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MARKED ANCESTOR PROBLEMS

PRELIMINARY VERSION

STEPHEN ALSTRUP, UNIVERSITY OF COPENHAGEN,
THORE HUSFELDT, LUND UNIVERSITY AND BRICS, AND

THEIS RAUHE, BRICS, UNIVERSITY OF AARHUS

Abstract. Consider a rooted tree whose nodes can be marked
or unmarked. Given a node, we want to find its nearest marked
ancestor. This generalises the well-known predecessor problem,
where the tree is a path.

We show tight upper and lower bounds for this problem. The
lower bounds are proved in the cell probe model, the upper bounds
run on a unit-cost RAM.

As easy corollaries we prove (often optimal) lower bounds on
a number of problems. These include planar range searching, in-
cluding the existential or emptiness problem, priority search trees,
static tree union–find, and several problems from dynamic com-
putational geometry, including intersection problems, proximity
problems, and ray shooting. Our upper bounds improve a num-
ber of algorithms from various fields, including dynamic dictionary
matching and coloured ancestor problems.

1. Introduction

Consider a rooted tree whose nodes can be marked or unmarked.
Given a node we want to find its nearest marked ancestor, i.e., the
first marked node on the path from the given node to the root. This
generalises the well-known predecessor problem, where the tree is a
path.

The technical contribution of the present paper is an analysis of
the complexity of the marked ancestor problem; all our lower bounds

Part of this work was done while the first author visited BRICS and Lund Uni-
versity, and while the last author visited the Fields Institute of Toronto. This work
was partially supported by the ESPRIT Long Term Research Programme of the EU,
project number 20244 (ALCOM-IT). The second author was partially supported
by a grant from TFR. The content of this report is identical with the content of
Technical Report DIKU-TR-98/9, Department of Computer Science, University of
Copenhagen.
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are given in the cell probe model, and our algorithms run on a unit-
cost RAM. The results close a number of central open problems about
other concrete computational problems that have been posed in the
literature, some of which have received considerable attention. We
briefly mention these corollaries below, because they make a strong case
for the fundamentality of the ancestor problem. A detailed account of
the applications is given in Sect. 2.

emptiness problem (aka. existential range queries): We prove op-
timal bounds on maintaining points in the plane and check if a
given rectanglecontains any points. Finding a lower bound for
this problem is Open Problem 1 in a recent handbook chapter on
range queries by Agarwal [1].

range searching and partial sums: Lower bounds for range search-
ing problems in the plane are known for structured or algebraic
models [13, 22, 39, 42]. We extend these to the stronger cell probe
model.

priority search trees: We show that Willard’s RAM improvement [40]
of McCreight’s classic data structure [29] is optimal.

union–find problems: Gabow and Tarjan [26] showed that a version
of the union–find problem (static tree union–find) is solvable in
constant amortised time per operation, provably easier than the
general problem. We show that with respect to single operation
worst case bounds, the problem is not easier than the general
problem.

lower bounds for computational geometry: Cell probe lower bounds
are given for a number of fundamental problems from dynamic
computational geometry, including interval maintenance, inter-
section, ray shooting and proximity problems.

tree colouring problems: Our algorithms for marked trees extend
to coloured trees, improving a number of previous results [17, 36].

dynamic dictionary matching: Improved algorithms for dynamic dic-
tionary matching [7].

cell probe complexity: The largest trade-off known for any concrete
problem in this model.

parallel vs. dynamic computation: We exhibit a concrete function
that is easy for parallel computation (it is in AC0) but hard in
the dynamic sense.

The marked ancestor problem. We let T denote a rooted tree with n
nodes V , each of which can be in two states: marked or unmarked. The
nodes on the unique path from node v to the root will be denoted π(v),
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which includes v and the root. The depth of a node v is depth(v) =
|π(v)| − 1, its distance to the root.

The marked ancestor problem is to maintain a data structure with
the following operations:

mark(v): mark node v,
unmark(v): unmark node v,
firstmarked(v): return the first marked node on the path from v to

the root, i.e., the marked node of largest depth on π(v).

The incremental problem does not support unmark, the decremental
problem does not support mark, while the fully dynamic problem sup-
ports both update operations.

We present a new lower bound for the marked ancestor problem in
the cell probe model with word size b between the update time tu and
the query time tq,

tq = Ω
( log n

log(tub log n)

)
.(1)

Previously, bounds of this size were known for counting problems, e.g.,
returning the number of marked predecessors.

To prove 1 we use an argument similar to the chronogram or time
stamp technique of Fredman and Saks [25], and we re-prove their
Thm. 3 using our framework for expository reasons. Interestingly, while
our result is stronger than [25], the proof is simpler.

For logarithmic word size the bound (1) implies a lower bound of
Θ(logn/ log log n) per operation. The bound holds for the worst case
complexity of both the incremental and the decremental problem, as
well as for the amortised complexity of the fully dynamic problem. In
all cases this matches the upper bounds to within a constant factor, so
the complexity of the marked ancestor problem is now fully understood;
Table 1 provides an overview.

updates complexity pr. operation
mark unmark amortised worst case

•
•

}
O(1)

}
Θ(log n/ log logn)

• • Θ(logn/ log log n)

Table 1. Complexity of marked ancestor problems for
logarithmic word size.

We complement the tradeoff (1) with an algorithm for the RAM with
logarithmic word size with the following bounds:
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1. worst case update time O(log logn) for both mark and unmark,
2. worst case query time O(logn/ log log n),
3. linear space and preprocessing time.

To achieve these results we present a new micro–macro division of trees.
In contrast to standard tree divisions [20, 26], our approach does not
limit the number of nodes or the number of boundary nodes in a micro
tree. This leads to exponentially better update times.

Comparing upper and lower bounds we see that the query time is
optimal, even if we would allow polylogarithmic time for each update
or consider amortised bounds. The only target for improvement is the
double-logarithmic update time; we can exhibit constant time bounds
for some special cases of the problem, but the gap remains an open
problem even if T is a path.

Variants and extensions.

Existential queries. In the existential marked ancestor problem, the
query is modified to

exists(v): return ‘yes’ if π(v) contains any marked nodes.

We can show that our lower bound (1) holds even for this, potentially
easier problem, which is our main tool for proving lower bounds in §2.
For this query we can improve our fully dynamic algorithms to mark
nodes in worst case constant time.

Aggregate queries. We slightly modify the problem as follows. Each
node v of T now contains a value val(v) ∈ {0, . . . , m}, and we change
the operations accordingly,

update(v, k): change val(v) to k,
sum(v): return

∑
u∈π(v) val(u) mod m

For m sufficiently large (m = 2b, the largest value that can be stored
in a register) we can show the stronger trade-off

tq log tu = Ω(log n)(2)

between the amortised update tu and query time tq. Note that this
bound does not depend on the register size.

If the update operation is somewhat restricted (the change to val(k)
can be no larger than polylogarithmic in n), we can give an algorithm
with O(log n/ log logn) time per operation, which was known previ-
ously only for paths [16]. By a related technique we show how to dy-
namically maintain a string of parentheses and check if it is balanced
in time O(log n/ log log n), which is optimal and improves [19].
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Reporting queries. Our algorithms can be extended to support report-
ing queries of the form

find(v, k): return the first k marked nodes on π(v).

The worst case query time becomes O(s+log n/ log log n), where s ≤ k
is the size of the output.

Adding leaves. The variants of the marked ancestor problem studied
in [7, 26] provide additional operations that modify the topology of the
tree:

add leaf(v, w): insert a new leaf v with parent w ∈ V .
delete leaf(v): remove the leaf v.

Our data structure can support add leaf in amortised constant time
and delete leaf in worst case constant time while maintaining the worst
case bounds on the other operations, yielding improved algorithms for
dynamic dictionary matching.

Summary. Table 1 shows the complexity of each operation for a number
of variants of the marked ancestor problem supporting various sets of
update and query operations.

In summary, we can provide optimal worst case algorithms for mark
and exists. For other combinations of operations, we are left with a
small gap of size O(log log n) between upper and lower bounds for the
updates, while our query algorithm is optimal even for much slower
updates and even if we change to amortised analysis. These bounds
survive the addition of harder updates like add leaf.

updates query remarks
mark unmark add leaf firstmarked

O(1)∗ – O(1)∗ O(1)∗ Gabow and Tarjan [26]

– O(1)∗ O(1)∗ O(1)∗ Gabow and Tarjan [26]

O(log logn) O(log logn) O(1)∗ Θ(log n/ log logn)† finds k first marked an-
cestors in time O(k +
logn/ logn log logn)

exists

O(1) O(log logn) O(1)∗ Θ(log n/ log logn)†

∗Amortised time bound

†Optimal even for polylogarithmic update time

Table 2. Upper bounds for algorithms supporting var-
ious combinations of updates and queries; a dash indi-
cates lack of support for a particular operation.
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Computational models. Our algorithms run on a random access ma-
chine with logarithmic word size and standard unit-cost operations.
The lower bounds are proved in the cell probe model of Fredman [21]
and A.C. Yao [41]. The model allows arbitrary operations on registers
and can be regarded as a strong nonuniform version of the RAM, the
cell size is denoted b = b(n). The model makes no assumptions on the
preprocessing time or the size of the data structure.

Nondeterminism. The worst case lower bounds for the marked ancestor
problem can be seen to hold even if we allow a model with nondetermin-
istic queries as introduced in [27]. In short this model extends query
computation with the additional power of accessing the data structure
through nondeterministic guesses and such that positive query answers
are verified in the usual sense. This should be contrasted with the fact
that if T is a path, there is a provable gap between nondeterministic
and deterministic query time as observed in [27], since nondetermin-
ism allows worst case constant time complexity for firstmarked while
supporting mark and unmark in worst case O(log logn) time.

Furthermore, the existential marked ancestor problem has nondeter-
ministic query algorithms that take constant time: guess a node on π(v)
and verify that it is marked. However, the complement of the problem,
to verify that a path contains no marked nodes, does not allow such an
algorithm. Indeed, our lower bound holds for the co-nondeterministic
complexity of the query.

2. Applications

In this section we consider logarithmic word size for concreteness,
unless otherwise stated.

2.1. The Emptiness Problem. The emptiness (or, existential) problem
lies at the heart of all range searching problems: maintain a set S ⊆ [n]2

of points in the plane under insertions and deletions, and determine
whether

S ∩ R ?
= ∅,

for rectangle R. Finding a lower bound for this problem is Open Prob-
lem 1 in a recent handbook chapter on range queries by Agarwal [1].

Proposition 1. The planar emptiness problem requires time Ω(log n/
log log n) per operation. This is true even for dominance queries, where
all query rectangles have their lower left corner in the origin. The
bound holds for the incremental or decremental variants, and also for
the amortised query time of the fully dynamic problem.
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We sketch the proof: First observe that the proofs of the lower
bounds on the marked ancestor problem hold even if the tree T is
regular. Now embed such a tree in the first quadrant of the plane, with
the root in the origin and the nodes at depth i spread out evenly on
the diagonal y = −x + δh − δh−i, where δ = logO(1) n is T s outdegree
and h = O(log n/ log logn) is its height. The query rectangles have the
upper right corner in the queried node and the lower left corner in the
origin.

This problem may be the most convincing application of our lower
bound (1); it holds in the cell probe model, so it makes minimal as-
sumptions on the computational model and none on the data struc-
ture. The upper bound for this problem is slightly larger, amortised
O(log n log log n) using fractional cascading [31], yet for dominance
queries it is O(log n/ log log n) using [29, 40], matching our lower bound.

The traditional, algebraic models used for proving lower bounds for
range queries do not provide bounds for the emptiness problem, since
free answers to the emptiness query are built into the model [13, p. 44].

Recently, a handful of papers have established the bound Ω(log logn/
log log logn) in the cell probe model on the query time for the static
version of the emptiness problem. That bound uses a completely dif-
ferent technique based on a result of Ajtaj [2], this can be proved by
combining the reduction of Miltersen, Nisan, Wigderson, and Safra [32,
Thm. 18] with a bound by Beame and Fich [10].

2.2. Priority Search Trees. Priority searching, a mixture of a search
structure and a priority queue sometimes nicknamed ‘1 1

2
-dimensional

searching,’ supports the following operations on a set of points X ⊆ [n]
with priorities p(n) ∈ [n],

insert(x, p(x)): insert x into X with priority p(x),
delete(x): remove x from X
max(x): return max{ p(y) | y ≤ x }.

McCreight’s classic data structure [29] implements these operations
(and a few more) in logarithmic time, Willard [40] shows how to im-
prove this to O(log n/ log logn) on a RAM. Since search trees and pri-

ority queues can be implemented in time O(log1/2 n) and O(log logn),
respectively, one might hope for even stronger improvements.

However, the lower bound (1) holds also for this problem, showing
that the bound from Willard’s construction is optimal.

Proposition 2. Every data structure for priority searching requires time
Ω(log n/ log logn) per operation.
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Priority searching solves the emptiness problem with dominance queries,
so the bound follows from the last section. As before, the bound holds
even for the incremental or decremental variants, and also for the amor-
tised query time of the fully dynamic problem.

2.3. Two-dimensional Range Searching. A general setting that ab-
stracts both the emptiness and priority searching examples is range
queries, where we want answers to questions of the form∑

x∈R
val(x),

where val maps points to values from a semigroup, for instance (N,+)
for counting and (Ud,∪) for reporting. For many choices of algebraic
structure, like ({0, 1},⊕) or (N,+), the paper of Fredman and Saks [25]
provides good lower bounds both in the group and in the cell probe
model, and Frandsen, Miltersen, and Skyum [18] analyse this problem
for finite monoids of the one-dimensional case. Our lower bound shows
that in two dimensions, the lower bound holds for any structure, if only
the query can distinguish ‘no points’ from ‘some points,’ including for
example for (N,max) or ({0, 1},∨).

Many bounds for range searching are provided in a variety of alge-
braic or structured models [13, 22, 39, 42]. However, these bounds are
sometimes overly pessimistic. For example it is known that the one-
dimensional partial sum problem for ({0, 1},∨) can be solved in time
O(log log n) per operation on a RAM [38], exponentially faster than
Yao’s lower bound in an algebraic setting of Ω(log n/ log logn) [42].
As Agarwal explains, this is because bounds in the semigroup model
assume “the weights of points to be part of the input. That is, the
data structure is not tailored to a special set of weight, and it should
work for any set of weight. It is conceivable that faster algorithm can
be developed for answering orthogonal range-counting queries, exploit-
ing the fact that the weight of each point is 1 in each case.” [1, p.
579]. To extend the semigroup lower bounds to stronger models, e.g.,
to allow subtraction, has been (and for dimensions higher than 2 still
is) an open problem for more than a decade, posed by Fredman [22],
A.C. Yao [42], and lately by Agarwal [1].

2.4. Union–find problems. Gabow and Tarjan [26] introduce a weaker
version of disjoint set union that allows linear time algorithms, called
static tree set union. Initially every node v of a (static) tree is in a
singleton set {v}, the algorithm handles the following operations:

unite with parent(v): perform the union of the set containing v with
the set containing its parent, the two original sets are destroyed,
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find(v): return the name of the set containing v.

This problem is easier than the usual disjoint set union problem in
that the ‘union-tree,’ describing the structure of disjoint set unions to
be performed, is known in advance. Indeed, [26] show that on a random
access machine, the problem’s amortised complexity is lower, since it
allows update and query operations in constant time per operation.

This problem is equivalent to the decremental marked ancestor prob-
lem: start with the entire tree marked, and unmark a node when it is
united with its parent. The find query is just firstmarked. Hence, our
trade-off (1) holds for the worst-case complexity of this problem, so in
that sense knowing the tree of unions does not help:

Proposition 3. Static tree union–find requires worst case time Ω(log n/
log log n) per operation.

This bound is optimal by Blum’s algorithm [11]. For the general
union–find problem, cell probe lower bounds of the same size were
provided in [25].

2.5. Tree colour problems. In the tree colour problem [17] we associate
with each node of T a set of colours. The following operations are
considered in [17]:

colour(v, c): add c to v’s set of colours,
uncolour(v, c): remove c from v’s set of colours,
findfirstcolour(v, c): find the first ancestor of v with colour c.

The problem arises in Object Oriented Languages (OOL) [17, 36] to
handle methods in a program. For a long period of time very similar
problems have been investigated in areas like persistent data structures,
logic programming and context trees, see, e.g., [14, 15, 34]. It is known
that the colour problem can be solved using O(log n/ log log n) time
for both updates and queries, some of the best results can be found
in [7, 36], see [17] for a list of references. In [17] on the background of
empirical examination it is documented that long update times are un-
acceptable for this problem, and a randomized algorithm is given with
complexity O

(
(log log n)2

)
per update, but at the cost of increasing

the query time to O(logn/ log log log n). With our algorithms we can
provide even better update times without slowing down the queries.

Proposition 4. Using linear time for preprocessing and linear space,
we can maintain a tree with complexity O(log log n) for colour(v, c) and
uncolour(v, c) and complexity O(logn/ log logn) for findfirstcolour(v, c).

The construction can be found in the appendix and is a simple ex-
tension of our marking algorithm using dictionaries for the colours.
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2.6. Dynamic dictionary matching. Our algorithm with the add leaf
extension has many applications, e.g., it can be used in dynamic vari-
ants of the above problem [17, 36]. However, here we will concentrate on
the application studied by Amir, Farach, Idury, La Poutre and Schaf-
fer [7], called dynamic dictionary matching, see [9, 5, 8, 6, 7] for further
references to this problem.

The problem, a generalisation of pattern matching, is to maintain
a set of patterns Pi (the dictionary) and a text T over a bounded
alphabet. An update operation adds or removes patterns from the
dictionary, and the query is

scan: return all pairs (i, j) such that pattern Pi matches the piece
of text beginning the jth letter of T .

By combining our algorithm with the reduction of [7] we obtain the
following bounds:

insert/delete(P ): O(log log d+ |P | logσ),
scan: O

(
tocc + |T |(log d/ log log d+ log σ)

)
,

where d is the total length of all patterns in the dictionary, σ ≤ d
is the number of distinct letters in the dictionary, and tocc is the
number of pattern occurrences (i.e., the size of the output). The
bounds given in [7] are O

(
|P |(log d/ log log d + log σ)

)
and O

(
(|T | +

tocc) log d/ log log d+ |T | logσ
)
.

The bound is obtained by improving the prefix lookup problem of [7],
where the updates are as above and the query is

lookup(j, k): output the patterns that are a prefix of the first k let-
ters of Pj.

Using our algorithm for the marked ancestor problem in the reduction
of [7, Theorem 3.37, Lemma 3.1], we obtain query time O

(
|out j,k|

log d/ log log d
)

for this problem, where out j,k is the output.

2.7. Lower bounds for dynamic algorithms. It is easy to dress up the
emptiness problem to provide lower bounds for a number of central
problems in computational geometry, a field where lower bounds for
many problems only exist in structured models, even though there is a
large interest in dynamic algorithms, also on the RAM.

For example, using lines instead of points in our reduction, we receive
a lower bound for orthogonal segment intersection, which in turn gives
lower bounds for several similar problems like ray shooting, i.e., finding
the first object in the intersection. Proximity problems are at least
as hard as orthogonal range queries for some metrics (but not the
Euclidean), so our lower bound holds for these.
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A similar construction shows the same bounds for interval (or, seg-
ment) trees, i.e., to maintain a set of intervals of the form [i, j], 1 ≤
i, j ≤ n, under insertions and deletions. The query returns the name
of an interval containing a given point.

Cell probe bounds for other geometric problems (point location) are
given in [28, 27], and some more can be seen to follow from [25].

2.8. Dynamic complexity. The lower bound for the path sum prob-
lem (2) is the largest lower bound known for any concrete dynamic
problem in the cell probe model, previous bounds did not even achieve

tu · tq = ω(logn/ log logn).

Our lower bound can be seen as a response to Fredman’s challenge [23],
even though we still cannot improve

tu + tq = Ω(log n/ log log n),

which is arguably more interesting. Note that the word size does not
appear in (2) (but it does appear in the statement of the problem).

We can cast the ancestor problem in a Boolean function setting;
maintain 2n bits x1, . . . , x2n under the following operations:

update(i): change xi to ¬xi,
query: return ∨

1≤i≤n
x2i ∧

( ∨
vj∈π(vi)

xj

)
.

This precisely models the existential marked ancestor problem problem,
with xj = 1 iff vj is marked, and where xn+1, . . . , x2n is used to pick out
the queried path. This function is clearly in AC0, yet by (1) has large
‘dynamic hardness’ in the sense of Miltersen et al. [33]. This contrasts
the work in [27] were it is proved that for symmetric Boolean functions,
there is a close correspondence between parallel and dynamic hardness.

3. Lower bounds

3.1. Preliminaries. Our lower bounds work in the cell probe model, a
nonuniform version of the unit-cost RAM, where memory access is the
only resource. We consider registers of size bounded by b bits (a typical
choice is b = Θ(logn)). We let M denote the memory. The maximal
time for any update (mark or unmark) is denoted tu, and the maximal
time for the query (varying with the particular problem) is tq.

The proofs for our lower bounds use an information theoretic argu-
ment in which it is necessary to limit the number of memory registers
that can be accessed by the algorithm. In the RAM model the quantity
2b bounds the number of registers that can be accessed, and this would
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be a sufficient bound for our proofs. But in the cell probe model we
need a more careful analysis. Instead we will split M into two parts;
early registers and late registers. The early registers are those that can
be reached by a query computation within the first dlog ne memory
reads. That is those registers occuring within depth dlog ne in any of
the cell probe query trees. The late memory is the remaining mem-
ory registers in the description of the algorithm. Clearly for the worst
case bounds, we can without loss of generality restrict our attention
to registers in early memory since a single read in late memory im-
mediately witnesses a query computation using time Ω(log n) (and we
never prove bounds better than this). For the amortised bound, it also
turns out that the bound Ω(logn) for every query computations read-
ing from late memory in our hard operation sequences is sufficient to
establish the overall amortised bound. Let R denote the least power of
two larger than the total number of registers in early memory. Clearly
logR ∈ O(b log n). For the rest of this section C denotes the quantity
b+ logR, so the number of early memory configurations that differ on
x registers is bounded by 2Cx.

We can view a marked tree T = (V,E) as a labeling e : V 7→ {0, 1},
where e(v) = 1 iff v is marked, and in general we will extend our
labelings to larger domains D. Thus let e : V 7→ D be a labeling of
the nodes V of tree T . For any subset W ⊆ V the partial labeling
e|W : W 7→ D denotes the restriction of e to W . Let F be a set of
labelings V 7→ D. Let FW denote the set of partial labelings W 7→ D
that are a restriction to W of some labeling in F , i.e., FW = { e|W | e ∈
F }. We partition V into layers W1,W2, . . . ,Wh according to depth, so
the ith layer Wi contains the nodes of depth i.

Consider a family U of operation sequences consisting of updates and
queries. Let eI denote some initial labeling of T . We let eu denote the
labeling resulting from execution of the updates of sequence u starting
from initial input configuration corresponding to eI . Define the set of
reachable labelings as:

FU = { eu | u ∈ U },

we often drop the subscript U . A probability distribution on U induces
a probability distribution on FU by letting the probability of picking
e ∈ FU be

Pr(e) =
∑

u∈U :eu=e

Pr(u).

In a similar way for subsets of nodes W the probability distribution
on U induces distributions on the set of partial labelings FW . We say

12



that a distribution on U labels T uniformly with respect to FU iff the
distributions on FU and FWt

U for all 1 ≤ t ≤ h are uniform.
To each register in early memory we associate an age. A register has

age x in M if there have been performed x write operations since the
register was written. We say two early memory configurations M,M ′

are x-equivalent, denoted M ≡x M ′, iff the set of registers of age x
or less and contents are the same. Let M [u] denote the early memory
configuration resulting from execution of sequence u ∈ U beginning
with initial memory configuration M . Define Z(u, x,W ) ⊆ FW relative
to a family U by:

Z(u, x,W ) = { eû|W | û ∈ U where M [u] ≡x M [û] }.
For Z ⊆ FW we associate a set of unfixed nodes ρ(Z) ⊆W defined by;

v ∈ ρ(Z) iff ∃e, e′ ∈ Z : e(v) 6= e′(v).

Lemma 5. Consider a probability distribution on a family U of opera-
tion sequences that labels T uniformly with respect to F . Then for any
layer of nodes W and x > 0:

Pr
u∈U

(|Z(u, x,W )| ≥ |FW |/2Cx+1) ≥ 1
2
.

Proof. Consider the equivalence relation where e1, e2 ∈ FW are equiv-
alent iff there exists u1, u2 ∈ U such that e1 = eu1 |W , e2 = eu2 |W and
M [u1] ≡x M [u2]. Then the sets Z(u, x,W ) correspond to equivalence
classes of FW with respect to this relation. Hence we can bound the
number of these classes of FW by counting the number of early mem-
ory configurations differing among registers of age x or less which by
the choice of C is bounded by 2Cx. Hence the average size of a class
Z(e, x,W ) is at least |FW |/2Cx. By the assumption that the proba-
bility distribution on FW is uniform, the claim follows by a standard
averaging argument.

3.2. Counting problems. For expository reasons we start with yet an-
other problem, which turns out to be particularly well suited for our
technique. Here, the query asks for the parity of the number of marked
nodes on the path from v to the root,

mark(v): mark v,
parity(v): return

∑
u∈π(v) m(v) mod 2.

If T is a path then this is the parity prefix problem of Fredman and
Saks [25], so its hardness is well known.

Theorem 1 (Fredman and Saks). The ancestor parity problem satisfies
the trade-off (1).
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Proof. Let T be a complete tree with n leafs and internal nodes of
degree δ(n) ≥ 4Ctu but such that log δ(n) ∈ O(log(btu logn)). Let
h denote the height of T . Our goal is to establish the existence of
an update sequence such that a random query performed immediately
after this sequence performs a constant fraction of h read operations.

We argue probabilistic. Let F be the set of all {0, 1}-labelings of
T . We define a family U of update sequences relative to F such that
there is an one-to-one correspondence between a labeling e ∈ F and
update sequence u ∈ U . The correspondence is as follows. The update
sequence labels T bottom-up such that after |Wh|+ |Wh−1|+ · · ·+ |Wi|
updates, the actual labeling e′ of T is:

e′(v) =

{
e(v), v ∈Wh ∪ · · · ∪Wi

eI(v), otherwise.

The order in which the nodes of each layer are updated can be chosen
arbitrarily. Our choice of probability distribution on U are the uniform
and by the bijection between F and U this clearly labels T uniformly.

Fix some layer 2 ≤ t ≤ h of the tree. Let x denote the number of
registers written during updates for nodes of depth t − 1 and above.
Then

|Wt| = 4Ctu|Wt−1| > 2Ctu
∣∣⋃
i<t

Wi

∣∣ ≥ 2Cx.(3)

The size of FWt is 2|Wt|. Hence by Lemma 5 and (3) with probability
at least a half we have log |Z(e, x,Wt)| ≥ |Wt| − Cx − 1 ≥ 1

2
|Wt|.

Since log |Z(e, x,Wt)| ≤ |ρ(e, x,Wt)| we obtain for random v ∈ Wt and
u ∈ U :

Pr(∃e1, e2 ∈ Z(u, x,Wt) : e1(v) 6= e2(v)) ≥ Pr(v ∈ ρ(Z(u, x,Wt)))

≥ 1
2

Pr(|ρ(Z(u, x,Wt))| ≥ 1
2
|Wt|)

≥ 1
4
.

Divide the registers into generations relative to their age. The registers
belonging to generation t consists of those registers last written to
during the updates for labels of depth t in T . Formally letting x and
x′ denote the number of write operations performed from and above
layer t− 1 and t respectively, the t generation is the registers of ages y
where x < y ≤ x′.

Pick a random u ∈ U and leaf l. If parity(l) reads outside early
memory then by definition at least dlog ne > h read operations has
been performed before this. On the other hand if this is not the case we
claim that for any t the probability that parity(l) reads a register from
generation t is at least 1

4
. Let v be a node on the path from l to the root.
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Let t denote the layer containing v. The contents of registers belonging
to generation t+1, t+2, . . . , h can not depend on the value of e(v), since
the labeling of e(v) is performed after these registers were changed for
the last time. Furthermore if ∃e1, e2 ∈ Z(u, x,Wt) : e1(v) 6= e2(v) then
by definition of Z(u, x,W ) the labeling of v is also independent of the
contents of registers of generation t − 1 and below. Since this event
occurs with probability 1

4
, and the answer for parity(l) depends upon

e(v), the algorithm needs to read a register from generation t with
probability 1

4
in order to distinguish the two different answers. By

linearity of expectation we conclude that the query has lower bound
Ω(h) = Ω(log n/ log(tub log n)).

The technique can be used to give slightly better bounds (indeed, the
best bounds known for any concrete problem in the cell probe model),
by putting more information than just two bits into every node of the
tree. Recall the definition of the ancestor sum problem from Sec. 1 and
let G denote the domain of values.

Theorem 2. The ancestor sum problem satisfies the trade-off (2).

Proof. Let T be complete with n leafs and out-degree δ(n) greater
than ct2u > 8t2u for a constant c. Let h denote the height of T as before.
Let F be the set of all labelings V 7→ G.

In this proof we need to bound R in terms of the worst case update
time tu since the general bound 2b logn used so far, is to weak for very
fast update tu. In order to bound R we observe that we can restrict
our attention to those registers which occur among the forest of update
trees in the cell probe description of the algorithm. That is any register
in some query tree which is not among these “update registers” is
clearly superfluous and can without loss of generality be disregarded in
our analysis. Furthermore for each node in tree T , there are at most |G|
possible valid assignments for which we have an associated cell probe
update tree. Such update tree contains at most |G|tu nodes. That is
C = logR + b is bounded by:

log(2n|G||G|tu) + log |G| ≤ 2tu log |G| − 1.

The update sequences U are defined relative to F as in the previous
proof, i.e., bottom-up and such that the probability distribution on U
labels T uniformly with respect to F .

Again as before for fixed 2 ≤ t ≤ h and x denoting the number of
registers written during updates performed for the nodes at layer t− 1
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and above we bound

|Wt| = 8t2u|Wt−1| ≥ 4t2u|
⋃
i<t

Wi| ≥ 4tux.

Since |FWt| = |G||Wt|, by Lemma 5 and the bound on |Wt| with prob-
ability a half

log |Z(u, x,Wt)| ≥ |Wt| log |G| − Cx− 1

≥ |Wt| log |G| − (2tu log |G|)x ≥ 1
2
|Wt| log |G|.

Since log |Z(u, x,Wt)| ≤ |ρ(Z(u, x,Wt))| log |G| this implies that
|ρ(Z(u, t,Wt))| ≥ 1

2
|Wt| with probability a half. As in previous proof for

random v ∈Wt and u ∈ U we obtain Pr(∃e1, e2 ∈ Z(u, x,Wt) : e1(v) 6=
e2(v)) ≥ 1

4
. The lower bound of 1

4
h for the expected time for a query for

a random leaf l follows as before, implying tq ∈ Ω(h) = Ω(log n/ log tu).

3.3. Marked ancestor queries. We now turn to our main result, the
lower bound for ancestor queries.

The main difference in our construction is that the marking con-
structed by a typical update sequence is sparse in the sense that there
is a fair chance that a node and its immediate ancestors are unmarked,
thereby forcing the algorithm to examine a large portion of π(v).

Theorem 3. The marked ancestor problem and the existential marked
ancestor problem problem satisfy the trade-off (1). Moreover, this is
true even for incremental or decremental updates.

Proof. We show the result for the (computationally easier) existential
problem.

Assume n is a power of two. Let T be a tree with n leafs and out-
degree greater than 4Ctu logn but O(Ctu log n). Each layer of nodes
Wi, i ≥ 2, is partitioned into blocks Wi,j, j ∈ [|Wi|/ logn], consisting
of exactly log n nodes, i.e., Wi =

⋃
jWi,j, where Wi,j ∩Wi,j′ = ∅ for

j 6= j′ and |Wi,j| = log n for all j. Let F denote the set of labelings of
T satisfying

∀i, j :
∑
v∈Wi,j

e(v) = 1

and root always zero. Let the update sequences U be defined relative to
F as in the proof for Theorem 1. Note that depending upon the initial
labeling, the update sequence can take the form as either an entirely
incremental or entirely decremental update sequence.
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Fix a layer 2 ≤ t ≤ h. As before we can bound the number of nodes
at layer t in terms of the number of write operations which take place
during execution of updates associated layer t − 1 and above. Let x
denote this number of write operations. Then |Wt| ≥ 2Cx log n. By
this bound and by Lemma 5 with probability a half:

Z(u, x,Wt) ≥ |FWt|/2Cx+1 ≥ |FWt|/2 1
2
|Wt|/ logn+1.

For Z(u, x,Wt) satisfying this bound, a simple counting argument shows
that |ρ(Z(u, x,Wt))| ≥ 1

2
|Wt|.

Hence we conclude as in previous proofs that the probability of the
event:

∃e1, e2 ∈ Z(u, x,Wt) : e1(v) 6= e2(v)(4)

is at least 1
4
. In order to achieve the lower bound as in the previous

proofs we need one more observation. Obviously the computation for
an exists query returning ‘yes’ does not need to rely on all the labels
on the path, i.e., a single node with 1 determines the answer. On the
other hand, for a negative answer, the query computation is obviously
sensitive to the label of any node on the path in question. That is for a
query which returns answer ‘no’, every layer t that satisfies (4) above,
witnesses a read operation of a register belonging to generation t. The
probability of a ‘yes’ answer is less than

∑
2≤t≤h log−1 n ≤ h−1

logn
, by the

choice of F (there is only one uniformly chosen 1-entry in each block
of size log n). Hence for a random node on a random path from leaf
l to root, the probability that the exists(l) computation reads a node
from generation l(v) is at least 1

4
− Pr(exists(l) returns ‘yes’) ≥ 1

8
for

large n. Hence the expected number of read operations for exists(l) is
1
8
h ∈ Ω(log n/ log(tub log n)) as desired.

3.4. Amortised bounds. Let tu and tq denote the amortised cost of
updates and queries respectively, i.e., for m,m′ > n, the amount of
time used to perform m updates and m′ queries is at most mtu +m′tq.

Theorem 4. For the fully dynamic marked ancestor problem and for ev-
ery m > n there exists a sequence of m intermixed updates and queries
taking time

Ω

(
m log n

log(tub logn)

)
.

Proof. Let T be a complete tree with n leafs and out-degree greater
than ctuC log2 n for an integer constant c ≥ 8. We consider the same
set of labelings F as in the proof of Theorem 3. The family of sequences
U we consider is defined relative to a certain infinite traversal of the
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leafs of T . Let k ≥ 2 and consider k infinite sequences Ai = 〈ai1, ai2, . . .
for 1 ≤ i ≤ k. Then the merge of A1, . . . , Ak is:

merge(A1, . . . , Ak) = 〈a1
1, a

2
1, a

3
1, . . . , a

k
1, a

1
2, a

2
2, . . .

For a tree T ′ we define an infinite sequence of leafs seq(T ′) inductively
by; if T ′ is a leaf, say l, then seq(T ′) = 〈l, l, . . . . Otherwise for a tree T ′

with the root having subtrees T1, T2, . . . , Tk, the sequence are defined
to be seq(T ′) = merge(seq(T1), . . . , seq(Tk)). Let seq(T ′)[i] denote the
ith element in seq(T ′).

Assume the initial labeling eI of T is a member of F . Let m ≥ n.
We are ready to define U . It consists of all possible sequences of the
form:

u1q1u2q2 . . . u2mq2m

where ui is a small subsequence of 2h updates to be defined in a moment
and each qi is a query of the form exists(l) for some leaf of T . After any
prefix u1q1 . . . uj of a sequence u ∈ U the updates maintain the invariant
that the actual labeling after execution of u1q1 . . . uj is a member of F .
The updates in ui are associated the path from leaf l = seq(T )[i] to
the root in T . For each v ∈ π(l) two updates are performed. Let t
denote the layer for v and let Wt,j be the block of size log n containing
v. The first update unmark the single node labeled one in Wt,j and the
next update assigns a single node among the log n nodes (including the
node just unmarked) in Wt,j to one. After execution of the updates ui,
the labeling of the nodes in Wt,j does not depend on updates which
have taking place before ui in the sense that the choice of which node
set to one in Wj,t by ui is never influenced by the actual labeling when
executing of ui.

It is straightforward to show that the prefix closure of family U labels
T uniformly with respect to F . Let j ≥ m and let u ∈ U . Let ej denote
the actual labeling of T after execution of the prefix up to qj of u. We
let s(j, t) denote the subsequence uj−|Wt|, . . . , uj ending just before qj
and ũ = u1 . . . uj be the full prefix ending before qj . Let x(su(j, t))
denote the number of write operations performed during execution of
su(j, t).

Let Su be the set of pairs { (j, t) | x(su(j, t− 1)) ≤ 4tu logn|Wt−1| }.
That is Su captures those subsequences which from an outside view-
point performed as fast as if the updates were performed in worst case
time tu. The next two lemmata provides us with the necessary tools
allowing us to argue as in the proof for the worst case bound of Theo-
rem 3.
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Lemma 6. For any sequence u ∈ U :

|Su| ≥ 1
2
m(h− 1).

Proof. By definition of tu we have
∑

j≥m x(su(j, t)) ≤ |Wt|2mtuh,

i.e., the average size of x(su(j, t)) is less than 2tuh|Wt| ≤ 2tu log n|Wt|.
That is at least half of the js greater than m must satisfy x(su(j, t)) ≤
4tu logn|Wt|, i.e., (j, t + 1) is in Su. Hence for each t < h there is 1

2
m

entries j such that (j, t) ∈ Su implying |Su| ≥ 1
2
m(h− 1).

Lemma 7. For any j and t the labeling ej(v) for any v ∈
⋃
i≤tWi only

depends on updates in s(j, t).

Proof. Let π0, π1, . . . , π|s(j,t)|−1 denote the paths associated the update
subsequences in s(j, t) = u′0, u

′
1, . . . , u

′
|s(j,t)|. Using |s(j, t)| = |Wt| + 1

and by the construction of the traversal sequence of the leafs, it is easily
proven by induction in t that

⋃
i≤tWi ⊆

⋃
j πj. Hence consider a node

v ∈
⋃
i≤tWi, say at layer t′, and let πj be such path containing v. By

definition of the update subsequence u′j relative to πj , the one entry
within some block Wt′,j′ containing v is affected by u′j and hence v does
not depend on updates prior to u′j, i.e., only on s(j, t).

As before we divide the registers into generations relative to their age,
and keep a correspondence between the layers of T and generations. At
a particular point, say qj , the registers belonging to generation t are
those of age y such that x(su(j, t− 1)) < y ≤ x(su(j, t)).

For each (j, t) ∈ Su either query qj reads from late memory, i.e., it
performs at least dlogne read operations in which case we can associate
a read to each (j, t′) for all t′ ≤ h < dlogne layers. Otherwise with a
constant probability the query qj performs a read of a register belonging
to generation t. Let ej denote the labeling when executing qj and let
x = x(su(j, t− 1)), i.e., ej ∈ Z(ũ, x,Wt). Since (j, t) ∈ Su we get

x ≤ 4tu log n|Wt−1| ≤ 1
2
|Wt|(lognC)−1.

By Lemma 7 we know that the labeling ej of nodes at layer t + 1
and above are independent of contents of registers belonging to gener-
ation t+ 1 or older. By Lemma 5 the probability that |Z(ũ, x,Wt)| ≥
|FWt|/2Cx+1 is larger than a half. Arguing as in proof of Theorem 3
this implies for random v at layer t:

∃e ∈ Z(ũ, x,Wt) : e(v) 6= ej(v)
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with probability 1
4
. As before the probability of a ‘yes’ answer for query

qj is less than 1
8

for sufficiently large n even if we restrict us to j occur-
ring as first component of pairs in Su. Hence arguing as before, if qj
does not read outside early memory, then qj reads a register of genera-
tion t with probability at least 1

8
(i.e., in order to distinguish e and ej

which both can occur as a result of operation sequences from U ending
with memory configurations which agrees on all registers outside gener-
ation t). Hence the expected number of read operations performed dur-
ing execution of u is at least 1

8
|Su| ∈ Ω(mh) = Ω(m logn/ log(tub logn))

as desired.

4. Algorithms for Static Trees

We will show the following theorems.

Theorem 5. Using linear time for preprocessing and linear space, we
can maintain a tree with n nodes on-line with the following worst case
time complexities. O(log log n) for mark and unmark and O(logn/
log log n) for firstmarked. Furthermore, the first k marked ancestors
of any node can be found in worst case time O(logn/ log log n+ k).

Theorem 6. Using linear time for preprocessing and linear space, we
can maintain a tree with n nodes on-line with the following worst
case time complexities. O(1) for mark, O(log logn) for unmark and
O(log n/ log log n) for exists.

In order to achieve these results we will present a new micro/macro-
division of trees in section 4.1. Next in section 4.2 we show how to
handle micro trees and finally in section 4.3 we proof the above theo-
rems.

4.1. ART-universe: A micro-macro division of a tree. A division of
T into a micro/macro universe consists of a partition of the nodes into
micro trees, such that each micro tree is a connected subtree of the
original tree. The macro tree is the tree induced by the root nodes
of the micro trees. Hence, in the macro tree, two nodes are incident
iff there is path in the tree T between the two nodes that does not
contain other micro tree root nodes. We will only use the macro tree
to simplify the presentations of the algorithms. A node with more than
one child in a micro tree/tree is defined as a heavy node in the micro
tree/tree.

Definition 8. An ART-universe of a tree has the following defining
properties:

• Each micro tree has at most O(log n) heavy nodes.
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• To each of the micro trees we associate a level. If the micro tree is
represented as a leaf node in the macro tree it has level 0, otherwise
its level is one greater than the maximum level of its children in
the macro tree.
• The maximum level of a micro tree is O(logn/ log logn).

Note that the above definition does not limit the number of nodes
in a micro tree and that a node in the tree T that has more than one
child is only a heavy node in the micro tree if more than one child of
the node is in the same micro tree.

Lemma 9. An ART-universe exists and can be constructed in linear
time.

Proof. An ART-universe can be constructed recursively in O(log n/
log log n) steps as follows. For any node v, let w(v) be the number
of heavy descendants to v in T . For any node v, where w(v) < logn
and w(parent(v)) ≥ log n, we say v is the root in a micro tree and the
nodes in the micro tree is v and its descendents. Let T ′ be the tree T
from which all the micro trees have been removed, hence T ′ is the
tree induced by the nodes which are not removed. Now we apply the
same process to the tree T ′, removing micro trees with less than logn
heavy nodes, and keep on recursively until the root of T is included
in a micro tree. The level of the micro tree then equals the step in
which it was constructed in the above algorithm. Since the algorithm
trivially is implemented in linear time, we only need to show that the
result is an ART-universe. That is we show that the maximum level
of a micro tree is O(logn/ log logn), since the remaining properties of
an ART-universe follow explicitly by construction. Let T and T ′ be as
above. Each leaf in T ′ must be a node in T with more than log n heavy
descendants. Thus, T ′ has at most O(n/ logn) heavy nodes, implying
that the remaining tree in the ith iteration has at most n/(logn)i heavy
nodes, as a consequence, after O(log n/ log log n) recursions, the root
of T will be included in a micro tree.

Lemma 10. In a tree T we can support the operations mark and un-
mark, in a time identical to the time we can support the same oper-
ations in a micro tree. Furthermore, if a query in a micro tree takes
time O(t1) it takes O(t1 +t2(logn/ log log n)) in the tree T , where O(t2)
is the complexity to answer exists in a micro tree.

Proof. Let the tree be divided into an ART-universe. Each of the
micro trees is maintained separately, thus updating a node in the tree
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only affects the structure associated with the micro tree the node be-
longs to. Hence, the complexity for updating a node is identical to
the cost of updating the structure associated to the micro tree. Now
a query for a node in the tree can be done as follows. First we ex-
amine if the node has a marked ancestor in the micro tree it belongs
to, this takes O(t2) time. If this is not the case we jump to its first
ancestor in the micro tree on the next level and proceed in the same
way from this ancestor until we get to the root of the tree or to a
micro tree with a marked ancestor to the node. In total we visit at
most O(log n/ log log) micro trees (the maximum level of a micro tree)
where we in each of these trees use O(t2) time and finally in the last
micro tree visit we use O(t1) time to answer the query, establishing the
complexity O(t1 +t2(logn/ log logn)) to answer a query in the tree.

4.2. Algorithms in a micro tree. In this section we show how to effi-
ciently perform updates and queries in a micro tree, µ. The use of the
terms heavy and light node now refer to the number of children a node
has in a micro tree µ. Thus, a heavy node in the original tree T can
be light in the micro tree µ to which it belongs, if less than two of its
children in the original tree T are included in the micro tree µ.

High level description of how to maintain micro trees. Essentially we
divide a micro tree into log n paths and the tree induced by the paths is
represented in a single word. To answer a query we use the word to in
constant time find the first path including a marked ancestor. Finally,
using a search structure on the path we complete the query.

In particular each micro tree is divided into log n disjoint paths as
follows. The paths starts from a heavy node in the micro tree and
goes up to but below the first heavy proper ancestor. As a special
case, we have that the micro tree root belongs to a path with only
one node if the root is heavy. Furthermore the division of the paths
does not include the paths which start from a leaf and go up to but do
not include the first heavy proper ancestor of the leaf. The essential
observation of this division of the paths is:

Observation 11. Let v be a node in a micro tree whose paths are divided
as described above and let P be the nodes on the path from v to the root
in the micro tree. Let v belong to a path P0 and let P1 · · ·Pk be the
remaining paths from the node v up to the root in the micro tree. Then
P is identical to P1 · · ·Pk plus a part of the path P0.

Let P0 · · ·Pk be the disjoint path from a node in a micro tree to the
root. In order to in constant time detect the smallest i, 0 < i ≤ k, such
that Pi includes a marked node for the node, we use a tree induced on
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the disjoint paths in the micro tree to which we apply a method used
in [4].

Let MT be the tree induced by the disjoint paths in the micro tree.
That is, in MT we have a node for each heavy node, and a parent
pointer between two nodes iff the parent is the first heavy proper an-
cestor to the child in the micro tree. If the heavy node does not have a
heavy proper ancestor its parent pointer is nil and the node is the root
in MT . Since a micro tree includes at most logn heavy nodes, the tree
MT has size at most logn and thus it can be represented in a single
word as follows. The nodes in MT are numbered from 1 to logn in a
top-down manner. To each node in MT we associate a word, where
the ith bit is set to 1 iff the node in MT numbered i is an ancestor to
the node. Such an induced tree can clearly be build in linear time (for
details see [4]). To the tree MT we also maintain a single word. The
ith bit in this word is 1 iff there is a marked node on the ith path.

Lemma 12. In worst case constant time per update ( mark and un-
mark) we can maintain a micro tree such that in worst case constant
time from any heavy node we can detect on which of the disjoint paths
(if any) the first marked ancestor to the heavy node belongs.

Proof. This is done by using a constant number of simple machine
operations (e.g. XOR and AND) to compare the word for tree MT
(indicating on which paths there is a marked node) and the word for
the heavy node representing which paths there are from the heavy node
to the root, see [4] for details.

Thus, we can reduce micro tree problems to path problems as stated
in the next lemma. Here, we will regard the paths as rooted, such that
the root of the path is the node on the path nearest the root of the
tree to which the path belongs.

Lemma 13. If we for each path know the depth of the marked ances-
tor nearest the root of the path, we can support the operations exists,
firstmarked, mark and unmark in a micro tree in the same worst case
complexity as on a path.

Proof. Let v be a node using the paths P0 · · ·Pk. First we detect if
the node v has a marked ancestor on the path P0, by comparing the
depth of the marked ancestor on the path P0 nearest the root with the
depth of v. If there is no marked ancestor to the node v on the path
P0 we can in constant time, according to lemma 12, find the smallest i
such that Pi includes a marked ancestor, if any such i exist.
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Lemma 14. On a (rooted) path we can support in worst case the fol-
lowing operations: firstmarked in O(log log n) time, exists in constant
time, unmark in O(log log n) time and mark in O(log log n) time or
constant time respectively if firstmarked is supported or not. Further-
more, we can in worst case constant time report the marked node on
the path with minimum depth.

Proof. For each path we maintain the depth of the marked node with
minimum depth on the path, denoted as min(P ) for the path P . This
value is sufficient to answer exists queries. However, if we also need
to find the first marked node we need a search structure on the path
including the depth of the marked nodes on the path. Thus, essentially
the only difference between firstmarked and exists is that we in the first
case need a search structure on the path where we in the second case
only need a priority queue. As a search structure we can use Van Emde
Boas with worst case complexity O(log logn) per operation [30, 37],
however if searching is not needed, we can perform mark (insertion in
the structure) in constant time, as shown in in lemma 23 below, which
give an efficient black box for insertions in priority queues.

4.3. Compilation. Proof. for Theorems 5 and 6 According to Lemma 9
we can in linear time build an ART-universe. Now the theorem is es-
tablished by using path results from Lemma 14 in Lemma 13 reduc-
ing micro tree problems to path problems, and then use this result in
Lemma 10 which reduces tree problems to micro tree problems. Finally
we sketch (a more detailed proof will be presented in the final version
of this paper) how to find the first k ancestor in O(logn/ log log n+ k)
worst case time. Let k′ be the number of marked ancestor to a node
in a micro tree. We show that in a time O(min{k, k′}) we can detect
if k > k′ and if so in the same time find the k′ marked ancestor. To
each path in a micro tree we associate a list of the marked nodes on
the path, this can clearly be done within the same complexity as up-
dating the search structure on the path. To find the marked ancestors
to the node we scan the micro tree top-down, that is we examined the
disjunct path with marked nodes from the root of the micro tree and
down to the node from which we have to find marked ancestors. To
find the path with a marked ancestor we use the word associated to
the micro tree and to find the marked ancestors on the path we use the
list of marked ancestors associated to the path.
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5. Algorithms for Dynamic Trees

In this section we show how to extend the data structure above to
be maintained for trees that grow under addition of leaves. In the final
version of this paper we show how to extend the techniques to the link
operation. Here, we show the following theorem.

Theorem 7. We can maintain a tree under addition of leaves, with
amortised complexity O(1) for add leaf, worst case O(log log n) for
mark and unmark and worst case O(log n/ log logn) for firstmarked,
using linear space. Furthermore the first k marked ancestors can be
reported in worst case time O(log n/ log log n+ k).

Using standard methods we can also support deletion of a leaf in
worst case constant time. Each time we add a new leaf, we check if
more than half of the nodes have been deleted, if this is the case we
rebuild the structure. If n not is known in advance we simply guess a
constant and each time we exceed the guess we double our guess.

5.1. Adding a leaf. In this section we show how to maintain an ART-
universe (recall definition 8) for a tree that grows under additions of
leaves. For a micro tree µ, we let Heavy(µ) denote the set of heavy
nodes in µ. We will maintain the structure such that each micro
tree includes at most 2 logn heavy nodes, thus |Heavy(µ)| ≤ 2 logn.
First we show how to limit the maximum level of a micro tree to
O(log n/ log log n) and next we will be more specific of how to maintain
the structures for the micro trees and the complexity for that part.

A new leaf is added to the same micro tree as its parent belongs to if
the parent is in a micro tree at level 0. Otherwise the new leaf becomes
a single node in a new micro tree at level 0. When a micro tree M
contains more than 2 logn heavy nodes it is divided as follows. Let v
be a node in the micro tree µ, such that if we remove the path P from
the root r of the micro tree µ to v, the micro tree is divided into a forest
of trees, where each of these trees contains at most log n heavy nodes.
Each of these trees is now treated as new micro trees on the same level
as the micro tree µ was before the update. The path P is moved to
the next level. Here we have two cases, depending on the level of the
micro tree above µ. If the above micro tree level is precisely one larger,
we move the path P up in this micro tree, otherwise we create a new
micro tree on the next level, just containing the path.

Lemma 15. The maximum level of a micro tree is O(logn/ log logn).

Proof. We will use a witness argument by induction on the level L.
A node in the tree T can be a witness node for an ancestor. Two
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nodes in the same micro tree have no witness nodes in common. By
induction we will prove: For a micro tree in level L we can for each
heavy node find logL n witness nodes. Proving this we can establish
the lemma, since L ≤ logn/ log log n. For a micro trees at level 0
(micro trees at level 0 are micro trees in the bottom of the tree) the
statement is clearly true, each heavy node is a witness to itself (and
hence, no node is a witness node for more than one heavy node at level
0). When a micro tree is constructed it contains at most log n heavy
nodes and when it is divided it contains 2 log n heavy nodes. Thus, from
construction to destruction of a micro tree at level L at least logn new
heavy nodes have been added to the tree. Each of these heavy nodes
has by induction hypothesis been associated with logL n witness nodes,
in total logL+1 n. Denote these witness nodes as S. When we divide a
micro tree at level L, we add a new heavy node to a micro tree at level
L+ 1. To the new heavy node at level L+ 1 we associate the logL+1 n,
S, witness nodes. Hence it only remains to show that the method used
to associate witness nodes is such that no two nodes in the same micro
tree have witness nodes in common. However, this follows immediately
from the method we have used to associate witness nodes. At any level
we have for any node that the set of witness nodes associated to a node
v only will be associated to a new node the first time the micro tree v
belongs to is divided. Hence, the same node is at most once associated
as a witness nodes to a specific level.

Observation 16. At most O(logn/ log logn) times is a node moved up
to a new level, since a node always is moved up to a micro tree in a
level one greater than the node former level.

As in the static tree we divide a micro tree µ into disjoint paths
and maintain a tree MT induced on the paths, which we represent in a
single word. Thus, it remains to show how to maintain these structures
efficiently. Recall that we to each path P have a search structure (or a
priority queue) and maintain the minimum depth of a marked node on
the path min(P ). Thus, when we move a path P from one micro tree to
another micro tree, each node on the path P should be extracted from
the structure of the path it belongs to before the update and inserted
in a structure for the path P . Let us first establish the complexity for
this part of the update.

Lemma 17. Moving nodes from one path to another has total complex-
ity O(n logn).
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Proof. Each of the n nodes is according to observation 16 moved at
most O(log n/ log logn) times from one path to another, each time at
a cost of O(log log n) for updating a Van Emde Boas structure.

Beside constructing of the new path moved from one micro tree to
another we also have to update the structures associated to the micro
trees. Here, we divide the description into two parts: to add a path
to a micro tree and to remove a path from a micro tree. Adding a
path P to a micro tree can create a new heavy node on a path Q in the
micro tree and thereby force us to divide the path Q into two paths and
reorganise the tree MT . The tree MT can be rebuild in time O(logn),
however we cannot afford to directly split the search structure for the
path Q. Instead we will with each path maintain the set of heavy nodes
where the path Q has been split. Let Q be a path split by the set of
heavy nodes Heavy(Q). A mark(v) operation, for a node v on path Q,
is now performed as follows. We insert the node in the search structure
associated to Q and if v depth is less than min(Q) we update this value.
By using the set Heavy(Q) we can in a time no greater than updating
the search structure calculate to which part Qi of the path Q the node
v belongs and updating the bit for Qi in the word representing the tree
MT . The operation unmark is performed similarly. For a query in a
micro tree from a node v on a path P , we can still use min(P ) to detect
if there on P is a marked ancestor, if this is not the case we use the
tree MT to find the first path with a marked ancestor and continue
from here in the same fashion.

Lemma 18. Adding a new path to a micro tree has complexity O(logn).

Proof. It follows from the discussion above that we have to rebuild
the tree MT , which has complexity O(logn), and perform a constant
number of operations in a search structure of cost O(log logn).

Lemma 19. The dividing of a micro tree into several micro trees when
removing a path has complexity O(log n).

Proof. When we remove a path the nodes on the path can have been
a part of several paths in the micro tree and the micro tree can be split
into several micro trees. For each of these new micro tree we have to
create new MT trees, however MT trees can be build in a time linear
to the size, and the total size is limited by the number of heavy nodes
in the divided micro tree. Hence the complexity is O(log n).
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Lemma 20. We can achieve the results expressed in theorem 7 with the
exception that adding a leaf has complexity O(log n).

Proof. The complexity for mark, unmark, and queries follows imme-
diately from the discussion above since we maintain an ART-universe.
The complexity for adding leaves can be divided into 1) constructing
new paths which are removed from one micro tree and inserted in an-
other micro tree, and 2) dividing/constructing micro trees when a path
is moved. From lemma 17 we know that the total cost of constructing
new paths is O(n logn). Each time we move a path upwards we have
to divide and construct micro trees with additional cost of O(logn)
according to lemma 18 and lemma 19. However, since at least log n
nodes have been added to a micro tree before it is destroyed and at
most n log n/ log log n times a node is added to a micro tree, this does
not exceed the amortised complexity.

Next we show how to use lemma 20 as a tool to achieve the results
stated in theorem 7. In order to use lemma 20 as a black box for further
computation we will have to extend the lemma with an extra operation,
AddParent(v, w) for nodes v, w. Let v have the parent p in the tree,
then AddParent(v, w) inserts w into the tree such that w becomes a
child of p instead of v whose new parent becomes w. Since the operation
only extends an existing path it has no influence on the maximum level
of micro tree. The only difficult task is to assign the node w a number
between the number associated to v and p in order to search on the
path. However, this task we assign to the user of the algorithm and
as we will see it is easy in our context. A new node inserted with the
operation AddParent can, as other nodes, be moved to new micro trees
O(log n/ log log n) times and each time with complexity O(log logn),
thus it has amortised complexity O(log n). We conclude:

Lemma 21. We can achieve the results as expressed in lemma 20 and
furthermore within the same complexity we can support a number of
AddParent operations which does not exceed the number of add leaf
operations.

With the above lemma we can now achieve theorem 7. Essentially
we will do as follows. We divide the nodes from the tree T into two
levels such that a node in level 1 and all its ancestors belong to level 1.
Hence, the nodes in a connected subtree with root equal the root of
T is at level 1 and the remaining nodes are at level 2. At level 2
we collect paths of length O(log n) and insert these paths, at most
n/ logn, into level 1. In level 1 we regard the paths of length O(log n)
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as pathnodes and will maintain level 1 using lemma 21. Since at most
n/ logn pathnodes are inserted in level 1, each taking amortised time
O(log n), we achieve amortized constant time complexity in total. In
order to implement this idea we have to show how to collect nodes into
paths of size O(log n) and how to use lemma 21 on pathnodes. First
we show how to collect nodes into paths at level 2.

5.2. To collect paths.

Lemma 22. We can achieve the results as expressed in theorem 7 for
a forest of trees, where we are allowed n/ log n times to divide a tree
into smaller trees by removing a path of size O(logn) from the root of
a tree to another node in the tree.

A very simple algorithm could be established as follows. When we
add a new leaf we simply add it and a query is answered by following
the path from the node to its root. If this path has size > log n it is
removed. The problems with this simple algorithm is that a query now
takes O(log n) amortised time and worst case O(n) time.

Proof of lemma 22. First we show how to improve the worst case
complexity to O(logn) for queries of the above simple algorithm and
next how to reduce to worst case O(log n/ log logn) time for a query.
The forest is divided into two levels, A and B (in the same way as we
divided the tree into level 1 and 2). The nodes in level A are above
the nodes in level B. A node in level B with a parent in level A is
denoted as a level B root node. We will maintain the invariant that
the length of a path from a node in level A to its root node in level A is
at most log n. When a new node is inserted in level B we associate to
the node a pointer to its level B root and increment the total number
of decedent to this root. If this number becomes logn we proceed as
follows. The path from the new node’s first ancestor in level A and up
to the root in level A is removed and the tree in level B to which the
new node belongs is moved to level A. Since we only remove a path
each time a new tree of size logn has been constructed in level B, at
most n/ logn paths is removed. When a tree is moved from level B
to level A its size is at most log n and the root of the tree becomes
also a root in level A, establishing the worst case complexity for a
query, since the maximum height is O(logn). In order to reduce the
complexity for a query to O(logn/ log logn) we do as follows. When a
node is added to the tree, it is first added to a small tree, SmallTree, of
size at most logn or becomes the root in a new SmallTree if its parent
belongs to a SmallTree of maximal size. Since the SmallTrees have size
logn they can be represented in a word meaning we can perform all
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the operation, mark, unmark, etc. in constant time. Now essentially
we let the macro universe induced by the SmallTrees be maintained
by the above worst case O(logn) algorithm. More specifically, let the
macro tree be the tree induced by the SmallTrees. The nodes in the
macro tree are divided into two levels, A and B, as above. Now, as
above, we limit the size of a tree in level B, but this time we set the
limit of the size to logn/ log logn. Again we remove paths when a tree
in level B gets larger than the limit log n/ log log n. This implies that
we remove at most n/(log2 n/ log logn) paths (which should be divided
into paths of size log n) and a query now is performed by examining at
most O(logn/ log logn) SmallTrees in which we perform each operation
in constant time.

5.3. Compilation. Now we show how to combine lemma 21 with lemma 22
to get theorem 7.

Proof. theorem 7 The nodes in the tree are divided into two levels, A
above B. Level A is maintained by lemma 21 and level B is maintained
by lemma 22. When a leaf is added to the tree it is inserted in level B.
The algorithm, see lemma 22, to maintain level B pushs up to n/ logn
times a path of length logn up to level A. Each such path, P , will be
represented as a single node, PathNode(P ), in level A, which is main-
tained by the algorithm giving lemma 21. This is done as follows. Iff
a node in a path P is marked, PathNode(P ) is also marked. Further-
more the structure is maintained such that if a node v on a path Pv has
a parent w on another path Pw in the same micro tree then w is the
node on the path Pw with largest depth in the tree. This implies that
the firstmarked ancestor to a node v on a path Pv either can be found
on the path Pv or on the path which is the firstmarked ancestor to
PathNode(Pv). Given the PathNode, with the first marked ancestor,
we can easily in constant time detect the first marked ancestor on the
associated path, by letting the marked nodes on a path be represented
in a word. Thus, it only remains to show that we can maintain the
structure in level A such that if a node v on a path Pv has a parent
w on another path Pw in the same micro tree then w is the node on
the path with largest depth. Let MovePath be a path which we move
from one micro tree to another in the next level. MovePath consist of
PathNodes which all, per induction, furfill our condition, thus the only
problem is the PathNode Q on the path MovePath nearest the root in
the tree which parent is a PathNode P in the new micro tree the path
MovePath is moved to. Therefore we split the path P (and the nodes
on the path) into two PathNodes using AddParent in order to fullfill
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the condition. The split is done in O(log n) time which does not exceed
the complexity for dividing/constructing micro trees. Since, each path
moved from level B to level A can result in at most one AddParent
operation, the number of AddParent operations do not exceed the
number of add leaf’s operations as required in lemma 21. Furthermore,
we can easily assign a number to each of the PathNodes, as also re-
quired by lemma 21, by simply letting the number for a PathNode be
the greatest depth in the tree for any of the nodes on the path. To find
the first k ancestor efficiently we use the same methode as described in
the proof of theorem 5.

6. Aggregate Queries

6.1. Dyck Languages. Let S be a string of letters from 1 to n. Each
element in S is either a ( or ). We consider the following two operation
reverse(i) which change letter i in the string, either from ( to ) or
vice versa. The query operation is balanced(i) which return Y es iff the
first i letters is a balanced string. See [19] for previous work on this
problem, including an algorithm with running time O(log n).

The ith letter in the string will be denoted as s(i). We will show the
following theorem.

Theorem 8. Given linear time for preprocessing and linear space, we
can update in O(log n/ log log n) time and answer a query in O(logn/
log log n) time. Specially, balanced(n) can be answered in constant
time. The complexities are all worst case.

From now we will represent ( by a 1 and ) by a −1. Let sum(i, j) =∑
k∈i···j s(k) and minsum(i, j) = mink∈i···j sum(i, k). The answer to

the query balanced(i) is now Y es iff sum(1, i) = minsum(1, i) = 0.
Let T be a balanced tree with branch B = (logn/(log logn)c),

where c is a small constant > 1. The leaves in the tree are in two
levels and numbered 1..n from left to right. The leaf numbered i
have the value s(i). For each node v in the tree let left(v) and
right(v) respectively be the number of the left and right most leaf
decedent to the node. To each internal node will we maintain to
values: nodesum(v) = sum(left(v), right(v)) and nodeminsum(v) =
minsum(left(v), right(v)). When a leaf changes value we can easily
update nodesum in time equal to the height of the tree. The difficult
part is to update nodeminsum. Let the children of a node v be num-
bered v1 · · · vk, for the node v we will for each child maintain the value
childminsum(vi) = minsum(vi) +

∑
vj∈v1···(vi−1) nodesum(vj), hence

nodeminsum(v) = minvi∈v1···vk childminsum(vi). This can be done in
31



constant time per update by tabulation iff the branch B times the num-
ber of bits to represent childminsum is no larger than O(logn). In order
to achieve this we do as follows. Let X = minvi∈v1···vk childminsum(vi)
and let Xchildminsum(vi) = childminsum(vi) − X. If this value is
too large to be represented by log logn bits we let it have the maximum
value which can be represented by log log n bit, in order to mark the
value as not useful. Now Xchildminsum can be updated in constant
time for at least log n rounds and childminsum can be computed in
constant time as Xchildminsum−X. After logn rounds we update the
tables. Here, the update complexity is not worst case, but it should
be easy to make it worst case. After half of the rounds we start a
rebuilding process for the nodes.

To answer a balanced(1) query, we simply test the values in the
root of the tree. This can be done in constant time. To answer a
balanced(i) query we have to traverse the tree from the root to the
ith leaf a make some prefix sum computation which requires more
structure, however this will not increase the update time. Furthermore
note that tabulation not is necessary, see Dietz [16].

6.2. Tree generalisation of Dietz’ results and a simple ancestor algo-
rithm. In [16] Dietz showed the following theorem:

Theorem 9. Prefix sum can be computed in worst case O(log n/ log log n)
time per operation if the update is restricted to integers which can be
represented by O(log log n) bits

Here we extend the results to :

Theorem 10. Let T be a tree with edge and node weights. An update
increase the weight of a node or an edge. The update is restricted to
integers which can be represented by O(log log n) bits. A query consist
of two nodes and return the sum of the edge and node weight on the
path between the nodes. We show how each operation can be done in
worst case O(log n/ log log n) time per operation.

In order to achieve this we will use top-trees as presented in [3]. A
cluster in a tree T is a connected subtree of the tree T with at most
two boundary nodes. A boundary node in a cluster is a node incident
with a node in the tree T which not belongs to the same cluster the
node belongs too. A top-tree of a tree T , is an abstract binary tree
where each node in the top-tree represents a cluster of the original tree
T . Each leaf in the top-tree contains an edge from T not contained by
other leaves. An each internal top-tree node is a cluster which repre-
sents the combination of the two child clusters. A top-tree has height
O(log n) and can be constructed in linear time. Clearly it follows, we
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can construct an abstract tree T ′ with degree O(logn/ log log n) and
height O(log n/ log log n) where each internal node in the top-tree is a
cluster which combine its O(log n/ logn log n) children clusters. Now
we give a simple O(logn/ log log n) worst case per operation algorithm
for mark, unmark, and firstmarked. By definition each internal node
C in T ′ is a combination of logn/ log logn clusters. Let these children
clusters to a cluster be named children(C). The tree induced by the
boundary nodes from the clusters children(C) we defined as the micro
tree fro the cluster C. The micro tree have size O(log n/ log log n) and
can be represented in a word. When a node is marked we update the
micro tree for all the clusters including the node, where the node not
is a boundary node. In this way each query/update requires a con-
stant number of operation on O(log n/ log log n) micro trees (see [3] for
details), which each can be performed in constant time. Furthermore
we can in amortized O(log n/ log log n) time add a leaf to the tree, by
collecting small trees of size O(log n/ log log n), before updating the
tree T ′. This give the same results as presented in [7]. In order to
achieve theorem 10 we combine the representation of T ′ with the re-
sults of Dietz [16], which is possible since the size of a micro tree is
O(log n/ log log n). In the final version of this paper we will give more
details.
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Appendix

Fast Insertions in a Priority Queue. Above we need the operations
min(P ), mark, and unmark on a path. These operations are identical
to the operations Insert, Delete and Findmin in a priority queue.
By standard methods the operation Findmin is supported in worst
case constant time, whereas the insertion operations only have been
supported in worst case constant time by manipulations of specific
priority queues, see [12] for a survey. In this section we give a general
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black box for priority queues to achieve worst case constant time for
insertion. We show the following lemma.

Lemma 23. Given a priority queue H with worst case complexity O(f)
per operation for Insertion, Delete and Findmin, we can construct a
priority queue H ′ with worst case complexity O(1) for Insertion and
Findmin and worst case complexity O(f) for Delete.

Proof. The heap H ′ consist of a heap H and a bucket of size O(f).
When an element is inserted in H ′ we insert it in the bucket in constant
time. When we have inserted O(f) elements, we empty the bucket and
insert the minimum element from the bucket in the heap H . The
remaining elements from the bucket becomes a tail to the inserted
element. If the inserted element is Deleted from H the elements in
its tail is reinserted in the bucket. Since only 1/f of Insertions lead
to a insertion in the heap H we have achieved amortized complexity
O(1) for insertion. In order to make the complexity worst case, we just
make use of simple rebuilding methods, thus an element is inserted
in the heap H over a sequence of f insertion operation. If a deletion
operation should be executed before such a sequence we have time to
finish the insertion before extracting the deleted element.

Note : For decrease keys randomly performed on the elements this
structure also give complexity O(1) for decrease key. We work with
simple extensions to the above structure to achieve this result for any
distributions of decrease key, but have not been able to prove or dis-
prove the value of this method for decrease key.

Proof of Prop. 4. In [17] they essential give an algorithm which also use
mark and unmark and extend it to several colours as follows. To each
colour is associated a data structure and constant look up time [24, 35]
is used to find the structure associated with a specific colour. In essen-
tial we use the same method for the algorithm presented in section 4
for mark, unmark and firstmarked. To each structure S from that algo-
rithm we now have a set of colours, where we to each colour associate
a structure S. That is for a path we associate a set of colours. To
each colour in the set we associate a search structure. Now a search
for a given colour a path can be processed as follows. First we use the
colour set to in constant time find the structure associated to the colour
and next search for the specific colour on the path. Since all necessary
set operations can be done in constant time, the result follows from
theorem 5.
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