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An improved algorithm for RNA secondary
structure prediction

R. B. Lyngsø∗ Michael Zuker† C. N. S. Pedersen‡

Abstract

Though not as abundant in known biological processes as pro-
teins, RNA molecules serve as more than mere intermediaries be-
tween DNA and proteins, e.g. as catalytic molecules. Further-
more, RNA secondary structure prediction based on free energy
rules for stacking and loop formation remains one of the few major
breakthroughs in the field of structure prediction. We present a
new method to evaluate all possible internal loops of size at most
k in an RNA sequence, s, in time O(k|s|2); this is an improve-
ment from the previously used method that uses time O(k2|s|2).
For unlimited loop size this improves the overall complexity of
evaluating RNA secondary structures from O(|s|4) to O(|s|3) and
the method applies equally well to finding the optimal structure
and calculating the equilibrium partition function. We use our
method to examine the soundness of setting k = 30, a commonly
used heuristic.

1 Introduction

Structure prediction remains one of the most compelling, yet elusive ar-
eas of computational biology. Not yielding to overwhelming numbers and
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resources this area still poses a lot of interesting questions for future re-
search. For RNA, if one restricts attention to the prediction of unknotted
secondary structures, much progress has been achieved. Dynamic pro-
gramming algorithms combined with the nearest neighbour model and
experimentally determined free energy parameters give rigorous solutions
to the problems of computing minimum free energy structures, struc-
tures that are usually close to real world optimal foldings, and partition
functions that yield exact base pair probabilities.

Secondary structure in RNA is the list of base pairs that occur in a
three dimensional RNA structure. According to the theory of thermody-
namics the optimal foldings of an RNA sequence are those of minimum
free energy, and thus the native foldings, i.e. the foldings encountered in
the real world, should correspond to the optimal foldings. Furthermore,
thermodynamics tells us that the folding of an RNA sequence in the real
world is actually a probability distribution over all possible structures,
where the probability of a specific structure is proportional to an ex-
ponential of the free energy of the structure. For a set of structures,
the partition function is the sum over all structures of the set of the
exponentials of the free energies.

Information on the secondary structure of an RNA molecule can be
used as a stepping-stone to modelling the full structure of the molecule,
which in turn relates to the biological function. As recent experiments
have shown that RNA molecules can undertake a wide range of different
functions [6], the prediction of RNA secondary structure should continue
to be important for biomolecule engineering.

A model was proposed in [16, 15] to calculate the stability (in terms
of free energy) of a folded RNA molecule by adding independent con-
tributions from base pair stacking and loop destabilising terms from the
secondary structure. This model has proven a good approximation of the
forces governing RNA structure formation, thus allowing fair predictions
of real structures by determining the most stable structures in the model
of a given sequence.

Based on this model, algorithms for computing the most stable struc-
tures have been proposed e.g. in [23, 10]. Zuker [21] proposes a method
to determine all base pairs that can participate in structures with a free
energy within a specified range from the optimal. McCaskill [9] demon-
strates how a related dynamic programming algorithm can be used to
calculate equilibrium partition functions, which lead to exact calcula-
tions of base pair probabilities in the model.
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A major problem for these algorithms is the time required to evalu-
ate possible internal loops. In general, this requires time O(|s|4) which is
often circumvented by assuming that only ‘small’ loops need to be con-
sidered (e.g. [9]). This risks missing some optimal large internal loops,
especially when folding at high temperatures, but the time required for
evaluating internal loops is reduced to O(|s|2) thus reducing the overall
complexity to O(|s|3). If the stability of an internal loop can be assumed
only to depend on the size of the internal loop, Waterman et. al. [18]
describes how to reduce the time requirement to O(|s|3)1. This is fur-
ther improved to O(|s|2 log2 |s|) for convex free energy functions by Epp-
stein et.al. [1]. Affine free energy functions (i.e. of the form a+ bn, where
n is the size of the loop) allows for O(|s|2) computation time by borrowing
a simple method used in sequence alignment [2].

Unfortunately the currently used free energy functions for internal
loops are not convex, let alone affine. Furthermore, the technique de-
scribed in [1] hinges on the objective being to find a structure of maximum
stability, and thus does not translate to the calculation of the partition
function of [9] where a Boltzmann weighted sum of contributions to the
partition function is calculated.

In this paper we will describe a method based on a property of current
free energy functions for internal loops that allows all internal loops to be
evaluated in time O(|s|3). This method is applicable both to determining
the most stable structure and to calculating the partition function.

The rest of this paper is structured as follows. In section 2 we briefly
review the basic dynamic programming algorithm for RNA secondary
structure prediction and introduce the notation we will be using. In
section 3 we present a method yielding cubic time algorithms for eval-
uating internal loops for certain free energy functions. We argue that
this method can be used with currently used free energy functions in sec-
tion 3.2, and describe how the same technique can be used to calculate
the contributions to the partition function from structures with internal
loops in section 3.3. In section 4 we compare our method to the pre-
viously used method, and in section 5 we present an experiment using
the new algorithm to analyse a hitherto commonly used heuristic. In
section 6 we discuss some future directions for improvements.

1This method is also referred to by [9] where a combination of the above methods
is proposed - a free energy function only dependent on loop size is used for large loops,
while small loops are treated specially.
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2 Basic dynamic programming algorithm

A secondary structure of a sequence s is a set S of base pairs i · j with
1 ≤ i < j ≤ |s|, such that ∀i · j, i′ · j′ ∈ S : i = i′ ⇔ j = j ′. Thus,
any base can take part in at most one base pair. We will further assume
that the structure does not contain pseudo-knots. A pseudo-knot is two
“overlapping” base pairs, that is, base pairs i · j and i′ · j′ with i < i′ <

j < j′.
One can view a pseudo-knot free secondary structure S as a collection

of loops together with some external unpaired bases (see figure 1). Let
i < k < j with i · j ∈ S. Then k is said to be accessible from i · j if for
all i′ · j′ ∈ S it is not the case that i < i′ < k < j′ < j. The base pair
i · j is said to be the exterior base pair of (or closing) the loop consisting
of i · j and all bases accessible from it. If i′ and j′ are accessible from
i · j and i′ · j′ ∈ S – observe that for a structure without pseudo-knots
either both or none of i′ and j′ will be accessible from i · j if i′ · j′ ∈ S
– then i′ · j′ is called an interior base pair of the loop and is said to
be accessible from i · j. If there are no interior base pairs the loop is
called a hairpin loop. With one interior base pair it is called a stacked
pair if i′ = i + 1 and j ′ = j − 1, and otherwise it is called an internal
loop (bulges are a special kind of internal loops with either i′ = i + 1
or j′ = j − 1). Loops with more than one interior base pair are called
multibranched loops. Unpaired bases and base pairs not accessible from
any base pair are called external.

)Hairpin loop

�

Hairpin loop	
Bulge

	
Multibranched loop

�
Internal loop�

External base

I
Stacked pair

Figure 1: An example RNA structure. Bases are depicted by circles, the
RNA backbone by straight lines and base pairings by zigzagged lines.
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RNA secondary structure prediction is the problem of determining
the most stable structure for a given sequence. We measure stability in
terms of the free energy of the structure. Thus we want to find a structure
of minimal free energy which we will also call an optimal structure. The
energy of a secondary structure is assumed to be the sum of the energies
of the loops of the structure and furthermore the loops are assumed to
be independent, that is, the energy of a loop only depends on the loop
and not on the rest of the structure[15].

Based on these assumptions one can specify a recursion to calculate
the energy of the optimal structure for a sequence s [23, 10]. Before
presenting our improvement to the part of the algorithm dealing with
internal loops, we will briefly review the hitherto used method. We use
the same notation as in [17]. Four arrays2 – W , V , VBI and VM – are
used to hold the minimal free energy of certain restricted structures of
subsequences of s. The entries of these arrays are interdependent and can
be calculated recursively using pre-specified free energy functions – eS,
eH , eL and eM – for the contributions from the various types of loops
as follows.

• The energy of an optimal structure of the subsequence from 1
through i:

W (i) = min{W (i− 1), min
1<j≤i

{W (j − 1) + V (j, i)}}.

• The energy of an optimal structure of the subsequence from i
through j closed by i · j:

V (i, j) = min{eH(i, j), eS(i, j) + V (i + 1, j − 1),

VBI(i, j), VM(i, j)}

where eH(i, j) is the energy of a hairpin loop closed by i · j and
eS(i, j) is the energy of stacking base pair i · j with i + 1 · j − 1.

• The energy of an optimal structure of the subsequence from i

through j where i · j closes a bulge or an internal loop:

VBI(i, j) = min
i<i′<j′<j

i′ − i+ j − j′ > 2

{eL(i, j, i′, j′) + V (i′, j′)}

2Actually two arrays – V and W – suffices, but we will use four arrays to simplify
the description. Below we will introduce a fifth array WM that will also be needed
in an efficient implementation.
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where eL(i, j, i′, j′) is the energy of a bulge or internal loop with
exterior base pair i · j and interior base pair i′ · j′.

• The energy of an optimal structure of the subsequence from i
through j where i · j closes a multibranched loop:

VM(i, j) = min
i<i1<j1<
···

<ik<jk<j

{eM(i, j, i1, j1, . . . , ik, jk) +

k∑
l=1

V (il, jl)}

where k > 1 and eM(i, j, i1, j1, . . . , ik, jk) is the energy of a multi-
branched loop with exterior base pair i · j and interior base pairs
i1 · j1, . . . , ik · jk.

When all entries of these arrays have been filled out, W (|s|) contains
the free energy for optimal structures and an optimal structure can be
determined by backtracking the calculations that led to this free energy.

To make the problem of determining the optimal secondary structure
tractable the following simplifying assumption is often made. The energy
of multibranched loops can be decomposed into linear contributions from
the number of unpaired bases in the loop, the number of branches in the
loop and a constant[22]3, that is

eM(i, j, i1, j1, . . . , ik, jk) =

a+ bk + c
(
i1 − i− 1 + j − jk − 1 +

k−1∑
l=1

(il+1 − jl − 1)
)
. (1)

We introduce an extra array

• The energy of an optimal structure of the subsequence from i

through j that constitutes part of a multibranched loop structure,
that is, where unpaired bases and external base pairs are penalised
according to equation 1:

WM(i, j) = min{V (i, j) + b,WM(i, j − 1) + c,WM(i+ 1, j) + c,

min
i<k≤j

{WM(i, k − 1) +WM(k, j)}}

3It is known that the stability of a multibranched loop also depends on the stacking
effects of the base pairs in the loop and their neighbouring unpaired bases. These
effects can also be handled efficiently, but for simplicity we have omitted the details
here.
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which enables us to restate the calculation of the energy of the optimal
multibranched loop as

VM(i, j) = min
i+1<k≤j−1

{WM(i + 1, k − 1) +WM(k, j − 1) + a}.

Based on these recurrence relations we can by dynamic programming
calculate the energy of the optimal structure in time O(|s|3) – assuming
that the free energy functions can be evaluated in constant time – except
for the calculation of the entries of VBI which requires O(|s|4) in total.
The bottleneck of finding the optimal structures is thus the evaluation of
internal loops. In the following section we will present a method to reduce
the time used calculating the entries of VBI from O(|s|4) to O(|s|3),
thereby improving the time complexity of the overall RNA secondary
structure prediction algorithm from O(|s|4) to O(|s|3).

3 Efficient evaluation of internal loops

Examining the recursion for internal loops one observes that two base
pairs, i · j and i′ · j′, may be compared as candidates for the interior base
pair for numerous exterior base pairs. If V (i, j)� V (i′, j′), it is evident
that we would not have to consider i′ · j′ as a candidate interior base pair
for any entry of VBI where i · j would also be a candidate interior base
pair.

Though it would often in practice be the case that we could a priori
discard many candidate interior base pairs by the above observation, we
can not in general guarantee this to be the case. To get an improvement
in the worst case performance of the evaluation of internal loops, we thus
have to examine properties of the energy functions for internal loop sta-
bility that will allow us to group base pairs and entries of VBI, such that
we only have to make one comparison between i · j and i′ · j′ to determine
which one would yield the more stable structure for the entire group of
entries. In this section we will exploit such properties of currently used
energy functions leading to an algorithm for evaluating internal loops
requiring worst case time O(|s|3).

Currently used energy rules for internal loop stability (cf. [20]) split
the contributions into three parts:

• An entropic term that depends on the size of the loop.

• Stacking energies for the mismatched base pairs adjacent to the
enclosing (exterior and interior) base pairs.
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Figure 2: The energy function for internal loops can be split into a sum
of independent contributions.

• An asymmetry penalty for asymmetric loops.

With this separation we can rewrite the internal loop energy function as

eL(i, j, i′, j′) = size(i′ − i+ j − j′ − 2) +

stacking(i · j) + stacking(i′ · j′) +

asymmetry(i′ − i− 1, j − j′ − 1).

(2)

Figure 2 gives a graphical representation of these components of the
internal loop energy function. In the following we will further assume
that the lopsidedness and the size dependence of the asymmetry function
can be separated out, or more specifically that

asymmetry(k + 1, l + 1) = asymmetry(k, l) + g(k + l) (3)

holds. The change of the asymmetry function when varying the size while
maintaining lopsidedness thus only depends on the size of the loop. This
is equivalent to assuming that

asymmetry(k, l) = lopsidedness(|k − l|) + size′(k + l), (4)

where one can observe that the g term in equation 3 corresponds to
changes in the size′ term in equation 4. This size-dependence of the
asymmetry function can be moved to the size-function of the overall

8



internal loop energy function, thus allowing us to restate the assumption
of equation 3 as

asymmetry(k + 1, l + 1) = asymmetry(k, l). (5)

In the rest of this paper we will therefore omit the g term, but the
formulation of equation 3 might be useful when specifying or recognising
an asymmetry function obeying the assumption.

3.1 Finding optimal internal loops

If the assumption of equation 3 holds, we propose algorithm 1 as an
efficient alternative to compute the VBI(i, j) entries in the dynamic pro-
gramming algorithm for predicting RNA secondary structure. The al-
gorithm is an extension of the ideas in [18] where an O(n3) method for
calculating the entries of VBI, assuming that the stability of an internal
loop only depends on the size of the loop, was presented. The rationale
behind the algorithm is, that when we extend loops while retaining lop-
sidedness we can reuse comparisons as depicted in Figure 3. Thus for a
pair of indices, i and j, the algorithm does not compute the V BI(i, j)
entry. Instead, if we denote all internal loops with a specific size and
exterior base pair as a class of internal loops, the algorithm evaluates all
classes of internal loops where i ·j is the middle candidate base pair, that
is, choosing i · j as the interior base pair results in a symmetric loop (or
almost symmetric – loops of odd size will always have a lopsidedness of
at least one).

Proposition 1 Algorithm 1 computes VBI correctly under the assump-
tion of equation 3. Furthermore, the time required to compute the entire
table is O(n3).

The time complexity of O(n3) is easy to see, since the algorithm for
each of the O(n2) pairs of indices, i and j, uses time O(n). To prove
the correctness of the algorithm, we will start by sketching a simpler
algorithm for which the correctness is obvious, but that has the drawback
of using space O(n3). Then we will argue that algorithm 1 is similar to
this algorithm except for the order in which the computations are carried
out, that is, the order in which the different candidate interior loops for a
specific entry of VBI are evaluated. Hence, the correctness of the simpler
algorithm implies the correctness of algorithm 1.

9
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i− 1

i′ S ′
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(
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)
−
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(
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)

i

i′′
S ′′

∧
j′′

j

−−−−−−−−→
i− 1
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∧
j′′

j + 1

Figure 3: The difference in destabilising energy when extending a loop
from being closed by i·j to being closed by i−1·j+1 is determined solely
by the size of the loop and the change in stacking stability of the closing
base pair. We can thus reuse comparisons between different choices of
interior base pairs, e.g. i′ · j′ and i′′ · j′′.

We define a new array VBI ′ such that VBI ′(i, j, l) is the minimal en-
ergy of an internal loop of size l with exterior base pair i·j. The following
lemma establishes a useful relationship between the entries of VBI ′.

Lemma 1 If equation 3 holds, then for l > 2

VBI ′(i, j, l) = min



VBI ′(i + 1, j − 1, l − 2) +
size(l)− size(l − 2) +
stacking(i · j)− stacking(i + 1 · j − 1)

V (i+ 1, j − l − 1) + eL(i, j, i + 1, j − l − 1)

V (i+ l + 1, j − 1) + eL(i, j, i + l + 1, j − 1).

(6)

Proof. By definition

VBI ′(i, j, l) = min
i<i′<j′<j

i′ − i+ j − j′ − 2 = l

{eL(i, j, i′, j′) + V (i′, j′)}. (7)

10



The last two entries of equation 6 handle the cases where this minimum
is obtained by a bulge, that is at i′ = i + 1 or j′ = j − 1. Otherwise the
minimum is the minimum over

eL(i, j, i′, j′) + V (i′, j′)

= size(l) + asymmetry(i′ − i− 1, j − j′ − 1)

+ stacking(i · j) + stacking(i′ · j′) + V (i′, j′)

= size(l) + asymmetry(i′ − i− 2, j − j′ − 2)

+ stacking(i · j) + stacking(i′ · j′) + V (i′, j′)

= size(l − 2) + asymmetry(i′ − i− 2, j − j′ − 2)

+ stacking(i+ 1 · j − 1) + stacking(i′ · j′) + V (i′, j′)

+ size(l)− size(l − 2)

+ stacking(i · j)− stacking(i+ 1 · j − 1)

for all i′ < j′ with i′ > i+ 1, j′ < j−1 and i′− (i+ 1) + (j−1)− j ′−2 =
l − 2. The last two lines of the last equation are independent of i′ and
j′, and can thus be moved out of the minimum. The minimum of the
first two lines over i′ and j′ satisfying the above constraints is exactly
VBI ′(i+ 1, j − 1, l− 2), thus proving the lemma. 2

Lemma 1 yields the basic recursion needed to compute each entry of
VBI ′ in constant time4. It is easily observed that VBI ′ contains O(n3)
entries and that VBI can be calculated from VBI ′ as

VBI(i, j) = min
l
{VBI ′(i, j, l)}, (8)

each of the O(n2) entries being computable in time O(n). Thus VBI can
be computed in time O(n3) including the time used to compute VBI ′.
Unfortunately the table VBI ′ requires space O(n3), thus rendering this
method somewhat impractical. However, it can be observed that we only
need VBI ′(i, j, l) at most twice, namely when

• determining whether it is a candidate for VBI(i, j).

• calculating the value of VBI ′(i− 1, j + 1, l + 2).

4This is of course assuming that entries of V are ready at hand when we need
them. The cost of computing the entries of V can however be charged to V , and thus
we don’t have to consider it here.
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Algorithm 1 Evaluation of classes of internal loops with size 2l+ a and
exterior base pair i− l · j + l + a.

/* When a = 0 loops of even size are handled and when a = 1 loops of
odd size are handled; this is necessary as we increase the loop size by
two in each iteration. */
for a = 0 to 1 do

/* E maintains the energy of the optimal loop except for size and
external stacking contributions. */
E =∞
/* Iterate through the exterior base pairs. For even sized loops we
skip l = 1 as this yields a stacked base pair. */
for l = 2− a to min{i− 1, |s| − j − a} do

/* Examine the two new candidate interior base pairs, i.e. the
interior base pairs next to the currently considered exterior base
pair. */
E = min{E,V (i− l + 1, j − l + 1) +

asymmetry(0, 2l + a− 2) +

stacking(i− l + 1, j − l + 1),
V (i+ a + l − 1, j + a + l − 1) +

asymmetry(2l + a− 2, 0) +

stacking(i + a+ l − 1, j + a+ l − 1)}
/* Update VBI for the currently considered exterior base pair. */
VBI(i− l, j + a+ l) = min{VBI(i− l, j + a+ l),

E + size(2l + a− 2) + stacking(i− l, j + a + l)}
end for

end for

This is used in algorithm 1 to avoid maintaining the VBI ′ table. Instead
we use E to hold the value5 that should otherwise be stored in one of
the entries of VBI ′. We use this value to check it as a candidate for the
relevant entry of VBI, according to equation 8, in the second minimum
of the for-loop in algorithm 1. After this check we only need the value to
calculate the value corresponding to another entry of VBI ′; this is done in
the first minimum in the next iteration of the for-loop. Now the value can
safely be discarded as it is no longer needed. It is straightforward to verify

5To avoid having to keep adding and subtracting the size and external stacking
terms in algorithm 1 we defer adding these terms until the value is considered as a
candidate for one of the VBI entries.
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that the value that should otherwise have been stored in VBI ′(i′, j′, l) is
handled when algorithm 1 is invoked with i = i′ + b l

2
c and j = j′ − d l

2
e.

The correctness of the value maintained in E can easily be proved by
induction, using lemma 1.

3.2 The Asymmetry Function Assumption

The assumption of equation 3 might seem somewhat unrealistic as, for
one thing, we treat bulges just as if they were normal internal loops. If
equation 3 only holds for min(k, l) ≥ c − 1 we can however modify the
algorithm to handle this situation, a modification that does lead to an
increase in time complexity by a factor of c, for a total time complexity
of O(cn3).

This is done simply by examining all the O(cn3) loops with a stem of
unpaired bases shorter than c separately, and then applying the technique
of extending loops while retaining lopsidedness to the rest of the loops,
starting the iteration at l = c and adding or subtracting c− 1 from the
indices of the interior base pairs considered, including where they partake
in the parameters of the asymmetry function. Thus bulges can be treated
specially while only doubling the time complexity.

Papanicolaou et. al. [11] propose an asymmetry penalty function on
the form

asymmetry(k, l) = min{K,Nk,lf(Mk,l)}, (9)

usually called Ninio type asymmetry penalty functions, with Nk,l = |k−l|
and Mk,l = min{k, l, c}. The constants K and c and the function f are
parameters of the penalty function. We observe that Nk+1,l+1 = Nk,l

and that Mk+1,l+1 = Mk,l if min{k, l} ≥ c. For min{k, l} ≥ c it thus
follows that asymmetry(k + 1, l + 1) = asymmetry(k, l), and thus asym-
metry functions on this form adheres to the above relaxed assumption,
allowing us to solve the RNA secondary structure prediction problem
using Ninio type asymmetry penalty functions in time O(cn3). In [11]
an asymmetry function with c = 5 was proposed. A modification of the
parameters based on thermodynamic studies was proposed in [12]. With
these parameters c = 1 thus allowing us to treat only bulges specially6.

6Sequence dependent destabilising energies are available for internal loops of size
three. These – and similar specific energy functions for small loops – can be handled
as a special case without affecting the general method for calculating internal loop
stability though.
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3.3 Computing the partition function

In [9] it is described how to compute the full equilibrium partition func-
tions and thus the probabilities of all base pairs. The method used closely
mimics the free energy calculation described above, and thus it should
be of no surprise that the method presented in this paper also applies to
the calculation of the partition functions. In this section we will briefly
sketch how to compute the internal loops’ contribution to the partition
functions. The reader is refered to [9] for the full details on how to
calculate the partition functions.

In [9] Qi,j denotes the partition function on the segment from base
i through base j, while Qb

i,j denotes the restricted partition function for
the same sequence segment with the added constraint that bases i and
j form a base pair7. We will specify how to calculate the contributions
from structures with an internal loop closed by i · j.

From [9, equations 4 and 7] it is seen that the contributions from
these structures – if we consider a stacked pair to be an internal loop of
size 0 – are ∑

i<h<l<j

e−eL(i,j,h,l)/kTQb
h,l , (10)

where [9, equation 7] uses F2(i, j, h, l) to gather the energies of all struc-
tures with an internal loop with base pairs i · j and h · l, thus reducing
the terms of the sum to e−F2(i,j,h,l)/kT .

Similar to the approach in section 3.1 we define Qil
i,j,l to be the par-

tition function for all structures with an internal loop of size l closed
by i · j, thus corresponding to VBI ′(i, j, l) in the energy calculations in
section 3.1. Now it can be proved that

Qil
i,j,l = Qil

i+1,j−1,l−2e
(size(l−2)−size(l)+stacking(i+1·j−1)−stacking(i·j))/kT

+Qb
i+1,j−l−1e

−eL(i,j,i+1,j−l−1)/kT +Qb
i+l+1,j−1e

−eL(i,j,i+l+1,j−1)/kT (11)

by similar arguments as in the proof of lemma 1. There is a slight problem
if stacking(i · j) = ∞ or stacking(i + 1 · j − 1) = ∞ – that is, if bases
i and j or bases i + 1 and j − 1 does not form a base pair – but in the
proof of equation 11 this can be handled by assuming that all stacking
energies are finite. In the algorithm we handle it by postponing the

7Thus Qbi,j corresponds to V (i, j) in energy calculations.
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Algorithm 2 Evaluation of classes of internal loops with size 2l+ a and
exterior base pair i− l · j + l + a.

/* Make sure to handle both even sized and odd sized loops. */
for a = 0 to 1 do

/* Q maintains the partition function contribution for the current
class of internal loops except for size and external stacking factors.
*/
Q = 0
/* Iterate through the exterior base pairs. For even sized loops we
skip l = 1 as this yields a stacked base pair. */
for l = 2− a to min{i− 1, |s| − j − a} do

/* Add contributions from the two new interior base pairs, i.e. the
interior base pairs next to the currently considered exterior base
pair. */
Q = Q +Qb

i−l+1,j−l+1e
−(asymmetry(0,2l+a−2)+stacking(i−l+1·j−l+1))/kT

+Qb
i+a+l−1,j+a+l−1e

−(asymmetry(2l+a−2,0)+stacking(i+a+l−1·j+a+l−1))/kT

/* Update Qb with contributions from the currently considered
class of internal loops. */
Qb
i−l,j+a+l = Qb

i−l,j+a+l +Qe−(size(2l+a−2)+stacking(i−l·j+a+l))/kT

end for
end for

multiplication with the exponential of the stacking energies until adding
the contribution of Qil

i,j,l to Qb
i,j. We can now rewrite equation 10 as

j−i−2∑
l=0

Qil
i,j,l , (12)

and based on equations 11 and 12 we can now proceed to present algo-
rithm 2 to handle internal loop contributions to the partition function;
the observant reader will notice the close similarity between algorithms 1
and 2. Again it is an easy observation that the time complexity is O(n3),
and the correctness of algorithm 2 can be proven by arguments similar
to the proof of the correctness of algorithm 1.
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4 Implementation

The method described in this paper has been implemented in ZUKER8,
a C program to find the optimal structure of an RNA sequence based
on energy rules. To be able to compare the performance of this method
to previously used methods, compiler directives determines whether the
compiled code will use complete enumeration of all internal loops or the
method described here, and whether only to consider loops smaller than
a specified size. By this we hope to have eliminated most of the noise
due to differences in implementations so as to get a comparison of the
underlying methods.

We decided to test our method against the complete enumeration
method, both when using a cutoff size of 30 for internal loops (a com-
monly used cutoff size) and when allowing loops of any size. All four
methods were tested with random sequences of length 500 and 1000, re-
spectively, and the results are summarised in Table 1. As expected a
huge increase in performance is obtained when allowing internal loops
of any size, but even when limiting internal loops to size at most 30,
our method obtains a speedup of 30 – 40 % compared to the complete
enumeration method.

Sequence length 500 1000
Complete enumeration, unlimited loop size 2,119 s 35,988 s
Our method, unlimited loop size 127 s 1,123 s
Complete enumeration, loop size ≤ 30 48 s 264 s
Our method, loop size ≤ 30 30 s 182 s

Table 1: Comparison of different methods to evaluate internal loops. The
running times are as reported by the Unix time command on a Silicon
Graphics Indigo 2.

The current implementation encompasses the method for calculat-
ing the optimal substructure on the parts of the sequence excluding the
substring from i through j, thus allowing the prediction of suboptimal
structures as described in [21] and calculation of base pair probabili-
ties based on partition functions as described in [9]. We are currently
working on adding coaxial stacking modifications to the multibranched
loop evaluations, and on extending the program to take other param-

8ZUKER – Unlimited Ken Energy-based RNA-folding, the name reflecting that
no limit is imposed on how far to look for the closing base pair of an internal loop.
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(a) Maximum loop size 30; En-
ergy: −29.6 kcal/mol

(b) No maximum loop size; En-
ergy: −42.9 kcal/mol

Figure 4: Foldings of the sequence GGGGGGGGGGAAAAAAAAAAAAAAAAAAAA

GGGGGGGGGGAAAAACCCCCCCCCCAAAAAAAAAAAAAAACCCCCCCCCC

eters, e.g. mutual information or base pair confidences obtained from
alignments, into account.

5 Experiments

To make the problem of determining the optimal secondary structure for
an RNA sequence more tractable it has hitherto been common practice
to limit the size of internal loops. The mfold server has a built-in limit
of 30 and in [5] a limit of 30 is also hinted at. With the ability to make a
rigorous search for the optimal structure, we decided to see whether this
limit has been reasonable.

5.1 A constructed ‘mean’ sequence

The easiest way to find a loop of size larger than 30 is of course to
construct it yourself. We constructed a sequence of length 80 consisting
only of C’s, G’s and A’s (but no U’s), designed to fold into two stems of
10 base pairing C’s and G’s separated by an internal loop of 35 unpaired
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Figure 5: Dot-plot of the prediction of the Qβ structure at 65 ◦C. The
absence of long range base pairings (dots far away from the diagonal) is
apparent.

A’s, and with a hairpin loop consisting of 5 A’s. The result of folding
this sequence at 37 ◦C with and without a size limit of 30, respectively,
is shown in figure 4

One can observe that the prediction with a cutoff size of 30 does in
fact pair most of the C’s with G’s – but instead of having the A’s in one
big internal loop they are folded out as two bulges. A further observation
is that there can indeed be a major increase in stability by choosing one
large internal loop instead of two smaller bulges.

Though this example may be cute, the interesting question of course
is whether RNA sequences for which the optimal structure contains a
large internal loop occur naturally. The reason that a cutoff size of 30
has been deemed reasonable is of course that no internal loops even close
to this size are observed in a standard structure prediction at 37 ◦C.
But when the temperature is increased, base pairs become less stable
which may cause short stems of stacking base pairs to break up. We thus
decided to look at a couple of sequences for which structure prediction
at higher temperatures would be interesting.

5.2 Qβ

Jacobson [7] reported on some experiments on determining structural
features in Qβ denatured to various extents. It is believed that denatur-
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ing effects relates to temperature effects, and we thus chose to fold this
sequence at nine different temperatures in the range from 45 ◦C to 100 ◦C
to see whether we would find any of the structural features reported by
Jacobson.

None of these predicted foldings showed any signs of the features
Jacobson reported – at higher temperatures the structure simply came
apart as small structural fragments, usually covering less than 100 nu-
cleotides. Furthermore we did not observe any internal loops larger than
size 25. An example prediction is shown in figure 5.

5.3 Thermococcus celer

Thermococcus celer is an organism that lives in solfataric marine water
holes of Vulcano, Italy, at temperatures around 90 ◦C; its optimal growth
temperature is reported to be around 88 ◦C [19]. Furthermore, the struc-
ture of the 23S subunit exhibits an internal loop of size 33 closed by base
pairs 1139 · 1268 and 1155 · 1249, cf. [4, 3].

Folding this sequence at 88 ◦C we did (almost) get the inner stem of
this internal loop but the outer stem came apart as two single strands
(cf. figure 6(b)). When lowering the temperature to 75 ◦C we did get
both stems, but the internal loop was split into two loops of size 2 and
27, respectively, by a short stem consisting of the base pairs 1141 · 1266
and 1142 · 1265 (cf. figure 6(c)).

We then tried to search the range of temperatures between 75 ◦C
and 88 ◦C, and at 82 ◦C we did in fact correctly predict the internal
loop of size 33 (cf. figure 6(d)). At this temperature we on the other
hand missed the structure inside the inner stem, a structure that is quite
well predicted at 75 ◦C; no temperature thus seemed decisively best for
predicting this structural fragment. Generally, as with the Qβ predic-
tions, these predictions missed long-range base pairings and predicted
structures consisting of fragments covering less than 300 bases.

It should however be mentioned that a prediction at 82 ◦C with a
cutoff size of 30 completely misses the outer stem and thus makes a
prediction of this fragment identical to the prediction at 88 ◦C. Thus we
get a decisively better prediction at this temperature when examining
internal loops of all sizes than when using a cutoff size of 30.
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fragment at 88 ◦C.
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(c) Prediction of the same
fragment at 75 ◦C.
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fragment at 82 ◦C.

Figure 6: Known and Predicted structures for thermococcus celer.

6 Discussion

It is well known that heuristics may speed up the evaluation of internal
loops in practice. One way to do this, is for all subsequences to keep
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track of the most stable structure of any of its subsequences. This is
then used to cut off the evaluation of large loops closed by a specific base
pair, when it is evident that they can not be more stable than the most
stable structure closed by that base pair found so far.

As the method described in section 3 actually evaluates the internal
loops closed by a specific base pair in order of decreasing size, the above
heuristic can not be combined with our method. We have instead imple-
mented a heuristic based on determining upper bounds for the free energy
of the optimal multi-branched loop closed by some base pair. This heuris-
tic unfortunately does not seem to have a positive effect for sequences
shorter than 1000 nucleotides, as, for all but very long sequences, the
time spent determining when to stop further evaluation exceeds the time
that would have been spent evaluating the rest of the loops.

It would of course be more interesting to obtain further improvements
on the worst-case behaviour of the algorithm, possibly by applying some
advanced search techniques similar to those described in [1]. This is not
a straightforward task though, as our method has shifted the focus from
the exterior (closing) base pair to the interior base pair of an internal
loop. The same interior base pair might be optimal for several choices of
exterior base pairs. Furthermore, the exterior base pair that yields the
most stable substructure with a specific interior base pair might not even
be one of them. Thus it is of no use just to search for the exterior base
pair yielding the most stable substructure.

Our studies of structure predictions at high temperatures did not
show an abundance of internal loops larger than the hitherto used cutoff
size. There is thus no reason to suspect that predictions using this cutoff
size are generally erroneous. We were however able to predict one internal
loop that exceeds this size limit. Furthermore we predicted a number of
internal loops with size larger than 20. This indicates that the cutoff
size of 30 is probably a little bit to small for safe predictions at high
temperatures. Especially if also suboptimal foldings, cf. [21], are sought
for, or if calculating the partition functions as in [9], the cutoff size – if
used at all – should be set somewhat higher.

Another observation is that the energy parameters estimated for higher
temperatures by extrapolation of parameters experimentally determined
at lower temperatures do not seem to allow for a prediction of the long
range base pairings. One reason for this might be that structures at
higher temperatures tend to have more unpaired bases in multibranched
loops. The effect of the number of unpaired bases on the stability of

21



multibranched loops should theoretically be logarithmic but are mod-
elled by a linear function for reasons of computational efficiency. This
might be acceptable for multibranched loops with only a few unpaired
bases but becomes prohibitive as the number of unpaired bases grows.

Finally it should be mentioned that current methods for energy based
RNA secondary structure prediction only consider structures that do
not contain pseudo knots. Probably the open question of RNA sec-
ondary structure prediction is to put forth a model including pseudo
knots that allows fair predictions within reasonable resources. Cur-
rently known methods suffer from either being too time- and space-
consuming (time O(n6) and space O(n4) for the method presented in [13]
and time O(n5) and space O(n3) for a restricted class of pseudo knots
presented in [8]) or shifting the focus from stability of loops back to
stability of pairs, cf. [14].
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