
B
R

IC
S

R
S

-98-8
T

hiagarajan
&

H
enriksen:

D
istributed

Versions
ofLinear

T
im

e
Tem

poralLogic

BRICS
Basic Research in Computer Science

Distributed Versions of
Linear Time Temporal Logic:
A Trace Perspective

P. S. Thiagarajan
Jesper G. Henriksen

BRICS Report Series RS-98-8

ISSN 0909-0878 April 1998

Copyright c© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/98/8/

Distributed Versions of Linear Time
Temporal Logic: A Trace Perspective∗

P. S. Thiagarajan†

SPIC Mathematical Institute, Chennai, India

pst@smi.ernet.in

Jesper Gulmann Henriksen
BRICS‡, Department of Computer Science,

University of Aarhus, Denmark
gulmann@brics.dk

April 28, 1998

1 Introduction

Linear time Temporal Logic (LTL) as proposed by Pnueli [37] has become
a well established tool for specifying the dynamic behaviour of distributed
systems. A basic feature of LTL is that its formulas are interpreted over
sequences. Typically, such a sequence will model a computation of a system;
a sequence of states visited by the system or a sequence of actions executed by
the system during the course of the computation. A system is said to satisfy
a specification expressed as an LTL formula in case every computation of
the system is a model of the formula. A rich theory of LTL is now available
using which one can effectively verify whether a finite state system meets its
specification [51]. Indeed, the verfication task can be automated (for instance
using the software packages SPIN [21] and FormalCheck [2]) to handle large
systems of practical interest.

∗Appears as a chapter of “Lectures on Petri Nets I: Basic Models”,
Lecture Notes in Computer Science 1491, Springer-Verlag (1998), pp. 643-681.
†This work has been supported by BRICS and IFCPAR Project 1502-1.
‡Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

1

In many applications the computations of a distributed system will consti-
tute interleavings of the occurrences of causally independent actions. Conse-
quently, the computations can be naturally grouped together into equivalence
classes where two computations are equated in case they are two different
interleavings of the same partially ordered stretch of behaviour. It turns
out that many of the properties expressed as LTL-formulas happen to have
the so called “all-or-none” property. Either all members of an equivalence
class of computations will have the desired property or none will do (“leads
to deadlock” is one such property). For verifying such properties one has
to check the property for just one member of each equivalence class. This
is the insight underlying many of the partial-order based verification meth-
ods [17, 35, 50]. As may be guessed, the importance of these methods lies in
the fact that via these methods the computational resources required for the
verification task can often be dramatically reduced.

It is often the case that the equivalence classes of computations gener-
ated by a distributed system constitute objects called Mazurkiewicz traces.
They can be canonically represented as restricted labelled partial orders.
This opens up an alternative way of exploiting the non-sequential nature of
the computations of a distributed systems and the attendant partial-order
based methods. It consists of developing linear time temporal logics that
can be directly interpreted over Mazurkiewicz traces. In these logics, every
specification is guaranteed to have the “all-or-none” property and hence can
take advantage of the partial-order based reduction methods during the ver-
ification process. The study of these logics also exposes the richness of the
partial-order settings from a logical standpoint and the complications that
can arise as a consequence.

Our aim here is to present an overview of linear time temporal logics
whose models can be viewed as Mazurkiewicz traces. The presentation is, in
principle, self-contained though previous exposure to temporal logics [12] and
automata over infinite objects [49] will be very helpful. We have provided
net-theoretic examples whenever possible in order to emphasize the broad
scope of applicability of the material.

In the next section we introduce linear time temporal logic and sketch
the automata-theoretic solutions to the satisfiability problem (does a for-
mula have a model?) and the model checking problem (do all computations
of a system constitute models of a given specification formula?). In Section 3
we introduce Mazurkiewicz traces viewed as equivalence classes of sequences.
This leads to the precise formualtion of the notion “all-or-none” LTL prop-
erties.

Next we introduce a well-understood class of trace languages called prod-
uct languages. The automata that recognize these languages are called prod-

2

uct automata and they incorporate a simple and yet useful method of forming
distributed systems. The system consists of a network of sequential agents,
each with its own alphabet of actions. In the interesting instances the alpha-
bets are not pair-wise disjoint. One then imposes a synchronization regime
under which the agents are forced to carry out common actions together.
After presenting a theory of product languages and automata, we formulate
in Section 5 a simple version of a trace-based version of LTL called product
LTL. The formulas of this logic have a natural semantics in terms of the
computations generated by a network of sequential agents as introduced in
the previous section. Using the theory of product automata we then provide
solutions to the satisfiability and model checking problems for product LTL.

In Section 6 we introduce the representation of Mazurkiewicz traces as
restricted labelled partial orders. We then provide a rapid introduction to the
theory of trace languages and automata that we call asynchronous automata
for recognizing trace languages. In the subsequent section we introduce the
logic TrPTL which is a trace-based logic with much richer possibilities than
product LTL. We then provide solutions to the satisfiability and model check-
ing problems for TrPTL using asynchronous automata. This is followed by a
brief survey of other trace-based linear time temporal logics available in the
literature. Section 8 is devoted to considering various expressiveness issues
associated with our temporal logics. We conclude in the final section with
remarks about branching time temporal logics based on traces.

2 Linear Time Temporal Logic

In our formulation of linear time temporal logics it will be convenient to treat
actions as first class objects both at the syntactic and semantic levels. As a
first step we shall consider a version of LTL (linear time temporal logic) in
which the next-state modality is indexed by actions.

Through the rest of the paper we fix a finite non-empty alphabet of actions
Σ. We let a, b range over Σ and refer to members of Σ as actions. Σ∗ is the
set of finite words and Σω is the set of infinite words generated by Σ with
ω = {0, 1, 2, . . .}. We set Σ∞ = Σ∗ ∪ Σω and denote the null word by ε. We
let σ, σ′ range over Σω and τ, τ ′, τ ′′ range over Σ∗. Finally � is the usual
prefix ordering defined over Σ∗ and for u ∈ Σ∞, we let prf(u) be the set of
finite prefixes of u.

Next we fix a finite non-empty set of atomic propositions P = {p1, p2, . . .}
and let p, q range over P . The set of formulas of LTL(Σ) is then given by
the syntax:

LTL(Σ) ::= p | ∼α | α ∨ β | 〈a〉α | α U β.

3

Through the rest of this section α, β will range over LTL(Σ).
A model of LTL(Σ) is a pair M = (σ, V) where σ ∈ Σω and V : prf(σ)→

2P is a valuation function. Let M = (σ, V) be a model, τ ∈ prf(σ) and α be
a formula. Then M, τ |= α will stand for α being satisfied at τ in M . This
notion is defined inductively in the expected manner.

• M, τ |= p iff p ∈ V (τ).

• M, τ |= ∼α iff M, τ 6|= α.

• M, τ |= α ∨ β iff M, τ |= α or M, τ |= β.

• M, τ |= 〈a〉α iff τa ∈ prf(σ) and M, τa |= α.

• M, τ |= α U β iff there exists τ ′ such that ττ ′ ∈ prf(σ) and M, ττ ′ |=
β. Moreover for every τ ′′ such that ε � τ ′′ ≺ τ ′, it is the case that
M, ττ ′′ |= α.

Along with the usual propositional connectives ∧,⊃ and ≡ we will also

use the propositional constants, > ∆⇐⇒ p1∨ ∼ p1 and ⊥ ∆⇐⇒ ∼ >. Some
useful derived modalities are:

• Oα ∆⇐⇒
∨
a∈Σ〈a〉α.

• 3α ∆⇐⇒ >Uα.

• 2α ∆⇐⇒ ∼3 ∼α.

Let M = (σ, V) be a model and τ ∈ prf(σ). Then it is easy to check the
following assertions.

• M, τ |= Oα iff M, τ ′ |= α where τ ′ ∈ prf(σ) is such that |τ ′| = |τ |+ 1.

• M, τ |= 3α iff there exists a τ ′ ∈ Σ∗ with ττ ′ ∈ prf(σ) such that
M, ττ ′ |= α.

• M, τ |= 2α iff for each τ ′ ∈ Σ∗, ττ ′ ∈ prf(σ) implies M, ττ ′ |= α.

Note that Oα is the usual next-state operator of LTL.
We say that a formula α ∈ LTL(Σ) is satisfiable iff there exist a model

M = (σ, V) and τ ∈ prf(σ) such that M, τ |= α. This logic does not refer
to the past either in the syntax or in the semantics. Hence the formula α is
satisfiable iff there exists a model M such that M, ε |= α. This is easy to
check. The satisfiability problem for LTL is to develop a decision procedure

4

which will determine whether a given formula α is satisfiable. We will later
in this section describe such a decision procedure.

We now wish to formulate the model checking problem for LTL(Σ). A
finite-state program over Σ is a structure Pr = (S,−→, Sin, VPr) where:

• S is a finite set of states.

• −→ ⊆ S × Σ× S is a transition relation.

• Sin ⊆ S is a set of initial states of the program.

• VPr : S → 2P assigns a subset of P to each state of the program.

The members of P capture a finite set of basic assertions concerning the
program which can usually be “read off” by examining the states of Pr and
this is described by VPr. It will often be the case that the set of initial states
is a singleton.

It is easy to arrange matters so that at each reachable state of the program
at least one transition can be performed. We will assume that this is indeed
the case for all program models we consider in this paper. Further we will
say “program” instead “finite-state program” from now on.

A computation of the program Pr is a pair (σ, ρ) where σ ∈ Σω and
ρ : prf(σ)→ S is a map which satisfies:

• ρ(ε) ∈ Sin.

• ρ(τ)
a−→ ρ(τa) for each τa ∈ prf(σ).

Let (σ, ρ) be a computation of the program Pr. Then this computation
canonically induces the model Mσ,ρ = (σ, Vρ) where Vρ is given by: Vρ(τ) =
VPr(ρ(τ)) for each τ ∈ prf(σ).

Let Pr be a program and α be a formula of LTL(Σ). We say that Pr
meets the specification α — denoted Pr |= α — if for every computation
(σ, ρ) of Pr, it is the case that M, ε |= α where M is the model induced by
the computation (σ, ρ). The model checking problem is to decide for a given
program Pr and a given formula α whether or not Pr |= α. We will sketch
a solution to the model checking problem later in this section.

Let N = (B,E, F, cin) be a finite elementary net system. In other words,
it is an elementary net system in which both B, the set of conditions and
E, the set of events are finite sets. We can associate the program PrN =
(S,−→, Sin, VPr) with N as follows:

• Σ = E and P = B.

5

• S is the least subset of 2B and −→ is the least subset of S × Σ × S
satisfying:

– cin ∈ S.

– Suppose c ∈ S and e ∈ E such that •e ⊆ c and e• ∩ c = ∅. Then
c′ ∈ S and (c, e, c′) ∈ −→ where c′ = (c− •e) ∪ e•.

• Sin = {cin}.

• VPr(c) = c for every c ∈ S.

Thus the so called case graph is the underlying transition system of the
program. The conditions serve as the atomic propositions.

For c ⊆ B, let αc be the formula
∧
b∈c b. Now consider the specification

2 ∼ αc for some c ⊆ B. Then PrN 6|= 2 ∼ αc iff c is a reachable state
(i.e. c ∈ S) in N . Next suppose e and e′ are two events. Then PrN |=
23〈e〉> ⊃ 23〈e′〉> captures the fact that in N , along every computation,
if e occurs infinitely often then so does e′. A rich variety of liveness and
safety properties can be expressed in LTL(Σ). For a substantial collection of
examples the reader should see [26].

It turns out that both the satisfiability and model checking problems for
LTL can be solved elegantly using Büchi automata [51]. We start with a
brief introduction to these automata. A Büchi automaton over Σ is a tuple
B = (Q,−→, Qin, F) where:

• Q is a finite non-empty set of states.

• −→ ⊆ Q× Σ×Q is a transition relation.

• Qin ⊆ Q is a set of initial states.

• F ⊆ Q is a set of accepting states.

Let σ ∈ Σω. Then a run of B over σ is a map ρ : prf(σ) −→ Q such that:

• ρ(ε) ∈ Qin.

• ρ(τ)
a−→ ρ(τa) for each τa ∈ prf(σ).

The run ρ is accepting iff inf(ρ) ∩ F 6= ∅ where inf(ρ) ⊆ Q is given by
q ∈ inf(ρ) iff ρ(τ) = q for infinitely many τ ∈ prf(σ). Finally L(B), the
language of ω-words accepted by B, is:

L(B) = {σ | ∃ an accepting run of B over σ}.

6

The languages recognized by Büchi automata are called the ω-regular
languages. For an excellent survey of regular languages and automata over
infinite objects, the reader is referred to [49].

It is easy to solve the emptiness problem for Büchi automata; to determine
whether or not the language accepted by a Büchi automaton is empty. This
can be done in time linear in the size of the automaton where the size of a
Büchi automaton is the number of states of the automaton [49].

We will now show how one can effectively construct for each α ∈ LTL(Σ),
a Büchi automaton Bα such that the language of ω-words accepted by Bα is
non-empty iff α is satisfiable. This is an action-based version of the elegant
solution presented in [51] for LTL.

Through the rest of the section we fix a formula α0. To construct Bα0

we first define the (Fischer-Ladner) closure of α0. For convenience we will
assume that the derived next-state modality modality O is included in the
syntax of LTL(Σ). We take cl(α0) to be the least set of formulas that satisfies:

• α0 ∈ cl(α0).

• If ∼β ∈ cl(α0) then β ∈ cl(α0).

• If α ∨ β ∈ cl(α0) then α, β ∈ cl(α0).

• If 〈a〉α ∈ cl(α0) then α ∈ cl(α0).

• If α U β ∈ cl(α0) then α, β ∈ cl(α0). In addition, O(α U β) ∈ cl(α0).

Now CL(α0), the closure of α0, is defined to be:

CL(α0) = cl(α0) ∪ {∼β | β ∈ cl(α0)}.

In what follows ∼∼ β will be identified with β. Moreover, throughout the
section, all the formulas that we encounter will be assumed to be members
of CL(α0). For convenience, we shall often write CL instead of CL(α0).

A ⊆ CL is called an atom iff it satisfies :

• β ∈ A iff ∼β 6∈ A.

• α ∨ β ∈ A iff α ∈ A or β ∈ A.

• α U β ∈ A iff β ∈ A or α,O(α U β) ∈ A.

• If 〈a〉α ∈ A and 〈b〉β ∈ A then a = b.

7

AT (α0) is the set of atoms and again we shall often write AT instead of
AT (α0). Finally we set Uα0 , the set of until requirements of α0, to be the
given by Uα0 = {α U β | α U β ∈ CL}. We will often write U0 instead of
Uα0 .

The Büchi automaton Bα0 (from now on denoted as B) is now defined
as B = (Q,−→, Qin, F), where the various components of B are specified as
follows.

• Q = AT × 2U0 is the set of states.

• The transition relation −→ ⊆ Q× Σ×Q is given by (A, x)
a−→ (B, y)

iff the following requirements are met:

– For every 〈a〉α ∈ CL, 〈a〉α ∈ A iff α ∈ B and for every O(α) ∈
CL, O(α) ∈ A iff α ∈ B.

– if 〈b〉β ∈ A then b = a.

– if x 6= ∅ then y = {α U β | α U β ∈ x and β 6∈ B}. If x = ∅ then
y = {α U β | α U β ∈ B and β 6∈ B}.

• Qin ⊆ Q is given by (A, x) ∈ Qin iff α0 ∈ A and x = ∅.

• F ⊆ Q is given by (A, x) ∈ F iff x = ∅.

It is easy to show that L(B) 6= ∅ iff α0 is satisfiable. It is also easy to check
that the size of B is at most exponential in the size of α0. As observed earlier
the emptiness problem for a Büchi automaton can be solved in time linear
in the size of the automaton. Thus we arrive at:

Theorem 2.1 The satisfiability problem for LTL(Σ) is decidable in expo-
nential time.

Turning now to the model checking problem we first recall that the in-
tersection problem for Büchi automata can be easily solved. In other words,
let B1,B2 be two Büchi automata both operating over Σ. Then one can ef-
fectively construct a Büchi automaton B over the same alphabet such that
the language accepted by B is the intersection of the languages accepted by
B1 and B2. Moreover, the size of B can be assumed to be bounded by 2n1n2

where n1 is the size of B1 and n2 is the size of B2 [49].
Now let Pr = (S,−→, Sin, VPr) be a program. We associate the Büchi

automaton BPr = (S,;, Sin, S) over the alphabet Σ× 2P with Pr where ;
is given by: (s, (a,R), s′) ∈; iff (s, a, s′) ∈ −→ and VPr(s) = R.

Let α be a specification. Then we construct the Büchi automaton B∼α
corresponding to the negation of α. Let B∼α = (Q,=⇒, Qin, F). Recall that

8

each state in Q is of the form (A, x) where A is an atom. We now convert this

automaton into the automaton B̂ = (Q,V, Qin, F) over the alphabet Σ× 2P

by defining V as: ((A, x), (a,R), (B, y)) ∈ V iff ((A, x), a, (B, y)) ∈ =⇒
and A ∩ P = R. Finally, let B be the Büchi automaton which accepts the
intersection of the languages accepted by BPr and B̂. It is straightforward to
check that Pr |= α iff the language accepted by B is empty. An easy analysis
of the size of B leads to:

Theorem 2.2 The model checking problem for LTL(Σ) is decidable in time
O(|Pr| · 2|α|).

In what follows, automata-theoretic constructions and expressiveness is-
sues will play a considerable role. These topics can be treated in a simpler
fashion if we eliminate atomic propositions. Most of the material we present
can easily accomodate atomic propositions with some notational overhead.
Hence from now on, we will not — except for some passing remarks — deal
with atomic propositions. To be specific, the syntax of LTL(Σ) will be as-
sumed to be:

LTL(Σ) ::= > | ∼α | α ∨ β | 〈a〉α | α U β.

Notice that a model is now just a member of Σω with the semantics being
the obvious one (> is always true). The set of models of a formula constitute
a language of infinite words. More precisely, each α induces the language Lα
given by:

Lα = {σ | σ, ε |= α}.
A program is now just a finite-state transition system Pr = (S,−→, Sin)

over Σ. Each such program Pr has the language LPr associated with it. This
is just the language accepted by the Büchi automaton (S,−→, Sin, S). It is
also easy to see that Pr |= α iff LPr ⊆ Lα iff LPr ∩ L∼α = ∅.

3 Mazurkiewicz Traces and Trace Consistent

Properties

Here we wish to introduce the notion of traces from the standpoint of se-
quences. This will enable us to define the notion of a trace consistent prop-
erty. This notion plays an important role in partial order based reducion
methods. As pointed out in the introduction, it also provides the motivation
for studying trace based linear time temporal logics.

A (Mazurkiewicz) trace alphabet is a pair (Σ, I), where Σ, the alphabet,
is a finite set and I ⊆ Σ × Σ is an irreflexive and symmetric independence

9

relation. In most applications, Σ consists of the actions performed by a
distributed system while I captures a static notion of causal independence
between actions. The idea is that contiguous independent actions occur
with no causal order between them. Thus, every sequence of actions from
Σ corresponds to an interleaved observation of a partially-ordered stretch of
system behaviour. This leads to a natural equivalence relation over execu-
tion sequences: two sequences are equated iff they correspond to different
interleavings of the same partially-ordered stretch of behaviour.

For the rest of the section we fix a trace alphabet (Σ, I) and assume the
terminology developed in the previous section for objects derived from Σ.
We define D = (Σ × Σ) − I to be the dependency relation. Note that D is
reflexive and symmetric. A set p ⊆ Σ is called a D-clique iff p× p ⊆ D. The
equivalence relation ≈I ⊆ Σ∞ × Σ∞ induced by I is given by:

σ ≈I σ′ iff σ � p = σ′ � p for every D-clique p.

Here and elsewhere, if A is a finite set, ρ ∈ A∞ and B ⊆ A then ρ �B is
the sequence obtained by erasing from ρ all occurrences of letters in A− B.

Clearly ≈I is an equivalence relation. Notice that if σ = τabσ1 and
σ′ = τbaσ1 with (a, b) ∈ I then σ ≈I σ′. Thus σ and σ′ are identified if
they differ only in the order of appearance of a pair of adjacent independent
actions. In fact, for finite words, an alternative way to characterize ≈I is
to say that σ ≈I σ′ iff σ′ can be obtained from σ by a finite sequence of
permutations of adjacent independent actions. However the definition of ≈I
in terms of permutations can not be directly transported to infinite words,
which is why we work with the definition presented here.

The equivalence classes generated by ≈I are called (Mazurkiewicz) traces.
A set of traces is called a trace language. The theory of traces is well devel-
oped and documented—see [6, 7] for basic material as well as a substantial
number of references to related work.

A variety of models of distributed systems naturally have a trace alphabet
associated with them [55]. It also turns out that many interesting properties
of distributed systems respect the equivalence relation induced by these trace
alphabets. This has important consequences for the practical verification of
such properties.

The key notion in this context is that of a trace consistent property. To
bring this out, we start with a trace alphabet (Σ, I) and recall the remarks
concerning the abolition of atomic propositions at the end of Section 2. Let
L ⊆ Σω. We say that L is trace consistent in case σ ∈ L and σ ≈I σ′ implies
σ′ ∈ L; for every σ, σ′ ∈ Σω. In other words, either all members of a trace
are in L or none of them are. We say that the formula α in LTL(Σ) is trace

10

consistent in case Lα is trace consistent. It is not hard to see that there is
a one-to-one correspondence between trace languages and trace consistent
languages of strings.

Now suppose Pr is a program over Σ which has a trace alphabet (Σ, I)
associated with it in some natural manner. Suppose further that LPr, the
linear time behaviour of Pr, is trace consistent (we will see a number of
models of distributed programs that possess these features in the material to
follow). Now consider a specification α which happens to be trace consistent.
Then, as remarked at the end of Section 2, verifying Pr |= α boils down
to verifying LPr ⊆ Lα. Instead of checking LPr ⊆ Lα we can choose to
check L′ ⊆ Lα where L′ is designed to be such that L′ ⊆ LPr and for every
σ ∈ LPr, [σ] ∩ L′ 6= ∅. The key point is, the finite representation of L′ can
be often substantially smaller than the representation of Pr. This is the
insight underlying many of the so called partial-order methods deployed in
the model checking world [17, 35, 50].

As pointed out in the introduction this is also the main motivation for
considering the trace-based linear time temporal logics that we will encounter
later. We shall conclude this section with some examples.

Recall the material on elementary net systems introduced in Section 2.
Suppose N = (B,E, F, cin) is an elementary net system. Each such system
induces the independence relation IN given by:

IN = {(e1, e2) | (•e1 ∪ e•1) ∩ (•e2 ∪ e•2) = ∅}.

Let e ∈ E and consider the formula 23〈e〉>. The property captured by this
formula says that (along every computation) the event e occurs infinitely
often. It is easy to see that this is a trace consistent property with respect
to the trace alphabet (E, IN). Next consider the net system of Figure 1.

Consider the formula β = 23(〈e〉> ∧ 〈e′〉>). Suppose σ = (e1e2ee
′)ω

and σ′ = (e1e
′e2e)

ω. Then σ, ε |= β and σ ≈IN σ′ but σ′, ε 6|= β. Thus this
property is not trace consistent with respect to the trace alphabet induced
by this net system.

4 Product Languages and Automata

We will now exhibit a restricted but useful class of distributed behaviours
that we call product behaviours. Such behaviours are generated by a network
of sequential agents that coordinate their activities by performing common
actions together. It will turn out that product behaviours are naturally trace
consistent. They also constitute a clean and yet non-trivial subset of the class
of trace behaviours considered later.

11

/.-,()*+·
��

/.-,()*+·
��

e1

vv ((/.-,()*+
��

/.-,()*+
��

e2

��

e′ @A BC

EDoo

/.-,()*+
��

eBC@A

GF //

Figure 1: Example elementary net system

We first study product Büchi automata. We then formulate in Section 5
the product version of LTL(Σ). We will then use product Büchi automata to
solve the satisfiability and model checking problems for the product version
of LTL(Σ). The technical details — which we suppress here — can be found
in [47]. The key notion underlying product behaviours is that of a distributed
alphabet. It can be viewed as an “implementation” of a trace alphabet. As
a result, distributed alphabets play a fundamental role in the automata-
theoretic aspects of trace languages [15, 58]. This will become more clear
when the material in Section 6 is encountered.

A distributed alphabet is a family {Σp}p∈P where P is a finite non-empty
set of agents (also referred to as processes in the sequel) and Σp is a finite
non-empty alphabet for each p ∈ P. The idea is that whenever an action
from Σp occurs, the agent p must participate in it. Hence the agents can
constrain each other’s behaviour, both directly and indirectly.

Trace alphabets and distributed alphabets are closely related to each
other. Let Σ̃ = {Σp}p∈P be a distributed alphabet. Then ΣP , the global

alphabet associated with Σ̃, is the collection
⋃
p∈P Σp. The distribution of

ΣP over P can be described using a location function locΣ̃ : ΣP → 2P defined
as follows:

locΣ̃(a) = {p | a ∈ Σp}.
This in turn induces the relation IΣ̃ ⊆ ΣP × ΣP given by:

(a, b) ∈ IΣ̃ iff locΣ̃(a) ∩ locΣ̃(b) = ∅.

12

Clearly IΣ̃ is irreflexive and symmetric and hence (ΣP , IΣ̃) is a trace alphabet.
Thus every distributed alphabet canonically induces a trace alphabet. Two
actions are independent according to Σ̃ if they are executed by disjoint sets
of processes. Henceforth, we write loc for locΣ̃ whenever Σ̃ is clear from the
context.

Going in the other direction there are, in general, many different ways to
implement a trace alphabet as a distributed alphabet. A standard approach
is to create a separate agent for each maximal D-clique generated by (Σ, I).
Recall that a D-clique of (Σ, I) is a non-empty subset p ⊆ Σ such that
p × p ⊆ D. Let P be the set of maximal D-cliques of (Σ, I). This set of

processes induces the distributed alphabet Σ̃ = {Σp}p∈P where Σp = p for

every process p. The alphabet Σ̃ implements (Σ, I) in the sense that the
canonical trace alphabet induced by it is exactly (Σ, I). In other words,
ΣP = Σ and IΣ̃ = I.

For example, consider the trace alphabet (Σ, I) where Σ = {a, b, d} and
I = {(a, b), (b, a)}. The canonical D-clique implementation of (Σ, I) yields

the distributed alphabet Σ̃ = {{a, d}, {d, b}}.
Through the rest of the section we fix a distributed alphabet {Σp}p∈P

and set Σ = ΣP . It will be convenient to assume that P = {1, 2, . . . , K}.
Further, the ith component of a K-tuple x = (x1, x2, . . . , xK) will be written
as x[i]. In other words, x[i] = xi.

A product Büchi automaton over Σ̃ is a structure A = ({Ai}Ki=1, Qin)
where Ai = (Qi,−→i, Fi, F

ω
i) for each i such that :

• Qi is a finite set of i-local states.

• −→i ⊆ Qi × Σi ×Qi is the transition relation of the ith component.

• Fi ⊆ Qi is a set of finitary accepting states.

• F ω
i ⊆ Qi is a set of infinitary accepting states.

• Qin ⊆ Q1 ×Q2 × · · · ×QK is a set of global initial states.

We use two types of accepting states for the components in order to be
able to handle both finite and infinite behaviours. Even if one is interested
only in global infinite behaviours, finite behaviours at the component level
must be treated; a component might quit after engaging in a finite number
of actions while a part of the network runs forever. We use global initial
states to obtain the required expressive power. In general, the automaton
will not be able to branch off into different parts of the state space, starting
from a single global initial state. This will be brought out through a simple

13

example after we define the language behaviour of product automata. The
same example will also illustrate why using the cartesian product of local
initial state sets as global initial states will result in a loss of expressive
power.

Let A = ({Ai}Ki=1, Qin) be a product Büchi automaton over Σ̃. From
now on we will say just “product automata”. Also, we shall often sup-
press the mention of Σ̃. We will also write {Ai} instead of {Ai}Ki=1. Let
Ai = (Qi,−→i, Fi, F

ω
i). Then we set QAG = Q1 ×Q2 × . . .×QK . When A is

clear from the context, we will write QG instead of QAG. The global transition
relation of A is denoted as −→A and it is the subset of QG × Σ×QG given
by:

q
a−→A q′ iff ∀ i ∈ loc(a) : q[i]

a−→i q
′[i] and ∀ i 6∈ loc(a) : q[i] = q′[i].

Let σ ∈ Σ∞. A run of A over σ is a map ρ : Prf(σ) −→ QG which satisfies:

• ρ(ε) ∈ Qin.

• ∀ τa ∈ prf(σ). ρ(τ)
a−→A ρ(τa).

A simple but useful property of runs is the following. Suppose ρ is a run
of the product automaton A over σ. Further suppose that τ, τ ′ ∈ Prf(σ)
such that τ � i = τ ′ � i for some i. Then ρ(τ)[i] = ρ(τ ′)[i].

Let ρ be a run of the product automaton A over σ. Then ρ is accepting
iff for each i, the following condition is satisfied:

• If σ � i is finite then ρ(τ)[i] ∈ Fi where τ ∈ prf(σ) such that τ � i = σ � i.

• If σ � i is infinite then ρ(τa)[i] ∈ F ω
i for infinitely many τa ∈ prf(σ)

with a ∈ Σi.

If σ �i is finite then clearly there exists τ ∈ prf(σ) such that τ � i = σ � i.
Now the above property of runs assures us that the notion of an accepting
run is well-defined. In case σ � i is infinite the acceptance condition can also
be phrased as:

• ρ(τ)[i] ∈ F ω
i for infinitely many τ ∈ prf(σ).

This once again follows easily from the definition of a run. We now define
L(A), the language accepted by the product automaton A as,

L(A) = {σ | ∃ an accepting run of A over σ}.

Now consider the alphabet ({a, d}, {d, b}) and the language L = {ad, bd}.
Figure 2 shows a product automaton over this alphabet which accepts L. It

14

q1 q4 p1 p4ya yd ↓b
yd

q2 q5 p2 p5yd yd
q3 p3

A1 A2

F1 = {q3, q5} F̂1 = ∅ = F̂2 F2 = {p3, p5}
Qin = {(q1, p4), (q4, p1)}

Figure 2: Product automaton accepting L = {ad, bd}

is easy to verify that no product automaton over this alphabet with a single
global initial state can accept L. It is also easy to verify that no product
automaton whose set of initial states is a cartesian product of component
initial state sets can accept this language.

A crucial property of product automata is that they accept ≈-consistent
languages.

Lemma 4.1 Let A = ({Ai}, Qin) be a product automaton over Σ̃. Then
L(A) is trace consistent.

The class of languages accepted by product automata can now be char-
acterized. To this end we define the K-ary operation ⊗ : 2Σ∞1 × 2Σ∞2 × · · · ×
2Σ∞K → 2Σ∞ via ⊗(L1, . . . , LK) = {σ | σ � i ∈ Li for each i}.

In what follows we will write L = L1 ⊗ L2 · · · ⊗ LK to denote the fact
⊗(L1, . . . , LK) = L. We say that L ⊆ Σ∞ is a direct product language over

Σ̃ iff ∃ Li ⊆ Σ∞i for each i such that L = L1 ⊗ L2 ⊗ · · · ⊗ LK . Here are
two useful properties of direct product languages. In stating this result and
elsewhere we will say “product language” instead of “product language over
Σ̃” etc.

Proposition 4.2

1. Let L be a direct product language and σ ∈ Σ∞. Then σ ∈ L iff for
each i there exists σi ∈ L such that σ � i = σi � i.

2. Let L ⊆ Σ∞. Then L is a direct product language iff L = L̂1 ⊗ L̂2 ⊗
· · · ⊗ L̂K where L̂i = {σ � i | σ ∈ L} for each i.

15

As usual, for an alphabet Σ and L ⊆ Σ∞ we say that L is regular iff
L ∩ Σ∗ is a regular subset of Σ∗ and L ⊆ Σω is an ω-regular subset of Σω as
described in Section 2. We can now define the class of languages accepted
by product automata.

Definition 4.3

• R⊗0 (Σ̃) is the subset of 2Σ∞ given by L ∈ R⊗0 (Σ̃) iff L = L1⊗L2⊗· · ·⊗
LK with each Li a regular subset of Σ∞i .

• R⊗(Σ̃) is the least subset of 2Σ∞ which contains R⊗0 and is closed under
finite unions.

The class R⊗(Σ̃) defined above will be called the regular product languages

over Σ̃. As usual, we shall often write R⊗0 instead of R⊗0 (Σ̃) and write R⊗
instead of R⊗(Σ̃). An interesting observation concerning R⊗ is the following:

Proposition 4.4 R⊗ is closed under boolean operations.

It turns out that R⊗ is precisely the class of languages accepted by product
automata.

Theorem 4.5 ([47]) Let L ⊆ Σ∞. Then L ∈ R⊗ iff there exists a product
automaton A such that L = L(A).

We shall be using product automata to settle the decidability and model
checking problems for the logic LTL⊗ to be introduced in the next section. In
anticipation of this, we shall put down two more results concerning product
automata. While doing so and elsewhere the size of the product automaton
A will be understood to be |QG|.

Theorem 4.6 Let A be a product automaton. Then the question L(A)
?
= ∅

can be settled in time O(22K · n2) where n is the size of A.

Theorem 4.7 Let A1 and A2 be two product automata. Then one can ef-
fectively construct a product automaton A such that L(A) = L(A1) ∩ L(A2)
and moreover n = O(2K · n1 · n2) where n is the size of A and n` is the size
of A` for ` = 1, 2.

16

5 A Product Version of LTL

We now wish to design a product version of LTL denoted LTL⊗(Σ̃). The set
of formulas and their locations are given by:

• > is a formula and loc(>) = ∅.

• Suppose α and β are formulas. Then so are∼α and α∨β. Furthermore,
loc(∼α) = loc(α) and loc(α ∨ β) = loc(α) ∪ loc(β).

• Suppose a ∈ Σi and α is a formula with loc(α) ⊆ {i}. Then 〈a〉iα is a
formula and loc(〈a〉iα) = {i}.

• Suppose α and β are formulas such that loc(α), loc(β) ⊆ {i}. Then
αUiβ is a formula. Moreover, loc(αUiβ) = {i}.

We note that each formula in LTL⊗(Σ̃) is a boolean combination of formulas

taken from the set
⋃
i∈Loc LTL⊗i (Σ̃) where, for each i,

LTL⊗i (Σ̃) = {α | α ∈ LTL⊗(Σ̃) and loc(α) ⊆ {i} }.

Stated differently, the syntax of LTL⊗i (Σ̃) is given inductively by:

• > ∈ LTL⊗i (Σ̃).

• If α and β are in LTL⊗i (Σ̃) then ∼α and α ∨ β are in LTL⊗i (Σ̃).

• If α is in LTL⊗i (Σ̃) and a ∈ Σi then 〈a〉iα is in LTL⊗i (Σ̃).

• If α and β are in LTL⊗i (Σ̃) then αUiβ is in LTL⊗i (Σ̃).

Once again, we have chosen to avoid dealing with atomic propositions for
the sake of convenience. They can be introduced in a local fashion as done
in [47]. The decidability result to be presented will go through with minor
notational overheads.

As before, we will often suppress the mention of Σ̃. We will also often
write τi, τ

′
i and τ ′′i instead of τ � i , τ ′ � i and τ ′′ � i, respectively with

τ, τ ′, τ ′′ ∈ Σ∗.
A model is a sequence σ ∈ Σ∞ and the semantics of this logic is given, as

before, with τ ∈ prf(σ).

• σ, τ |= >.

• σ, τ |= ∼α iff σ, τ 6|= α.

17

• σ, τ |= α ∨ β iff σ, τ |= α or σ, τ |= β.

• σ, τ |= 〈a〉iα iff there exists τ ′ ∈ prf(σ) such that σ, τ ′ |= α and τ ′i = τia.
(recall that τ ′i = τ ′ �i.)

• σ, τ |= αUiβ iff there exists τ ′ such that ττ ′ ∈ prf(σ) and σ, ττ ′ |= β.
Further, for every τ ′′ ∈ prf(τ ′), if ε � τ ′′i ≺ τ ′i then σ, ττ ′′ |= α.

As before we derive some useful modalities:

• Oiα
∆⇐⇒
∨
a∈Σi
〈a〉iα.

• 3iα
∆⇐⇒ >Uiα.

• 2iα
∆⇐⇒ ∼3i∼α.

Let M = σ be a model and τ ∈ prf(σ). The following assertions can now
easily be checked.

• σ, τ |= Oiα iff there exists τ ′ ∈ prf(σ) such that σ, τ ′ |= α and |τ ′i | =
|τi|+ 1.

• σ, τ |= 3iα iff there exists τ ′ with ττ ′ ∈ prf(σ) such that σ, ττ ′ |= α.

• σ, τ |= 2iα iff for each τ ′, ττ ′ ∈ prf(σ) implies σ, ττ ′ |= α.

Note that Oiα is the i-local version of the usual next-state operator of LTL.
We will say that a formula α ∈ LTL⊗(Σ̃) is satisfiable if there exist

σ ∈ Σ∞ and τ ∈ prf(σ) such that σ, τ |= α. The language defined by α is
given by

Lα = {σ ∈ Σ∞ | σ, ε |= α}.

We will show the satisfiability problem for LTL⊗(Σ̃) is solvable in deter-
ministic exponential time. This will be achieved by effectively constructing
a product automaton Aα for each α ∈ LTL⊗(Σ̃) such that the language
accepted by Aα is non-empty iff α is satisfiable. Our construction is a gen-
eralization of the one for LTL in Section 2. The solution to the satisfiability
problem will at once lead to a solution to the model checking problem for
programs modelled as a product of sequential agents.

Through the rest of the section we fix a formula α0 ∈ LTL⊗(Σ̃). As before
we will for convenience assume that the derived local next-state modality Oi

is included in the syntax of LTL⊗. In order to construct Aα0 we first define
the (Fischer-Ladner) closure of α0. As a first step let cl(α0) be the least set
of formulas satisfying:

18

• α0 ∈ cl(α0).

• ∼α ∈ cl(α0) implies α ∈ cl(α0).

• α ∨ β ∈ cl(α0) implies α, β ∈ cl(α0).

• 〈a〉iα ∈ cl(α0) implies α ∈ cl(α0).

• αUiβ ∈ cl(α0) implies α, β ∈ cl(α0). In addition, Oi(αUiβ) ∈ cl(α0).

We will now take the closure of α0 to be CL(α0) = cl(α0)∪{∼α | α ∈ cl(α0)}.
From now on we shall identify ∼∼α with α. Set CLi(α0) = CL(α0)∩ LTL⊗i
for each i. We will often write CL instead of CL(α0) and CLi instead of
CLi(α0). All formulas considered from now on will be assumed to belong to
CL unless otherwise stated.

An i-type atom is a subset A ⊆ CLi which satisfies:

• > ∈ A.

• α ∈ A iff ∼α 6∈ A.

• α ∨ β ∈ A iff α ∈ A or β ∈ A.

• αUiβ ∈ A iff β ∈ A or α,Oi(αUiβ) ∈ A.

The set of i-type atoms is denoted ATi. We next define, for each α ∈ CL(α0)
and (A1, . . . , AK) ∈ AT1×. . .×ATK , the predicate Member(α, (A1, . . . , AK)).
For convenience this predicate will be denoted as α ∈ (A1, . . . , AK) and is
given inductively by:

• Let α ∈ CLi. Then α ∈ (A1, . . . , AK) iff α ∈ Ai.

• Let α = ∼β. Then α ∈ (A1, . . . , AK) iff β 6∈ (A1, . . . , AK).

• Let α = β ∨ γ. Then α ∈ (A1, . . . , AK) iff β ∈ (A1, . . . , AK) or γ ∈
(A1, . . . , AK).

Finally, we set Ui = {αUiβ | αUiβ ∈ CLi(α0)} for each i. The product
automaton Aα0 associated with α0 is now defined to be Aα0 = ({Ai}, Qin)
where, for each i, Ai = (Qi,−→i, Fi, F

ω
i) is specified as follows:

• Qi = ATi × {off, on} × 2Ui

• −→i ⊆ Qi×Σi×Qi is given by, (A, x, u)
a−→i (B, y, v) iff the following

conditions are met.

19

1. x = on and for all 〈a〉iα ∈ CLi(α0), 〈a〉iα ∈ A iff α ∈ B and for
all Oiα ∈ CLi(α0), Oiα ∈ A iff α ∈ B. Moreover, if 〈b〉iβ ∈ A

then b = a.

2. If u 6= ∅ then v = {αUiβ | αUiβ ∈ u and β 6∈ B}. If u = ∅ then
v = {αUiβ | αUiβ ∈ B and β 6∈ B}.

• Fi ⊆ Qi is given by: (A, x, u) ∈ Fi iff x = off and for all 〈a〉iα ∈
CLi(α0), 〈a〉iα 6∈ A and for all Oiα ∈ CLi(α0), Oiα 6∈ A.

• F ω
i ⊆ Qi is given by: (A, x, u) ∈ F ω

i iff u = ∅.

• Qin ⊆ Q1×Q2×. . .×QK is given by: ((A1, x1, u1), . . . , (AK , xK , uK)) ∈
Qin iff α0 ∈ (A1, . . . , AK) and ui = ∅ for every i.

It is not difficult to now establish the next result by an application of
Theorem 4.6.

Theorem 5.1 α0 is satisfiable iff L(Aα0) 6= ∅. Hence the satisfiability prob-
lem for LTL⊗ is decidable in exponential time.

We now turn to the model checking problem for LTL⊗. A product
program (over Σ̃) is a structure Pr = ({Pri}Ki=1, Q

Pr
in) where, for each i,

Pri = (Qi,−→i) with Qi a finite set and −→i ⊆ Qi × Σi × Qi. Since we
have agreed to drop atomic propositions there is no need for (local) interpre-
tations for the atomic propositions. Let us further assume for convenience
that QPr

in is a singleton with qin as its sole member and with qin[i] = qiin for
each i. With each such program we can associate the product automaton
APr = ({Ai}Ki=1, {qin}) where Ai = (Qi,−→i, Qi, Qi) for each i.

Now let Pr be a product program and α0 be a formula of LTL⊗. As
in the case for LTL, we say that Pr meets the specification α0 — again
denoted Pr |= α0 — iff σ, ε |= α0 for every σ ∈ L(APr). Once again, using
Theorem 4.7 it is not difficult to prove the following.

Theorem 5.2 The model checking problem for LTL⊗ is decidable in time
O(|Pr| · 2|α0|).

We wish to observe that each product program can be represented as a Σ-
labelled 1-safe net system. To see this let Pr = ({Pri}Ki=1, {qin}) be a product
program. Let’s assume without loss of generality that the family of local
states {Qi} is pairwise disjoint. We set Q =

⋃
i∈P Qi and define an a-state to

be a map qa : loc(a) → Q which satisfies qa(i) ∈ Qi for each i in loc(a). (A
more elaborate development of these notions will appear in the next section).

20

/.-,()*+·
��

ED
��

/.-,()*+·GF

��

��

/.-,()*+·
��

GF
��

e2 e1

��

e

VV

e′1

��

e′2/.-,()*+
��

/.-,()*+
��

e3BC@A

GF //

e3 @A
//

e4

EDoo

e4@A BC

EDoo

/.-,()*+ BC OO
Pr1 Pr2 Pr3

Figure 3: 1-safe net with three components

An a-event is a pair of a-states (qa, q
′
a) which satisfies qa(i)

a−→i q
′
a(i) for each

i in loc(a). We let Ea be the set of a-events. We can now define the Σ-labelled
1-safe net system representing Pr to be N = (B,E, F, cin, φ) where:

• B = Q

• E =
⋃
a∈Σ Ea

• Let qi ∈ Qi and e = (qa, q
′
a) ∈ Ea. Then (qi, e) ∈ F iff i ∈ loc(a) and

qa(i) = qi. Similarly (e, qi) ∈ F iff i ∈ loc(a) and q′a(i) = qi.

• Let e ∈ E. Then φ(e) = a iff e is an a-event.

On the other hand each 1-safe net system which is covered by a set of S-
components can be viewed as a (deterministic) product program; the alpha-
bet of each component is its set of events. If necessary, S-complementation
can be performed to ensure that the system is covered by a set ofS-components.
We do not wish to enter into details here. Instead we show on Figure 3 an
example of a 1-safe net system composed out of three components.

Let Pr denote the associated product program over the distributed al-
phabet {{e1, e2, e3}, {e3, e4}, {e′1, e′2, e4}}. Then it is easy to check that

Pr |= 21O1> ⊃ 23O3>.

21

This property says that along every computation, if the first component
executes infinitely often then so does the third component. The point to
note is that the first component and the third component do not have any
common events and hence there is no direct communication between them.
Nevertheless through the power of the boolean connectives alone the logic can
make assertions about the way components that are ”far apart” are required
to influence each other’s behaviour.

6 Trace Languages and Automata

Traces have many equivalent representations. Here we shall view them as
restricted Σ-labelled partial orders. Abusing terminology we shall call these
objects also traces. We will then argue that these objects are in a rather
precise sense the same as the objects called traces defined in Section 3 in
terms of equivalence classes of sequences.

Let T be a Σ-labelled poset. In other words, (E,≤) is a poset and λ : E →
Σ is a labelling function. For Y ⊆ E we define ↓Y = {x | ∃y ∈ Y : x ≤ y}
and ↑ Y = {x | ∃y ∈ Y : y ≤ x}. In case Y = {y} is a singleton we shall
write ↓y (↑ y) instead of ↓{y} (↑ {y}). We also let l be the relation: x l y
iff x < y and for all z ∈ E, x ≤ z ≤ y implies x = z or z = y.

A trace (over (Σ, I)) is a Σ-labelled poset T = (E,≤, λ) satisfying:

(T1) ∀e ∈ E. ↓e is a finite set
(T2) ∀e, e′ ∈ E. el e′ implies λ(e) D λ(e′).
(T3) ∀e, e′ ∈ E. λ(e) D λ(e′) implies e ≤ e′ or e′ ≤ e.

We shall refer to members of E as events. The trace T = (E,≤, λ) is said
to be finite if E is a finite set. Otherwise it is an infinite trace. Note that
E is always a countable set. T is said to be non-empty in case E 6= ∅. We
let TRfin(Σ, I) be the set of finite traces and TRω(Σ, I) be the set of infinite
traces over (Σ, I) and set TR(Σ, I) = TRfin(Σ, I) ∪ TRω(Σ, I). Often we
will write TRfin instead of TRfin(Σ, I) etc. As before, a subset of traces
LTr ⊆ TR will be called a trace language.

Let T = (E,≤, λ) be a trace. The finite prefixes of T , to be called
configurations, will play a crucial role in what follows. A configuration of
T is a finite subset c ⊆ E such that c = ↓ c. We let CT be the set of
configurations of T and let c, c′, c′′ range over CT . Note that ∅, the empty
set, is a configuration and ↓ e is a configuration for every e ∈ E. Finally, the
transition relation −→T ⊆ CT ×Σ× CT is given by: c

a−→T c
′ iff there exists

e ∈ E such that λ(e) = a and e /∈ c and c′ = c ∪ {e}. It is easy to see that if
c

a−→T c
′ and c

a−→T c
′′ then c′ = c′′.

22

Note that we have now introduced two different notions of traces; one in
terms of equivalence classes of strings as in Section 3 and the other in terms
of Σ-labelled partial orders as in this section. We now sketch briefly the
constructions that show that Σ∞/≈I and TR(Σ, I) represent the same class
of objects. We shall construct representation maps str : Σ∞/ ≈I→ TR(Σ, I)
and trs : TR(Σ, I)→ Σ∞/ ≈I and state some results which show that these
maps are “inverses” of each other. We shall not prove these results. The
details can be easily obtained using the constructions developed in [55] for
relating traces and event structures.

Henceforth, we will not distinguish between isomorphic elements in
TR(Σ, I). In other words, whenever we write T = T ′ for traces T = (E,≤, λ)
and T ′ = (E ′,≤′, λ′), we mean that there is a label-preserving isomorphism
between T and T ′.

Recall that for σ ∈ Σ∞, [σ] stands for the ≈I -equivalence class containing
σ. We now define str : Σ∞ → TR(Σ, I). Let σ ∈ Σ∞. Then str(σ) = (E,≤, λ)
where:

• E = {τa | τa ∈ prf(σ)}. Recall that τ ∈ Σ∗ and a ∈ Σ. Thus
E = prf(σ)− {ε}, where ε is the null string.

• ≤ ⊆ E×E is the least partial order which satisfies: For all τa, τ ′b ∈ E,
if τa � τ ′b and (a, b) ∈ D then τa ≤ τ ′b.

• For τa ∈ E, λ(τa) = a.

The map str induces a natural map str′ from Σ∞/ ≈I to TR(Σ, I) defined
by str′([σ]) = str(σ). One can show that if σ, σ′ ∈ Σ∞, then σ ≈I σ′ iff
str(σ) = str(σ′). This observation guarantees that str′ is well-defined. In
fact, henceforth we shall write str to denote both str and str′.

Next, let T = (E,≤, λ) ∈ TR(Σ, I). Then σ ∈ Σ∞ is a linearization of T
iff there exists a map ρ : prf(σ)→ CT , such that the following conditions are
met:

• ρ(ε) = ∅.

• ∀τa ∈ prf(σ) with τ ∈ Σ∗, ρ(τ)
a−→T ρ(τa).

• ∀e ∈ E ∃τ ∈ prf(σ). e ∈ ρ(τ).

The function ρ will be called a run map of the linearization σ. Note that the
run map of a linearization is unique. In what follows, we shall let lin(T) to
be the set of linearizations of the trace T .

23

We can now define the map trs : TR(Σ, I)→ Σ∞/ ≈I as: trs(T) = lin(T).
One can now show that for every σ ∈ Σ∞, trs(str(σ)) = [σ] and for every
T ∈ TR(Σ, I), str(trs(T)) = T . This justify our claim that Σ∞/ ≈I and
TR(Σ, I) are indeed two equivalent ways of talking about the same class of
objects.

We note that every trace consistent subset L of Σ∞ defines a trace
language LTr given by LTr = {str(σ) | σ ∈ L} which has the property
trs(LTr) = L. In this sense every product language defines a trace language.
We say that a trace language LTr is regular iff trs(LTr) is a regular subset
of Σ∞. As we will see later not every (regular) trace language is a (regular)
product language. Hence in order to recognize regular trace languages one
will have to use strengthened versions of product automata. Such automata
called asynchronous automata were formulated by Zielonka for recognizing
regular languages of finite traces. These were then generalized for handling
infinite traces by Gastin and Petit [15]. We will use a combination of these
two types of automata for solving the satisfiability and model checking prob-
lems for the trace-based temporal logic called TrPTL to be considered in the
next section.

Let Σ̃ be a distributed alphabet with P as the associated set of agents.
In an asynchronous automaton, each process p ∈ P is equipped with a finite
non-empty set of local p-states, denoted Sp. It will be convenient to develop
some notations for talking about “more global” states before defining these
automata.

First we set S =
⋃
p∈P Sp and call S the set of local states. We let P,Q

range over non-empty subsets of P and let p, q range over P. A Q-state is a
map s : Q → S such that s(q) ∈ Sq for every q ∈ Q. We let SQ denote the
set Q-states. We call SP the set of global states.

We use a to abbreviate loc(a) when talking about states (recall that
loc(a) = { p | a ∈ Σp }). Thus an a-state is just a loc(a)-state and Sa
denotes the set of all loc(a)-states.

A distributed transition system TS over Σ̃ is a structure

({Sp}, {−→a}, Sin),

where

• Sp is a finite non-empty set of p-states for each process p.

• For a ∈ Σ, −→a ⊆ Sa × Sa is a transition relation between a-states.

• Sin ⊆ SP is a set of initial global states.

24

The idea is that an a-move by TS involves only the local states of the
agents which participate in the execution a. This is reflected in the global
transition relation −→TS ⊆ SP×Σ×SP which is defined as follows: Suppose
s and s′ are two global states and sa and s′a are the two corresponding a-
states. In other words, sa(i) = s(i) and s′a(i) = s′(i) for each i in loc(a).
Then

s
a−→TS s

′ iff (sa, s
′
a) ∈ −→a and s(j) = s′(j) for every j /∈ loc(a).

From the definition of −→TS, it is clear that actions which are executed by
disjoint sets of agents are processed independently by TS.

An asynchronous automaton over Σ̃ is then a distributed transition sys-
tem equipped with a set of global accepting states. More precisely, it is a
structure A = ({Sp}, {−→a}, Sin, F) where

• F ⊆ SP is a set of accepting global states.

A trace run of A over the finite trace T = (E,≤, λ) is a map ρ : CT → SP
such that ρ(∅) ∈ Sin and for every (c, a, c′) ∈ −→T , ρ(c)

a−→TS ρ(c′). We say
that ρ is an accepting run whenever ρ(E) ∈ F . The language of finite traces
accepted by A is given by

LTr(A) = { T ∈ TRfin | ∃ an accepting run of A over T }.

In the present setting Zielonka’s fundamental result can now be formu-
lated as

Theorem 6.1 ([58]) L ⊆ TRfin(Σ, I) is regular iff L = LTr(A) for some

asynchronous automaton A over some Σ̃ where Σ̃ is a distributed alphabet
whose induced trace alphabet is (Σ, I). Further, one may assume A to be

deterministic and one may assume Σ̃ to be the distributed alphabet induced
by the maximal D-cliques of (Σ, I).

This result has been generalized to the set of ω-regular trace languages
by Gastin and Petit [15] in terms of asynchronous automata with Büchi
acceptance conditions. Since we will treat both finite and infinite traces
on an equal footing we will present a class of automata capable of accepting
both finite and infinite traces. Hence our automata are essentially distributed
transition systems augmented with both finite and infinite accepting states.

An asynchronous Büchi automaton over Σ̃ is a structure

A = ({Sp}, {−→a}, Sin, {(Fp, F ω
p)}),

where:

25

• ({Sp}, {−→a}, Sin) is a distributed transition system.

• Fp ⊆ Sp is a set of local finitary accepting states of process p.

• F ω
p ⊆ Sp is a set of local infinitary accepting states of process p.

For convenience we will from now on denote this class of automata just
“asynchronous automata”.

To define acceptance we must now compute Infp(ρ), the set of p-states
that are encountered infinitely often along ρ. When incorporating both finite
and infinite behaviour in this richer domain we have to take care in defining
the set of infinitely occuring states of process p. The obvious definition,
namely Infp(ρ) = {sp | ρ(c)(p) = sp for infinitely many c ∈ CT}, will not
work. The complication arises because some processes may make only finitely
many moves, even though the overall trace consists of an infinite number of
events.

For instance, consider the distributed alphabet Σ̃0 = {{a}, {b}}. In the
corresponding distributed transition system, there are two processes p and
q which execute a’s and b’s completely independently. Consider the trace
T = (E,≤, λ) where |Ep| = 1 and Eq is infinite — i.e., all the infinite words
in trs(T) contain one a and infinitely many b’s. Let sp be the state of p after
executing a. Then, there will be infinitely many configurations whose p-state
is sp, even though p only moves a finite number of times.

Continuing with the same example, consider another infinite trace T ′ =
(E ′,≤′, λ′) over the same alphabet where both Ep and Eq are infinite. Once
again, let sp be the local state of p after reading one a. Further, let us suppose
that after reading the second a, p never returns to the state sp. It will still
be the case that there are infinitely many configurations whose p-state is sp:
consider the configurations c0, c1, c2, . . . where cj is the finite configuration
after one a and j b’s have occurred.

So, we have to define Infp(ρ) so as to detect whether or not process p is
making progress. The appropriate formulation is as follows:

• Ep is finite: Infp(ρ) = {sp}, where ρ(↓Ep) = s and sp = s(p).

• Ep is an infinite set: Infp(ρ) = {sp | for infinitely many e ∈ Ep, se(p) =
sp, where ρ(↓e) = se}.

A trace run of an asynchronous automaton over the (possibly infinite)
trace T = (E,≤, λ) ∈ TR is now defined in the obvious way. A run ρ of
A over the (possibly infinite) trace T = (E,≤, λ) is accepting iff for each
process p the following conditions are met:

26

• If Ep is finite then Infp(ρ) ∩ Fp 6= ∅.

• If Ep is infinite then Infp(ρ) ∩ F ω
p 6= ∅.

We then have the following characterization extending Theorem 6.1.

Theorem 6.2 A trace language L ⊆ TR(Σ, I) is regular iff L = LTr(A) for

an asynchronous automaton over Σ̃ where Σ̃ is a distributed alphabet whose
induced trace alphabet is (Σ, I).

It should be noted however that deterministic automata no longer suffice for
accepting all regular languages.

We say that A is in standard form if

• For each p, Fp ∩ F ω
p = ∅.

• For each (sa, ta) ∈ −→a and p ∈ loc(a) we have that sa(p) 6∈ Fp.

Thus, A is in standard form if the p-states in Fp are all “dead” and disjoint
from F ω

p . It is easy to convert every asynchronous automaton into standard
form. All our asynchronous automata will be in standard form.

We conclude with a result concerning the emptiness problem for asyn-
chronous automata.

Proposition 6.3 ([30]) Let A be an asynchronous automaton in standard
form. The emptiness problem is decidable in time O(n2|P|), where n is the
largest of the local state spaces, Sp.

We have defined here the languages defined by asynchronous automata
in terms of traces. We note that these automata can be viewed — and this is
the conventional approach — as automata running over Σ-sequences. Using
the global transition relations of these automata one can easily define the
string languages accepted by these automata. These languages will be nat-
urally trace consistent w.r.t. the trace alphabets induced by the associated
distributed alphabets. The resulting trace languages will be precisely the
trace languages accepted by these automata according to the definitions we
have provided here.

7 TrPTL

We present here the linear time temporal logic over traces called TrPTL.
This is the first such logic patterned after PTL (i.e. LTL) formulated for
traces. For a detailed treatment of this logic the reader is referred to [44, 45].

27

As before, it will be notationally convenient to deal with distributed al-
phabets in which the names of the processes are positive integers. Through
this section and the next, we fix a distributed alphabet Σ̃ = {Σi}i∈P with
P = {1, 2, . . . , K} and K ≥ 1. We let i, j and k range over P. As before,
let P,Q range over non-empty subsets of P. The trace alphabet induced by
Σ̃ is denoted (Σ, I). We assume the terminology and notations developed in
the previous sections. In particular, when dealing with a P-indexed family
{Xi}i∈P we will often write just {Xi}.

The logic TrPTL is parameterized by the class of distributed alphabets.
Having fixed Σ̃ we shall often almost always write TrPTL to mean TrPTL(Σ̃),

the logic associated with Σ̃. In order to better illustrate the main features of
the logic we will first include atomic propositions. They will be dropped once
we return to considering the technical aspects of the logic. We fix a finite
non-empty set of atomic propositions P with p, q ranging over P . Then
ΦTrPTL(Σ̃), the set of formulas of TrPTL(Σ̃), is defined inductively via:

• For p ∈ P and i ∈ P, p(i) is a formula (which is to be read “p at i”).

• If α and β are formulas, so are ∼α and α ∨ β.

• If α is a formula and a ∈ Σi then 〈a〉iα is a formula.

• If α and β are formulas so is αUiβ.

Throughout this section, we denote ΦTrPTL(Σ̃) as just Φ. In the semantics
of the logic, which will be based on infinite traces, the i-view of a configura-
tion will play a crucial role. Let T ∈ TRω with T = (E,≤, λ). Recall that
Ei = {e | e ∈ E and λ(e) ∈ Σi}. Let c ∈ CT and i ∈ P. Then ↓i(c) is the
i-view of c and it is defined as:

↓i(c) = ↓(c ∩ Ei).

We note that ↓i(c) is also a configuration. It is the “best” configuration that
the agent i is aware of at c. We say that ↓i(c) is an i-local configuration. Let
CiT = {↓i(c) | c ∈ CT} be the set of i-local configurations. For Q ⊆ P and
c ∈ CT , we let ↓Q(c) denote the set

⋃
{↓i(c) | i ∈ Q}. Once again, ↓Q(c) is

a configuration. It represents the collective knowledge of the processes in Q

about the configuration c.
The following basic properties of traces follow directly from the defini-

tions.

Proposition 7.1 Let T = (E,≤, λ) be an infinite trace. The following state-
ments hold.

28

1. Let ≤i = ≤ ∩ (Ei ×Ei). Then (Ei,≤i) is a linear order isomorphic to
ω if Ei is infinite and isomorphic to a finite initial segment of ω if Ei
is finite.

2. (CiT ,⊆) is a linear order. In fact (CiT−{∅},⊆) is isomorphic to (Ei,≤i).

3. Suppose ↓i(c) 6= ∅ where c ∈ CT . Then there exists e ∈ Ei such that
↓i(c) = ↓e. In fact e is the ≤i-maximum event in (c ∩ Ei).

4. Suppose Q ⊆ Q′ ⊆ P and c ∈ CT . Then ↓ Q(c) =↓ Q(↓ Q′(c)). In
particular, for a single process i, ↓i(c) =↓i(↓i(c)).

We can now present the semantics of TrPTL. A model is a pair M =
(T, {Vi}i∈p) where T = (E,≤, λ) ∈ TRω and Vi : CiT → 2P is a valuation
function which assigns a set of atomic propositions to i-local configurations
for each process i. Let c ∈ CT and α ∈ Φ. Then M, c |= α denotes that α is
satisfied at c in M and it is defined inductively as follows:

• M, c |= p(i) for p ∈ P iff p ∈ Vi(↓i(c)).

• M, c |= ∼α iff M, c 6|= α.

• M, c |= α ∨ β iff M, c |= α or M, c |= β.

• M, c |= 〈a〉iα iff there exists e ∈ Ei− c such that λ(e) = a and M, ↓e |=
α. Moreover, for every e′ ∈ Ei, e′ < e iff e′ ∈ c.

• M, c |= αUiβ iff there exists c′ ∈ CT such that c ⊆ c′ and M, ↓i(c′) |= β.
Moreover, for every c′′ ∈ CT , if ↓i(c) ⊆ ↓i(c′′) ⊂ ↓i(c′) then M, ↓i(c′′) |=
α.

Thus TrPTL is an action based multi-agent version of LTL. Indeed both
in terms of its syntax and semantics, LTL(Σ) corresponds to the case where
there is only one agent. The semantics of TrPTL when specialized down to
this case yields the previous LTL(Σ) semantics.

Returning to TrPTL, the assertion p(i) says that the i-view of c satisfies
the atomic proposition p. Observe that we could well have p(i) satisfied at c
but not p(j) (with i 6= j). It is interesting to note that all atomic assertions
(that we know of) concerning distributed behaviours are local in nature.
Indeed, it is well-known that global atomic propositions will at once lead to
an undecidable logic in the current setting [25, 36].

Suppose M = (T, {Vi}) is a model and c
a−→T c

′ with j /∈ loc(a). Then
M, c |= p(j) iff M, c′ |= p(j). In this sense the valuation functions are local.

29

There are, of course, a number of equivalent ways of formulating this idea
which we will not get into here.

The assertion 〈a〉iα says that the agent i will next participate in an a-
event. Moreover, at the resulting i-view, the assertion α will hold. The
assertion αUiβ says that there is a future i-view (including the present i-view)
at which β will hold and for all the intermediate i-views (if any) starting from
the current i-view, the assertion α will hold.

Before considering examples of TrPTL specifications, we will introduce
some notation. We let α, β with or without subscripts range over Φ. Abusing
notation, we will use loc to denote the map which associates a set of locations
with each formula.

• loc(p(i)) = loc(〈a〉iα) = loc(αUiβ) = {i}.

• loc(∼α) = loc(α).

• loc(α ∨ β) = loc(α) ∪ loc(β).

In what follows, Φi = {α | loc(α) = {i}} is the set of i-type formulas. We
note that unlike LTL⊗, a TrPTL formula of the form 〈a〉iα could have j ∈
loc(α) with j 6= i. A similar remark applies to the indexed until-operators.

A basic observation concerning the semantics of TrPTL can be phrased
as follows:

Proposition 7.2 Let M = (T, {Vi}) be a model, c ∈ CT and α a formula
such that loc(α) ⊆ Q. Then M, c |= α iff M, ↓Q(c) |= α.

A corollary to this result is that in case α ∈ Φi then M, c |= α if and only
if M, ↓i(c) |= α. As a result, the formulas in Φi can be used in exactly the
same manner as one would use LTL⊗ to express properties of the agent i.
Boolean combinations of such local assertions can be used to capture various
interaction patterns between the agents implied by the logical connectives as
well as the coordination enforced by the distributed alphabet Σ̃. For writ-
ing specifications, apart from the usual derived connectives that we already
introduced in Section 2 for LTL, the following operators are also available:

• > ∆⇐⇒ p1(1) ∨ ∼ p1(1) denotes the constant “True”, where P =
{p1, p2, . . .}. We use ⊥ = ∼> to denote “False”.

• 3iα
∆⇐⇒ >Uiα is a local version of the 3 modality of LTL.

• 2iα
∆⇐⇒ ∼3i ∼α is a local version of the 2 modality of LTL.

30

• Let X ⊆ Σi and X = Σi −X. Then αUXi β
∆⇐⇒ (α ∧

∧
a∈X [a]i⊥)Uiβ.

In other words αUXi β is fulfilled using (at most) actions taken from X.

We set 3X
i α

∆⇐⇒ >UXi α and 2Xi α
∆⇐⇒ ∼3X

i ∼α.

• α(i)
∆⇐⇒ αUiα (or equivalently ⊥Uiα). α(i) is to be read as “α at i”. If

M = (T, {Vi}) is a model and c ∈ CT then M, c |= α(i) iff M, ↓i(c) |= α.
It could of course be the case that loc(α) 6= {i}.

A simple but important observation is that every formula is a boolean
combination of formulas taken from

⋃
i∈P Φi. In TrPTL we can say that a

specific global configuration is reachable from the initial configuration. Let
{αi}i∈P be a family with αi ∈ Φi for each i. Then we can define a derived
connective 3(α1, α2, . . . , αK) which has the following semantics at the empty
configuration. Let M = (T, {Vi}) be a model. Then M, ∅ |= 3(α1, α2, . . . , αk)
iff there exists c ∈ CT such that M, c |= α1 ∧ α2 ∧ · · · ∧ αK .

To define this derived connective set Σ′1 = Σ1 and, for 1 < i ≤ K, set
Σ′i = Σi − ∪{Σj | 1 ≤ j < i}. Then 3(α1, α2, . . . , αK) is the formula:

3

Σ′1
1 (α1 ∧3Σ′2

2 (α2 ∧3Σ′3
3 (α3 ∧ · · ·3

Σ′K
K αK)) · · ·).

The idea is that the sequence of actions leading up to the required con-
figuration can be reordered so that one first performs all the actions in Σ1,
then all the actions in Σ2 − Σ1 etc. Hence, if now is an atomic proposition,
the formula 3(now(1), now(2), . . . , now(K)) is satisfied at the empty config-
uration iff there is a reachable configuration at which all the agents assert
now.

Dually, safety properties that hold at the initial configuration can also
be expressed. For example, let crti be the atomic assertion declaring that
the agent i is currently in its critical section. Then it is possible to write a
formula ϕ

ME
which asserts that at all reachable configurations at most one

agent is in its critical section, thereby guaranteeing that the system satisfies
the mutual exclusion property. We omit the details of how to specify ϕ

ME
.

On the other hand, it seems difficult to express nested global and safety
properties in TrPTL. It is also the case that due to the local nature of the
modalities, information about the past sneaks into the semantics even though
there are no explicit past operators in the logic.

A formula α is said to be root-satisfiable iff there exists a model M such
that M, ∅ |= α. On the other hand, α is said to be satisfiable iff there
exists a model M = (T, {Vi}) and c ∈ CT such that M, c |= α. It turns out
that these two notions are not equivalent. Consider the distributed alphabet
Σ̃0 = {Σ1,Σ2} with Σ1 = {a, d} and Σ2 = {b, d}. Then it is not difficult

31

to verify that the formula p(2)(1) ∧ 22 ∼ p(2) is satisfiable but not root-
satisfiable. (Recall that p(2)(1) abbreviates ⊥U1p(2)). One can however
transform every formula α into a formula α′ such that α is satisfiable iff α′

is root satisfiable.
This follows from the observation that every α can be expressed as a

boolean combination of formulas taken from the set
⋃
i∈P Φi. Hence the

given formula α can be assumed to be of the form α =
∨m
j=1(αj1 ∧ αj2 ∧

· · · ∧ αjK) where αji ∈ Φi for each j ∈ {1, 2, . . . , m} and each i ∈ P. Now
convert α to the formula α′ where α′ =

∨m
j=13(αj1, αj2, · · · , αjK). (Recall the

derived modality 3(α1, α2, . . . , αK) introduced earlier.) From the semantics
of 3(α1, α2, . . . , αK) it follows that α is satisfiable iff α′ is root-satisfiable.

Hence, in principle, it suffices to consider only root-satisfiability in de-
veloping a decision procedure for TrPTL. There is of course a blow-up in-
volved in converting satisfiable formulas to root-satisfiable formulas. If one
wants to avoid this blow-up then the decision procedure for checking root-
satisfiability can be suitably modified to yield a direct decision procedure
for checking satisfiability as done in [44]. In any case, it is root satisfiability
which is of importance from the standpoint of model checking. Hence here
we shall only develop a procedure for deciding if a given formula of TrPTL
is root-satisfiable.

As a first step we augment the syntax of our logic by one more construct.

• If α is a formula, so is Oiα. In the model M = (T, {Vi}), at the
configuration c ∈ CT , M, c |= Oiα iff M, c |= 〈a〉iα for some a ∈ Σi. We
also define loc(Oiα) = {i}.

Secondly, we will from now on drop the atomic propositions and instead
work with the constant > and its negation ⊥ as done earlier. The semantic
definitions are assumed to be suitably modified.

Thus Oiα ≡
∨
a∈Σi
〈a〉iα is a valid formula and Oi is expressible in the

former syntax. It will be however more efficient to admit Oi as a first class
modality as we did in Section 2.

Fix a formula α0. Our aim is to effectively associate an asynchronous
automaton Aα0 with α0 such that α0 is root-satisfiable iff LTr(Aα0) 6= ∅.
Since the emptiness problem for asynchronous automata is decidable (Propo-
sition 6.3), this will yield the desired decision procedure. Let cl(α0) be the
least set of formulas containing α0 which satisfies:

• ∼α ∈ cl(α0) implies α ∈ cl(α0).

• α ∨ β ∈ cl(α0) implies α, β ∈ cl(α0).

32

• 〈a〉iα ∈ cl(α0) implies α ∈ cl(α0).

• Oiα ∈ cl(α0) implies α ∈ cl(α0).

• αUiβ ∈ cl(α0) implies α, β ∈ cl(α0). In addition, Oi(αUiβ) ∈ cl(α0).

We then define CL(α0) to be the set cl(α0) ∪ {∼β | β ∈ cl(α0)}.
Thus CL(α0), sometimes called the Fisher-Ladner closure of α0, is closed

under negation with the convention that ∼∼β is identified with β. Moreover,
throughout the remainder of the section all formulas that we encounter will
be assumed to be members of CL(α0). From now we shall write CL instead
of CL(α0).

A ⊆ CL is called an i-type atom iff it satisfies:

• > ∈ A.

• α ∈ A iff ∼α 6∈ A.

• α ∨ β ∈ A iff α ∈ A or β ∈ A.

• αUiβ ∈ A iff β ∈ A or (α ∈ A and Oi(αUiβ) ∈ A).

• If 〈a〉iα, 〈b〉iβ ∈ Ai then a = b.

ATi denotes the set of i-type atoms. We now need to define the notion of
a formula in CL being a member of a collection of atoms. Let α ∈ CL and
{Ai}i∈Q be a family of atoms with loc(α) ⊆ Q and Ai ∈ ATi for each i ∈ Q.
We’ll define the predicate Member(α,{Ai}i∈Q), which for convenience will be
denoted by α ∈ {Ai}i∈Q. It is defined inductively as:

• If loc(α) = {j} then α ∈ {Ai}i∈Q iff α ∈ Aj .

• If α = ∼β then α ∈ {Ai}i∈Q iff β 6∈ {Ai}i∈Q.

• If α = α1∨α2 then α1∨α2 ∈ {Ai}i∈Q iff α1 ∈ {Ai}i∈Q or α2 ∈ {Ai}i∈Q.

The construction of the asynchronous automaton Aα0 is guided by the
construction developed for LTL in Section 2. However in the much richer
setting of traces it turns out that one must make crucial use of the latest
information that the agents have about each other when defining the tran-
sitions of Aα0 . It has been shown by Mukund and Sohoni [29] that this
information can be kept track of by a deterministic asynchronous automa-
ton whose size depends only on Σ̃. (Actually the automaton described in
[29] operates over finite traces but it is a trivial task to convert it into an
asynchronous automaton having the desired properties). To bring out the

33

relevant properties of this automaton, let T ∈ TRω with T = (E,≤, λ). For
each subset Q of processes, the function latestT,Q : CT × P → Q is given by
latestT,Q(c, j) = ` iff ` is the least member of Q (under the usual ordering
over the integers) with the property ↓j(↓q(c)) ⊆ ↓j(↓`(c)) for every q ∈ Q. In
other words, among the agents in Q, ` has the best information about j at
c, with ties being broken by the usual ordering over integers.

Theorem 7.3 ([29]) There exists an effectively constructible deterministic
asynchronous automaton AΓ = ({Γi}, {=⇒a},Γin, {(Fi, F ω

i)}) such that:

1. LTr(AΓ) = TRω.

2. For each Q = {i1, i2, . . . , in}, there exists an effectively computable
function gossipQ : Γi1 × Γi2 × · · · × Γin × P → Q such that for every
T ∈ TRω, every c ∈ CT and every j ∈ P, latestT,Q(c, j) =
gossipQ(γ(i1), . . . , γ(in), j) where ρ

T
(c) = γ and ρ

T
is the unique (ac-

cepting) run of AΓ over T .

Henceforth, we refer to AΓ as the gossip automaton. Each process in the
gossip automaton has 2O(K2 logK) local states, where K = |P|. Moreover the
function gossipQ can be computed in time which is polynomial in the size of
K.

Each i-state of the automaton Aα0 will consist of an i-type atom together
with an appropriate i-state of the gossip automaton. Two additional com-
ponents will be used to check for liveness requirements. One component will
take values from the set Ni = {0, 1, 2, . . . , |Ui|} where Ui = {αUiβ | αUiβ ∈
CL}. This component will be used to ensure that all “until” requirements
are met. The other component will take values from the set {on,off}. This
will be used to detect when an agent has quit.

The automaton Aα0 can now be defined as:

Aα0 = ({Si}, {−→a}, Sin, {(Fi, F ω
i)}),

where:

• For each i, Si = ATi × Γi × Ni× {on,off}. Recall that Γi is the set
of i-states of the gossip automaton and Ni = {0, 1, 2, . . . , |Ui|} with
Ui = {αUiβ | αUiβ ∈ CL}.

• Let sa, s
′
a ∈ Sa with sa(i) = (Ai, γi, ni, vi) and s′a(i) = (A′i, γ

′
i, n
′
i, v
′
i) for

each i ∈ loc(a). Then (sa, s
′
a) ∈ −→a iff the following conditions are

met.

34

– (γa, γ
′
a) ∈ =⇒a (recall that {=⇒a} is the family of transition

relations of the gossip automaton) where γa, γ
′
a ∈ Γa such that

γa(i) = γi and γ′a(i) = γ′i for each i ∈ loc(a).

– ∀i, j ∈ loc(a), A′i = A′j .

– ∀i ∈ loc(a) ∀〈a〉iα ∈ CL. 〈a〉iα ∈ Ai iff α ∈ A′i.
– ∀i ∈ loc(a) ∀Oiα ∈ CL. Oiα ∈ A iff α ∈ A′i.
– ∀i ∈ loc(a)∀〈b〉iβ ∈ CL. If 〈b〉iβ ∈ Ai then b = a.

– Suppose j 6∈ loc(a) and β ∈ CL with loc(β) = {j}. Further
suppose that loc(a) = {i1, i2, . . . , in}. Then β ∈ A′i iff β ∈ A`
where ` = gossiploc(a)(γi1, γi2, . . . , γin, j).

– Let i ∈ loc(a), Ui = {α1Uiβ1, α2Uiβ2, . . . , αniUiβni}. Then u′i and
ui are related to each other via:

u′i =

{
(ui+1) mod (ni+1), if ui = 0 or βui ∈ Ai or αuiUiβui 6∈ Ai
ui, otherwise

– For each i ∈ loc(a), vi = on. Moreover, if v′i = off then 〈a〉iα 6∈ A′i
for every i ∈ loc(a) and every 〈a〉iα ∈ CL.

• Let s ∈ SP with s(i) = (Ai, γi, ui, vi) for every i. Then s ∈ Sin iff
α0 ∈ {Ai}i∈P and γ ∈ Γin where γ ∈ ΓP satisfies γ(i) = γi for every i.
Furthermore, ui = 0 for every i. Finally, for every i, vi = off implies
that 〈a〉iα 6∈ Ai for every 〈a〉iα ∈ CL.

• For each i, F ω
i ⊆ Si is given by F ω

i = {(Ai, γi, ui, vi) | ui = 0 and vi =
on} and Fi ⊆ Si is given by Fi = {(Ai, γi, ui, vi) | vi = off}.

This construction is an optimized version of the original construction
for TrPTL presented in [44, 45]. Note that Aα0 is indeed in standard form.
Arguments similar to those presented in [44, 45] lead to the next set of results.

Theorem 7.4

1. α0 is root-satisfiable iff LTr(Aα0) 6= ∅.

2. The number of local states of Aα0 is bounded by 2O(max(n,m2 logm)) where
n = |α0| and m is the number of agents mentioned in α0. Clearly,
m ≤ n. It follows that the root-satisfiability problem (and in fact the
satisfiability problem) for TrPTL is solvable in time 2O(max(n,m2 logm)·m).

35

The number of local states of each process in Aα0 is determined by two
quantities: the length of α0 and the size of the gossip automaton AΓ. As far
as the size of AΓ is concerned, it is easy to verify that we need to consider
only those agents in P that are mentioned in loc(α0), rather than all agents
in the system.

The model checking problem for TrPTL can be phrased as follows. A
finite state distributed program Pr over Σ̃ is an asynchronous automaton
APr = ({SPri }, {=⇒Pr

a }, SPrin , {(SPri , SPri)}) modelling the state space of Pr.
Viewing a formula α0 as a specification, we say that Pr meets the spec-

ification α0 — denoted Pr |= α0 — if for every T ∈ TRω, if APr has a run
over T then T, ∅ |= α0.

The model checking problem for TrPTL can be solved by “intersecting”
the program automaton APr with the formula automaton A∼α0 to yield
an automaton A such that LTr(A) = LTr(APr) ∩ LTr(A∼α0). As before,
LTr(A) = ∅ iff Pr |= α0.

It turns out that this model checking problem has time complexity
O(|APr| · 2O(max(n,m2 logm)·m)) where |APr| is the size of the global state space
of the asynchronous automaton modelling the behaviour of the given pro-
gram Pr and, as before, n = |α0| and m is the number of agents mentioned
in α0, where α0 is the specification formula.

We now take a brief look at some related agent-based linear time temporal
logics over traces. The first one is the sublogic of TrPTL denoted which
consists of the so called connected formulas of TrPTL. We define Φcon

TrPTL

(from now on written as Φcon) to be the least subset of Φ satisfying the
following conditions:

• > ∈ Φcon and as before Loc(>) = ∅

• If α, β ∈ Φcon, so are ∼α and α ∨ β.

• If α ∈ Φcon and a ∈ Σi such that loc(α) ⊆ loc(a) then 〈a〉iα ∈ Φcon.

• If α, β ∈ Φcon with loc(α) = loc(β) = {i} then αUiβ ∈ Φcon. Actually
one need only demand that loc(α), loc(β) ⊆

⋂
{loc(a) | a ∈ Σi} but

this leads to notational complications that we wish to avoid here.

• If α ∈ Φcon and loc(α) = {i} then Oiα ∈ Φcon. (Once again one needs
to just demand that α ⊆

⋂
{loc(a) | a ∈ Σi}.)

Connected formulas were first identified by Niebert and used by Huhn [22].
They have also been independently identified by Ramanujam [38]. Thanks to
the syntactic restrictions imposed on the next state and until formulas, past
information is not allowed to creep in. Indeed one can prove the following:

36

Proposition 7.5 Let α ∈ Φcon. Then α is satisfiable iff α is root-satisfiable.

Yet another pleasing feature of TrPTLcon is that the gossip automaton can
be eliminated in the construction of the automaton Aα0 whenever α0 ∈ Φcon.
In fact one can prove the following.

Theorem 7.6 The satisfiability problem for TrPTLcon is solvable in time
2O(|α0|).

Once again, a suitably modified statement can be made about the asso-
ciated model checking problem. At present we do not know whether or not
TrPTL is strictly more expressive than TrPTLcon, but it is clear that LTL⊗

is a strict sublogic of TrPTLcon. We shall deal with the relative strengths
of these logics in the next section. Two of the four logics considered by Ra-
manujam [38] in a closely related setting turn out to be LTL⊗ and TrPTLcon.
We conjecture that the other two logics are also expressible within TrPTL.

Katz and Peled introduced the logic ISTL [24] whose semantics has a
trace-theoretic flavour. In a subsequent paper by Peled and Pnueli [34] on
ISTL, the connection to traces was made more directly. Indeed this is one
of the first instances of the explicit use of traces in a temporal logical set-
ting that we know of. However, it has branching time modalities which
permit quantification over the so called observations of a trace. ISTL uses
global atomic propositions rather than local atomic propositions. Penczek
has also studied a number of temporal logics (including a version of ISTL)
with branching time modalities and global atomic propositions [36]. His
logics are interpreted directly over the space of configurations of a trace re-
sulting in a variety of axiomatizations and undecidability results. We feel
that local atomic propositions (as used in TrPTL) are crucial for obtaining
tractable partial order based temporal logics. Niebert has considered several
µ-calculus versions of TrPTL [31, 32] and has obtained various decidability
results using a variant of asynchronous Büchi automata.

The temporal logic of causality (TLC) proposed by Alur, Peled and
Penczek is basically a temporal logic over traces [1]. The concurrent struc-
tures used in [1] as frames for TLC can be easily represented as traces over an
appropriately chosen trace alphabet. The interesting feature of TLC is that
its branching time modalities are interpreted over causal paths. In a trace
(E,≤, λ), the sequence e0e1 · · · ∈ E∞ is a causal path if e0l e1l e2 · · ·. This
logic admits an essentially exponential time decision procedure for checking
satisfiablity in terms of a variant of Büchi automata called Street automata.

37

8 Expressiveness Issues

Our aim here is to discuss some expressiveness issues concerning trace-based
linear time temporal logics. To set the stage we first quickly review the
classical case of sequences.

The monadic second-order theory of infinite sequences over Σ is denoted
MSO(Σ). Its vocabulary consists of a family of unary predicates {Ra}a∈Σ,
one for each a ∈ Σ; a binary predicate ≤; a binary predicate ∈; a countable
supply of individual variables Var = {x, y, z, . . .}; a countable supply of
set variables (i.e. monadic predicate variables) SVar = {X, Y, Z, . . .}. The
formulas of MSO(Σ) are then built up by:

• Ra(x), x ≤ y and x ∈ X are atomic formulas.

• If φ and φ′ are formulas then so are ∼φ, φ ∨ φ′, (∃x)φ and (∃X)φ.

A structure for MSO(Σ) is a ω-sequence σ ∈ Σω. Let I be an interpre-
tation of the variables with I : Var −→ ω and I : SVar −→ 2ω. Then the
notion of σ being a model of φ under the interpretation I, denoted σ |=I φ,
is defined in the expected manner. In particular, σ |=I Ra(x) iff σ(I(x)) = a

(note that σ ∈ Σω is viewed as σ : ω −→ Σ); σ |=I x ≤ y iff I(x) ≤ I(y)
(here ≤ is the usual ordering over ω); σ |=I x ∈ X iff I(x) ∈ I(X).

As usual, a sentence is a formula with no free variables. Each sentence φ
defines an ω-language, denoted Lφ, where:

Lφ = {σ | σ |= φ}.

We say that L ⊆ Σω is MSO(Σ)-definable iff there exists a sentence φ ∈
MSO(Σ) such that L = Lφ. A celebrated result of Büchi [4] shows that the
class of languages expressible by sentences in MSO(Σ) coincides with the
class of languages recognized by Büchi automata over Σ. This class is the
ω-regular languages over Σ.

The first-order theory of infinite sequences over Σ is denoted FO(Σ) and
is obtained from MSO(Σ) by abolishing the monadic second-order quantifi-
cations from the logic. The semantics and notions of first-order definability
are carried over in the obvious manner.

A fundamental result in the theory of temporal logic is Kamp’s Theo-
rem [23] which was later strengthened in [14] to establish that LTL(Σ) is
expressively equivalent to the FO(Σ). The surprise here being that LTL(Σ)
admits only a bounded number of operators (one unary and one binary as
we have formulated it) whereas infinitely many operators of increasing arities
can be defined in FO(Σ). Secondly, as we saw in Section 2, the satisfiability

38

problem for LTL(Σ) can be solved in deterministic exponential time. The
satisfiability problem for FO(Σ) on the other hand, even when the sentences
are interpreted over finite words, is known to be non-elementary hard [43]. It
is quite easy to see that FO(Σ) — and hence LTL(Σ) — is strictly less expres-
sive than MSO(Σ) in the sense that there is a language which is MSO(Σ)-
definable but not FO(Σ)-definable. (Indeed this is the sense in which we
shall compare the expressive power of various logics in what follows.) For
instance, as pointed out by Wolper in a state-based setting [56], the language
L ⊆ {a, b}ω given by “a is executed at every even position” is not definable
in this logic. On the other hand, it is easy to come up with a formula of
MSO(Σ) defining L.

The expressive power of LTL can be extended to obtain the expressive
power of MSO while still guaranteeing an exponential time decidable satisfi-
ability problem as demonstrated first in [57]. Here we sketch how the regular
programs over Σ can be used to achieve this goal [19].

The syntax of regular programs over Σ is given by:

Prg(Σ) ::= a | π0 + π1 | π0; π1 | π∗.

With each program we associate a set of finite words via the map || · || :
Prg(Σ) −→ 2Σ∗ . This map is defined in the standard fashion:

• ||a|| = {a}.

• ||π0 + π1|| = ||π0|| ∪ ||π1||.

• ||π0; π1|| = {τ0τ1 | τ0 ∈ ||π0|| and τ1 ∈ ||π1||}.

• ||π∗|| =
⋃
i∈ω ||πi||, where

– ||π0|| = {ε} and

– ||πi+1|| = {τ0τ1 | τ0 ∈ ||π|| and τ1 ∈ ||πi||} for every i ∈ ω.

The set of formulas of DLTL(Σ) is given by the following syntax.

DLTL(Σ) ::= > | ∼α | α ∨ β | αUπβ, π ∈ Prg(Σ)

A model is a ω-sequence σ ∈ Σω. For τ ∈ prf(σ) we define σ, τ |= α just
as we did for LTL(Σ) in the case of the first three clauses. As for the last
one,

• σ, τ |= αUπβ iff there exists τ ′ ∈ ||π|| such that ττ ′ ∈ prf(σ) and
σ, ττ ′ |= β. Moreover, for every τ ′′ such that ε � τ ′′ ≺ τ ′, it is the case
that σ, ττ ′′ |= α.

39

Thus DLTL(Σ) adds to LTL(Σ) by strengthening the until-operator. To
satisfy αUπβ, one must satisfy αUβ along some finite stretch of behaviour
which is required to be in the (linear time) behaviour of the program π. We
associate with a formula α of DLTL(Σ) the ω-language Lα in the obvious
manner.

A useful derived operator of DLTL is:

• 〈π〉α ∆⇐⇒ > Uπα.

By replacing the until-modality of DLTL with the above derived operator we
obtain the sublogic DLTL−(Σ), which is essentially Propositional Dynamic
Logic [13] equipped with a linear time semantics. It turns out that DLTL(Σ)
and DLTL−(Σ) both have the same expressive power as MSO(Σ).

Theorem 8.1 Let L ⊆ Σω. Then the following statements are equivalent.

1. L is ω-regular (i.e. definable in MSO(Σ)).

2. L is DLTL(Σ)-definable.

3. L is DLTL−(Σ)-definable.

Both the satisfiablity and model checking problems for DLTL(Σ) are de-
cidable with the same time complexity as for LTL(Σ).

Let (Σ, I) be trace alphabet. Then MSO(Σ, I), the monadic second-order
theory of infinite traces (over Σ, I), has the same syntax as MSO(Σ). The
structures are elements of TRω(Σ, I). Let T ∈ TRω(Σ, I) with T = (E,≤, λ)
and let I : X → E be an interpretation. Then T |=MSO

I Ra(x) iff λ(I(x)) = a
and T |=MSO

I x ≤ y iff I(x) ≤ I(y). Hence, the essential difference is that
the binary predicate symbols is now interpreted as the causal partial order
of the trace. The remaining semantic definitions go along the expected lines.
Each sentence ϕ (i.e., a formula with no free occurrences of variables) defines
the ω-trace language

Lϕ = {T | T |=MSO ϕ}.
We say that L ⊆ TRω is MSO-definable iff there exists a sentence ϕ in
MSO(Σ, I) such that L = Lϕ. It is known that MSO-definable languages are
precisely the regular trace languages; i.e. those recognized by asynchronous
automata [11].

FO(Σ, I), the first-order theory of traces, is defined in the obvious way.
Clearly it will be strictly weaker than MSO(Σ, I). For more information the
reader is referred to [7]. Naturally both these theories can be made to handle
finite traces as well.

40

Through the rest of this section we fix a distributed alphabet Σ̃ and let
(Σ, I) be the induced trace alphabet. By MSO(Σ̃) we shall mean the theory

MSO(Σ, I) and similarly for FO(Σ̃), the first-order fragment of MSO(Σ̃). In

what follows we shall often supress the mention of Σ̃ as well as the induced
(Σ, I).

We first consider the logic LTL⊗. Recall that product languages are
trace consistent and hence they induce trace languages via the map str. The
resulting trace languages will be called product trace languages. As might
be expected, the regular product trace languages are the ones obtained from
regular product languages via the map str. It is easy to show that not every
(regular) trace language is a product trace language [47]. It is also easy
to see that LTL⊗-definable trace languages constitute a strict subclass of
regular product trace languages. It has been shown that a product version
of DLTL denoted DLTL⊗ captures exactly the class of regular product trace
languages [20]. We also claim that it is an easy exercise to formulate a

product version of MSO(Σ̃) and show that it captures exactly the regular

product trace languages. Let us denote this product version of MSO(Σ̃) as

MSO⊗(Σ̃) and its first-order fragment as FO⊗(Σ̃). It is easy to show — using

Kamp’s theorem — that LTL⊗(Σ̃) has exactly the same expressive power as

FO⊗(Σ̃).
We also know that LTL⊗ is strictly weaker than TrPTL. First note that

each formula (say α of TrPTL) defines a trace language Lα via :

Lα = { T | T, ∅ |= α}.

Hence we can compare the relative expressive powers of LTL⊗ and TrPTL.
It is known that ([30, 47]):

LTL⊗ ⊂ TrPTLcon ⊆ TrPTL.

It is still open whether TrPTLcon is equal to TrPTL in expressive power.
It is not difficult to show that TrPTL is no more expressive than the first-

order theory of traces but it is not known whether the converse also holds.
It would be nice to have a linear time temporal logic over traces patterned
after LTL which has the same expressive power as the first-order theory of
traces. The motivation is provided by the next result [11]:

Proposition 8.2 Let L ⊆ Σω. Then the following statements are equivalent.

1. L is trace consistent and LTL(Σ)-definable.

2. {str(σ) | σ ∈ L} is FO(Σ, I)-definable.

41

Egged on by this result, recently a different kind of trace-based linear time
temporal logic called LTrL has been proposed [48]. This logic works directly
with a trace alphabet (i.e. it is not based on agents). It is interpreted over
the configurations of a trace and its syntax is given by:

LTrL(Σ, I) ::= > | ∼α | α ∨ β | 〈a〉α | α U β | 〈a−1〉>.

Thus the syntax is very close to LTL except for the addition of a very re-
stricted past-operator. In fact, just a constant number of past-operators are
present in the logic; one for each action.

A model of LTrL(Σ, I) is a trace T = (E,≤, λ). Let c ∈ CT be a config-
uration of T . Then T, c |= α will stand for α being satisfied at c in T . This
notion is defined inductively as follows:

• T, c |= >.

• T, c |= ∼α and T, c |= α ∨ β are defined in the expected manner.

• T, c |= 〈a〉α iff there exists c′ ∈ CT with c
a−→T c

′ with T, c′ |= α.

• T, c |= α U β iff there exists c′ ∈ CT with c ⊆ c′ such that T, c′ |= β.
Moreover, for every c′′ ∈ CT , c ⊆ c′′ ⊂ c′ implies T, c′′ |= α.

• T, c |= 〈a−1〉α iff there exists c′ ∈ CT with c′
a−→T c.

The major result concerning LTrL is the following:

Theorem 8.3 ([48]) Let L ⊆ TRω(Σ, I). Then the following statements
are equivalent.

1. L is FO(Σ, I)-definable.

2. L is LTrL(Σ, I)-definable.

Thus — except for the addition of the restricted past-operators — LTrL
is a generalization of Kamp’s Theorem to the much richer setting of traces.
Meyer and Petit have shown that the past-operators can be eliminated with-
out loss of expressive power when the logic is interpreted over finite traces [28].
A similar result for infinite traces is not known at present. Unfortunately
this logic does not have a matching time complexity in relation to LTL.
Recently Walukiewicz has shown that the satisfiability problem for LTrL is
non-elementary hard [53]. A related result concerns the logic TLPO formu-
lated by Ebinger [10]. This is also a linear time temporal logic interpreted
over traces but with full-fledged past-operators. TLPO is claimed to be ex-
pressively complete when interpreted over finite traces but nothing is known

42

MSO = νTrPTL

TLC

66mmmmmmmmmmmm
FO = LTrL

OO

TrPTL

OO

MSO⊗ = DLTL⊗

ddJJJJJJJJJJJJJJJJJJJJJJJ

t4 t4 t4 t4 t4 t4 t4 t4 t4 t4

o/ o/ o/ o/ o/ o/

j* j* j* j* j* j* j* j* j* j*

TrPTLcon

OO

FO⊗ = LTL⊗

OO

::uuuuuuuuuuuuuuuuuuuuuuu

Figure 4: Relative expressive power of the logics

about the complexity of the satisfiability problem nor about its expressive
power in relation to infinite traces.

At present we do not know much about the relationship between TLC
and the logics we have mentioned so far, except that it is strictly weaker than
the monadic second-order theory of traces.

In an interesting recent development Niebert [32] has formulated a fixed
point based linear time temporal logic for traces in the setting of distributed
alphabets. This logic is denoted as νTrPTL. It is equal in expressive power
to the monadic second-order theory of traces and it has decision procedure of
essentially exponential time complexity. However, the formulas of this logic
are required to satisfy what appears to be awkward syntactic restrictions
and it is not clear how one could express global properties of interest in this
formalism.

The relative strengths of the various linear time temporal logics over
traces mentioned in this section are displayed in Figure 4. A dotted (solid)
arrow from A to B indicates that B is at least as expressive as (strictly more
expressive than) A. Squiggled lines denote that the logics are incomparable
to each other.

To conclude this section, a lot is known about linear time temporal logics
for traces but at present we still do not have — unlike the case of sequences
— pleasing counterparts to the first-order and monadic second-order theories
of traces.

43

9 Conclusion

In this paper we have attempted an overview of linear time temporal logics
interpreted over traces. We have mainly concentrated on the satisfiability and
model checking problems as well as expressiveness issues. The problem of
axiomatizing these logics seems to be a non-trivial task. Some partial results
may be found in [39]. In [34] the authors present proof rules for the logic
ISTL with a trace semantics together with a relative expressive completeness
result. Reisig has also developed a kit of proof rules for a version of UNITY
logic [40, 41]. The models of this logic are the non-sequential processes of
a net system and the proof rules are mainly designed to help reason about
distributed algorithms modelled using net systems.

At present not much is known about corresponding logics in a branching
time setting. Most of the attempts in this direction have lead to logics whose
satisfiablity problems are undecidable [5, 25, 36]. It is however the case that
the model checking problem often remains tractable [5, 36]. We do not know
at present whether the properties expressible in such logics have any type
of “all-or-none” flavour and if so whether one can develop some reduction
techniques for verifying such properties. Some preliminary attempts in this
direction have been made in [16, 54].

References

[1] Alur, R., Peled, D., Penczek, W.: Model checking of causality properties.
Proceedings of the 10th Annual IEEE Symposium on Logic in Computer
Science, IEEE Computer Society Press (1995) 90–100

[2] Bell Labs Design Automation: FormalChecktm. Further information can
be obtained at http://www.bell-labs.com/formalcheck/

[3] Bracho, F., Droste, M., Kuske, D.: Representation of computations
in concurrent automata by dependence orders. Theoretical Computer
Science 174(1-2) (1997) 67–96

[4] Büchi, J. R.: On a decision method in restricted second order arithmetic.
Proceedings of the International Congress on Logic, Methodology and
Philosophy of Science, Stanford University Press (1960) 1–11

[5] Cheng, A.: Petri nets, traces, and local model checking. Proceedings of
the 4th International Conference on Algebraic Methodology and Soft-
ware Technology, Lecture Notes in Computer Science 936, Springer-
Verlag (1995) 322–337

44

[6] Diekert, V.: Combinatorics of traces. Lecture Notes in Computer Science
454, Springer-Verlag (1990)

[7] Diekert, V., Rozenberg, G. (eds.): The book of traces. World Scientific
(1995)

[8] Droste, M.: Recognizable languages in concurrency monoids. Theoreti-
cal Computer Science 150(1) (1995) 77–109

[9] Droste, M., Gastin, P.: Asynchronous cellular automata for pomsets
without auto-concurrency. Proceedings of the 7th International Confer-
ence on Concurrency Theory, Lecture Notes in Computer Science 1119,
Springer-Verlag (1996) 627–638

[10] Ebinger, W.: Charakterisierung von sprachklassen unendlicher spuren
durch logiken. Dissertation, Institut für Informatik, Universität
Stuttgart (1994)

[11] Ebinger, W., Muscholl, A.: Logical definability on infinite traces. The-
oretical Computer Science 154(1) (1996) 67–84

[12] Emerson, A. E.: Temporal and modal logic. In Handbook of Theoretical
Computer Science, volume B: Formal Models and Semantics, Elsevier
Science Publishers (1990) 996–1072

[13] Fischer, M. J., Ladner, R. E.: Propositional dynamic logic of regular
programs. Journal of Computer and System Sciences 18(2) (1979) 194–
211

[14] Gabbay, A., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis
of fairness. Proceedings of the 7th Annual Symposium on Principles of
Programming Languages, ACM (1980) 163–173

[15] Gastin, P., Petit, A.: Asynchronous cellular automata for infinite traces.
Proceedings of the 19th International Colloquium on Automata, Lan-
guages and Programming. Lecture Notes in Computer Science 623,
Springer-Verlag (1992) 583–594

[16] Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial-order approach
to branching time model checking. Proceedings of the 3rd Israeli Sym-
posium on Theory of Computing and Systems, IEEE Computer Society
Press (1995) 130–139

45

[17] Godefroid, P.: Partial-order methods for the verification of concur-
rent systems. Lecture Notes in Computer Science 1032, Springer-Verlag
(1996)

[18] Gerth, R., Peled, D., Vardi, M., Wolper, P.: Simple on-the-fly automatic
verification of linear time temporal logic. Proceedings of the 15th IFIP
WG 6.1 International Workshop on Protocol Specification, Testing, and
Verification, North-Holland (1995)

[19] Henriksen, J. G., Thiagarajan, P. S.: Dynamic linear time temporal
logic. Journal of Pure and Applied Logic, Elsevier (to appear)

[20] Henriksen, J. G., Thiagarajan, P. S.: A product version of dynamic
linear time temporal logic. Proceedings of the 8th International Confer-
ence on Concurrency Theory, Lecture Notes in Computer Science 1243,
Springer-Verlag (1997) 45–58

[21] Holzmann, G. J.: An overview of the SPIN model checker. In “On-the-
fly Model Checking Tutorial”, BRICS Autumn School on Verification,
Note NS-96-6, BRICS, Department of Computer Science, University of
Aarhus (1996)

[22] Huhn, M.: On semantic and logical refinement of actions. Technical Re-
port, Institut für Informatik, Universität Hildesheim, Germany (1996)

[23] Kamp, H. R.: Tense logic and the theory of linear order. Ph.D. thesis,
University of California (1968)

[24] Katz, S., Peled, D.: Interleaving set temporal logic. Theoretical Com-
puter Science 73(3) (1992) 21–43

[25] Lodaya, K., Parikh, R., Ramanujam, R., Thiagarajan, P. S.: A logical
study of distributed transition systems. Information and Computation
119(1) (1995) 91–118

[26] Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent
systems (specification), Springer-Verlag (1991)

[27] Mazurkiewicz, A.: Concurrent program schemes and their interpreta-
tions. Technical report DAIMI PB-78, Department of Computer Science,
University of Aarhus, Denmark (1977)

46

[28] Meyer, R., Petit, A.: Expressive completeness of LTrL on finite traces:
an algebraic proof. Proceedings of the 15th Annual Symposium on The-
oretical Aspects of Computer Science 1373, Lecture Notes in Computer
Science, Springer-Verlag (1998) 533–543

[29] Mukund, M., Sohoni, M.: Keeping track of the latest gossip in a dis-
tributed system. Distributed Computing 10(3) (1997) 117-127

[30] Mukund, M., Thiagarajan, P. S.: Linear time temporal logics over
Mazurkiewicz traces. Proceedings of the 21st International Symposium
on Mathematical Foundations of Computer Science, Lecture Notes in
Computer Science 1113, Springer-Verlag (1996) 62–92

[31] Niebert, P.: A ν-calculus with local views for systems of sequential
agents. Proceedings of the 20th International Symposium on Mathe-
matical Foundations of Computer Science, Lecture Notes in Computer
Science 969, Springer-Verlag (1995) 563–573

[32] Niebert, P.: A temporal logic for the specification and validation of
distributed behaviour. Ph.D. thesis, University of Hildesheim (1997)

[33] Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and
domains, part I. Theoretical Computer Science 13(1) (1981) 85–108

[34] Peled, D., Pnueli, A.: Proving partial order properties. Theoretical Com-
puter Science 126(2) (1994) 143–182

[35] Peled, D.: Partial order reduction: model checking using representa-
tives. Proceedings of the 21st International Symposium on Mathematical
Foundations of Computer Science, Lecture Notes in Computer Science
1113, Springer-Verlag (1996) 93–112

[36] Penczek, W.: Temporal logics for trace systems: on automated verifi-
cation. International Journal of the Foundations of Computer Science
4(1) (1993) 31–68

[37] Pnueli, A.: The temporal logic of programs. Proceedings of the 18th An-
nual Symposium on Foundations of Computer Science, IEEE Computer
Society Press (1977) 46–57

[38] Ramanujam, R.: Locally linear time temporal logic. Proceedings of the
11th Annual IEEE Symposium on Logic in Computer Science, IEEE
Computer Society Press (1996) 118–127

47

[39] Ramanujam, R.: Rules for trace consistent reasoning. Proceedings of the
3rd Asian Computing Science Conference, Lecture Notes in Computer
Science 1345, Springer-Verlag (1997) 57–71

[40] Reisig, W.: Temporal logic and causality in concurrent systems. Pro-
ceedings of CONCURRENCY’88, Lecture Notes in Computer Science
335, Springer-Verlag (1988) 121–139

[41] Reisig, W.: Petri net models for distributed algorithms. In Computer
Science Today — Recent Trends and Developments, Lecture Notes in
Computer Science 1000, Springer-Verlag (1995) 441–454

[42] Sistla, A. P., Clarke, E.: The complexity of propositional linear temporal
logics. Journal of the ACM 32(3) (1985) 733–749

[43] Stockmeyer, L. J.: The complexity of decision problems in automata
theory and logic. Ph.D. thesis, MIT, Cambridge, Massachusetts (1974)

[44] Thiagarajan, P. S.: A trace based extension of linear time temporal logic.
Proceedings of the 9th Annual IEEE Symposium on Logic in Computer
Science, IEEE Computer Society Press (1994) 438–447

[45] Thiagarajan, P. S.: TrPTL: a trace based extension of linear time tem-
poral logic. Technical report TCS-93-6, School of Mathematics, SPIC
Science Foundation, Madras (1993)

[46] Thiagarajan, P. S.: A trace consistent subset of PTL. Proceedings of the
6th International Conference on Concurrency Theory, Lecture Notes in
Computer Science 962, Springer-Verlag (1995) 438–452

[47] Thiagarajan, P. S.: PTL over product state spaces. Technical report
TCS-95-4, School of Mathematics, SPIC Science Foundation, Madras
(1995)

[48] Thiagarajan, P. S., Walukiewicz, I.: An expressively complete linear
time temporal logic for Mazurkiewicz traces. Proceedings of the 12th
Annual IEEE Symposium on Logic in Computer Science, IEEE Com-
puter Society Press (1997) 183–194

[49] Thomas, W.: Automata on infinite objects. In Handbook of Theoretical
Computer Science, volume B: Formal Models and Semantics, Elsevier
Science Publishers (1990) 133–191

[50] Valmari, A.: A stubborn attack on state explosion. Formal Methods in
Systems Design 1 (1992) 285–313

48

[51] Vardi, M. Y., Wolper, P.: An automata-theoretic approach to automatic
program verification. Proceedings of the 1st Annual IEEE Symposium
on Logic in Computer Science, IEEE Computer Society Press (1986)
332-345

[52] Vardi, M. Y.: An automata-theoretic approach to linear time temporal
logic. In Logics for Concurrency - Structure vs. Automata, Lecture Notes
in Computer Science 1043, Springer-Verlag (1996) 238–266

[53] Walukiewicz, I.: Difficult configurations — on the complexity of LTrL
(extended abstract). Proceedings of the 25th International Colloquium
on Automata, Languages and Programming. Lecture Notes in Computer
Science, Springer-Verlag (to appear)

[54] Willems, B., Wolper, P.: Partial-order methods for model checking:
from linear time to branching time. Proceedings of the 11th Annual
IEEE Symposium on Logic in Computer Science, IEEE Computer So-
ciety Press (1996) 294–303

[55] Winskel, G., Nielsen, M.: Models for concurrency. In Handbook of Logic
and the Foundations of Computer Science, volume 4, Oxford University
Press (1995) 1–148

[56] Wolper, P.: Temporal logic can be more expressive. Proceedings of the
22nd Annual IEEE Symposium on Foundations of Computer Science,
IEEE Computer Society Press (1981) 340–348

[57] Wolper, P., Vardi, M. Y., Sistla, A. P.: Reasoning about infinite com-
putation paths. Proceedings of the 24th Annual IEEE Symposium on
Foundations of Computer Science, IEEE Computer Society Press (1983)
185–194.

[58] Zielonka, W.: Notes on finite asynchronous automata. R.A.I.R.O. Infor-
matique Théorique et Applications 21 (1987) 99–135

49

Recent BRICS Report Series Publications

RS-98-8 P. S. Thiagarajan and Jesper G. Henriksen.Distributed Ver-
sions of Linear Time Temporal Logic: A Trace Perspective. April
1998. 49 pp. Appears as a chapter of Reisig and Rozenberg, ed-
itors, Lectures on Petri Nets I: Basic Models, LNCS 1491, 1998,
pages 643–681.

RS-98-7 Stephen Alstrup, Thore Husfeldt, and Theis Rauhe.Marked
Ancestor Problems (Preliminary Version). April 1998. 36 pp.

RS-98-6 Kim Sunesen.Further Results on Partial Order Equivalences
on Infinite Systems. March 1998. 48 pp.

RS-98-5 Olivier Danvy. Formatting Strings in ML. March 1998. 3 pp.
This report is superseded by the later report BRICS RS-98-12.

RS-98-4 Mogens Nielsen and Thomas S. Hune.Timed Bisimulation and
Open Maps. February 1998. 27 pp. Appears in Brim, Gruska
and Zlatuška, editors,Mathematical Foundations of Computer
Science: 23rd International Symposium, MFCS ’98 Proceed-
ings, LNCS 1450, 1998, pages 378–387.

RS-98-3 Christian N. S. Pedersen, Rune B. Lyngsø, and Jotun Hein.
Comparison of Coding DNA. January 1998. 20 pp. Appears
in Farach-Colton, editor, Combinatorial Pattern Matching: 9th
Annual Symposium, CPM ’98 Proceedings, LNCS 1448, 1998,
pages 153–173.

RS-98-2 Olivier Danvy. An Extensional Characterization of Lambda-
Lifting and Lambda-Dropping. January 1998.

RS-98-1 Olivier Danvy. A Simple Solution to Type Specialization (Ex-
tended Abstract). January 1998. 7 pp. Appears in Larsen,
Skyum and Winskel, editors,25th International Colloquium on
Automata, Languages, and Programming, ICALP ’98 Proceed-
ings, LNCS 1433, 1998, pages 908–917.

RS-97-53 Olivier Danvy. Online Type-Directed Partial Evaluation. De-
cember 1997. 31 pp. Extended version of an article to appear
in Third Fuji International Symposium on Functional and Logic
Programming, FLOPS ’98 Proceedings (Kyoto, Japan, April 2–
4, 1998), pages 271–295, World Scientific, 1998.

RS-97-52 Paola Quaglia. On the Finitary Characterization of π-
Congruences. December 1997. 59 pp.

