = t(I1, . . . , Im) also holds in CIf (Nn).)

Let us write

t = c1x1 + . . . + cmxm

tj = cj1x1 + . . . + cjmxm ,

for all j ∈ [k]. Here, we allow that some of the cjl are 0. On the other hand
no ci is 0, and for each l there is a j such that cjl is non-zero. Also, at most
one of the ci is equal to two, for otherwise by Lemma 5.12 we would have
I = >. Similarly, for each j, at most one of the cjl is 2. Thus, without loss
of generality, it is sufficient to consider the following two cases.

Case 1: t = x1 + . . . + xm. Since δ ∈ I, by Lemmas 5.3 and 5.14 there
exist vectors wi ∈ Ii, i ∈ [m], with δ = w1 + . . . + wm. Since the operations
are monotonic, we may also assume that Ii = [wi], for all i ∈ [m]. Indeed,

δ ∈ t([w1], . . . , [wm])

and

δ 6∈ t′([w1], . . . , [wm]) ,
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since t′([w1], . . . , [wm]) ⊆ t′(I1, . . . , Im) = ∆. But if t′([w1], . . . , [wm]) is not
∆, then it is a convex ideal, and by Lemma 5.12 we may infer that

t([w1], . . . , [wm]) ⊆ t′([w1], . . . , [wm]) ,

contradicting the fact that δ ∈ t([w1], . . . , [wm]) and δ 6∈ t′([w1], . . . , [wm]).
Thus, t′([w1], . . . , [wm]) = ∆.

Consider the vector w1 and suppose that its first component is 1, say.
Then, since w1 + . . .+wm = δ, the first components of the vectors wi, i 6= 1,
are all 0. Since γ1 is in ∆, it follows from Lemma 5.3 that there exists some
j with cj1 = 2. But then no other component of w1 is 1, or else J would
be >. In a similar way, it follows that each wi has exactly one component
equal to 1, a contradiction, since m < n.

Case 2: t = 2x1 + x2 + . . . + xm. In this case, we may assume that
there exist w1, . . . , wm and v1 with v1 + w1 + . . . + wm = δ, I1 = [w1, v1]
and Ij = [wj ], j ≥ 2. Again, we can conclude that v1 and each wj have
exactly one non-zero component, which is a 1. Using this, a contradiction
is reached as follows. Since the simple irredundant inequation t ≤ t′ holds
in N, by our assumptions some tj is of the form

2x1 + 2xi + t′′ ,

for some term t′′ and i ∈ [m] with i 6= 1. However, in that case J would be
>. �

6 Proof of the Main Result

We are now ready to prove Theorem 4.2 stated in Section 4.

Proof of Theorem 4.2: Given an integer n ≥ 2, consider the algebra
An and the simple inequation pn ≤ qn, where the terms pn and qn were
defined in Sect. 2. For each i ∈ [n], let ui denote the ith n-dimensional unit
vector whose components are all 0 except for a 1 in the ith position. By
Lemma 5.14, we have

pn([u1], . . . , [un]) = [δ]
qn([u1], . . . , [un]) = ∆

in An. Thus An 6|= pn ≤ qn, i.e., An 6|= en. On the other hand en holds in
V, and moreover, by Proposition 5.15, An satisfies all identities in at most
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n− 1 variables that hold in V. Hence, the collection of identities in at most
n − 1 variables that hold in V does not prove en. �
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Plus Algebra of the Natural Numbers has no Finite Equational
Basis. October 1999. 25 pp. To appear inTheoretical Computer
Science.

RS-99-32 Luca Aceto and Franc¸ois Laroussinie. Is your Model Checker
on Time? — On the Complexity of Model Checking for Timed
Modal Logics. October 1999. 11 pp. Appears in Kutyłowski,
Pacholski and Wierzbicki, editors, Mathematical Foundations
of Computer Science: 24th International Symposium, MFCS ’99
Proceedings, LNCS 1672, 1999, pages 125–136.

RS-99-31 Ulrich Kohlenbach. Foundational and Mathematical Uses of
Higher Types. September 1999. 34 pp.

RS-99-30 Luca Aceto, Willem Jan Fokkink, and Chris Verhoef. Struc-
tural Operational Semantics. September 1999. 128 pp. To ap-
pear in Bergstra, Ponse and Smolka, editors,Handbook of Pro-
cess Algebra, 1999.

RS-99-29 Søren Riis.A Complexity Gap for Tree-Resolution. September
1999. 33 pp.

RS-99-28 Thomas Troels Hildebrandt.A Fully Abstract Presheaf Seman-
tics of SCCS with Finite Delay. September 1999. 37 pp. To
appear in Category Theory and Computer Science: 8th Interna-
tional Conference, CTCS ’99 Proceedings, ENTCS, 1999.

RS-99-27 Olivier Danvy and Ulrik P. Schultz. Lambda-Dropping: Trans-
forming Recursive Equations into Programs with Block Struc-
ture. September 1999. 57 pp. To appear in the November 2000
issue ofTheoretical Computer Science. This revised report su-
persedes the earlier BRICS report RS-98-54.

RS-99-26 Jesper G. Henriksen.An Expressive Extension of TLC. Septem-
ber 1999. 20 pp. To appear in Thiagarajan and Yap, editors,
Fifth Asian Computing Science Conference, ASIAN ’99 Pro-
ceedings, LNCS, 1999.

RS-99-25 Gerth Stølting Brodal and Christian N. S. Pedersen.Finding
Maximal Quasiperiodicities in Strings. September 1999. 20 pp.


