
B
R

IC
S

R
S

-99-1
Jurdzínski&

N
ielsen:

H
ereditary

H
istory

P
reserving

S
im

ulation
is

U
ndecidable

BRICS
Basic Research in Computer Science

Hereditary History Preserving Simulation is
Undecidable

Marcin Jurdzi ński
Mogens Nielsen

BRICS Report Series RS-99-1

ISSN 0909-0878 January 1999

Copyright c© 1999, Marcin Jurdziński & Mogens Nielsen
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/99/1/

Hereditary History Preserving Simulation

Is Undecidable

Marcin Jurdziński∗ Mogens Nielsen∗

BRICS†

Department of Computer Science
University of Aarhus

January 1999

Abstract

We show undecidability of hereditary history preserving simulation
for finite asynchronous transition systems by a reduction from the halt-
ing problem of deterministic Turing machines. To make the proof more
transparent we introduce an intermediate problem of deciding the winner
in domino snake games. First we reduce the halting problem of deter-
ministic Turing machines to domino snake games. Then we show how to
model a domino snake game by a hereditary history simulation game on
a pair of finite asynchronous transition systems.

1 Domino snake games

A tiling system D = (D,V,H) consists of a set D of dominoes, and two
relations: V ⊆ D2, called vertical compatibility, and H ⊆ D2, called horizontal
compatibility. Intuitively, one can think of dominoes as unit squares with
coloured sides (and with an orientation, i.e., the dominoes cannot be rotated.)
In this metaphor the meaning of the vertical and horizontal compatibility
relations can be described as follows: for a pair of dominoes d, d′ ∈ D, we have

• (d, d′) ∈ V , if the top side of d has the same color as the bottom side
of d′,

• (d, d′) ∈ H, if the right-hand side of d has the same color as the left-hand
side of d′.

∗Address: BRICS, Department of Computer Science, University of Aarhus, Ny Munke-
gade, Building 540, 8000 Aarhus C, Denmark. Emails: {mju,mn}@brics.dk.
†Basic Research in Computer Science,

Centre of the Danish National Research Foundation.

1

Definition 1 (Domino snake game)
Let D = (D,V,H) be a tiling system, and let N2

+, the positive quadrant of
the integer grid, be the set of locations. Pairs (l, d) ∈ N2

+ × D are called
configurations. Locations l = (i, j) and l′ = (i′, j′) are neighbouring, if |i− i′|+
|j − j′| = 1. Configurations (l, d) and (l′, d′) are consistent, if their locations
l and l′ are neighbouring, and the adjecent sides have the same color, e.g.: if
i′ = i+ 1 and j′ = j, then (d, d′) ∈ H; if i′ = i and j′ = j− 1, then (d′, d) ∈ V ;
etc.
The domino snake game Γds(D) is played by two players Tiler and Challenger.

1. First the players fix an initial configuration: Challenger chooses a loca-
tion l ∈ N2

+, and then Tiler responds by picking a domino d ∈ D; the
pair (l, d) becomes the current configuration.

2. In each move of the game the players change the current configuration
(l, d): first Challenger chooses a location l′ ∈ L neighbouring with l, and
then Tiler responds by picking a domino d′, so that configurations (l, d)
and (l′, d′) are consistent.

A play is a maximal sequence of configurations formed by players making
moves in the fashion described above. Challenger wins a play if after a finite
number of moves Tiler gets stuck, i.e., he cannot complete a move. Otherwise
the play is infinite and Tiler is the winner.

Let dinit ∈ D be a domino. In the origin constrained domino snake game
Γds(D, dinit) Tiler’s responses in the “origin” location (1, 1) are restricted only
to domino dinit; we refer to dinit ∈ D as the origin constraint of the game
Γds(D, dinit). [Definition 1] �

A strategy for Tiler in Γds(D, dinit) is a partial function Θ : N2
+ ∪ (N2

+ ×D ×
N2

+) ⇀ D, such that:

1. if Θ
(
(1, 1)

)
, or Θ

(
l, d, (1, 1)

)
are defined, then they are equal to dinit,

2. if Θ(l, d, l′) = d′, and locations l and l′ are neighbouring, then configu-
rations (l, d) and (l′, d′) are consistent.

A play
〈
(l0, d0), (l1, d1), (l2, d2), . . .

〉
is consistent with a strategy Θ, if d0 =

Θ(l0), and di+1 = Θ(li, di, li+1) for all i ≥ 0. A strategy Θ is winning for Tiler
if all plays consistent with Θ are infinite, i.e., winning for Tiler. The notion
of a (winning) strategy for Challenger can be defined appropriately.
We say that a map Θ : N2

+ → ℘(D) is closed for Γds(D, dinit) if:

1. Θ(l) 6= ∅ for all l ∈ N2
+, and Θ

(
(1, 1)

)
= {dinit},

2. if d ∈ Θ(l), then for all locations l′ neighbouring with l, there is d′ ∈
Θ(l′), so that configurations (l, d) and (l′, d′) are consistent.

2

Proposition 2 Tiler has a winning strategy in Γds(D, dinit) if and only if
there is a closed map for Γds(D, dinit).

Domino snake games are easily seen to be determined, i.e., either of the two
players has a winning strategy. The problem of deciding the winner in an
origin constrained domino snake game is the following: given a tiling system
D = (D,V,H), and an origin constraint dinit ∈ D, decide which of the players
has a winning strategy in the game Γds(D, dinit).

Theorem 3 (Undecidability of domino snake games)
The problem of deciding the winner in origin constrained domino snake games
is undecidable.

The proof is a reduction from the halting problem for deterministic inputless
Turing machines. For a deterministic inputless Turing machine M we define
a tiling system DM = (DM , VM ,HM), and an origin constraint dM ∈ DM ,
enjoing the following property.

Proposition 4 Machine M halts if and only if Challenger has a winning
strategy in the origin constrained domino snake game Γds(DM , dM).

Let M = (Q, qinit, qhalt,Σ, δ) be a 1-tape, deterministic Turing machine, where
Q is the finite set of states, qinit ∈ Q is the initial state, qhalt ∈ Q is the halting
state, Σ is the tape alphabet, and δ : Q×Σ→ Q×Σ×{−1, 1} is the transition
function. The semantics is standard:

• the machine starts working at time t = 1 and in state qinit scanning cell
c = 1 of an empty tape (containing the special blank symbol t ∈ Σ in
all cells),

• if the machine at time t is in state q and scans cell c containing symbol
σ, then it writes symbol σ′ into cell c, and at time t + 1 it is in state q′

and scans cell c+ d, where δ(q, σ) = (q′, σ′, d).

Without loss of generality we may assume that the machine never moves its
head to the left of the first cell of the tape.

For technical convenience we assume that the transition function δ of ma-
chine M is total; this makes machine M loop forever in fact. We say that ma-
chine M halts if its computation reaches the halting state in a finite number
of steps; otherwise we say that it loops. Clearly, the question if a deterministic
inputless Turing machine halts in this sense is undecidable.

By Γ = (Q×Σ)∪Σ∪{⊥} we denote the set of cell contents of machine M ,
extended with a special symbol ⊥ 6∈ Σ. Let CM : N2 → Γ be the unbounded

3

⊥
⊥ (qinit,t) t t
⊥ qinit ⊥ ⊥ ⊥

Figure 1: The initial fragment of the computation table of an inputless Turing
machine.

computation table of M (see Figure 1):

CM (c, t) =


qinit if c = 1 and t = 0,

⊥ if c = 0, or t = 0 and c ≥ 2,

the contents of cell c at time t otherwise.

It is an easy and standard observation (see [Pap94], page 168) that if M is
deterministic, then for c, t ≥ 1 it holds that

CM (c, t) is uniquely determined by

– CM (c− 1, t− 1), CM (c, t− 1), and CM (c+ 1, t− 1), if c ≥ 2, and

– CM (c, t − 1), and CM (c+ 1, t− 1), if c = 1.

(1)

Let ∆ : Γ3 ⇀ Γ be a (partial) function yielding this unique value. For technical
reasons (see the proof of Claim 7) we require that

if β = ⊥ and ∆(α, β, γ) is defined, then γ = ⊥. (2)

The function ∆ can be easily computed from the transition function δ of
machine M .

We adopt the following notational convention: a lower case Greek letter
with a bar denotes a pair of triples of cell contents

γ̄ = (γ−1, γ0) ∈ (Γ3)2, where γt = (γi,−1, γi,0, γi,1) ∈ Γ3, for i ∈ {−1, 0}.

We say that γ̄ ∈ (Γ3)2 is a peephole, if

γ0,0 = ∆(γ−1);

we denote the set of peepholes by Π. A peephole γ is halting if γi,d = (qhalt, σ)
for some i ∈ {−1, 0}, d ∈ {−1, 0, 1}, and σ ∈ Σ, otherwise it is live; we denote
the set of live peepholes by Λ. The peephole table PM : N2

+ → Π of machine
M is defined for all (c, t) ∈ N2

+ by

PM (c, t) = γ̄, where γi,d = CM (c+ d, t+ i),

for i ∈ {−1, 0}, and d ∈ {−1, 0, 1}, i.e., its value in location (c, t) is a 3 × 2
fragment of the computation table to the left, to the right, and below (c, t).

4

Definition 5 (Peephole snake game Γds(DM , dM))
The peephole tiling system DM is defined to be the triple (Λ, VM ,HM), where

• (τ̄ , γ̄) ∈ VM if τ0 = γ−1, and

• (τ̄ , γ̄) ∈ HM if τi,d+1 = γi,d for all i, d ∈ {−1, 0}.

In other words, the dominoes of the peephole tiling system are the live peep-
holes, and the vertical and horizontal compatibility relations ensure, that two
peepholes are compatible if their “overlapping” parts coincide. The origin
constraint dM ∈ D is the value of the peephole table for the “origin” location

(1, 1), i.e., dM =
(

(⊥, qinit,⊥),
(
⊥, (qinit,t),t

))
; see Figure 1. [Definition 5] �

Proof (of Proposition 4)

Tiler wins if M loops: If machine M does not halt then its computation
table CM does not contain the halting state, hence its peephole table PM
contains only live peepholes. Tiler has then a winning strategy consisting
in choosing always the value of the peephole table PM (c, t) for the current
location (c, t).

Challenger wins if M halts: We say that a configuration
(
(c, t), γ̄

)
is incor-

rect, if for some d ∈ {−1, 0, 1} we have γ−1,d 6= CM (c+ d, t− 1) and c+ d ≥ 1.
If machine M halts then there is a location (c, t) with c ≥ 1, so that

CM (c, t) = (qhalt, σ) for some σ ∈ Σ. Challenger picks (c, t + 1) as the initial
location, and so the initial configuration must be incorrect since Tiler can only
respond with live peepholes. The following two claims give Challenger a strat-
egy to maintain an incorrect configuration as an invariant, while progressing
towards the “origin” location (1, 1). This clearly gives a winning strategy for
Challenger, because the origin constraint allows only the value of the peephole
table PM (1, 1) in location (1, 1), which clearly is not incorrect.

Claim 6 If the current configuration
(
(c, t), γ̄

)
with t ≥ 2 is incorrect, then

Challenger can in no more than two moves either make Tiler stuck, or force
the play to an incorrect configuration

(
(c′, t− 1), γ̄′

)
.

Proof: By the definition of an incorrect configuration we have that γ−1,d 6=
CM (c + d, t − 1) for some d ∈ {−1, 0, 1}, so that c+ d ≥ 1. Challenger in no
more than two moves makes Tiler stuck or forces

(
(c + d, t − 1), γ̄′

)
to be a

new configuration. By the definition of VM and HM we have γ′0,0 = γ−1,d 6=
CM (c+d, t−1), hence from (1) and the definition of a peephole it follows that
the new configuration must be incorrect. [Claim 6] �

Claim 7 If the current configuration
(
(c, 1), γ̄

)
with c ≥ 2 is incorrect, then

Challenger by moving to location (c− 1, 1) either makes Tiler stuck, or forces
the new configuration

(
(c− 1, 1), γ̄′

)
to be incorrect.

5

Proof: If γ−1,−1 6= CM (c − 1, 0), or γ−1,0 6= CM (c, 0), then by the definition
of HM the next configuration

(
(c − 1, 1), γ̄′

)
must be incorrect. Otherwise

γ−1,0 = ⊥, hence (2) implies that γ−1,1 = ⊥, but this is impossible because(
(c, 1), γ̄

)
is incorrect. [Claim 7] � [Proposition 4] �

2 Hereditary history preserving simulation

Definition 8 (Labelled asynchronous transition system)
A labelled asynchronous transition system is a tupleA = (S, sinit, E,→, L, λ, I),
where S is its set of states, sinit ∈ S is the initial state, E is the set of events,
→⊆ S × E × S is the set of transitions, L is the set of labels, and λ : E → L

is the labelling function, and I ⊆ E2 is the independence relation which is
irreflexive and symmetric. We often write s

e→ s′, instead of (s, e, s′) ∈ →.
Moreover, the following conditions have to be satisfied:

1. if s
e→ s′, and s

e→ s′′, then s′ = s′′,

2. if (e, e′) ∈ I, s
e→ s′, and s′

e′→ t, then s
e′→ s′′, and s′′

e→ t for some
s′′ ∈ S. [Definition 8] �

This definition may seem to be quite liberal, in the sense that it requires an
asynchronous transition system to satisfy very few properties related to its
independence relation. For example, labelled asynchronous transition systems
arising from 1-safe Petri nets form a proper subclass. We want to stress, how-
ever, that we have chosen this liberal definition only for technical convenince.
In fact, the proof of the undecidability result that follows goes through even
for 1-safe Petri nets.

Let A = (S, sinit, E,→, L, λ, I) be a labelled asynchronous transition sys-
tem. A sequence of events ē = 〈e1, e2, . . . , ek〉 ∈ Ek is a path in A if there
are states s1, s2, . . . , sk+1 ∈ S, such that s1 = sinit, and for all i ∈ [k] we have
ti = (si, ei, si+1) for some ti ∈ T . We denote the set of paths in A by Path(A).
For every sequence of events ē ∈ Ek the independence relation induces an
E-labelled partial order π(ē) = ([k],E, ε), where ε : [k] → E is the labelling
function. For all i ∈ [k] we set ε(i) = ei. For i, j ∈ [k] we define il j to hold,
if i ≤ j, and (ei, ej) 6∈ I. We get E as the transitive closure of l.

For ē, ē′ ∈ Path(A) we define ē ∼= ē′ to hold, if the corresponding labelled
partial orders π(ē) and π(ē′) are isomorphic. This is clearly an equivalence
relation.

Definition 9 (Unfolding)
Let A = (S, sinit, E,→, L, λ, I) be a labelled asynchronous transition system.
The unfolding of A is the labelled asynchronous transition system U(A) =(
SU(A), s

init
U(A), E,→U(A), L, λ, I

)
, defined as follows:

6

• the set of states SU(A) is defined to be Path(A)/∼=, i.e., the set of (E-
labelled) partial order behaviours of A,

• the initial state sinit
U(A) is [ε]∼=, i.e., the empty (E-labelled) partial order,

• we define τ
e→U(A) τ

′ to hold, if ē ∈ τ , and ē · e ∈ τ ′, for some path
ē ∈ Path(A).

Definition 10 (Hereditary history preserving simulation game)
Let Ai = (Si, si, Ei,→i, L, λi, Ii) for i = 1, 2 be labelled asynchronous transi-
tion systems. The hereditary history preserving simulation game Γhhps(A1, A2)
is played by two players Spoiler and Simulator on the arena based on the un-
foldings U(A1), and U(A2).

A τi ∈ SU(Ai) can be seen an Ei-labelled partial order
(
|τi|,Ei, εi

)
, where

|τi| is the underlying set of τi, and εi : |τi| → Ei is the labelling function. By
λi(τi) we denote the L-labelled partial order

(
|τi|,Ei, λi ◦ εi

)
. The arena of

Γhhps(A1, A2) is the labelled transition system(
S(A1,A2), (∅, ∅, ∅), E1 × E2,→(A1,A2)

)
,

defined as follows:

• the set of states S(A1,A2) is the set of triples (τ1,Ξ, τ2), where τ1 ∈ SU(A1),
τ2 ∈ SU(A2), and Ξ : |τ1| → |τ2| is an isomorphism of L-labelled partial
orders λ1(τ1) and λ2(τ2),

• we define (τ1,Ξ, τ2)
(e1,e2)−→ (A1,A2) (τ ′1,Ξ

′, τ ′2) to hold, if τ1
e1→U(A1) τ

′
1, and

τ2
e2→U(A2) τ

′
2, and Ξ ⊆ Ξ′, i.e., Ξ′ is the unique extension of Ξ obtained

by mapping the latest occurrence of the e1 event in τ ′1 to the latest
occurrence of the e2 event in τ ′2.

We call the elements of S(A1,A2) configurations of the game. The initial state
(∅, ∅, ∅) is the initial configuration. In every move the players change the
current configuration (τ1,Ξ, τ2) into the next configuration (τ ′1,Ξ

′, τ ′2) in one
of the following ways.

1. First Spoiler picks an e1 ∈ E1 so that τ ′1
e1→U(A1) τ1. Then Simula-

tor has to respond with the e2 ∈ E2, such that τ ′2
e2→U(A2) τ2, and

(τ ′1,Ξ
′, τ ′2)

(e1,e2)−→ (A1,A2) (τ1,Ξ, τ2).

Note that Simulator has no choice here: his response is uniquely determined
as the label of Ξ(p) in τ2, where p ∈ |τ1| is the latest occurrence of an e1 event
in τ1.

7

2. First Spoiler picks an e1 ∈ E1 so that τ1
e1→U(A1) τ ′1. Then Simu-

lator has to respond with an e2 ∈ E2, such that τ2
e2→U(A2) τ

′
2, and

(τ1,Ξ, τ2)
(e1,e2)−→ (A1,A2) (τ ′1,Ξ

′, τ ′2).

A play is a maximal sequence of configurations formed by players making
moves in the fashion described above. Spoiler wins a play if after a finite
number of moves Simulator gets stuck, i.e., he cannot complete a move. Oth-
erwise the play is infinite and Simulator is the winner. [Definition 10] �

Note that if C
(e1,e2)−→ (A1,A2) C

′, then configuration C ′ is uniquely determined by
C, e1, and e2; and vice versa, configuration C is uniquely determined from C ′,
e1, and e2. Based on this we define partial operations⊕ : S(A1,A2)×(E1×E2) ⇀
S(A1,A2), and 	 : S(A1,A2) × (E1 × E2) ⇀ S(A1,A2),

• C ⊕ (e1, e2) = C ′, if C
(e1,e2)−→ (A1,A2) C

′,

• C 	 (e1, e2) = C ′, if C ′
(e1,e2)−→ (A1,A2) C.

A strategy for Simulator in Γhhps(A1, A2) is a function Σ : S(A1,A2) × E1 →
℘(E2), such that if e2 ∈ Σ(C, e1), then C ⊕ (e1, e2) is defined. Let Ci =
(τ i1,Ξ

i, τ i2) for i ≥ 0 be configurations of Γhhps(A1, A2). A play 〈C0, C1, C2, . . .〉
is consistent with a strategy Σ, if for all i ≥ 0 such that Ci+1 = Ci ⊕ (e1, e2)
(i.e., the i-th move is of type 2.), we have e2 ∈ Σ(Ci, e1). A strategy Σ is
winning for Simulator if all plays consistent with Σ are infinite, i.e., winning
for Simulator.

We say that a strategy Σ : S(A1,A2)×E1 → ℘(E2) is defined in a configura-

tion (τ1,Ξ, τ2), if Σ
(
(τ1,Ξ, τ2), e1

)
6= ∅ for all e1 ∈ E1, such that τ1

e1→U(A1) τ
′
1.

We say that a strategy Σ is closed if it satisfies the following conditions:

1. Σ is defined in the initial configuration (∅, ∅, ∅),

2. if Σ is defined in C, and C ⊕ (e1, e2) is defined, then Σ is defined in
C ⊕ (e1, e2),

3. if Σ is defined in C, and C 	 (e1, e2) is defined, then Σ is defined in
C 	 (e1, e2).

The following follows easily from the definitions.

Proposition 11 Every closed strategy is winning for Simulator. Moreover,
if Simulator has a winning strategy then he also has a closed one.

Theorem 12 (Undecidability of hhp-simulation)
Hereditary history preserving simulation for finite labelled asynchronous tran-
sition systems is undecidable.

8

The proof is a reduction from the problem of deciding the winner in origin
constrained domino snake games. The method is essentially due to Madhusu-
dan and Thiagarajan [MT98]; we use a slightly modified version of a gadget
invented by them.

Let Γds(D, dinit) be an origin constrained domino snake game, where D =
(D,V,H) is a tiling system, and dinit ∈ D is an origin constraint. We de-
fine a pair of finite labelled asynchronous transition systems: AC “modelling”
Challenger, and AT “modelling” Tiler, so that the following property holds.

Proposition 13 Simulator has a winning strategy in Γhhps(AC, AT) if and
only if Tiler has a winning strategy in the origin constrained domino snake
game Γds(D, dinit). �

Labelled asynchronous transition system
AC = (SC, s

init
C , EC,→C, LC, λC, IC)

The states, events, and transitions of AC can be read from Figure 2; we briefly
explain below how to do it. The initial state is denoted by a solid circle (see
Figure 2(a)). The set of events of AC is defined as:

EC =
{
xi, yi : i ∈ {0, 1, 2}

}
∪
{

?ij , ¿ij : i, j ∈ {0, 1, 2}
}
.

In Figure 2(b) we provide the detailed view of the upper-right cube of the
schematic picture of AC from Figure 2(a). The Reader can reconstruct the
details of the remaining three cubes in Figure 2(a) by taking appropriately
prunned and relabelled copies of the graph in Figure 2(b). For example, there
are only two “question” events (instead of four as typical in Figure 2(b)),
sticking out from the initial state, namely ¿00, and ?00. From a state which
is at the bottom of a “double” vertical arrow labelled with “i, 0” for i ∈
{1, 2}, there are three events sticking out, namely: ¿i0, ?i0, and ?(i	1)0, where

(i 	 1)
df
= 2 − (i mod 2). Similarly, from a state which is at the bottom of

a “double” vertical arrow labelled with “0, j” for j ∈ {1, 2}, there are three
events sticking out, namely: ¿0j, ?0j , and ?0(j	1). Finally, we obtain the whole
transition graph of AC by gluing together the appropriate faces of the four
cubes. We have decided not to draw the whole picture in detail as it would
be hard to digest. For example, as the result of the merge, there are six
“question” events sticking out of the state at the bottom of the “triple” arrow
labelled with “1, 1”, namely: ¿11, ?11, ?01, ?10, ?21, and ?12.

As the set of labels LC we take the set of events EC; we set the identity
function on EC as the labelling λC. As the independence relation IC we take
the symmetric closure of the set:{

(xi, yj), (xi, ?ij), (yj , ?ij) : i, j ∈ {0, 1, 2}
}
∪{

(?ij , ¿ij), (?ij , ¿(i⊕1)j), (?ij , ¿i(j⊕1)) : i, j ∈ {0, 1, 2}
}
,

(3)

9

©

�������������
/©

�������������
/©o

�������������

©

y2

�������������
/

0,2

KS

©

�������������
/

1,2

�JT

©o

�������������

2,2

�JT

© /

?������������
© /

?������������
©o

?������������

© /

y1

?������������
0,1

KS

© /

?������������
1,1

�JT

©o

?������������
2,1

�JT

© /

?������������
© /

?������������
©o

?������������

'&%$!"#•
x0

/

y0

?��������������

0,0

OO

©
x1

/

?������������
1,0

KS

©
x2o

?������������
2,0

KS

(a) The structure of AC and AT in the large.

◦ ◦ ◦ ◦ ◦ ◦

◦

ccGGGGGGGGG
◦

y2

~~

x1
22

ccGGGGGGGGG
◦

¿12

ccGGGGGGGGG
◦

¿22

;;wwwwwwwww ◦x2rr

;;wwwwwwwww

y2

��

◦

;;wwwwwwwww

◦

?22���

JJ�����?12

OO

?11)))

TT)))))

◦

?21���

JJ�����?22

OO

?12)))

TT)))))

◦

y2

��

x1
22

?22���

JJ�����?12

OO

?11)))

TT)))))

¿12 GGG

ccGGG

◦x2rr

y2

��

¿22
www

;;www
?21���

JJ�����?22

OO

?12)))

TT)))))

◦
¿11

{{wwwwwwwww ◦

{{wwwwwwwww x1
22

y1

DD

◦

{{wwwwwwwww ◦

##GGGGGGGGG ◦
x2rr

##GGGGGGGGG

y1

>>

◦

¿21##GGGGGGGGG

◦ ◦ ◦ ◦ ◦ ◦
◦

¿11

www

{{www

x1
22

y1

AA

?21���

JJ�����?11

OO

?12)))

TT)))))

◦
¿21

GGG

##GGG

x2rr

y1

AA

?22���

JJ�����?21

OO

?11)))

TT)))))

◦

?12)))

TT))))) ?11

OO

?21���

JJ�����

◦

?22���

JJ�����?21

OO

?11)))

TT)))))

(b) The structure of the upper-right cube of AC in detail.

Figure 2: The structure of asynchronous transition systems AC and AT.

10

where (i ⊕ 1)
df
= 2 −

(
(i + 1) mod 2

)
. Note, that this implies that all the

“diamonds” in the transition graph of AC are in fact independence squares.

Labelled asynchronous transition system
AT = (ST, s

init
T , ET,→T, LT, λT, IT)

The overall structure of the transition graph of AT is very similar to AC.
Indeed, Figure 2(a) serves as its schematic picture for both AC and AT. The
set of events of AT is defined as:

ET = { xi, yi : i = 0, 1, 2 }
∪

{
!dij , ¡

d
ij : i, j ∈ {0, 1, 2}, d ∈ D, such that (i, j) 6= (0, 0), or d = dinit

}
.

The notable difference with AC is that every “question” event is replaced by
|D| copies of a corresponding “answer” events, one for each element d of the
set of dominoes D. As for the transition graph of AT, it very closely mimicks
the transition graph of AC; every “question” event transition in AC has its |D|
“answer” counterparts in AT. The only exception is the initial state of AT,
from which only two events stick out, namely: ¡d

init

00 , and !d
init

00 . This is how the
origin constraint of the domino snake game (D, dinit) is encoded in AT.

As the set of labels LT we take again the set EC of events of AC. The
labelling function maps the “answer” events to their “question” counterparts:

λT(e) =


e if e ∈

{
xi, yi : i ∈ {0, 1, 2}

}
,

?ij if e = !dij, for some d ∈ D,
¿ij if e = ¡dij, for some d ∈ D.

The independence relation IT is defined as the symmetric closure of the set:{
(xi, yj), (xi, !

d
ij), (yj , !

d
ij) : i, j ∈ {0, 1, 2}, and d ∈ D

}
∪{

(!dij, ¡
d
ij) : i, j ∈ {0, 1, 2}, and d ∈ D

}
∪{

(!bij, ¡
d
i(j⊕1)) : i, j ∈ {0, 1, 2}, b, d ∈ D, and (b, d) ∈ V

}
∪{

(!cij, ¡
d
(i⊕1)j) : i, j ∈ {0, 1, 2}, c, d ∈ D, and (c, d) ∈ H

}
.

(4)

Note how the vertical, and horizontal compatibility relations V , and H of
the tiling system D are encoded in the independence relation IT of the asyn-
chronous transition system AT. Figures 3(a–c) contain some close-ups of the
fine structure of the transition graph of AT. We adopt the convention that the
dotted arrows in Figures 3(b–c) exist if and only if the corresponding events
are independent according to IT.

Proof (of Proposition 13)
The idea of the proof is to show that winning strategies for Simulator in

11

◦

©
◦

¡d
init

00

\\888888888

≡ ◦

!d
init

00

OO

'&%$!"#•0,0

OO

•

!d
init

00

OO

¡d
init

00

]];;;;;;;;

(a) The single arrow “0, 0”.

◦ ◦

©
◦

^^

◦

¡d0j
^^<<<<<<<<<

≡ ◦

OOSS

©

0,j

KS

◦

!d0j

OO

!b0(j	1)'''''

SS''

¡d0j

^^<<<<<<<<<

(b) A double arrow “0, j”, for
j ∈ {1, 2}.

◦ ◦ ◦

©
◦

``

◦

``@@@@@@@@@@@@
◦

¡dij

``

≡ ◦

KKOOSS

©

i,j

�JT

◦

!c(i	1)j

KK������������

!dij

OO

!bi(j	1) ''''''

SS'''

¡dij @@@

``@@@@@

Variables b, c, and d range the set of
dominoes D.

(!dij, ¡
d
ij) ∈ IT for all d ∈ D

(!bi(j	1), ¡
d
ij) ∈ IT iff (b, d) ∈ V

(!c(i	1)j , ¡
d
ij) ∈ IT iff (c, d) ∈ H

where (i	 1)
df
= (i mod 2) + 1.

(c) A triple arrow “i, j”, seen as a part of the upper-right cube in
Figure 2(a).

Figure 3: Details of the asynchronous transitions system AT.

12

Γhhps(AC, AT), and winning strategies for Tiler in Γds(D, dinit) can be mu-
tually simulated. This idea is captured in the two translations below, one
yielding a closed map for Γds(D, dinit), given a closed strategy for Simulator
in Γhhps(AC, AT), and the other yielding a closed strategy for Simulator in
Γhhps(AC, AT), given a closed map for Γds(D, dinit). By Propositions 11 and 2,
and by determinacy of both domino snake, and hereditary history preserving
simulation games, these translations suffice to establish Proposition 13.

By E? we denote the set
{

?ij, ¿ij : i, j ∈ {0, 1, 2}
}

, and by E! the set{
!dij , ¡

d
ij : i, j ∈ {0, 1, 2}, and d ∈ D

}
. Let πT = (|πT |,ET , εT) be a state of

U(AT); we write

• #x(πT) for
∣∣ε−1
T

(
{x0, x1, x2}

)∣∣,
• #y(πT) for

∣∣ε−1
T

(
{y0, y1, y2}

)∣∣.
It is not hard to see that if (πC ,Ξ, πT) is a configuration of Γhhps(AC, AT),
then

1. πC is uniquely determined by πT , (in fact, πC is isomorphic to λT(πT)),

2. πT is uniquely determined by #x(π), #y(π), and by εT ◦ ε−1
T (E!) ⊆ E!,

3.
∣∣ε−1
T (E!)

∣∣ =
∣∣ε ◦ ε−1

T (E!)
∣∣ ≤ 2.

Properties 1. and 2. amount to saying that the number of occurrences of “x”
events, the number of occurrences of “y” events, and the set of occurrences of
“!” events in the ET-labelled partial order πT ∈ SU(AT), uniquely determine the

configuration (πC ,Ξ, πT) ∈ S(AC,AT). Property 3. implies that if
∣∣ε−1
T (E!)

∣∣ = 2,
then (πC ,Ξ, πT) is a maximal configuration. It follows that a strategy for
Simulator in Γhhps(AC, AT) can be represented as a function:

Ω : N2
+ ×

(
{∅} ∪ E!

)
× E? → ℘(E!).

For notational convenience, if l = (m,n) ∈ N2
+, then we write ?l to denote ?ij,

and ¿l to denote ¿ij , where i = (m mod 2), and j = (n mod 2). Similarly, we
write !dl for !dij , and ¡dl for ¡dij, where i = 2− (m mod 2), and j = 2− (n mod 2).

Tiler wins Γds(D, dinit) if Simulator wins Γhhps(AC, AT):
Suppose that Simulator has a closed strategy Ω : N2

+×
(
{∅}∪E!

)
×E? → ℘(E!)

in Γhhps(AC, AT). We define a map Θ : N2
+ → ℘(D) in the following way:

Θ(l) =
{
d ∈ D : !dl ∈ Ω(l, ∅, ?l)

}
for all l ∈ N2

+. It can be verified that Θ is a closed map for Γds(D, dinit).

Simulator wins Γhhps(AC, AT) if Tiler wins Γds(D, dinit):
Suppose that there is a closed map Θ : N2

+ → ℘(D) for Γds(D, dinit). We define
a strategy Ω : N2

+ ×
(
{∅} ∪ E!

)
× E? → ℘(E!) for Simulator in the following

way:

13

• Ω
(
l, ∅, ?l

)
=
{

!dl : d ∈ Θ(l)
}

, and Ω
(
l, ∅, ¿l

)
=
{

¡dl : d ∈ Θ(l)
}

,

• Ω
(
l, ∅, ?(l−δ)

)
=
{

!d(l−δ) : d ∈ Θ(l − δ)
}

,

• Ω
(
l, ¡dl , ?(l−δ)

)
=
{

!d(l−δ) : d ∈ Θ(l − δ)
}

, and Ω
(
l, !dl−δ, ¿l

)
=
{

¡dl : d ∈
Θ(l)

}
.

for l ∈ N2
+, and δ ∈

{
(0, 1), (1, 0)

}
. We skip the verification that Ω indeed gives

rise to a closed strategy for Simulator in Γhhps(AC, AT). [Proposition 13] �

The definition and some results on the hereditary history preserving bisimu-
lation can be found in [Bed91, NC94, JNW96].

Definition 14 (Hereditary history preserving bisimulation game)
The hereditary history preserving bisimulation game Γhhpb(A1, A2) is played
by two players: Spoiler and Bisimulator. The only differences with respect
to the hereditary history preserving simulation game Γhhps(A1, A2) are that
Simulator is replaced by Bisimulator, and an extra kind of move is allowed.

3. First Spoiler picks an e2 ∈ E2 so that τ2
e2→U(A2) τ ′2. Then Simu-

lator has to respond with an e1 ∈ E1, such that τ1
e1→U(A1) τ

′
1, and

(τ1,Ξ, τ2)
(e1,e2)−→ (A1,A2) (τ ′1,Ξ

′, τ ′2).

We get the (plain) history preserving bisimulation game [RT88, vGG89] by
allowing only the use of moves of type 2. and 3. [Definition 14] �

Plain history preserving bisimulation is known to be decidable [Vog91, JM96].

Problem 1
Is the problem of deciding the winner in hereditary history preserving bisim-
ulation games decidable?

References

[Bed91] Marek A. Bednarczyk. Hereditary history preserving bisim-
ulations or what is the power of the future perfect in pro-
gram logics. Technical report, Instytut Podstaw Informatyki
PAN, filia w Gdańsku, April 1991. Available electronically at
http://www.ipipan.gda.pl/~marek.

[JM96] Lalita Jategaonkar and Albert R. Meyer. Deciding true concur-
rency equivalences on safe, finite nets. Theoretical Computer Sci-
ence, 154:107–143, 1996.

14

[JNW96] André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation
from open maps. Information and Computation, 127(2):164–185,
1996.

[MT98] P. Madhusudan and P. S. Thiagarajan. Controllers for discrete event
systems via morphisms. In Davide Sangiorgi and Robert de Si-
mone, editors, CONCUR’98, Concurrency Theory, 9th International
Conference, Proceedings, volume 1466 of LNCS, pages 18–33, Nice,
France, September 1998. Springer.

[NC94] Mogens Nielsen and Christian Clausen. Bisimulations, games and
logic. Technical Report RS-94-6, Basic Research in Computer Sci-
ence, Department of Computer Science, University of Aarhus, April
1994.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison
Wesley, 1994.

[RT88] A. Rabinovich and B. Trakhtenbrot. Behaviour structures and nets
of processes. Fundamenta Informaticae, 11:357–404, 1988.

[vGG89] Rob van Glabbek and Ursula Goltz. Equivalence notions for con-
current sysmtes and refinement of actions (Extended abstract).
In A. Kreczmar and G. Mirkowska, editors, Mathematical Foun-
dations of Computer Science 1989, volume 379 of LNCS, pages
237–248, Por ↪abka-Kozubnik, Poland, August/September 1989.
Springer-Verlag.

[Vog91] Walter Vogler. Deciding history preserving bisimilarity. In
Javier Leach Albert, Burkhard Monien, and Mario Rodŕıguez-
Artalejo, editors, Auotamata, Languages and Programming, 18th
International Colloqium, ICALP’91, volume 510 of LNCS, pages
493–505, Madrid, Spain, 8–12 July 1991. Springer-Verlag.

15

Recent BRICS Report Series Publications

RS-99-1 Hereditary History Preserving Simulation is Undecidable.
Nielsen, Mogens and Jurdziński, Marcin. January 1999. 15 pp.

RS-98-55 Andrew D. Gordon, Paul D. Hankin, and Søren B. Lassen.
Compilation and Equivalence of Imperative Objects (Revised Re-
port). December 1998. iv+75 pp. This is a revision of Technical
Report 429, University of Cambridge Computer Laboratory,
June 1997, and the earlier BRICS report RS-97-19, July 1997.
Appears in Ramesh and Sivakumar, editors,Foundations of
Software Technology and Theoretical Computer Science: 17th
Conference, FST&TCS ’97 Proceedings, LNCS 1346, 1997,
pages 74–87.

RS-98-54 Olivier Danvy and Ulrik P. Schultz. Lambda-Dropping: Trans-
forming Recursive Equations into Programs with Block Struc-
ture. December 1998. 55 pp. To appear inTheoretical Computer
Science.

RS-98-53 Julian C. Bradfield. Fixpoint Alternation: Arithmetic, Transi-
tion Systems, and the Binary Tree. December 1998. 20 pp.

RS-98-52 Josva Kleist and Davide Sangiorgi.Imperative Objects and Mo-
bile Processes. December 1998. 22 pp. Appears in Gries and
de Roever, editors,IFIP Working Conference on Programming
Concepts and Methods, PROCOMET ’98 Proceedings, 1998,
pages 285–303.

RS-98-51 Peter Krogsgaard Jensen.Automated Modeling of Real-Time
Implementation. December 1998. 9 pp. Appears inThe 13th
IEEE Conference on Automated Software Engineering, ASE ’98
Doctoral Symposium Proceedings, 1998, pages 17–20.

RS-98-50 Luca Aceto and Anna Inǵolfsdóttir. Testing Hennessy-Milner
Logic with Recursion. December 1998. 15 pp. Appears in
Thomas, editor,Foundations of Software Science and Computa-
tion Structures: Second International Conference, FoSSaCS ’99
Proceedings, LNCS 1578, 1999, pages 41–55.

