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Abstract

The so-called weak König’s lemma WKL asserts the existence of an infinite
path b in any infinite binary tree (given by a representing function f). Based on
this principle one can formulate subsystems of higher-order arithmetic which

allow to carry out very substantial parts of classical mathematics but are Π0
2-

conservative over primitive recursive arithmetic PRA (and even weaker frag-

ments of arithmetic). In [10] we established such conservation results relative

to finite type extensions PRAω of PRA (together with a quantifier-free axiom

of choice schema). In this setting one can consider also a uniform version
UWKL of WKL which asserts the existence of a functional Φ which selects
uniformly in a given infinite binary tree f an infinite path Φf of that tree.
This uniform version of WKL is of interest in the context of explicit mathe-
matics as developed by S. Feferman. The elimination process in [10] actually
can be used to eliminate even this uniform weak König’s lemma provided that
PRAω only has a quantifier-free rule of extensionality QF-ER instead of the
full axioms (E) of extensionality for all finite types. In this paper we show that

∗Basic Research in Computer Science, Centre of the Danish National Research Foundation.
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in the presence of (E), UWKL is much stronger than WKL: whereas WKL

remains to be Π0
2-conservative over PRA, PRAω + (E)+UWKL contains (and

is conservative over) full Peano arithmetic PA.

1 Introduction

The binary (so-called ‘weak’) König’s lemma WKL plays an important role in the
formulation of mathematically strong but proof-theoretically weak subsystems of
analysis. In particular the fragment (WKL0) of second-order arithmetic which is

based on recursive comprehension (with set parameters), Σ0
1-induction (with set pa-

rameters) and WKL occurs prominently in the context of reverse mathematics (see

[16]). Although (WKL0) allows to carry out a great deal of classical mathematics, it

is Π0
2-conservative over primitive recursive arithmetic PRA as was shown first by H.

Friedman using a model-theoretic argument. In [15] a proof-theoretic argument is

given for a variant of (WKL0) which uses function variables instead of set variables.

In [10] we established various conservation results for WKL relative to subsystems
of arithmetic in all finite types. As a special case these results yield that

(1) E-PRAω+QF-AC1,0+QF-AC0,1+WKL is Π0
2-conservative over PRA,

where E-PRAω+QF-AC1,0+QF-AC0,1+WKL is a finite type extension of (WKL0)

(see below for a precise definition). The proof of this fact relies on a combination of

Gödel’s functional interpretation with elimination of extensionality (see [12]), neg-

ative translation and Howard’s [8] majorization technique. The first step of the
proof reduces the case with the full axiom of extensionality to a subsystem WE-

PRAω+QF-AC1,0+QF-AC0,1+WKL which is based on a weaker quantifier-free rule
of extensionality only (see below) which was introduced in Spector [17]. From this
system, WKL is then eliminated. This elimination actually eliminates WKL via a
strong uniform version of WKL, called UWKL below, which states the existence of a
functional which selects uniformly in a given infinite binary tree an infinite path from
that tree. This yields the following conservation result (which isn’t stated explicitly

in [10] but which can be obtained from the proofs in section 4 of that paper, see

below)

(2) WE-PRAω+QF-AC+UWKL is Π0
2-conservative over PRA.1
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For WE-PAω we get the following result (with the same convention on + as above)

(3) WE-PAω+QF-AC+UWKL is conservative over PA.

(2) is of interest in the context of so-called explicit mathematics as developed by S.

Feferman (starting with [3]) and further investigated also by A. Cantini, G. Jäger and
T. Strahm among others, since the uniform weak König’s lemma UWKL seems to be
a very natural ‘explicit’ formulation of WKL. We have been asked about the status
of UWKL in the presence of full extensionality. In this note we give a surprisingly
simple answer to this question showing, in particular, that

(4)E-PRAω+QF-AC1,0+QF-AC0,1+UWKL contains (and is conservative over) PA

and

(5)E-PAω+QF-AC1,0+QF-AC0,1+UWKL has the same strength as (Π0
1-CA)<ε0,

where PA denotes full first-order Peano arithmetic.

Acknowledgement: This paper was prompted by discussions the author has had
with Gerhard Jäger and Thomas Strahm who asked him about the status of the
uniform weak König’s lemma in a fully extensional context.

2 Preliminaries

The set T of all finite types is defined inductively by

(i) 0 ∈ T and (ii) ρ, τ ∈ T⇒ τ(ρ) ∈ T.

Terms which denote a natural number have type 0. Elements of type τ(ρ) are
functions which map objects of type ρ to objects of type τ .
The set P ⊂ T of pure types is defined by

(i) 0 ∈ P and (ii) ρ ∈ P⇒ 0(ρ) ∈ P.

1In this weakly extensional context based on a quantifier-free rule of extensionality ‘+’ must
be understood in the sense that the axioms QF-AC and WKL must not be used in the proof of a
premise of an application of the extensionality rule. See [10] (where we use a special symbol ‘⊕’ to
emphasize this point) for details on this. Actually it is sufficient to impose this restriction on the
use of the additional axioms for UWKL only.
The conservation results in [10] are much more general than the one we mentioned. This makes
the proofs more involved than is needed for the special (Π0

2-)case relevant here. A corresponding
simplification of our argument has been worked out in [1].
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Brackets whose occurrences are uniquely determined are often omitted, e.g. we
write 0(00) instead of 0(0(0)). Furthermore we write for short τρk . . . ρ1 instead of

τ(ρk) . . . (ρ1). Pure types can be represented by natural numbers: 0(n) := n+1. The

types 0, 00, 0(00), 0(0(00)) . . . are so represented by 0, 1, 2, 3 . . . For arbitrary types

ρ ∈ T the degree of ρ (for short deg(ρ)) is defined by deg(0) := 0 and deg(τ(ρ)) :=

max(deg(τ),deg(ρ)+1). For pure types the degree is just the number which represents
this type.

The system E-PRAω is formulated in the language of functionals of all finite types and
contains Πρ,τ ,Σδ,ρ,τ -combinators for all types (which allow to define λ-abstraction)

and all primitive recursive functionals in the sense of Kleene (i.e. primitive recursion

is available only on the type 0). More formally, E-PRAω results from Feferman’s

system P̂A
ω|\ in [4] if we add the axioms of extensionality

(E) : ∀xρ, yρ, zτρ(x =ρ y → zx =τ zy)

for all finite types (where for ρ = 0ρk . . . ρ1, x =ρ y is defined as

∀zρ1
1 , . . . , z

ρk
k (xz1 . . . zk =0 yz1 . . . zk) ).2 We only include equality =0 between num-

bers as a primitive predicate.

E-PAω is the extension of E-PRAω obtained by the addition of the schema of full
induction and all (impredicative) primitive recursive functionals in the sense of Gödel

[6] and coincides with Troelstra’s [18] system (E-HAω)c.

The ‘weakly extensional’3 versions WE-PRAω and WE-PAω of these systems result
if we replace the extensionality axioms (E) by a quantifier-free rule of extensionality

(due to Spector [17])

QF-ER:
A0 → s =ρ t

A0 → r[s] =τ r[t]
,

where A0 is quantifier-free, sρ, tρ, r[xρ]τ are arbitrary terms of the system and ρ, τ ∈
are arbitrary types.
Note that QF-ER allows to derive the extensionality axiom for type 0 but already
the extensionality axiom for type-1-arguments, i.e.

∀z2∀x1, y1(x =1 y → zx =0 zy)

2We deviate slightly from our notation in [11]. The system denoted by E-PRAω in the present
paper results from the corresponding system in [11] if we replace the universal axioms 9) in the
definition of the latter by the schema of quantifier-free induction.

3This terminology is due to [18].
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is underivable in WE-PAω (see [8]).
The schema of quantifier-free choice is given by

QF-ACρ,τ : ∀xρ∃yτA0(x, y)→ ∃Y τ(ρ)∀xρA0(x, Y x), QF-AC :=
⋃

ρ,τ∈T

{QF-ACρ,τ},

where A0 is a quantifier-free formula.

In the following we use the formal definition of the binary (‘weak’) König’s lemma

as given in [19] (here ∗, bx, lth(n) refer to the primitive recursive coding of finite

sequences from [18]):

Definition 2.1 (Troelstra(74))

WKL:≡ ∀f 1(T (f) ∧ ∀x0∃n0(lth(n) = x ∧ fn = 0)→ ∃b1∀x0(f(bx) = 0)), where

Tf :≡ ∀n0, m0(f(n ∗m) =0 0→ fn =0 0) ∧ ∀n0, x0(f(n ∗ 〈x〉) =0 0→ x ≤0 1)

(i.e. T (f) asserts that f represents a 0,1–tree).

Notation 2.2 T∞(f) :≡ T (f)∧∀x0∃n0(lth(n) = x∧ fn = 0), i.e. T∞(f) expresses
that f represents an infinite binary tree. So

WKL ≡ ∀f 1(T∞(f)→ ∃b1∀x0(f(bx) = 0)).

Definition 2.3 The uniform weak König’s lemma UWKL is defined as

UWKL :≡ ∃Φ1(1)∀f 1(T∞(f)→ ∀x0(f((Φf)x) = 0)).

3 Results

For the weakly extensional systems WE-PRAω and WE-PAω we have the following
conservation results for UWKL:

Theorem 3.1 1) WE-PRAω+QF-AC+UWKL is Π0
2-conservative over PRA.

2) WE-PAω+QF-AC+UWKL is conservative over PA.

(Here, again, + must be understood in the sense of footnote 1).

Proof: 1) In [10] (4.2-4.7), we constructed a primitive recursive functional

f 1, g1 7→ ζfg := (̂f̂g) such that

(1) WE-PRAω ` ∀f, g T∞(ζfg)

5



and
(2) WE-PRAω ` ∀f(T∞(f)→ ∃g(f =1 ζfg)).

By the proof of theorem 4.8 in [10] (and the fact that WE-PRAω is Π0
2-conservative

over PRA), it follows that

WE-PRAω+QF-AC+UWKL∗ is Π0
2-conservative over PRA,

where
UWKL∗ := ∃B∀f, g, x((ζfg)((Bfg)x) =0 0).

It remains to show that

WE-PRAω ` UWKL∗ → UWKL.

The proof of (2) in [10](4.7) shows that g can be primitive recursively defined in f
as

f̃(x) :=

 min n ≤ 11x[lth(n) = x ∧ f(n) = 0], if such an n exists

00, otherwise.

Thus for ξf := ζ(f, f̃)

(2)′ WE-PRAω ` ∀f(T∞(f)→ f =1 ξf).

Define Φf := B(f, f̃) for B satisfying UWKL∗. Then

∀x((ξf)((Φf)x) =0 0)

and so for f such that T∞(f) (which implies f =1 ξf)

∀x(f((Φf)x) =0 0),

i.e. Φ satisfies UWKL.
2) As in 1) we obtain from the proof of 4.8 in [10] that

WE-PAω+QF-AC+UWKL is ∀xρ∃y0A0(x, y)-conservative over WE-PAω,

where xρ is a tuple of variables of type levels ≤ 1, A0 is quantifier-free and contains
only x, y as free variables. Now let A be a sentence in the language of PA which can

be assumed to be in prenex normal form and assume that

WE-PAω+QF-AC+UWKL ` A.
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Then a fortiori
WE-PAω+QF-AC+UWKL ` AH ,

where AH is the Herbrand normal form of A. By the conservation result just men-
tioned we get

WE-PAω ` AH

and therefore by [9](theorem 4.1)

PA ` A.

Remark 3.2 The passage from the provability of AH to that of A used in the proof
of 2) above does not apply to WE-PRAω and PRA (see [9] for a counterexample).

Indeed, already WE-PRAω+QF-AC0,0 is not Π0
3-conservative over PRA: the for-

mer theory proves the schema of Σ0
1-collection Σ0

1-CP, but it is known that there

are instances of Σ0
1-CP (which always can be prenexed as Π0

3-sentences)4 which are

unprovable in PRA (see [14]).

We now show that the picture changes completely if we consider the systems E-
PRAω amd E-PAω with full extensionality instead of WE-PRAω, WE-PAω. This
phenomenon is due to the following

Proposition 3.3

E-PRAω ` UWKL ↔ ∃ϕ2∀f 1(ϕf =0 0↔ ∃x0(fx =0 0)).

Proof: 1) ‘→’: We first show that any Φ satisfying UWKL is – provably in E-PRAω

– (effectively) discontinuous5, i.e.

E-PRAω `


∀Φ1(1)(∀f 1(T∞(f)→ ∀x0(f((Φf)x) =0 0))→

∃g1(0)
(·) , g1(T∞(g) ∧ ∀iT∞(gi) ∧ ∀i∀j ≥ i(gj(i) =0 g(i))

∧∀i, j(Φ(gi, 0) = Φ(gj, 0) 6= Φ(g, 0))))

and, moreover, g(·), g can be computed uniformly in Φ by closed terms of E-PRAω.

Define g primitive recursively such that

g(k) =

 0, if ∀m < lth(k)((k)m = 0) ∨ ∀m < lth(k)((k)m = 1)

1, otherwise.

4Here PRA is understood not as a quantifier-free theory but with full first-order predicate logic.
5The term ‘effectively discontinuous’ is due to [7] on which we rely in the second part of our

proof.
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It is clear that (provably in E-PRAω) T∞(g). Now let Φ1(1) be such that

∀f 1(T∞(f)→ ∀x(f((Φf )x) =0 0)).

Case 1: Φ(g, 0) = 0. Define a primitive recursive function λi, k.gi(k) such that

gi(k) =

 0, if [lth(k) ≤ i ∧ ∀m < lth(k)((k)m = 0)] ∨ [∀m < lth(k)((k)m = 1)]

1, otherwise.

Again we easily verify within E-PRAω that ∀iT∞(gi). From the construction of gi
and g it is clear that

∀k∀l ≥ lth(k)(gl(k) = g(k)).

Since our coding has the property that lth(k) ≤ k, we get

∀k∀l ≥ k(gl(k) = g(k)).

Since λx.1 is the only infinite path of the binary tree represented by gi, it follows
that

∀i(Φ(gi, 0) = 1).

Case 2: Φ(g, 0) = 1. The proof is analogous to case 1 with

gi(k) :=

 0, if [lth(k) ≤ i ∧ ∀m < lth(k)((k)m = 1)] ∨ [∀m < lth(k)((k)m = 0)]

1, otherwise.

This finishes the proof of the discontinuity of Φ. We now show – using an argument

from [7] known as ‘Grilliot’s trick’ 6 – that the functional ϕ2 defined by

(+)∀f 1(ϕf =0 0↔ ∃x(fx =0 0)) can be defined primitive recursively in Φ such that

(+) holds provably in E-PRAω:

We can construct a closed term t1(1) of E-PRAω such that (provably in E-PRAω) we
have

thi =

 gj(i), for the least j < i such that h(j) > 0, if existent

gi(i), otherwise.

6This argument plays an important role in the context of the Kleene/Kreisel countable func-
tionals, see [13] whose formulation of it we adopt here.
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Together with ∀i∀j ≥ i(gj(i) = gi(i)) this yields

∃j(h(j) > 0)→ th =1 gj for the least such j

and together with ∀i(gi(i) = g(i))

∀j(h(j) = 0)→ th =1 g.

Hence using the extensionality axiom for type-2-functionals we get

∀j(h(j) = 0)↔ Φ(th, 0) =0 Φ(g, 0).

So ϕ := λh1.sg ◦ |Φ(t(sg ◦ h), 0) − Φ(g, 0)| where sg(x) := 0 for x 6= 0 and = 1
otherwise, does the job.
We now combine the two constructions of ϕ corresponding to the two cases above
into a single functional which defines ϕ primitive recursively in Φ: Let χ be a closed
term such that

E-PRAω ` ∀x0((x =0 0→ χx =1(1) t) ∧ (x 6= 0→ χx =1(1) t̃)),

where t is defined as above with gi from case 1 whereas t̃ is defined analogously but

with gi as in case 2. Then define ϕ := λh1.sg ◦ |Φ((χ(Φ(g, 0))(sg ◦ h), 0)− Φ(g, 0)|.
2) ‘←’: Primitive recursively in ϕ one can easily compute a functional Φ which even
selects the leftmost infinite branch of an infinite binary tree.

Corollary to the proof of proposition 3.3: One can construct closed terms t1, t2
of E-PRAω such that

E-PRAω `

∀Φ
1(1)(∀f 1(T∞(f)→ ∀x0(f((Φf)x) = 0))→

∀f 1((t1Φ)f =0 0↔ ∃x(fx = 0)))

and

WE-PRAω `

∀ϕ
2(∀f 1(ϕf = 0↔ ∃x(fx = 0))→

∀f 1(T∞(f)→ ∀x0(f((t2ϕf)x) = 0))).

Corollary 3.4

E-PRAω + QF-AC1,0 ` UWKL ↔ ∃µ2∀f 1(∃x0(fx = 0)→ f(µf) = 0).

9



Proof: The existence of µ obviously implies the existence of ϕ in proposition 3.3
and hence of Φ. For the other direction we only have to observe that the existence

of ϕ implies the existence of µ be applying QF-AC1,0 to

∀f∃x(ϕ(f) = 0→ fx = 0).

Remark 3.5 In contrast to the corollary to the proof of proposition 3.3 above there
exists no closed term t in E-PRAω which computes µ in Φ, i.e.

Sω |=/∀Φ1(1)(∀f 1(T∞(f)→ ∀n0(f(Φf)n = 0))→ ∀f 1(∃x(fx = 0)→ f(tΦf) = 0)

for every closed term t (of appropriate type) of E-PRAω, since – by [8] – every

such term has a majorant t∗, Φ is majorized by λf 1, x0.1 and so µ would have a

majorant λfM .t∗(11(1), fM) (where fM(x) := max(f0, . . . , fx)), which contradicts

the easy observation that µ has not even a majorant in Sω (here Sω denotes the full

set-theoretic type structure).

Theorem 3.6 1) E-PRAω+UWKL contains Peano arithmetic PA.

2) E-PRAω+QF-AC1,0+QF-AC0,1+UWKL is conservative over PA.

3) E-PAω+QF-AC1,0+QF-AC0,1+UWKL proves the consistency of PA and has

the same proof-theoretic strength as (and is Π1
2-conservative over) the second

order system (Π0
1-CA)<ε0.

Proof: 1) Using ϕ from proposition 3.3 one easily gets characteristic functions for

all arithmetical formulas A(x). By applying the quantifier-free induction axiom of
E-PRAω to them, one obtains every arithmetical instance of induction.

2) This follows from corollary 3.4 and the conservation of E-PRAω+QF-AC1,0+QF-

AC0,1 +µ over PA which is due [4] (note that the usual elimination of extensionality
procedure – which applies to the existence of µ but not to UWKL – yields a reduction

of E-PRAω+QF-AC1,0+QF-AC0,1 +µ to its variant where the extensionality axioms
for types > 0 are dropped, see [12] for details on this).

3) follows from [4],[5] using again corollary 3.4 above and elimination of extension-
ality.

Remark 3.7 1) The functionals ϕ and µ from proposition 3.3 and corollary 3.4

provide uniform versions (in the same sense in which UWKL is a uniform

version of WKL) of

(1) Π0
1-CA : ∀f∃g∀x0(g(x) =0 0↔ ∃y0(f(x, y) =0 0))

10



respectively of

(2) Π0
1-ĈA : ∀f∃g∀x0, z0(f(x, gx) =0 0 ∨ f(x, z) 6= 0),

but yet ϕ, µ are not stronger than (1), (2) relative to E-PRAω (but only relative

to E-PAω) as Feferman’s results cited in the proof above show. The reason for
this is, that E-PRAω is too weak to iterate ϕ or µ uniformly since this would
require a primitive recursion of type level 1. In contrast to this fact, UWKL is
stronger than WKL already relative to E-PRAω.

2) One might ask whether UWKL gets weaker if we allow Φ1(1) to be a partial
functional which is required to be defined only on those functions f which rep-
resent an infinite binary tree. However the construction ξ (used in the proof of

theorem 3.1) such that

(1) ∀f 1T∞(ξf)

and
(2) ∀f 1(T∞(f)→ ξf =1 f)

shows that any such partial Φ could be easily extended to a total one.
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