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Abstract

We adopt the untyped imperative object calculus of Abadi and
Cardelli as a minimal setting in which to study problems of com-
pilation and program equivalence that arise when compiling object-
oriented languages. We present both a big-step and a small-step
substitution-based operational semantics for the calculus. Our first
two results are theorems asserting the equivalence of our substitution-
based semantics with a closure-based semantics like that given by
Abadi and Cardelli. Our third result is a direct proof of the correct-
ness of compilation to a stack-based abstract machine via a small-step
decompilation algorithm. Our fourth result is that contextual equiv-
alence of objects coincides with a form of Mason and Talcott’s CIU
equivalence; the latter provides a tractable means of establishing op-
erational equivalences. Finally, we prove correct an algorithm, used in
our prototype compiler, for statically resolving method offsets. This is
the first study of correctness of an object-oriented abstract machine,
and of operational equivalence for the imperative object calculus.
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1 Introduction

This paper collates and extends a variety of operational techniques for de-
scribing and reasoning about programming languages and their implementa-
tion. We focus on implementation of imperative object-oriented programs,
expressed in an imperative object calculus. We examine different forms of
structural operational semantics for the calculus, specify an implementation
in terms of an object-oriented abstract machine, and develop a theory of op-
erational equivalence between programs which we use to specify and verify
a simple compiler optimisation. Many of our semantic techniques originate
in earlier studies of the λ-calculus. This paper is their first application to an
object calculus and shows they may easily be re-used in an object-oriented
setting.

The language we describe is essentially the untyped imperative object
calculus of Abadi and Cardelli (1995a, 1995b, 1996), a small but extremely
rich language that directly accommodates object-oriented, imperative and
functional programming styles. Abadi and Cardelli invented the calculus
to serve as a foundation for understanding object-oriented programming; in
particular, they use the calculus to develop a range of increasingly sophisti-
cated type systems for object-oriented programming. We have implemented
the calculus as part of a broader project to investigate object-oriented lan-
guages. Other work considers a concurrent variant of the imperative object
calculus (Gordon and Hankin 1998). This paper develops formal foundations
and verification methods to document and better understand various aspects
of our implementation.

Our system compiles the imperative object calculus to bytecodes for an
abstract machine, implemented in C, based on the ZAM1 of Leroy’s CAML
Light (Leroy 1990). We also implemented a closure-based interpreter for the
calculus. A type-checker enforces the system of primitive self types of Abadi
and Cardelli. Since the results of the paper are independent of this type
system, we will say no more about it.

The rest of the paper is organised as follows:

• In Section 2 we present our source language, the imperative object cal-
culus, together with three forms of operational semantics (Plotkin 1981;
Martin-Löf 1983; Felleisen and Friedman 1986; Kahn 1987). Theorem 1
and Theorem 2 assert the consistence of these semantics.

• Our target language is the instruction set of an object-oriented abstract
machine, a simplification of the machine used in our implementation,

1“ZAM” is an acronym for “Zinc Abstract Machine”, where “Zinc” is an acronym for
“Zinc is not Caml”.
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and analogous to abstract machines for functional languages. Section 3
presents a formal description of our abstract machine, and a compiler
from the object calculus to instructions for the abstract machine. We
prove a compiler correctness result, Theorem 3, by adapting an idea of
Rittri (1990) to cope with state and objects.

• Given the formal description of our source language, we may express
correctness of source-to-source transformations via operational equiv-
alence. In Section 4, we adapt the contextual equivalence of Morris
(1968), which has become the standard for studies of λ-calculi, to the
imperative object calculus. Our fourth result, Theorem 4, characterises
contextual equivalence using the CIU equivalence of Mason and Talcott
(1991).

• In Section 5, we exercise operational equivalence by specifying a simple
optimisation that resolves at compile-time certain method labels to
integer offsets. Theorem 5 states the correctness of the optimisation.

We discuss related work at the ends of Sections 2, 3, 4 and 5. Finally, we
review the contributions of the paper in Section 6.

Anyone desiring to experiment with our implementation is asked to con-
tact the authors.

2 An Imperative Object Calculus

In this section, we present the syntax of an imperative object calculus, to-
gether with three forms of operational semantics, which we prove to be con-
sistent with one another.

2.1 Syntax of the Calculus

We begin with the syntax of an untyped imperative object calculus, the impς
calculus of Abadi and Cardelli (1996) augmented to include store locations
as terms. Let x, y, and z range over an infinite collection of variables, `
range over an infinite collection of method labels, and ι range over an infinite
collection of locations, the addresses of objects in the store.

The set of terms of the calculus is given as follows:

a, b ::= term
x variable
ι location
[`i = ς(xi)bi

i∈1..n] object (`i distinct)
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a.` method selection
a.`⇐ ς(x)b method update
clone(a) cloning
let x = a in b let

Informally, when an object is created, it is put at a fresh location, ι, in
the store, and referenced thereafter by ι. Method selection runs the body of
the method with the self parameter (the x in ς(x)b) bound to the location of
the object containing the method. Method update allows an existing method
in a stored object to be updated. Cloning makes a fresh copy of an object
in the store at a new location. The reader unfamiliar with object calculi
is encouraged to consult the book of Abadi and Cardelli (1996) for many
examples and a discussion of the design choices that led to this calculus.

Here are the scoping rules for variables: in a method ς(x)b, variable x
is bound in b; in let x = a in b, variable x is bound in b. If φ is a phrase
of syntax we write fv(φ) for the set of variables that occur free in φ. We
say phrase φ is closed if fv(φ) = ∅. We write φ{{ψ/x}} for the substitution of
phrase ψ for each free occurrence of variable x in phrase φ. We identify all
phrases of syntax up to alpha-conversion; hence a = b, for instance, means
that we can obtain term b from term a by systematic renaming of bound
variables. Let o range over objects, terms of the form [`i = ς(xi)bi

i∈1..n]. In
general, the notation φi

i∈1..n means φ1, . . . , φn.
Unlike Abadi and Cardelli, we do not identify objects up to re-ordering of

methods. This is because the order of methods in an object is significant for
an application of our techniques presented in Section 5. Moreover, we include
locations in the syntax of terms. This is so we may express the dynamic
behaviour of the calculus using a substitution-based operational semantics.
In Abadi and Cardelli’s closure-based semantics, locations appear only in
closures and not in terms. If φ is a phrase of syntax, let locs(φ) be the set
of locations that occur in φ. Let a term a be a static term if locs(a) = ∅.
The static terms correspond to the source syntax accepted by our compiler.
Terms containing locations arise during reduction.

As a first example of programming in the imperative object calculus,
here is how to express pairs of terms as objects with fst and snd methods
for accessing the two components and a swap method for interchanging the
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first and second components:

pair(a, b)
def
= [fst = ς(s)a,

snd = ς(s)b,
swap = ς(s)let x = s.fst in

let y = s.snd in
(s.fst ⇐ ς(s′)y).snd ⇐ ς(s′)x]

for s /∈ fv(a) ∪ fv(b)

The next example makes use of the imperative nature of the calculus to
express updateable references as objects with a single ref method:

ref (a)
def
= let x = a in [ref = ς(y)x]

a := b
def
= let x = b in a.ref ⇐ ς(y)x

!a
def
= a.ref

As a third example, here is an encoding of the call-by-value λ-calculus:

λ(x)b
def
= [arg = ς(z)z.arg , val = ς(s)let x = s.arg in b]

b(a)
def
= let y = a in (b.arg ⇐ ς(z)y).val

where y 6= z, and s and y do not occur free in b. It is like an encoding
from Abadi and Cardelli’s book but with right-to-left evaluation of function
application. Given updateable methods, we can easily extend this encoding
to express an ML-style call-by-value λ-calculus with updateable references.

Although functions are derivable, for the purpose of the operational se-
mantics of this section and the abstract machine and compiler in the next,
Section 3, we consider an extended calculus that includes functions and func-
tion application. This is partly because an efficient implementation would
include functions (procedures) as primitive, and partly to demonstrate the
applicability of the techniques of these sections to a λ-calculus with state. We
do not use this extended calculus in Section 4 or in Section 5. The techniques
used in the study of operational equivalence in Section 4 are well understood
for λ-calculi with state. The optimisation of method access in Section 5 is
independent of the presence of primitive functions.

The syntax of the extended calculus is given by:

a, b ::= terms
. . . as previously
λ(x)b function
b(a) application
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In a function λ(x)b, variable x is bound in b. Unlike Abadi and Cardelli’s
imperative λ-calculus, the impλ calculus, our extended calculus does not
permit assignments to bound variables.

Throughout this paper, and in our implementation, we adopt the conven-
tion that a function application b(a) is evaluated right-to-left; a is evaluated
before b. In making this choice we are following Leroy (1990), who proposes
it on grounds of efficiency. Adopting a left-to-right evaluation order would
have little effect on the contents of this paper, but would adversely affect the
performance of our implementation.

We finish this section by fixing notation for finite lists and finite maps. We
write finite lists in the form [φ1, . . . , φn], which we usually write as [φi

i∈1..n].
Let ψ :: [φi

i∈1..n] = [ψ, φi
i∈1..n]. Let [φi

i∈1..m]@[ψj
j∈1..n] = [φi

i∈1..m, ψj
j∈1..n].

Let a finite map, f , be a list of the form [xi 7→ φi
i∈1..n], where the xi are

distinct. When f = [xi 7→ φi
i∈1..n] is a finite map, let dom(f) = {xi i∈1..n}.

For the finite map f = f ′@[x 7→ φ]@f ′′, let f(x) = φ. When f is a finite
map, let the map f + (x 7→ φ), be f ′@[x 7→ φ]@f ′′ if f = f ′@[x 7→ ψ]@f ′′,
otherwise (x 7→ φ) :: f .

2.2 Small-Step Substitution-Based Semantics

The goal of this section is to specify a relation, c → d, where c and d are
each configurations consisting of a closed term paired with an object store.
Intuitively, c → d means that the program state represented by c takes a
single computation step to reach d. We present this operational semantics
using reduction contexts introduced in the study of imperative λ-calculi by
Felleisen and Friedman (1986). We say this is a small-step semantics because
it defines individual steps of computation. We say it is substitution-based
because it is defined in terms of the substitution primitive, −{{v/x}}, that
substitutes values for variables. We use this semantics in Section 3 to prove
correctness of compilation. In the course of this paper, we use the symbol
→ for several small-step relations; we refer to such relations as reduction or
transition relations.

Let a store, σ, be a finite map from locations to objects. Each stored
object consists of a collection of labelled methods. The methods may be up-
dated individually. Abadi and Cardelli use a method store, a finite map from
locations to methods, in their operational semantics of imperative objects.
We prefer to use an object store, as it explicitly represents the grouping of
methods in objects. We discuss the connection between our semantics and
that of Abadi and Cardelli in Section 4.6.

σ ::= [ιi 7→ oi
i∈1..n] object store (ιi distinct)
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c, d ::= (a, σ) configuration

We write ` σ ok , to mean that a store σ is well formed, if and only
if fv(σ(ι)) = ∅ and locs(σ(ι)) ⊆ dom(σ) for each ι ∈ dom(σ). We write
` (a, σ) ok , to mean that a configuration (a, σ) is well formed, if and only if
fv(a) = ∅, locs(a) ⊆ dom(σ) and ` σ ok .

To define the reduction relation we need the syntactic concepts of val-
ues and reduction contexts. A value is either a location or a function. A
reduction context, R, is a term given by the following grammar, with one
free occurrence of a distinguished variable, •, which represents ‘the point of
execution’ in R.

u, v ::= ι | λ(x)b value
R ::= • | R.` | R.`⇐ ς(x)b reduction context
| clone(R) | let x = R in b

| a(R) | R(v)

Since there is exactly one free occurrence of • in any reduction context, if
R.` ⇐ ς(x)b is a reduction context, • /∈ fv(b) − {x}. For the same reason,
if let x = R in b, a(R), and R(v) are reduction contexts, • /∈ fv(b) − {x},
• /∈ fv(a) and • /∈ fv(v), respectively. We write R[a] for the outcome of
substituting term a (not necessarily a value) for the single occurrence of the
hole • in a reduction context R. No variables are ever captured by this
operation, since the hole in a reduction context does not appear in the scope
of any bound variables.

Let the small-step substitution-based reduction relation, c → d, be the
least relation satisfying the following axiom schemes.

(Red Object) (R[o], σ)→ (R[ι], σ′) if σ′ = (ι 7→ o) :: σ and ι /∈ dom(σ).

(Red Select) (R[ι.`j ], σ)→ (R[bj{{ι/xj}}], σ)
if σ(ι) = [`i = ς(xi)bi

i∈1..n] and j ∈ 1..n.

(Red Update) (R[ι.`j ⇐ ς(x)b], σ)→ (R[ι], σ′)
if σ(ι) = [`i = ς(xi)bi

i∈1..n], j ∈ 1..n, and
σ′ = σ + (ι 7→ [`i = ς(xi)bi

i∈1..j−1, `j = ς(x)b, `i = ς(xi)bi
i∈j+1..n]).

(Red Clone) (R[clone(ι)], σ)→ (R[ι′], σ′)
if σ(ι) = o, σ′ = (ι′ 7→ o) :: σ and ι′ /∈ dom(σ).

(Red Let) (R[let x = v in b], σ)→ (R[b{{v/x}}], σ).

(Red Appl) (R[(λ(x)b)(v)], σ)→ (R[b{{v/x}}], σ).
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The outcome of reducing a well formed configuration is itself a well formed
configuration. Moreover, reduction may increase, but not decrease, the do-
main of the store of a configuration:

Lemma 1 Suppose ` (a, σ) ok and (a, σ)→ (a′, σ′). Then ` (a′, σ′) ok and
dom(σ) ⊆ dom(σ′).

Proof By inspection of the reduction rules. 2

Let a configuration c be terminal if and only if there is a store σ and a
value v such that c = (v, σ). We say that a configuration c converges, c↓,
if and only if there is a terminal configuration d such that c →∗ d. We say
that a configuration c diverges if and only if there is an infinite sequence of
configurations c1, c2, . . . such that c→ c1 → c2 → · · ·.

For instance, consider the configuration:

(pair(ι1, ι2).swap, σ)

where σ is a well formed store of the form [ι1 7→ o1, ι2 7→ o2] and pair is as
defined in Section 2.1. This is not a terminal configuration, but it converges
because of the following reduction sequence (in which we assume ι /∈ dom(σ)).

(pair(ι1, ι2).swap, σ)

→ (ι.swap, (ι 7→ pair(ι1, ι2)) :: σ)

→ (let x = ι.fst in let y = ι.snd in (ι.fst ⇐ ς(s′)y).snd ⇐ ς(s′)x,
(ι 7→ pair(ι1, ι2)) :: σ)

→ (let x = ι1 in let y = ι.snd in (ι.fst ⇐ ς(s′)y).snd ⇐ ς(s′)x,
(ι 7→ pair(ι1, ι2)) :: σ)

→ (let y = ι.snd in (ι.fst ⇐ ς(s′)y).snd ⇐ ς(s′)ι1,
(ι 7→ pair(ι1, ι2)) :: σ)

→ (let y = ι2 in (ι.fst ⇐ ς(s′)y).snd ⇐ ς(s′)ι1,
(ι 7→ pair(ι1, ι2)) :: σ)

→ ((ι.fst ⇐ ς(s′)ι2).snd ⇐ ς(s′)ι1, (ι 7→ pair(ι1, ι2)) :: σ)

→ (ι.snd ⇐ ς(s′)ι1, (ι 7→ pair(ι2, ι2)) :: σ)

→ (ι, (ι 7→ pair(ι2, ι1)) :: σ)

Consider now the following configuration:

([` = ς(s)s.`].`, [])
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It diverges because of the following reduction sequence.

([` = ς(s)s.`].`, []) → (ι.`, [ι 7→ [` = ς(s)s.`]])

→ (ι.`, [ι 7→ [` = ς(s)s.`]])

→ · · ·

Next we show that reduction, →, is deterministic up to the choice of
freshly allocated locations in rules (Red Object) and (Red Clone). To state
this precisely, we need a couple of definitions. First, we define a predicate
which asserts that the domain of the store of a configuration includes a set
w of locations: let the predicate `w (a, σ) ok hold if and only if ` (a, σ) ok
and w ⊆ dom(σ). Second, we define structural equivalence at w, ≡w, for any
finite set w of locations, as the least relation on configurations closed under
the following rules.

(Struct Refl)
`w c ok

c ≡w c

(Struct Trans)
c ≡w c′ c′ ≡w c′′

c ≡w c′′

(Struct Rename)
`w (a, σ) ok ι ∈ dom(σ)− w ι′ /∈ dom(σ)

(a, σ) ≡w (a{{ι′/ι}}, σ{{ι′/ι}})

In this definition the notation a{{ι′/ι}} denotes the outcome of replacing every
occurrence of location ι in a by ι′; and σ{{ι′/ι}} denotes the outcome of renam-
ing location ι of store σ to ι′, and applying this substitution to each of the
objects in the store. An easy induction establishes that c ≡w d implies that
`w c ok and `w d ok . Roughly, c ≡w d means that the locations in w are
all included in the domains of the stores of both c and d, and that c may be
obtained from d by a series of renamings of the locations outside w.

Lemma 2 Relation ≡w is symmetric, and hence is an equivalence relation.

Proof Suppose c ≡w c′, then c′ ≡w c follows by an induction on the
derivation of c ≡w c′. Cases (Struct Refl) and (Struct Trans) are easy. In
the case of (Struct Rename), we must show (a{{ι′/ι}}, σ{{ι′/ι}}) ≡w (a, σ) when
(a, σ) ≡w (a{{ι′/ι}}, σ{{ι′/ι}}) derives from `w (a, σ) ok , ι ∈ dom(σ) − w and
ι′ /∈ dom(σ). From `w (a, σ) ok it follows that locs(a)∪locs(σ)∪w ⊆ dom(σ).
Therefore ι′ /∈ locs(a) ∪ locs(σ). Hence we have:

a{{ι′/ι}}{{ι/ι′}} = a (1)

σ{{ι′/ι}}{{ι/ι′}} = σ (2)
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From (a, σ) ≡w (a{{ι′/ι}}, σ{{ι′/ι}}) it follows that `w (a{{ι′/ι}}, σ{{ι′/ι}}) ok . We
have ι′ /∈ dom(σ) and w ⊆ dom(σ), and ι ∈ dom(σ)−w, that is, ι ∈ dom(σ)
but ι /∈ w. Therefore ι′ ∈ dom(σ{{ι′/ι}}) but ι′ /∈ w, that is, ι′ ∈ dom(σ{{ι′/ι}})−
w. Moreover ι /∈ dom(σ{{ι′/ι}}), since we may conclude that ι 6= ι′ from
ι ∈ dom(σ) but ι′ /∈ dom(σ). By (Struct Rename), `w (a{{ι′/ι}}, σ{{ι′/ι}}) ok ,
ι′ ∈ dom(σ{{ι′/ι}})− w and ι /∈ dom(σ{{ι′/ι}}) together imply

(a{{ι′/ι}}, σ{{ι′/ι}}) ≡w (a{{ι′/ι}}{{ι/ι′}}, σ{{ι′/ι}}{{ι/ι′}})
= (a, σ)

the desired equation, where the second step appeals to equations (1) and (2).
2

The → relation is deterministic up to structural equivalence:

Proposition 1 Suppose `w c ok. Then c→ c′ and c→ c′′ imply c′ ≡w c′′.

Proof By case analysis of the derivation of c→ c′. Here is one case:

(Red Object) Here c = (R[o], σ) and c′ = (R[ι′], σ′) where σ′ = (ι′ 7→
o) :: σ and ι′ /∈ dom(σ). Since `w c ok , c is well formed and therefore
ι′ /∈ locs(R). Only (Red Object) may derive c→ c′′, so c′′ = (R[ι′′], σ′′)
where σ′′ = (ι′′ 7→ o)::σ and ι′′ /∈ dom(σ). If ι′ = ι′′, c′ ≡w c′′ by (Struct
Refl). Otherwise, ι′ 6= ι′′, so ι′′ /∈ dom(σ′). Since w ⊆ dom(σ) and
ι′ /∈ dom(σ), ι′ ∈ dom(σ′)−w. By (Struct Rename), using ι′ /∈ locs(R),

(R[ι′], σ′) ≡w (R[ι′]{{ι′′/ι′}}, σ′{{ι′′/ι′}}) = (R[ι′′], σ′′),

that is, c′ ≡w c′′.

The case for (Red Clone) is similar. If c → c′ was derived using any of the
other rules, and c→ c′′, then in fact c′ = c′′; hence c′ ≡w c′′. 2

Let a configuration c be stuck if and only if c is not terminal, but there
is no d with c → d. Examples are (ι.`, [ι 7→ []]) and (ι.`, []). We say that a
configuration, c, goes wrong if and only if there is a stuck configuration, d,
such that c→∗ d.

Configurations related by structural equivalence at w possess the follow-
ing properties:

Lemma 3 Suppose c ≡w c′.

(1) c is terminal implies c′ is terminal.
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(2) c is stuck implies c′ is stuck.

(3) c→ d implies there exists d′ such that c′ → d′ and d ≡w d′.

Proof Parts (1) and (3) follow by inductions on the derivation of c ≡w c′.
Part (2) follows from (1), (3) and the symmetry of ≡w, Lemma 2. 2

Proposition 1 and Lemma 3 imply that whenever (a, σ) is well formed
and (a, σ) →∗ d, the configuration d is unique up to structural equivalence
at dom(σ), that is, up to the renaming of any newly generated locations in
the store component of d. Furthermore, whenever c ≡w c′, (1) c converges
just if c′ converges, (2) c goes wrong just if c′ goes wrong, and (3) c diverges
just if c′ diverges.

Proposition 2 For any well formed configuration c, exactly one of the fol-
lowing holds:

(1) c converges,

(2) c goes wrong,

(3) c diverges.

Proof If there is no computation c →∗ d to a terminal or stuck configu-
ration d, then every reduction sequence from c is infinite (or extends to an
infinite sequence), so (3) holds and (1) and (2) are false.

Otherwise, there is a least n such that c→n d, for some terminal or stuck
configuration d. Suppose d is terminal—the case when d is stuck is analogous.
Then (1) holds. By induction on n we prove that (2) and (3) are false. If
n = 0, (2) and (3) are false because a terminal configuration is not stuck and
because there is no reduction d→ d′ from a terminal configuration. If n > 0,
there is c′ such that c→ c′ and c′ →n−1 d. By induction hypothesis, c′ does
not go wrong and does not diverge. For any other reduction c→ c′′, we have
c′ ≡∅ c′′, by Proposition 1. As a consequence of Lemma 3, if c′′ goes wrong
or diverges, so does c′. Therefore there is no reduction c → c′′ such that c′′

goes wrong or diverges. Since c is not stuck, we get that c cannot go wrong
or diverge, that is, (2) and (3) are false, as required. 2

2.3 Big-Step Substitution-Based Semantics

In this section, we specify a relation, c ⇓ d, where again c and d are con-
figurations, but this time with the intuition that d is the final outcome of
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many computation steps starting from c. We say this is a big-step seman-
tics because it relates a configuration to the final outcome of taking many
individual steps of computation. It is defined in terms of the substitution
primitive, −{{v/x}}, like the small-step relation, →, of the previous section.
Unlike the → relation, the ⇓ relation is defined inductively. We exploit its
induction principle in the proof of Proposition 15, the crux of Section 5. In
the course of this paper, we use the symbol ⇓ for several big-step relations;
we often refer to such relations as evaluation relations.

Let the big-step substitution-based evaluation relation, c ⇓ d, be the
relation on configurations inductively defined by the following rules.

(Subst Value)

(v, σ) ⇓ (v, σ)

(Subst Object)
σ1 = (ι 7→ o) :: σ0 ι /∈ dom(σ0)

(o, σ0) ⇓ (ι, σ1)

(Subst Select) (where j ∈ 1..n)
(a, σ0) ⇓ (ι, σ1) σ1(ι) = [`i = ς(xi)bi

i∈1..n] (bj{{ι/xj}}, σ1) ⇓ (v, σ2)

(a.`j, σ0) ⇓ (v, σ2)

(Subst Update) (where j ∈ 1..n)
(a, σ0) ⇓ (ι, σ1) σ1(ι) = [`i = ς(xi)bi

i∈1..n]
σ2 = σ1 + (ι 7→ [`i = ς(xi)bi

i∈1..j−1, `j = ς(x)b, `i = ς(xi)bi
i∈j+1..n])

(a.`j ⇐ ς(x)b, σ0) ⇓ (ι, σ2)

(Subst Clone)
(a, σ0) ⇓ (ι, σ1) σ1(ι) = o σ2 = (ι′ 7→ o) :: σ1 ι′ /∈ dom(σ1)

(clone(a), σ0) ⇓ (ι′, σ2)

(Subst Let)
(a, σ0) ⇓ (v, σ1) (b{{v/x}}, σ1) ⇓ (u, σ2)

(let x = a in b, σ0) ⇓ (u, σ2)

(Subst Appl)
(a, σ0) ⇓ (u, σ1) (b, σ1) ⇓ (λ(x)b′, σ2) (b′{{u/x}}, σ2) ⇓ (v, σ3)

(b(a), σ0) ⇓ (v, σ3)

We define c ↘ d to mean that c →∗ d and d is terminal. The big-step
and small-step substitution semantics are consistent with one another in the
following sense:

Theorem 1

(1) Whenever c ⇓ d, c↘ d.
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(2) Whenever c↘ d, c ⇓ d.

Proof

(1) By induction on the derivation of c ⇓ d. The details are routine.

(2) One can prove by induction on n that c ⇓ d whenever c→n d and d is
terminal. Again, the details are routine. 2

The big-step relation, ⇓, is deterministic in the following sense:

Proposition 3 Whenever `w c ok, c ⇓ c′ and c ⇓ c′′ imply c′ ≡w c′′.

Proof Suppose that c ⇓ c′ and c ⇓ c′′. By Theorem 1(1), both c′ and c′′

are terminal and there are m and n such that c→m c′ and c→n c′′. Without
loss of generality, suppose that m ≤ n. There must be d such that c →m d

and d →n−m c′′. By Proposition 1 and Lemma 3(3), c′ ≡w d. It follows, by
Lemma 3, that d is terminal, and therefore that c′′ = d. Hence we have that
c′ ≡w c′′. 2

2.4 Big-Step Closure-Based Semantics

In this section we present an operational semantics for the imperative object
calculus, based on the one in Chapter 10 of Abadi and Cardelli (1996) but
with the addition of functions. It is in the same style as the dynamic se-
mantics of expressions in the definition of Standard ML (Milner, Tofte, and
Harper 1990). Unlike the semantics of the previous sections, it uses closures,
rather than a substitution primitive, to link variables to their values. Like
the semantics of the previous section, it is a big-step semantics, an evalu-
ation relation, denoted by ⇓. The main result of this section is a proof of
consistency between the closure-based semantics and the substitution-based
semantics of the previous section.

U, V ::= closure-based value
ι location
(S, λ(x)b) function closure

S ::= [xi 7→ Vi
i∈1..n] stack (xi distinct)

O ::= [`i = (Si, ς(xi)bi)
i∈1..n] object value

Σ ::= [ιi 7→ Oi
i∈1..n] store

C,D ::= configuration
((S, a),Σ) initial configuration
(V,Σ) terminal configuration



13

A stack (of bindings) S = [xi 7→ Vi
i∈1..n] is a finite map that binds

variables to their values. A value is either a location, ι, or a closure of the form
(S, λ(x)b) where the stack S maps each variable free in b to a value. A store
Σ is a finite map sending locations to object values, which are of the form
O = [`i = (Si, ς(xi)bi)

i∈1..n], where for each i, stack Si maps each variable
free in the method ς(xi)bi to its value. An initial configuration consists of a
closure (S, a), together with a store Σ that maps locations occurring in (S, a)
to object values. A terminal configuration is simply a value paired with a
store. A configuration of the form (V,Σ) where V = (S, λ(x)b) is both initial
and terminal.

Our syntax admits stores and configurations that include dangling point-
ers and unbound variables. We could make an explicit definition of those well
formed stores and configurations that do not include such errors. Instead, it
is more convenient, later on in this section, to make an implicit definition of
well formed stores and configurations in terms of an unloading relation.

We use uppercase metavariables for the entities used in our closure-based
semantics; they mostly correspond to lowercase metavariables ranging over
corresponding entities used in the substitution-based semantics. For example,
σ is a store used in the two substitution-based semantics, and Σ is a store
used in the closure-based semantics. We refer to both entities as stores,
relying on the case of the metavariable to indicate which kind of store is
meant.

Let the big-step closure-based evaluation relation, C ⇓ D, be the relation
on configurations inductively defined by the following rules.

(Closure x)
S(x) = V

((S, x),Σ) ⇓ (V,Σ)

(Closure Value)

((S, λ(x)b),Σ) ⇓ ((S, λ(x)b),Σ)

(Closure Select)
((S, a),Σ0) ⇓ (ι,Σ1) Σ1(ι) = [`i = (Si, ς(xi)bi)

i∈1..n]
j ∈ 1..n xj /∈ dom(Sj) (((xj 7→ ι) :: Sj , bj),Σ1) ⇓ (V,Σ2)

((S, a.`j),Σ0) ⇓ (V,Σ2)

(Closure Update)
((S, a),Σ0) ⇓ (ι,Σ1) Σ1(ι) = [`i = (Si, ς(xi)bi)

i∈1..n] j ∈ 1..n
O = [`i = (Si, ς(xi)bi)

i∈1..j−1, `j = (S, ς(x)b), `i = (Si, ς(xi)bi)
i∈j+1..n]

((S, a.`j ⇐ ς(x)b),Σ0) ⇓ (ι, (ι 7→ O) + Σ1)
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(Closure Object)
Σ1 = (ι 7→ [`i = (S, ς(xi)bi)

i∈1..n]) :: Σ0 ι /∈ dom(Σ0)

((S, [`i = ς(xi)bi
i∈1..n]),Σ0) ⇓ (ι,Σ1)

(Closure Clone)
((S, a),Σ0) ⇓ (ι,Σ1) Σ1(ι) = O Σ2 = (ι′ 7→ O) :: Σ1 ι′ /∈ dom(Σ1)

((S, clone(a)),Σ0) ⇓ (ι′,Σ2)

(Closure Let)
((S, a),Σ0) ⇓ (V,Σ1) x /∈ dom(S) (((x 7→ V ) :: S, b),Σ1) ⇓ (U,Σ2)

((S, let x = a in b),Σ0) ⇓ (U,Σ2)

(Closure Appl)
((S, a),Σ0) ⇓ (U,Σ1) ((S, b),Σ1) ⇓ ((S ′, λ(x)b′),Σ2) x /∈ dom(S ′)
(((x 7→ U) :: S ′, b′),Σ2) ⇓ (V,Σ3)

((S, b(a)),Σ0) ⇓ (V,Σ3)

These rules are almost identical to the ones from Chapter 10 of Abadi and
Cardelli (1996), except for the inclusion of functions and except that locations
contain objects in our semantics but methods in theirs, as discussed earlier
(and in Section 4.6).

The semantics does indeed relate initial and terminal configurations:

Lemma 4 Whenever C ⇓ D, C is an initial configuration and D is a ter-
minal configuration.

Proof By induction on the derivation of C ⇓ D. 2

To establish a correspondence between this closure-based semantics and
the substitution-based semantics of Section 2.3, we introduce several relations
that unload the entities used in the closure-based semantics by turning clo-
sures into substitutions. Let s range over a substitution of the form [vi/xi

i∈1..n]
where the xi are distinct and each vi is closed. We use the symbol ; for
each of five unloading relations.

V ; v value unloading
S ; s stack unloading
O ; o object unloading
Σ; σ store unloading
C ; c configuration unloading
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(Value ι)

ι; ι

(Value Fun)
S ; s x /∈ dom(S) fv(b) ⊆ dom(S) ∪ {x} locs(b) = ∅

(S, λ(x)b); λ(x)(b{{s}})

(Stack [])

[]; []

(Stack Object)
V ; v x /∈ dom(S) S ; s

((x 7→ V ) :: S); (v/x :: s)

(Object Unload) (where `i distinct)
Si ; si xi /∈ dom(Si) fv(bi) ⊆ dom(Si) ∪ {xi} locs(bi) = ∅ ∀i ∈ 1..n

[`i = (Si, ς(xi)bi)
i∈1..n]; [`i = ς(xi)(bi{{si}}) i∈1..n]

(Store Unload) (where Σ = [ιi 7→ Oi
i∈1..n], ιi distinct)

Oi ; oi ∀i ∈ 1..n

Σ; [ιi 7→ oi
i∈1..n]

(Config Initial)
S ; s Σ; σ fv(a) ⊆ dom(S) locs(a) = ∅

((S, a),Σ); (a{{s}}, σ)

(Config Terminal)
V ; v Σ; σ

(V,Σ); (v, σ)

We later need the following properties of the unloading relations.

Proposition 4

(1) Whenever V ; v, v is a closed value.

(2) Whenever S ; s there are distinct variables xi and closed values vi
such that s = [vi/xi

i∈1..n] and dom(S) = {xi i∈1..n}.

(3) Whenever O ; o, object o is closed.

(4) Whenever Σ; σ, both dom(Σ) = dom(σ) and ` σ ok.

(5) Whenever C ; c, ` c ok.

Proof By simultaneous induction on the derivation of the unloading pred-
icates. 2

The side conditions concerning free and bound variables in (Value Fun),
(Stack Object), (Object Unload) and (Config Initial) are needed to ensure
property (2). This property allows the substitutions that arise from closures
to be manipulated easily in later proofs. All the terms manipulated by the
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closure-based evaluator are static terms; the side conditions concerning loca-
tions in (Value Fun), (Object Unload) and (Config Initial) ensure that only
static terms arise in configurations.

We consider a store Σ to be well formed if and only if there is a store
σ such that Σ ; σ. Similarly, we consider a configuration C to be well
formed if and only if there is a configuration c such that C ; c. The only
occurrences of locations in a well formed configuration are in the domain of
the store and in the range of any stacks occurring in the configuration.

The unloading relations are in fact functional:

Proposition 5 Whenever φ; ψ′ and φ; ψ′′, then ψ′ = ψ′′.

Proof By induction on the derivation of φ ; ψ′. The only interesting
cases are (Config Initial) and (Config Terminal).

(Config Initial) Here φ = ((S, a),Σ) and ψ′ = (a{{s′}}, σ′) where S ; s′,
Σ ; σ′, fv(a) ⊆ dom(S) and locs(a) = ∅. The derivation of φ ; φ′′

can only have used (Config Initial) or (Config Terminal). In the for-
mer case ψ′ = ψ′′ follows easily from the induction hypothesis. The
latter case can only arise when φ is a terminal configuration, that is,
a is of the form λ(x)b. We have ψ′′ = (v′′, σ′′) where λ(x)b ; v′′ and
Σ ; σ′′. The former judgment can only arise from (Value Fun). Tak-
ing alpha-conversion into account, we may assume there is a variable
x′ /∈ fv(b) − {x}, so that λ(x)b = λ(x′)(b{{x′/x}}) and that λ(x)b ;
v′′ = λ(x′)(b{{x′/x}}{{s′′}}) derives by (Value Fun) from S ; s′′ given
that x′ /∈ dom(S), fv(b{{x′/x}}) ⊆ dom(S) ∪ {x′} and locs(b{{x′/x}}) = ∅.
By induction hypothesis, σ′ = σ′′ and s′ = s′′. By Proposition 4(2),
there are distinct xi and closed values vi such that s′ = [vi/xi

i∈1..n] and
dom(S) = {xi i∈1..n}. Since x′ /∈ dom(S), x′ 6= xi for each i. Therefore
we can calculate the following,

v′′ = λ(x′)(b{{x′/x}}{{vi/xi i∈1..n}})
= λ(x′)(b{{x′/x}}){{vi/xi i∈1..n}}
= a{{s′}}

which shows that ψ′′ = (v′′, σ′′) = (a{{s′}}, σ′) = ψ′, as required.

Case (Config Terminal) is similar. The other cases are simpler. 2

To prove Theorem 2, which asserts the consistency of the two big-step
operational semantics, we need the following two lemmas.

Lemma 5 If C ; c and C ⇓ C ′ there is c′ such that C ′ ; c′ and c ⇓ c′.
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Proof By induction on the derivation of C ⇓ C ′. We show three typical
cases.

(Closure Select) Here C = ((S, a.`j),Σ0), C ′ = (V,Σ2) and we have

((S, a),Σ0) ⇓ (ι,Σ1) (3)

Σ1(ι) = [`i = (Si, ς(xj)bi)
i∈1..n] (4)

(((xj 7→ ι) :: Sj, bj),Σ1) ⇓ (V,Σ2) (5)

with j ∈ 1..n and xj /∈ dom(Sj). From C ; c it follows there is σ0 and
s such that Σ0 ; σ0, S ; s and c = (a{{s}}.`j , σ0). So ((S, a),Σ0) ;
(a{{s}}, σ0). By the induction hypothesis and (3) there is c′1 such that

(a{{s}}, σ0) ⇓ c′1 (6)

and (ι,Σ1) ; c′1. From the latter, there must be σ1 with Σ1 ; σ1

and c′1 = (ι, σ1). From (4) we know that ι ∈ dom(Σ1); from Σ1 ; σ1,
it follows that ι ∈ dom(σ1) and Σ1(ι) ; σ1(ι). It must be then that
Σ1(ι) ; σ1(ι), using (Object Unload). Given (4), for each i ∈ 1..n
there is si such that Si ; si and

σ1(ι) = [`i = ς(xi)(bi{{si}}) i∈1..n] (7)

Therefore (((xj 7→ ι) :: Sj , bj),Σ1) ; (bj{{ι/xj}}{{sj}}, σ1). Since xj /∈
dom(Sj) and Sj ; sj, bj{{ι/xj}}{{sj}} = bj{{sj}}{{ι/xj}}. By the induction
hypothesis and (5) there is c′ such that

(bi{{sj}}{{ι/xj}}, σ1) ⇓ c′ (8)

and (V,Σ2); c′. Finally, by (Subst Select) we may derive c ⇓ c′ using
(6), (7) and (8).

(Closure Object) Here C = ((S, a),Σ0) and C ′ = (ι,Σ1) with a = [`i =
ς(xi)bi

i∈1..n], ι /∈ dom(Σ0), no xi ∈ dom(S) and

Σ1 = (ι 7→ [`i = (S, ς(xi)bi)
i∈1..n]) :: Σ0.

So c = (a{{s}}, σ0) where Σ0 ; σ0 and S ; s. Since the variables xi are
bound, we may assume that no xi ∈ dom(S). Therefore we can derive
c ⇓ c′ where c′ = (ι, σ1) and

σ1 = (ι 7→ [`i = ς(xi)(bi{{s}}) i∈1..n]) :: σ0

and Σ1 ; σ1.



18

(Closure x) Here C = ((S, x),Σ) and C ′ = (V,Σ), with S(x) = V . From
C ; c it follows that c = (v, σ) with Σ ; σ,and S(x) ; v. So set
c′ = c and we have c ⇓ c′ and C ′ ; c′.

The other cases are similar. 2

Lemma 6 Suppose C is an initial configuration. Whenever C ; c and
c ⇓ c′ there is terminal C ′ such that C ′ ; c′ and C ⇓ C ′.

Proof By induction on the derivation of c ⇓ c′. Either the term in C is a
variable, x say, or not. If so, suppose C = ((S, x),Σ). We must have S ; s

and Σ; σ with x ∈ dom(S), and say S(x) = V ; v, so that c = (v, σ) = c′.
By (Closure x) we have ((S, x),Σ) ⇓ (V,Σ) as required. Otherwise, the term
in C is not a variable and exactly one of the (Subst −) rules applies. Each
needs to be considered in turn; we show just one case.

(Subst Select) Here c = (a.`j , σ0) and c′ = (v, σ2) such that

(a, σ0) ⇓ (ι, σ1) (9)

σ1(ι) = [`i = ς(xi)bi
i∈1..n] (10)

(bj{{ι/xj}}, σ1) ⇓ c′ (11)

with j ∈ 1..n. From C ; c it follows that C = ((S, a′.`j),Σ0) with
S ; s, Σ0 ; σ0 and a = a′{{s}}. By induction hypothesis and (9), there
is terminal C1 such that

((S, a′),Σ0) ⇓ C1 (12)

and C1 ; (ι, σ1). We must have C1 = (ι,Σ1) with Σ1 ; σ1. By (10),
Σ1(ι) ; [`i = ς(xi)bi

i∈1..n] and therefore

Σ1(ι) = [`i = (Si, ς(xi)b
′
i)
i∈1..n] (13)

with Sj ; sj, bj = b′j{{sj}} and xj /∈ dom(Sj). Now since we may derive
(((xj 7→ ι) :: Sj, b

′
j),Σ1) ; (b′j{{ι/xj}}, σ1), the induction hypothesis and

(11) imply there is C ′ with

(((xj 7→ ι) :: Sj , b
′
j),Σ1) ⇓ C ′ (14)

and C ′ ; c′. Combining (12), (13) and (14) using (Closure Select) we
obtain C ⇓ C ′ as required.

The other cases are similar. 2
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Theorem 2 Suppose C and C ′ are initial and terminal configurations re-
spectively, and that C ; c and C ′ ; c′. Then C ⇓ C ′ if and only if c ⇓ c′.

Proof Suppose C ⇓ C ′. By Lemma 5 there is c′′ with C ′ ; c′′ and c ⇓ c′′.
By Proposition 5, c′ = c′′. On the other hand, suppose c ⇓ c′. By Lemma 6,
there is a terminal configuration C ′′ such that C ′′ ; c′ and C ⇓ C ′′. By
Proposition 5, C ′ = C ′′. 2

2.5 Discussion and Related Work

A big-step closure-based semantics, as in Section 2.4 or, say, the definition of
Standard ML, is attractive as a language definition because it directly yields
an efficient algorithm for interpreting the calculus. For instance, Cardelli
(1995) implements Obliq in this way. On the other hand, substitution-based
semantics are simpler to work with when reasoning about program equiva-
lence; we apply the substitution-based semantics of Sections 2.2 and 2.3 in
Sections 4 and 5 respectively. In fact, either substitution-based semantics
would do alone; we include both for the sake of completeness.

We do not present a small-step closure-based semantics for the imperative
object calculus; this would amount to an SECD machine (Landin 1964) for
the calculus. The next section, however, contains a small-step closure-based
semantics for an object-oriented abstract machine to which we compile the
object calculus.

The technique used to prove Theorem 1, the consistency of the two
substitution-based semantics is well-known. An analogous result is proved by
Plotkin (Plotkin 1975), who also proves the consistency with the SECD ma-
chine of what amounts to a big-step substitution-based operational semantics.
On the other hand, the proof technique of Theorem 2, the consistency of the
substitution-based and closure-based big-step semantics, appears to be new,
though the idea of unloading a closure to a term goes back to Plotkin (Plotkin
1975). There is a proof by Felleisen and Friedman (Felleisen and Friedman
1989) of the equivalence of substitution-based and closure-based semantics
for an imperative λ-calculus, but they work with small-step rather than big-
step semantics.

3 Compilation to an Abstract Machine

In this section we present an abstract machine, based on the ZAM (Leroy
1990), for the extended calculus of imperative objects, a compiler sending the
object calculus to the instruction set of the abstract machine and a correct-
ness result, Theorem 3. The proof depends on an unloading procedure which
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converts configurations of the abstract machine back into configurations of
the object calculus from Section 2. The unloading procedure depends on a
modified abstract machine whose argument stack and environment contain
object calculus terms as well as locations.

3.1 The Abstract Machine

The machine defined here is based on Leroy’s ZAM. The ZAM was designed
for efficient evaluation of curried functions. The machine configuration con-
sists of a state paired with a store. A store is a finite map from locations to
stored objects. A state is a quadruple, (ops, AS,E,RS), consisting of a list
of instructions (or operations), ops , an argument stack, AS, an environment,
E, and a return stack, RS. The instruction list is obtained from compiling
some source term. Each item on the argument stack is either a value, V , or
a mark, ♦. A value is either the location, ι, of an object in the store, or a
closure, (ops , E), which is an operation list ops paired with an environment
E. A mark is a special tag introduced by Leroy for efficient evaluation of
functions. An environment is a list of values that represents the runtime val-
ues assumed by variables free in the original source term. The return stack
is a list of frames representing the currently active method invocations and
function calls. A frame is simply a closure.

To call a function a mark is pushed onto the stack, the arguments are
evaluated and pushed onto the stack and the code for the function body is
called. The body of the function can read in (curried) arguments off the
stack, and discovers when it has consumed all its arguments when it finds
the mark. If the function returns (on executing a return instruction) and
there are more arguments to consume, the result of the function (which must
itself be a function if execution is to proceed) is called, and will consume the
extra arguments that are available.

The instruction set of our abstract machine consists of the following op-
erations.

op ::= operation
access i variable access
object[(`i, opsi)

i∈1..n] object construction
select ` method invocation
update(`, ops) method update
let ops let
cur ops build function closure
apply apply function
grab get curried argument
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pushmark push mark onto stack
return return from function

ops ::= [] | op :: ops

We describe the workings of our machine informally as follows:

• The instruction access i fetches the ith value in the current environ-
ment, and pushes it onto the argument stack. It is used for looking up
the value of a variable.

• The instruction object[(`i, ops i)
i∈1..n] creates a new object in the store,

and pushes the location of the newly created object onto the argument
stack. The `i are method labels and the ops i are the corresponding
compiled methods.

• The instruction select` pops the location of an object off the argument
stack, and loads from the object the method closure (ops , E) labelled
`. The current operation list and environment are saved by pushing
them as a pair onto the return stack, and then are replaced by the new
operation list ops and the new environment E.

• The instruction update(`, ops) pops the location of an object off the
argument stack, and updates the method closure labelled ` in that
object with the closure (ops , E), where E is the current environment.

• The instruction let ops pops a value off the argument stack, and adds
it to the environment. The instructions ops are then executed in the
new environment. A frame built from the remainder of the operation
list and the current environment is pushed onto the return stack, to be
executed once the instructions ops have been completed.

• The instruction cur ops pushes a function closure onto the argument
stack. The closure is built by pairing the compiled function body, ops ,
with the current environment.

• The instruction apply pops a function closure and value off the argu-
ment stack. The current operation list and environment are pushed
as a frame onto the return stack, and the closure is executed with the
value (the argument to the function) added to its environment.

• The instruction pushmark pushes a mark, ♦, onto the argument stack.
This instruction is used to delimit a series of curried arguments to a
function.
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• The instruction grab examines the top of the argument stack. If the
top of the argument stack is a mark, ♦, the grab instruction builds
the current state into a closure and returns to the function caller by
popping a frame off the return stack. Otherwise, if the top of the
argument stack is a value, the value is added to the environment and
the execution of the function proceeds. The grab instruction starts
the compiled form of a nested function. For example, in the term
λ(x)λ(y)a, the compilation of the λ(y)a term will start with a grab

instruction.

• The instruction return can be considered a dual to grab. When
return is executed (at the end of a function call), the value the func-
tion is returning is on the top of the argument stack. If the return
value is a function, and this function is being applied directly to an
argument, the value will be second on the argument stack. In this
case, return will perform the function application without returning
to the original function caller. On the other hand, if the return value
is not being applied to an argument, a mark, ♦, will be second on the
argument stack. In this case, the mark is removed and the function
caller is popped back off the return stack.

We now give a formal definition of the abstract machine. An abstract
machine configuration, C or D, is a pair (P,Σ), where P is a state and Σ is
a store, given as follows:

P,Q ::= (ops, E, AS,RS) machine state
U, V ::= ι | fun(ops , E) value
U♦, V ♦ ::= U | ♦ value or mark
E ::= [Ui

i∈1..n] environment

AS ::= [U♦i
i∈1..n] argument stack

RS ::= [Fi
i∈1..n] return stack

F ::= (ops, E) closure or frame
O ::= [(`i, Fi)

i∈1..n] stored object (`i distinct)
Σ ::= [ιi 7→ Oi

i∈1..n] store (ιi distinct)

In a configuration ((ops, E, AS,RS),Σ), ops is the current program. En-
vironment E contains variable bindings. Argument stack AS contains results
of evaluating terms and control flow information in the form of marks, ♦.
Return stack RS holds return addresses during function calls and method
invocations. Store Σ associates locations with objects.

Two transition relations, given next, represent execution of the abstract

machine. A β-transition, P
β−→ Q, corresponds directly to a reduction in the



23

object calculus. A τ -transition, P
τ−→ Q, is an internal step of the abstract

machine, for example a method return or a variable lookup. Lemma 17 relates
reductions of the object calculus and transitions of the abstract machine.

(τ Return) (([], E, AS, (ops , E′) ::RS),Σ)
τ−→ ((ops , E′, AS,RS),Σ).

(τ Function Return) (([return], E, U ::♦ :: AS, (ops, E ′) :: RS),Σ)
τ−→

((ops, E′, U ::AS,RS),Σ).

(β Function Return) (([return], E, fun(ops , E ′) :: U ::AS,RS),Σ)
β−→

((ops, U :: E ′, AS,RS),Σ).

(τ Grab) ((grab :: ops , E,♦ ::AS, (ops ′, E′) :: RS),Σ)
τ−→

((ops ′, E′, fun(ops , E) :: AS,RS),Σ).

(β Grab) ((grab :: ops , E, U ::AS,RS),Σ)
β−→ ((ops , U :: E,AS,RS),Σ).

(τ Access) ((access j :: ops , E, AS,RS),Σ)
τ−→ ((ops , E, Uj ::AS,RS),Σ)

if E = [Ui
i∈1..n] and j ∈ 1..n.

(τ Pushmark)
((pushmark :: ops , E, AS,RS),Σ)

τ−→ ((ops , E,♦ ::AS,RS),Σ).

(τ Cur) ((cur ops :: ops ′, E, AS,RS),Σ)
τ−→

((ops ′, E, fun(ops, E) ::AS,RS),Σ).

(β Clone) ((clone :: ops , E, ι ::AS,RS),Σ)
β−→ ((ops , E, ι′ ::AS,RS),Σ′)

if Σ(ι) = O and Σ′ = (ι′ 7→ O) :: Σ and ι′ /∈ dom(Σ).

(β Object) ((object[(`i, opsi)
i∈1..n] :: ops, E, AS,RS),Σ)

β−→
((ops, E, ι ::AS,RS), (ι 7→ [(`i(ops i, E)) i∈1..n]) :: Σ) if ι /∈ dom(Σ).

(β Select) ((select `j :: ops , E, ι ::AS,RS),Σ)
β−→

((opsj , ι :: Ej, AS, (ops , E) ::RS),Σ)
if Σ(ι) = [(`i, (ops i, Ei))

i∈1..n] and j ∈ 1..n.

(β Update)

((update(`, ops ′) :: ops , E, ι ::AS,RS),Σ)
β−→ ((ops, E, ι ::AS,RS),Σ′)

if Σ(ι) = O@[(`, F )]@O′ and Σ′ = Σ + (ι 7→ O@[(`, (ops ′, E))]@O′).

(β Let) ((let ops ′ :: ops , E, U :: AS,RS),Σ)
β−→

((ops ′, U :: E,AS, (ops, E) ::RS),Σ).
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(β Apply) ((apply :: ops, E, fun(ops ′, E′) :: U ::AS,RS),Σ)
β−→

((ops ′, U :: E ′, AS, (ops, E) ::RS),Σ).

Let C
βτ−→ D if C

β−→ D or C
τ−→ D.

We now describe compilation of the object calculus to the instruction set
of our abstract machine. We use the notation grabn for the list [grab, grab,
. . . , grab] consisting of n grab instructions, and the notation λ(x1x2 . . . xn)a
for the term λ(x1)λ(x2) . . . λ(xn)a when n > 0 and a when n = 0. We
represent compilation of a term a to an operation list ops by the judgment
xs ` a ⇒ ops, defined by the following rules. The variable list xs includes
all the free variables of a; it is needed to compute the de Bruijn index of each
variable occurring in a.

(Trans Var) [xi
i∈1..n] ` xj ⇒ [access j] if j ∈ 1..n.

(Trans Object) xs ` [`i = ς(yi)ai
i∈1..n]⇒ [object[(`i, ops i)

i∈1..n]]
if yi :: xs ` ai ⇒ ops i and yi /∈ xs for all i ∈ 1..n.

(Trans Select) xs ` a.`⇒ ops@[select `] if xs ` a⇒ ops .

(Trans Update) xs ` (a.`⇐ ς(x)a′)⇒ ops@[update(`, ops ′)]
if xs ` a⇒ ops and x :: xs ` a′ ⇒ ops ′ and x /∈ xs.

(Trans Clone) xs ` clone(a)⇒ ops@[clone] if xs ` a⇒ ops .

(Trans Let) xs ` let x = a in a′ ⇒ ops@[let ops ′]
if xs ` a⇒ ops and x :: xs ` a′ ⇒ ops ′ and x /∈ xs.

(Trans Apply) xs ` (a1a2 . . . an) ⇒ pushmark :: opsn @ opsn−1 @ . . . @
ops1@[apply]
if xs ` ai ⇒ ops i for all i ∈ 1..n and a1 is not a function application.

(Trans Function) xs ` λ(xn+1xn . . . x1)a⇒ [cur(grabn @ ops @ [return])]
if xi /∈ xs for all i ∈ 1..n+ 1, all the xi are distinct, a is not a λ
abstraction and [xi

i∈1..n+1]@xs ` a⇒ ops.

3.2 Examples of Compilation and Execution

We illustrate compilation and execution via three examples.
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Example 1: Method invocation

As a first example, let the term a = pair([], []).fst , (pair was defined in
Section 2.1). We have [] ` a⇒ ops , where the operation list ops is given by:

ops = [object[(fst , ops1), (snd , ops2), (swap, ops3)], select fst ]

ops1 = [object[]]

ops2 = [object[]]

ops3 = [access 1, select fst , let ops4]

ops4 = [access 2, select snd , let ops5]

ops5 = [access 3, update(fst , [access 2]), update(snd , [access 3])]

If we load ops into an empty machine configuration we get the following
computation.

((ops, [], [], []), [])
β−→ (([select fst ], [], [ι1], []),Σ1) by (β Object)

where Σ1 = [ι1 7→ [(fst , ops1), (snd , ops2), (swap, ops3)]]
β−→ ((ops1, [ι1], [], [([], [])]),Σ1) by (β Select)
β−→ (([], [ι1], [ι2], [([], [])]),Σ2) by (β Object)

where Σ2 = (ι2 7→ []) :: Σ1
τ−→ (([], [], [ι2], []),Σ2) by (τ Return)

When the abstract machine terminates, the answer to the computation
can be found as the single item on the argument stack. In this case, the
terminal configuration (([], [], [ι2], []),Σ2). The location ι2 returned on the
argument stack references an empty object in the store.

Example 2: ZAM-Style Function Call

As a second example, let the term a = (λ(x)x)(λ(x)[])[]. We have [] ` a ⇒
ops , where the operation list ops is given by:

ops = [pushmark, object[], cur ops2, cur ops1, apply]

ops1 = [access 1, return]

ops2 = [object[], return]

If we load ops into an empty machine configuration we get the following
computation.

((ops, [], [], []), [])
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τ−→ (([object[], cur ops2, cur ops1, apply], [], [♦], []), [])
by (τ Pushmark)

τ−→ (([cur ops2, cur ops1, apply], [], [ι1,♦], []),Σ1
def
= [ι1 7→ []])

by (β Object)
τ−→ (([cur ops1, apply], [], [fun(ops2, []), ι1,♦], []),Σ1)

by (τ Cur)
τ−→ (([apply], [], [fun(ops1, []), fun(ops2, []), ι1,♦], []),Σ1)

by (τ Cur)
β−→ ((ops1, [fun(ops2, [])], [ι1,♦], [([], [])]),Σ1) by (β Apply)
τ−→ (([return], [fun(ops2, [])], [fun(ops2, []), ι1,♦], [([], [])]),Σ1)

by (τ Access)
β−→ ((ops2, [ι1], [♦], [([], [])]),Σ1) by (β Function Return)
τ−→ (([return], [ι1], [ι2,♦], [([], [])]),Σ2

def
= (ι2 7→ []) :: Σ1)

by (β Object)
τ−→ (([], [], [ι2], []),Σ2) by (τ Function Return)

We see in this example the mechanism for function application, and in
particular how, like the ZAM, our abstract machine uses a mark on the stack
to delimit a series of arguments to a function.

The function call begins with the (τ Pushmark) τ -transition. The ab-
stract machine evaluates applications in a right-to-left fashion, pushing the
results of evaluating the arguments onto the argument stack. The closure
representing the function to be called is pushed onto the argument stack,
and the (β Apply) β-transition starts the body of the function λ(x)x applied
to the first argument and pushes an entry on the return stack. During the
(β Function Return) β-transition, which does not touch the return stack,
the outcome of this application gets applied to the second curried argument.
The (τ Function Return) τ -transition completes the application by popping
the entry off the return stack.

In the terminal configuration, (([], [], [ι2], []),Σ2) we have a location ι2 on
the argument stack. At location ι2 in the store Σ2 is an empty object []. This
evaluation produces some garbage in the store, at location ι1.

Example 3: ZAM-Style Curried Function Call

As a third example, let the term a = (λ(xyz)x)[][]. We have [] ` a ⇒ ops,
where the operation list ops is given by:

ops = [pushmark, object[], object[], cur(ops1), apply]

ops1 = [grab, grab, access 3, return]
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If we load ops into an empty machine configuration we get the following
computation.

((ops , [], [], []), [])
τ−→ (([object[], object[], cur(ops1), apply], [], [♦], []), [])

by (τ Pushmark)
β−→ (([object[], cur(ops1), apply], [], [ι1,♦], []),Σ1) by (β Object)

where Σ1 = [ι1 7→ []]
β−→ (([cur(ops1), apply], [], [ι2, ι1,♦], []),Σ2) by (β Object)

where Σ2 = [ι1 7→ [], ι2 7→ []]
τ−→ (([apply], [], [fun(ops1, []), ι2, ι1,♦], []),Σ2) by (τ Cur)
β−→ ((ops1, [ι2], [ι1,♦], [([], [])]),Σ2) by (β Apply)
β−→ (([grab, access 3, return], [ι1, ι2], [♦], [([], [])]),Σ2) by (β Grab)
τ−→ (([], [], [fun([access 3, return], [ι1, ι2])], []),Σ2) by (τ Grab)

Consider the transitions corresponding to the application of the func-
tion λ(xyz)x to its two curried arguments [] and []. The curried call begins
with the (τ Pushmark) τ -transition, which pushes a mark, ♦, onto the ar-
gument stack. After the two arguments have been evaluated, the (β Apply)
β-transition starts the body of the function λ(xyz)x applied to the first cur-
ried argument, [], and pushes an entry on the return stack. The (β Grab)
β-transition applies the curried function λ(yz)x to the second argument, [].
The second grab instruction finds a mark on the stack indicating there are
no more arguments to be consumed, so causes a (τ Grab) τ -transition, which
builds a closure and returns, popping an entry off the return stack.

The terminal configuration is:

(([], [], [fun([access 3, return], [ι1, ι2])], []),Σ2)

We will show formally in Section 3.4 that the function closure returned on
the argument stack, fun([access 3, return], [ι1, ι2]), represents the function
λ(z)ι2.

3.3 The Unloading Machine

To prove the abstract machine and compiler correct, we need to convert
back from a machine state to an object calculus term. To do so, we load the
state into a modified abstract machine, the unloading machine, and when
this unloading machine terminates, its argument stack contains a single term
that is a decompiled version of the original state.
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The unloading machine is like the abstract machine, except that instead
of executing each instruction, it reconstructs the corresponding source term.
Since no store lookups or updates are performed, the unloading machine
does not act on a store. An unloading machine state is like an abstract
machine state, except that values are generalised to arbitrary terms. Let an
unloading machine state, p or q, be a quadruple (ops, e, as, RS) where e and
as are defined as follows:

e ::= [ai
i∈1..n] unloading environment

a♦, b♦ ::= a | ♦ term or mark

as ::= [a♦i
i∈1..n] unloading stack

Next we make a simultaneous inductive definition of a u-transition rela-
tion p

u−→ p′, and three unloading relations: (ops, e); (x)b, that unloads a
method closure to a method, fun(ops , e) ; λ(x)b, that unloads a function
closure to a λ-abstraction and [U♦i

i∈1..n]; [a♦i
i∈1..n], that unloads a list.

(u Access) (access j :: ops ′, e, as, RS)
u−→ (ops ′, e, aj :: as, RS)

if j ∈ 1..n and e = [ai
i∈1..n].

(u Object) (object[(`i, opsi)
i∈1..n] :: ops ′, e, as, RS)

u−→
(ops ′, e, [`i = ς(xi)bi

i∈1..n]::as, RS) if (ops i, e); (xi)bi for each i ∈ 1..n.

(u Clone) (clone :: ops ′, e, a :: as, RS)
u−→ (ops ′, e, (clone(a)) :: as, RS).

(u Select) (select ` :: ops ′, e, a :: as, RS)
u−→ (ops ′, e, (a.`) :: as, RS).

(u Update) (update(`, ops) :: ops ′, e, a :: as, RS)
u−→

(ops ′, e, (a.`⇐ ς(x)b) :: as, RS) if (ops, e); (x)b.

(u Let) (let(ops ′)::ops ′′, e, a::as, RS)
u−→ (ops ′′, e, (let x = a in b)::as, RS)

if (ops ′, e); (x)b.

(u Return) ([], e, as, (ops, E) :: RS)
u−→ (ops , e′, as, RS)

if E ; e′.

(u Cur) (cur ops :: ops ′, e, as, RS)
u−→ (ops ′, e, (λ(x)a) :: as, RS)

if fun(ops , e); λ(x)a.

(u Function Return) ([return], e, [ai
i∈1..n]@[♦]@as, RS)

u−→
([], e, (a1(a2) · · · (an)) :: as, RS).

(u Grab) (grab :: ops, e, as, RS)
u−→ ([return], e, (λ(x)a) :: as, RS)

if fun(ops , e); λ(x)a.
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(u Apply) (apply :: ops , e, [ai
i∈1..n]@[♦]@as, RS)

u−→
(ops , e, (a1a2 . . . an) :: as, RS).

(u Pushmark) (pushmark :: ops, e, as, RS)
u−→ (ops , e,♦ :: as, RS).

(Unload Abstraction) (ops , e); (x)b
if x /∈ fv(e) and (ops , x :: e, [], [])

u−→∗ ([], e′, [b], []).

(Unload Closure) fun(ops, e); λ(x)b
if x /∈ fv(e) and (ops , x :: e, [♦], [])

u−→∗ ([], e′, [b], []).

(Unload List Empty) []; [].

(Unload List Loc) ι :: [U♦i
i∈1..n]; ι :: [a♦i

i∈1..n]
if [U♦i

i∈1..n]; [a♦i
i∈1..n].

(Unload List Closure) fun(ops , E) :: [U♦i
i∈1..n]; (λ(x)a) :: [a♦i

i∈1..n]
if [U♦i

i∈1..n]; [a♦i
i∈1..n], E ; e and fun(ops , e); λ(x)a.

(Unload List Mark) ♦ :: [U♦i
i∈1..n]; ♦ :: [a♦i

i∈1..n]
if [U♦i

i∈1..n]; [a♦i
i∈1..n].

We complete the machine with the following unloading relations: O ; o

(on objects), Σ; σ (on stores) and C ; c (on configurations).

(Unload Object) [(`i, (ops i, Ei))
i∈1..n]; [`i = ς(xi)bi

i∈1..n]
if Ei ; ei and (ops i, ei); (xi)bi for all i ∈ 1..n.

(Unload Store) [ιi 7→ Oi
i∈1..n]; [ιi 7→ oi

i∈1..n] if Oi ; oi for all i ∈ 1..n.

(Unload Config) ((ops , E, AS,RS),Σ); (a, σ)
if Σ; σ, E ; e, AS ; as and (ops , e, as, RS)

u−→∗ ([], e′, [a], []).

Let p ; a if and only if there is e such that p
u−→∗ ([], e, [a], []). We say

P ↓ p if P = (ops , E, AS,RS), p = (ops, e, as, RS), E ; e and AS ; as.
Therefore (P,Σ); (a, σ) if and only if P ↓ p, p; a and Σ; σ.

3.4 Examples of Unloading

To clarify the workings of the unloading machine, we present some examples.
We unload some of the abstract machine states of the examples in Section 3.2.
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Example 1: Unloading a Compiled Term

Recall from Example 3 of Section 3.2 the configuration ((ops , [], [], []), []),
where

ops = [pushmark, object[], object[], cur(ops1), apply]

ops1 = [grab, grab, access 3, return]

We know already that [] ` (λ(xyz)x)[][]⇒ ops .
We aim to prove ((ops , [], [], []), []) ; ((λ(xyz)x)[][], []). We build up to

this result in four steps. The first step corresponds to unloading the body of
the function λ(xyz)x and each subsequent step will build a function whose
body is the result of the previous step. Bound names are lost in translation,
but since we identify terms up to alpha conversion, we choose variables in
this example so that the unloaded term is the same as the original term.

(1) We compute:

([access 3, return], [z, y, x], [♦], [])
u−→ ([return], [z, y, x], [x,♦], []) by (u Access)
u−→ ([], [z, y, x], [x], []) by (u Function Return)

By rule (Unload Closure), we get:

fun([access 3, return], [y, x]); λ(z)x

(2) Hence, we compute:

([grab, access 3, return], [y, x], [♦], [])
u−→ ([return], [y, x], [λ(z)x,♦], []) by (u Grab)
u−→ ([], [y, x], [λ(z)x], []) by (u Function Return)

By (Unload Closure), we get:

fun([grab, access 3, return], [x]); λ(yz)x

(3) Hence, we compute:

(ops1, [x], [♦], [])
u−→ ([return], [x], [(λ(yz)x),♦], []) by (u Grab)
u−→ ([], [x], [λ(yz)x], []) by (u Function Return)

Again by (Unload Closure), we get:

fun([grab, grab, access 3, return], []); λ(xyz)x
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(4) Below, the result of step (3) is used in the (u Cur) step:

(ops , [], [], [])
u−→ ([object[], object[], cur(ops1), apply], [], [♦], [])

by (u Pushmark)
u−→ ([object[], cur(ops1), apply], [], [[],♦], []) by (u Object)
u−→ ([cur(ops1), apply], [], [[], [],♦], []) by (u Object)
u−→ ([apply], [], [(λ(xyz)x), [], [],♦], []) by (u Cur)
u−→ ([], [], [(λ(xyz)x)[][]], []) by (u Apply)

The terminal configuration of the unloading machine has our original ex-
pression (λ(xyz)x)[][] on the stack. Hence by (Unload Config) we have
((ops , [], [], []), []); ((λ(xyz)x)[][], []) as desired.

Example 2: Unloading a Terminal Configuration

For the next example, we unload the terminal configuration of Example 3
of Section 3.2, (([], [], [fun([access 3, return], [ι1, ι2])], []),Σ2), where Σ2 =
[ι1 7→ [], ι2 7→ []].

From rule (Unload Store) we have Σ2 ; σ2 = [ι1 7→ [], ι2 7→ []]. To unload
the closure fun([access 3, return], [ι1, ι2]), we calculate:

([access 3, return], [z, ι1, ι2], [♦], [])
u−→ ([return], [z, ι1, ι2], [ι2,♦], []) by (u Access)
u−→ ([], [z, ι1, ι2], [ι2], []) by (u Function Return)

By rule (Unload Closure) we get:

fun([access 3, return], [ι1, ι2]); λ(z)ι2

From rules (Unload List Closure) and (Unload List Empty) we get that the
argument stack unloads as follows:

[fun([access 3, return], [ι1, ι2])]; [λ(z)ι2]

Finally, by (Unload Config) we deduce:

(([], [], [fun([access 3, return], [ι1, ι2])], []),Σ2); (λ(z)ι2, σ2)

Combining the working from this section and Section 3.2, we have shown
that unloading the outcome of compiling and executing the term (λ(xyz)x)[][],
yields the configuration (λ(z)ι2, [ι1 7→ [], ι2 7→ []]).
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Example 3: Unloading an Intermediate Configuration

For a final example, we consider an intermediate configuration obtained from
the evaluation of (λ(x)x.`)[` = ς(s)λ(y)y][] in the abstract machine. The
configuration we will unload is:

(([select `, return], [ι2], [ι2, ι1,♦], [([], [])]),Σ2)

where
Σ2 = [ι1 7→ [], ι2 7→ [(`, ([cur([access 1, return])], []))]]

We first unload the store:

• We compute:

([access 1, return], [y, s], [♦], [])
u−→ ([return], [y, s], [y,♦], []) by (u Access)
u−→ ([], [y, s], [y], []) by (u Function Return)

So by rule (Unload Closure), fun([access 1, return], [s]); λ(y)y.

• Hence, we get:

([cur([access 1, return])], [s], [], [])
u−→ ([], [s], [λ(y)y], [])

By (Unload Abstraction) we get:

([cur([access 1, return])], []); (s)λ(y)y

• Hence by rule (Unload Store):

Σ2 ; [ι1 7→ [], ι2 7→ [` = ς(s)λ(y)y]]

To unload the other component of the configuration, we compute:

([select `, return], [ι2], [ι2, ι1,♦], [([], [])])
u−→ ([return], [ι2], [ι2.`, ι1,♦], [([], [])]) by (u Select)
u−→ ([], [ι2], [(ι2.`)ι1], [([], [])]) by (u Function Return)
u−→ ([], [], [(ι2.`)ι1], []) by (u Return)

By rule (Unload Config) we deduce:

(([select `, return], [ι2], [ι2, ι1,♦], [([], [])]),Σ2)

; ((ι2.`)ι1, [ι1 7→ [], ι2 7→ [` = ς(s)λ(y)y]])
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3.5 Correctness of the Abstract Machine

We start with a lemma which shows that the unloading machine is indepen-
dent of the terms in its environment and on its stack. Define the shape of
(ops , e, as′, RS) to be the quadruple (ops, |e|, |as|, RS), and write shape p for
the shape of p. We say two stacks [a♦i

i∈1..n] and [b♦i
i∈1..m] are mark-equivalent

if and only if n = m and a♦j = ♦ if and only if b♦j = ♦. We say p and q are
shape-mark-equivalent if shape p = shape q and the argument stack of p is
mark-equivalent to that of q.

Lemma 7 If p
u−→ p′ and p is shape-mark-equivalent to q then there is a q′

with q
u−→ q′ and p′ is shape-mark-equivalent to q′.

Proof This is proved by induction on the derivation of p
u−→ p′. For exam-

ple, if p = (let ops ′ :: ops ′′, e, a :: as, RS) then p′ = (ops ′′, e, [let x = a in b] ::
as, RS) where (ops ′′, e); (x)b. Let q = (letops ′::ops ′′, e′, a′::as′, RS) where
|e′| = |e|, |as| = |as′| and as is mark-equivalent to as′. (ops ′′, e) ; (x)b
means that there are pj for j ∈ 1..n with p1 = (ops ′′, x :: e, [], []), pn =

([], e′′, [b], []) and for all j ∈ 1..n− 1 pj
u−→ pj+1. Then we can apply the

inductive hypothesis to get qi for j ∈ 1..n with q1 = (ops ′′, x :: e′, [], []), qn =
([], e′′′, [b′], []) and for all j ∈ 1..n− 1 qj

u−→ qj+1. Hence (ops ′′, e′) ; (x)b′.

By (u Let) q
u−→ q′ = (ops ′′, e′, [let x = a′ in b′] :: as′, RS) and p′ is shape-

mark-equivalent to q′. 2

A corollary of Lemma 7 is the following:

Lemma 8 If p; a then for all q with p and q shape-mark-equivalent, there
is an a′ with q ; a′.

Proof p; a means that there is a sequence of reductions

p
u−→ p1

u−→ · · · u−→ pn

where pn is of the form ([], e, [a], []). Applying Lemma 7 inductively to this
chain gives a new chain of reductions

q
u−→ q1

u−→ · · · u−→ qn

where qn is of the form ([], e′, [a′], []), and hence q ; a′. 2

The following lemma describes some of the behaviour of the stacks of the
unloading machine.



34

Lemma 9

(1) If (ops , e, as, [])
u−→ (ops ′, e′, as′, []) then for all as′′ and for all RS,

(ops, e, as@as′′, RS)
u−→ (ops ′, e′, as′@as′′, RS).

(2) For all ops and op 6= grab, ([op], e, as, [])
u−→ ([], e′, as′, []) if and only

if we have the transition (op :: ops , e, as, [])
u−→ (ops, e′, as′, []).

(3) If ([opi
i∈1..n], e, as, [])

u−→∗ ([], e1, as1, []) and opi = grab for no i ∈ 1..n,
then ([opi

i∈1..n]@ops ′, e, as, [])
u−→∗ (ops ′, e, as1, []).

Proof Inspecting the rules for u transitions gives (1) and (2). To prove
(3), we note that no u-transition increases RS, and induct on n, applying
(2). 2

To assist in the use of part (3) of the previous lemma, we have a lemma
limiting the occurrences of grab instructions. In particular, it says no grab

instruction can occur at the top level.

Lemma 10 If xs ` a⇒ [opi
i∈1..n] then opi = grab for no i ∈ 1..n.

Proof Immediate from the definition of the xs ` a⇒ ops predicate. 2

We aim to show that unloading is an inverse to compilation. We prove a
more general fact first.

Lemma 11 If xi
i∈1..n ` a⇒ ops then for all bi

i∈1..n

(ops, [bi
i∈1..n], [], [])

u−→∗ ([], [bi
i∈1..n], [a{{bi/xi

i∈1..n}}], [])

Proof We prove this by induction on the derivation of xi
i∈1..n ` a⇒ ops,

considering each of the Trans rules individually. Consider any terms b1 . . . bn.

(Trans Var) Here a = xj , where j ∈ 1..n. Then xi
i∈1..n ` a ⇒ [access j]

and ([access j], [bi
i∈1..n], [], [])

u−→ ([], [bi
i∈1..n], [bj], [])

(Trans Select) Here a = a′.`. We have an ops ′ with xi
i∈1..n ` a′ ⇒ ops ′.

Then xi
i∈1..n ` a ⇒ ops ′@[select `]. By rule induction we have that

(ops ′, [bi
i∈1..n], [], [])

u−→∗ ([], [bi
i∈1..n], [a′′], []), where a′′ = a′{{bi/xi

i∈1..n}}.
We calculate:

(ops ′@[select `], [bi
i∈1..n], [], [])

u−→∗ ([select `], [bi
i∈1..n], [a′′], []) by Lemmas 9(3) and 10

u−→ ([], [bi
i∈1..n], [a′′.`], []) by (u Select)

This suffices, since we have a′′.` = (a′{{bi/xi
i∈1..n}}).` = (a′.`){{bi/xi

i∈1..n}}.
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(Trans Let) Here a = (let x = a1 in a2). Since x is bound, we may assume
x /∈ fv(bi) for each i. We have ops1, ops2 with xi

i∈1..n ` a1 ⇒ ops1

and x :: [xi
i∈1..n] ` a2 ⇒ ops2 (where x /∈ {xi i∈1..n}). Then xi

i∈1..n `
a ⇒ ops1@[let(ops2)]. From the induction hypothesis, [xi

i∈1..n] `
a1 ⇒ ops1 implies (ops1, [bi

i∈1..n], [], [])
u−→∗ ([], [bi

i∈1..n], [a′1], []) where

a′1 = a1{{bi/xi
i∈1..n}}. The induction hypothesis applied to x :: [xi

i∈1..n] `
a2 ⇒ ops2 gives (ops2, x::[bi

i∈1..n], [], [])
u−→∗([], x::[bi

i∈1..n], [a′2], []) where

a′2 = a2{{x/x}}{{bi/xi
i∈1..n}}. By (Unload Abstraction), (ops2, [bi

i∈1..n]) ;
(x)a′2. Applying Lemma 9(3) and Lemma 10, we can derive:

(ops1@[let(ops2)], [bi
i∈1..n], [], [])

u−→∗ ([let(ops2)], [bi
i∈1..n], [a′1], [])

u−→ ([], [bi
i∈1..n], [let x = a′1 in a′2], []) by (u Let)

This is sufficient, since (let x = a′1 in a′2) = a{{bi/xi
i∈1..n}}, because

x /∈ fv(bi) for all i.

(Trans Clone) Here a = clone(a′). This follows in the same way as the
(Trans Select) case.

(Trans Update) Here a = (a1.` ⇐ ς(x)a2). Derived from xi
i∈1..n ` a1 ⇒

ops1 and x :: [xi
i∈1..n] ` a2 ⇒ ops2, where x /∈ xs, we have xi

i∈1..n `
a ⇒ ops1@[update(`, ops2)]. Via reasoning similar to the case of
(Trans Let), we calculate: (ops1@[update(`, ops2)], [bi

i∈1..n], [], [])
u−→∗

([], [bi
i∈1..n], [(a′1` ⇐ ς(x)a′2)], []) where a′1 = a1{{bi/xi

i∈1..n}} and a′2 =

a2{{x :: [bi
i∈1..n]/x :: [xi

i∈1..n]}}. This is sufficient, since a{{bi/xi
i∈1..n}} =

(a′1.`⇐ ς(x)a′2).

(Trans Object) Here a = [(`i, ς(yi)ai)
i∈1..n]. If yi :: [xi

i∈1..n] ` ai ⇒ ops i
then xi

i∈1..n ` a⇒ [object[(`i, ops i)
i∈1..n]]. By rule induction we have

that for all i, (ops i, yi :: [bj
j∈1..n]); (yi)a

′
i where a′i = ai{{bj/xj

j∈1..n}} and

hence that ([object[(`i, ops i)
i∈1..n]], [bi

i∈1..n], [], [])
u−→ ([], [bi

i∈1..n], [`i =
ς(yi)a

′
i], []) as required.

(Trans Function) Here a = λ(ym+1 . . . y1)b where b is not a function, yi /∈
{xj j∈1..n} for each i ∈ 1..m+ 1, [yi

i∈1..m+1] @ xs ` b ⇒ ops and
xs ` a⇒ [cur(grabm @ ops @ [return])], where xs = [xi

i∈1..n].

Let bs = [bi
i∈1..n] and ek = [yi

i∈k..m+1]@bs for each k ∈ 1..m+ 1. We
prove by an inner induction on k that for k ∈ 0..m,

([grabk @ ops @ [return]], ek+1, [♦], [])
u−→∗ ([], ek+1, [λ(yk . . . y1)b′], [])
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Base case, k = 0: By the outer induction hypothesis of the lemma,
[yi

i∈1..m+1] @ xs ` b⇒ ops implies

(ops , e1, [], [])
u−→∗ ([], e1, [b

′], [])

where b′ = b{{yi/yii∈1..m+1}}{{bj/xj
j∈1..n}} = b{{bj/xj

j∈1..n}}. We calcu-
late:

(ops @ [return], e1, [♦], [])
u−→∗ ([return], e1, [b

′,♦], []) by Lemma 9(1 and 3)
u−→ ([], e1, [b

′], []) by (u Function Return)

Induction case: We assume for the induction, that ([grabk @ ops @
[return]], ek+1, [♦], [])

u−→∗ ([], ek+1, [λ(yk . . . y1)b′], []).

Now, ek+1 = yk+1 :: ek+2, so by (Unload Closure):

fun([grabk @ ops @ [return]], ek+2); λ(yk+1)λ(yk . . . y1)b′

Hence

([grabk+1 @ ops @ [return]], ek+2, [♦], [])
u−→ ([return], ek+2, [λ(yk+1 . . . y1)b′,♦], []) by (u Grab)
u−→ ([], ek+2, [λ(yk+1 . . . y1)b′], []) by (u Function Return)

The k = m case gives ([grabm @ ops @ [return]], ym+1 :: bs, [♦], [])
u−→∗

([], ym+1 ::bs, [λ(ym . . . y1)b′], []) , so by (u Cur) we deduce ([cur[grabm@
ops, [return]]], bs, [], [])

u−→ ([], bs, [λ(ym+1 . . . y1)b′], []) as required.

(Trans Apply) Here a = (a1a2 . . . am), and [xi
i∈1..n] ` a ⇒ pushmark ::

opsm@opsm−1@ . . .@ops1 @ [apply] where for each j ∈ 1..m [xi
i∈1..n] `

aj ⇒ opsj . The induction hypothesis says that for each j ∈ 1..m we

have (opsj, [bi
i∈1..n], [], []); aj{{bi/xi

i∈1..n}}. Lemmas 9(1) and 9(3) give

that (pushmark :: opsm @ . . . @ ops1 @ [apply], [bi
i∈1..n], [], [])

u−→∗ p =

([apply], [bi
i∈1..n], [a′1, . . . , a

′
m,♦], []) where a′j = aj{{bi/xi

i∈1..n}}. p
u−→

([], [bi
i∈1..n], [a′], []) where a′ = a{{bi/xi

i∈1..n}} as required. 2

As a corollary we have that unloading is an inverse to compilation:

Proposition 6 Whenever [] ` a⇒ ops then ((ops , [], [], []), []); (a, []).

The unloading machine preserves substitutions:
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Lemma 12 If p
u−→ q then p{{a/x}} u−→ q{{a/x}}.

Proof By inspecting the u-transition rules. For example, if p = (access j ::
ops , [ai

i∈1..n], as, RS) and p
u−→ q = (ops , [ai

i∈1..n], aj ::as, RS), then p{{a/x}} =

(access j :: ops, [ai{{a/x}} i∈1..n], as{{a/x}}, RS) and by (u Access), p{{a/x}} u−→
q{{a/x}} = (ops , [ai{{a/x}} i∈1..n], (aj{{a/x}}) :: as{{a/x}}, RS). 2

Lemma 13

(1) If p
u−→ q then fv(q) ⊆ fv(p).

(2) If (ops , e); (x)b then fv(b)− {x} ⊆ fv(e).

(3) If fun(ops, e); λ(x)b then fv(b)− {x} ⊆ fv(e).

Proof We prove these simultaneously by inducting on the derivation of
p

u−→ q, (ops , e) ; (x)b or fun(ops , e) ; λ(x)b. For example, if p =
(letops :: ops ′, e, a ::as, RS) and p

u−→ q = (ops ′, e, (let x = a in b) ::as, RS)
where (ops , e); (x)b then by induction, fv(b)−{x} ⊆ fv(e), and so fv(q) =
fv(as) ∪ fv(e) ∪ fv(let x = a in b) ⊆ fv(as)fv(e) ∪ fv(a) = fv(p). 2

Next, we show that no u transition can prevent unloading, and that the
unloading relation ; is deterministic.

Lemma 14 Suppose p
u−→ q. Then for all a, p; a if and only if q ; a.

Proof By determinacy of
u−→. 2

Lemma 15 Whenever p; a and p; a′, a = a′.

Proof Assume p ; a and p ; a′. p ; a′ means p
u−→∗ q = ([], e, [a′], []).

By Lemma 14, q ; a. But q cannot perform a u-transition (by inspection
of the u-transition rules) and so q ; a′ only. Hence a = a′. 2

We now show that the unloading machine preserves reduction contexts
under certain conditions. We use u♦ and v♦ to stand for terms which are
either locations, functions or marks (♦).

Lemma 16 If (ops , e, as, RS)
u−→ (ops ′, e′, as′, RS ′) and as = [a♦i

i∈1..n,R,
u♦j

i∈1..m] where • /∈ fv(e) then • /∈ fv(e′) and as′ = [b♦i
i∈1..n′,R′, v♦j j∈1..m′]

for some R′, b♦i and v♦j (with i ∈ 1..n′, j ∈ 1..m′).

Proof We consider each u-transition in turn.



38

(u Access) This step pushes a term onto the front of the argument stack,
leaving the environment and the remainder of the stack unchanged.

(u Object), (u Cur), (u Pushmark), (u Grab) Similar to (u Access).

(u Clone) Here ops = clone :: ops ′. If n = 0, so as = [R, u♦1 , . . . , u♦m]
then (ops , e, as, RS)

u−→ (ops ′, e, [clone(R), u♦1 , . . . , u
♦
m], RS) and since

clone(R) is a reduction context this satisfies the conditions of the
lemma. Otherwise, in the case n > 0, we have that (ops , e, as, RS)

u−→
(ops ′, e, [clone(a♦1 ), a♦2 , . . . , a

♦
n ,R, u♦j j∈1..m], RS).

(u Select) Here ops = select ` :: ops ′. Similarly to the (u Clone) case, if
n > 0 the conditions are easily satisfied. Otherwise, when n = 0, as =
[R, u♦1 , . . . , u♦m] and (ops , e, as, RS)

u−→ (ops ′, e, [R.`, u♦1 , . . . , u♦m], RS),
sufficient since R.` is a reduction context.

(u Let) Here ops = let ops ′ :: ops ′′. Again, for the n = 0 case, by (u Let)
we have (ops ′, e) ; (x)b, and as′ = [let x = R in b, u♦1 , . . . , u

♦
m]. This

is sufficient, because (let x = R in b) is a reduction context, since
• /∈ fv(b) by Lemma 13.

(u Update) Similar to (u Let).

(u Return) The reduction ([], e, as, (ops, E ′) :: RS)
u−→ (ops , e′, as, RS)

(where E ′ ; e′) leaves the argument stack unchanged, and • /∈ fv(e′)
by Lemma 13.

(u Function Return) Let p = ([return], e, as, RS) where we have as =
[a♦i

i∈1..n,R, u♦j j∈1..m]. If a♦k = ♦ and a♦i 6= ♦ for i < k, then we have

that p
u−→ p′ = ([], e, (a♦1 . . . a

♦
k−1) :: [u♦k+1, u

♦
k+2, . . . ,R, u♦j j∈1..m], RS).

The conditions of the lemma are satisfied by p′.

Otherwise, if a♦i 6= ♦ for each i ∈ 1..n, then it must be that u♦k = ♦
for some k ∈ 1..m since we are assuming (u Function Return) can be
applied to p. We can pick the least such k, so that u♦i 6= ♦ for i < k

and u♦k = ♦. Now, p
u−→ p′ = ([], e, as′ = (a♦1 . . . a

♦
nRu♦1 . . . u♦k−1) ::

[u♦k+1, . . . , u
♦
m], RS). The term at the head of as′ is a reduction context

(since we evaluate right-to-left in applications), so the conditions of the
lemma are satisfied.

(u Apply) Similar to (u Function Return) 2

We now show that the head of the argument stack corresponds to the
part of the source expression which is currently evaluating.
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Proposition 7 Whenever (ops, e, a :: [u♦i
i∈1..n], RS) ; b, where • /∈ fv(e),

there is a reduction context, R, such that (ops , e, a′ :: [u♦i
i∈1..n], RS); R[a′]

for any a′.

Proof If (ops , e, a :: [u♦i
i∈1..n], RS) ; b there is a b′ such that (ops, e, • ::

[u♦i
i∈1..n], RS); b′ (by Lemma 8). This means (ops , e, •::[u♦i i∈1..n], RS)

u−→k

([], e′, [b′], []) for some k. Since • is a reduction context, applying Lemma 16
k times tells us that b′ = R for some R. Since • /∈ fv(e), Lemma 12 implies
(ops , e, a′::[u♦i

i∈1..n], RS); R[a′] (because a′ = •{{a′/•}} andR[a′] = R{{a′/•}}).
2

We show that β transitions of the abstract machine correspond to reduc-
tions in our extended object calculus, and that τ transitions are not reflected
in the source level reductions:

Lemma 17

(1) If C ; c and C
τ−→ D then D ; c.

(2) If C ; c and C
β−→ D then there is a d such that D ; d and c→ d.

Proof

(1) The proof for each of the τ transitions is similar. We detail only the (τ
Access) case.

(τ Access) Here C = (P,Σ), where P = (access j :: ops, E, AS,RS),
E = [Ui

i∈1..n], j ∈ 1..n, C ; c = (a, σ) and C
τ−→ D = (Q,Σ)

where Q = (ops , E, Uj :: AS,RS). Now, P ↓ p = (access j ::
ops, e, as, RS) where E ; e, e = [ai

i∈1..n], Ui ; ai and AS ; as.
Similarly Q ↓ q = (ops , e, aj :: as, RS). Since C ; (a, σ), and p

is unique, p ; a (from the definition of (Unload Config)). By (u
Access), p

u−→ q, so by Lemma 14 and p; a we have q ; a. So
D; (a, σ) as required.

(2) We examine each rule that may derive C
β−→ D.

(β Clone) Here C = (P,Σ), where P = (clone :: ops , E, ι :: AS,RS),

and C
β−→ D = (Q,Σ′) where Q = (ops , E, ι′ :: AS,RS), Σ′ =

(ι′ 7→ Σ(ι)) :: Σ and ι′ /∈ dom(Σ). We have C ; c = (a, σ) also,
where P ↓ p = (clone::ops , e, ι::as, RS), E ; e, AS ; as, p; a

and Σ ; σ. By (u Clone), p
u−→ (ops , e, (clone(ι)) :: as, RS).

Hence by Lemma 14, (ops , e, (clone(ι)) :: as, RS) ; a. Therefore
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by Proposition 7, there is a reduction context R such that for all
a′, (ops , e, a′::as, RS); R[a′]; by Lemma 15, a = R[clone(ι)] and
q = (ops , e, ι′ :: as, RS) ; R[ι′]. Let σ′ = (ι′ 7→ σ(ι)) :: σ so that
Σ′ ; σ′ by (Unload Store). Let d = (R[ι′], σ′). Q ↓ q ; R[ι′], so
D = (Q,Σ′); d. Finally, we have c→ d using (Red Clone).

(β Object), (β Update) These cases work similarly.

(β Select) Here C = (P,Σ), and C
β−→ D = (Q,Σ) where P =

(select `j :: ops , E, ι :: AS,RS), Q = (opsj , ι :: Ej , AS, (ops, E) ::
bRS) and Σ(ι) = [(`i, (opsi, Ei))

i∈1..n]. We have C ; c = (a, σ)
also, where C ↓ (p, σ), p = (select `j :: ops , e, ι :: as, RS), E ; e,
AS ; as, p ; a and Σ ; σ. Also, D ↓ (q, σ) where q =
(opsj, ι :: ej , as, (ops, E) ::RS) and Ej ; ej .

By (u Select), p
u−→ p′ where p′ = (ops, e, (ι.`j) :: as, RS). By

(Unload Object), Σ; σ and Σ(ι) = [(`i, (opsi, Ei))
i∈1..n] we have

that Ej ; ej and (opsj, ej) ; (yj)aj for some aj . By (Unload

Abstraction) this means (opsj, yj :: ej, [], [])
u−→∗ ([], e′, [aj], []) for

some e′. Hence by Lemma 12 we have (opsj , ι :: ej , [], [])
u−→∗

([], e′{{ι/yi}}, [ai{{ι/yi}}], RS). By Lemma 9(1) we have q
u−→∗ q′′ =

([], e′{{ι/yj}}, (aj{{ι/yj}}) ::as, (ops , E) ::RS) and by (τ Return) q′′
u−→

q′ = (ops , e, (aj{{ι/yj}}) :: as, RS) where E ; e. By Proposition 7
there is a reduction context R such that for all a′, (ops, e, a′ ::
as, RS) ; R[a′]. Applying this to p′ and q′ we get p′ ; R[ι.`j ]

and q′ ; R[aj{{ι/yj}}]. Since p
u−→ p′, Lemmas 15 and 14 give us

a = R[ι.`j ]. Let d = (R[aj{{ι/yj}}], σ). Then c→ d and D; d.

(β Function Return), (β Apply), (β Let), (β Grab)
These work in a similar way to (β Select). 2

To prove that the abstract machine simulates the object calculus seman-
tics, we first need to prove some technical lemmas. We show that the number
of τ transitions is bounded for a given state, that if a state unloads to a value
then its form is restricted, and that if the abstract machine is stuck then so
is its unloaded source term.

Lemma 18 For all configurations C there is a D with C
τ−→∗ D and not

D
τ−→.

Proof Every
τ−→ step either decreases |RS| or keeps RS constant, and

consumes an instruction.
The function f : (ops , E, AS,RS) 7→ (|RS|, |ops|) from states to N × N

is such that if C
τ−→ D then f(D) < f(C) in the lexicographic ordering on
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N × N, namely (x, y) < (x′, y′) if x < x′ or x = x′ and y < y′. An infinite
chain C1

τ−→ C2
τ−→ ... would give an infinite descending chain in N× N, a

contradiction since the lexicographic ordering is a well-ordering. 2

Lemma 19

(1) If D; (ι, σ) and not D
τ−→ then D = (([], E, [ι], []),Σ) for some E,Σ.

(2) If D; (λ(x)a, σ) and not D
τ−→ then D = (([], E, [fun(ops , E ′)], []),Σ)

for some E,Σ and some ops , E′ such that fun(ops , E ′); λ(x)a.

Proof

(1) We have that not D
β−→ since by Lemma 17 we would have a c with

(ι, σ) → c. Suppose D = ((ops , E, AS,RS),Σ). By (Unload Config)
we have Σ; σ, E ; e, AS ; as and (ops , e, as, RS)

u−→∗ ([], e′, [ι], [])
for some e′. First we note that ops = [] since otherwise (by examining
cases) either D would not unload, or could make a β or a τ reduction.
Similarly, RS = [] since otherwise (since ops = []) D could make a (τ
Return) transition. Now, ([], e, as, []) cannot perform a u transition,
but ([], e, as, [])

u−→∗ ([], e′, [ι], []).Hence, e = e′ and as = ι. Since AS ;
as = [ι] we have AS = [ι] by (Unload List Location). Hence D =
(([], E, [ι], []),Σ).

(2) A similar argument shows that D = (([], E, [fun(ops, E ′)], []),Σ) where
Σ; σ and fun(ops , E ′); λ(x)a. 2

Lemma 20 If C ; c and there is no D with C
βτ−→ D then there is no d

with c→ d.

Proof Let C = (P,Σ), where P = (ops, E, AS,RS). Now, C ; c means
P ↓ p, Σ; σ, p

u−→∗ ([], e′, [a], []) (for some e′), and c = (a, σ).

For a contradiction, suppose that there is no D such that C
βτ−→ D,

but there is d such that c → d. Given that p
u−→∗ ([], e′, [a], []), either (1)

p = ([], e′, [a], []) or (2) there is p′ such that p
u−→ p′ and p′

u−→∗ ([], e′, [a], []).
In case (1), a must either be a function or a location, from the definition

of AS ; as which forms part of the P ↓ p judgment. Then c = (a, σ) is a
value, so there is no d with c→ d.

In case (2), we consider two of the rules capable of deriving p
u−→ p′. The

cases for the other rules are similar.
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(u Access) Here p = (access j ::ops , e, as, RS) and p′ = (ops , e, uj ::as, RS)
where e = [ui

i∈1..n] and j ∈ 1..n. Now, P ↓ p means P = (access j ::
ops, [Ui

i∈1..n], AS,RS), Ui ; ui for i ∈ 1..n and AS ; as. But then
C = (P,Σ)

τ−→ ((ops, [Ui
i∈1..n], Uj :: AS,RS),Σ) by rule (τ Access)

contradicting the non-existence of D with C
βτ−→ D.

(u Select) Here p = (select ` :: ops , e, u :: as′, RS) and p′ = (ops , e, (u.`) ::
as′, RS). Now, p′ →∗ ([], e′, [a], []) means p′ ; a. From P ↓ p, we
deduce E ; e. We note that none of the unloading rules introduces a
free variable without binding it, so fv(e) = ∅; in particular this implies
• /∈ fv(e). Hence we may apply Proposition 7 to p′ = (ops , e, (u.`) ::
as′, RS) to infer the existence of a reduction context R such that p′ ;
R[u.`]. Lemma 14 with p′ ; R[u.`] and p′ ; a implies a = R[u.`]
and c = (R[u.`], σ). If c → d then the only rule that can apply is
(Red Select); hence u = ι and σ(ι) = o@[` = ς(x)b]@o′. From P ↓ p
we derive AS ; ι :: as′ and E ; e. From AS ; ι :: as′ and (Unload
List Loc) we see that AS = ι :: AS ′ where AS ′ ; as′. From Σ ;

σ, σ(ι) = o@[` = ς(x)b]@o′, (Unload Store) and (Unload Object) we
deduce Σ(ι) = O@[` = (ops ′, E′′)]@O′ where E ′′ ; e′′ and (ops ′, e′′);
(x)b. Hence C = ((select ` :: ops, E, ι ::AS ′, RS),Σ). Finally, by rule

(β Select), we may derive C
β−→ ((ops ′, ι :: E′′, AS ′, RS),Σ) and hence

a contradiction. 2

We are now in a position to show that the abstract machine semantics
simulates the semantics of the object calculus:

Lemma 21 If C ; c and c → d then there are D, D′ with C
τ−→∗ D′,

D′
β−→ D and D ; d.

Proof By Lemma 18 we have a D′ with C
τ−→∗ D′ and not D′

τ−→. If

there is no D′′ with D′
β−→ D′′ then by Lemma 20 there is no d with c→ d,

contradicting the assumption of this lemma. So D′
β−→ D′′ for some D′′. We

consider each of the β-transitions in turn.

(β Select) Here D′ = ((select ` :: ops, E, ι :: AS,RS),Σ) where Σ(ι) =
O @ [(`, (ops ′, E′))] @ O′. Moreover, D′ ↓ (p, σ) where p = (select ` ::
ops, e, ι :: as, RS), E ; e, AS ; as, Σ; σ. Then p

u−→ (ops, e, (ι.`) ::
as, RS), and by Proposition 7 there is a reduction context R such that
p; R[ι.`]. Hence, c = (R[ι.`], σ) and if c→ d′ then d = d′, since (Red
Select) is the unique rule which can derive c → d′ and gives a unique
d′.
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(β Let), (β Update), (β Function Return), (β Apply), (β Grab)
Similar to (β Select).

(β Clone) Here D′ = (P,Σ) = ((clone :: ops , E, ι :: AS,RS),Σ) where
Σ(ι) = O. By (u Clone), (Unload Store) and Proposition 7, D′ ; c =
(R[clone(ι)], σ) where σ(ι) = o and O ; o. Now d = (R[ι′], σ + (ι′ 7→
o)) where ι′ /∈ dom(σ). By (Unload Store) ι′ /∈ dom(Σ) so by (β Clone)

D′
β−→ D = ((ops , E, ι′ :: AS,RS),Σ + (ι′ 7→ O)). Invoking Proposi-

tion 7 again, we get D ; (R[ι′], σ + (ι′ 7→ o)) = d as required.

(β Object) Similar to (β Clone). 2

We combine Lemmas 17 and 21 to show that the semantics of the ab-
stract machine and that of our extended object calculus are related via the
unloading relation.

Let C ↘ D if C
βτ−→∗ D and D is of the form (([], E, [V ], []),Σ) for some

E, V and Σ. Such a D we call terminal.

Lemma 22

(1) If C ; c and C ↘ D then there is a d with D ; d and c↘ d.

(2) If C ; c and c↘ d then there is a D with D ; d and C ↘ D.

Proof For Part (1) we note that if C →∗ D and C ; c then by repeated
application of Lemma 17 we have that D ; d and c→∗ d. It remains to note
that if C ↘ D then D is a terminal configuration, and (since it unloads) it
unloads to a value, so c↘ d.

For (2), we note that c↘ d means c→∗ d and d = (v, σ). By Lemma 21,
we have a D′ with C →∗ D′ and D′ ; (v, σ). By Lemma 18 there is a D such
that D′

τ−→∗ D and not D
τ−→. By Lemma 17(1) we know D ; (v, σ) = d,

and by Lemma 19 we get that D is of the form ([], E, [V ], []),Σ) for some
E, V,Σ as required for C ↘ D. 2

We are now in a position to prove the main result:

Theorem 3 Suppose that [] ` a ⇒ ops. Then, for all d, (a, []) ↘ d if and
only if there is a D with ((ops, [], [], []), [])↘ D and D; d.

Proof Given [] ` a⇒ ops , Proposition 6 implies that ((ops , [], [], []), []);
(a, []). Suppose (a, [])↘ d. By Lemma 22(2), there is D such that D ; d and
((ops , [], [], []), [])↘ D. Conversely, consider a D with ((ops , [], [], []), [])↘ D
and D ; d. By Lemma 22(1), there is d′ such that D ; d′ and (a, [])↘ d′.
A corollary of Lemma 15 is that D ; d and D ; d′ imply that d = d′.
Therefore, we have (a, [])↘ d, as desired. 2
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3.6 Discussion and Related Work

We have proved correct a machine based on the machine used in our imple-
mentation. The machine could be described as a ZAM (Leroy 1990) plus
objects, but without some of the ZAM’s tail-recursion optimisations. Be-
cause of this, the proof given here can be considered as a correctness proof
of a simplified ZAM, and we are sure that the proof could be scaled up to
the full ZAM.

There is a large literature on proofs of interpreters based on abstract ma-
chines, such as Landin’s SECD machine (Hannan and Miller 1992; Plotkin
1975; Sestoft 1997). Since no compiled machine code is involved, unloading
such abstract machines is easier than unloading an abstract machine based
on compiled code. The VLISP project (Guttman, Swarup, and Ramsdell
1995), using denotational semantics as a metalanguage, is the most am-
bitious verification to date of a compiler-based abstract machine. Other
work on compilers deploys metalanguages such as calculi of explicit substitu-
tions (Hardin, Maranget, and Pagano 1998) or process calculi (Wand 1995).
Rather than introduce a metalanguage, we prove correctness of our abstract
machine directly from its operational semantics. We adopted Rittri’s idea
(Rittri 1990) of unloading a machine state to a term via a specialised unload-
ing machine. Rittri uses a generic framework based on bisimulation to prove
correctness of both a machine for evaluating arithmetic expressions, and the
SECD machine. Our work goes beyond Rittri’s by dealing with state and
objects. We found it simpler to write a direct proof than to appeal to his
generic framework.

There are differences, of course, between our formal model of the abstract
machine and our actual implementation. One difference is that we have
modelled programs as finitely branching trees, whereas in the implementa-
tion programs are bytecode arrays indexed by a program counter. Another
difference is that our model omits garbage collection, which is essential to
the implementation. Therefore Theorem 3 only implies that the compilation
strategy is correct; bugs may remain in its implementation.

4 Operational Equivalence

We now develop a theory of operational equivalence for the imperative object
calculus. We consider only the core object calculus, not the calculus extended
with functions. The standard definition of operational equivalence between
terms is that of contextual equivalence (Morris 1968; Plotkin 1977): two
terms are equivalent if and only if they are interchangeable in any program
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context without any observable difference; the observations are typically the
programs’ termination behaviour. Contextual equivalence is the largest con-
gruence relation that distinguishes observably different programs. Terms are
equivalent if and only if no amount of programming can tell them apart.
This is a robust and reasonable definition of semantic equivalence.

Mason and Talcott (1991) have shown a useful context lemma for func-
tional languages with state. It asserts that contextual equivalence coincides
with so-called CIU (“Closed Instances of Use”) equivalence. Informally, to
prove two terms are CIU equivalent, one needs to show that they have iden-
tical termination behaviour when placed in the redex position in an arbitrary
configuration and locations are substituted for the free variables. Although
contextual equivalence and CIU equivalence are the same relation, the defi-
nition of the latter is typically easier to use in proofs.

We take CIU equivalence as our definition of operational equivalence for
imperative objects and we establish some useful equivalence laws. Further-
more, we show that operational equivalence is a congruence, allowing com-
positional equational reasoning and a proof that it coincides with contextual
equivalence. The congruence proof is adapted from the corresponding con-
gruence proof for a λ-calculus with references by Honsell, Mason, Smith, and
Talcott (1993).

We take a modular approach to formulating CIU equivalence. In Sec-
tion 4.1, we introduce experimental equivalence, an auxiliary relation on
configurations. In Section 4.2, we phrase our definition of operational equiv-
alence in terms of experimental equivalence, but prove our formulation is
equivalent to the one of Mason and Talcott (1991). We derive a variety of
equational laws for imperative objects in Section 4.3. Section 4.4 contains
our congruence proof for operational equivalence, which we use in Section 4.5
to show that operational and contextual equivalence are the same.

4.1 Experimental Equivalence

For configurations c and c′, we write c l c′ to mean that either both converge
or neither of them converges, that is, c↓ if and only if c′↓.

We define a family of relations on configurations, called experimental
equivalence. Recall that w ranges over finite sets of locations. Two con-
figurations (a, σ) and (a′, σ′) are experimentally equivalent at index set w,
written (a, σ) ∼w (a′, σ′), if and only if `w (a, σ) ok , `w (a′, σ′) ok and, for all
reduction contexts with locs(R) ⊆ w and fv(R) = {•}, (R[a], σ) l (R[a′], σ′).

We may regard experimental equivalence at w as a kind of testing equiv-
alence. Let a w-test be a reduction context R such that locs(R) ⊆ w and
fv(R) = {•}. Let a configuration (a, σ) pass a w-test, R, if and only if
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(R[a], σ)↓. Then two configurations c and c′ are experimentally equivalent
at w if and only if `w c ok , `w c′ ok and they pass the same w-tests.

The index set w is a view into the configurations: the locations in the
stores that R may directly inspect. Other locations in the stores may only
be inspected indirectly.

For every index set w, experimental equivalence is an equivalence rela-
tion (reflexive, transitive and symmetric) on configurations, and it is anti-
monotone in the index set w:

(∼ Refl)
`w c ok

c ∼w c

(∼ Trans)
c ∼w c′′ c′′ ∼w c′

c ∼w c′

(∼ Symm)
c ∼w c′

c′ ∼w c

(∼ Anti)
c ∼w′ c′ w ⊆ w′

c ∼w c′

The following, easily proved facts about the interaction between reduction
contexts and reduction facilitate operational arguments involving reduction
contexts.

Lemma 23 For every closed reduction context R with locs(R) ⊆ dom(σ),

(1) (a, σ) → (a′, σ′) if and only if (R[a], σ) → (R[a′], σ′), if a is not a
value, and

(2) (R[a], σ) →∗ (v, σ′) if and only if there is a configuration (v′, σ′′) such
that (a, σ)→∗ (v′, σ′′) and (R[v′], σ′′)→∗ (v, σ′).

Part (2) implies that if (a, σ) goes wrong or diverges, so does (R[a], σ).
We can prove that reduction is sound with respect to experimental equiv-

alence:

Lemma 24 If `w c ok and c→ c′, then c ∼w c′.

Proof Suppose `w (a, σ) ok and (a, σ) → (a′, σ′). Then `w (a′, σ′) ok
holds by Lemma 1. Further, suppose locs(R) ⊆ w and fv(R) = {•}. From
Lemma 23(1) we get that (R[a], σ)→ (R[a′], σ′). Clearly, (R[a′], σ′)↓ implies
(R[a], σ)↓ because any converging reduction sequence from (R[a′], σ′) extends
to a converging reduction sequence from (R[a], σ). The reverse implication
follows because reduction is deterministic up to structural equivalence at
w, that is, by a combination of Proposition 1 and Lemma 3. We conclude
(a, σ) ∼w (a′, σ′), as required. 2

Moreover, up to experimental equivalence, all that matters about a con-
figuration is whether it converges, and if so, to which terminal configuration
it converges:
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Lemma 25 Suppose `w c ok and `w c′ ok. Then c ∼w c′ if and only if either

(1) both c and c′ converge, that is, there are terminal d and d′ such that
c→∗ d and c′ →∗ d′, and moreover d ∼w d′, or

(2) neither c nor c′ converges.

Proof For the forwards direction, suppose c = (a, σ) and c′ = (a′, σ′). We
proceed by considering whether or not c converges, that is, whether or not
there is a terminal d with c→∗ d. If so, letR = • so that (R[a], σ) = c. Since
(R[a], σ)↓, c ∼w c′ implies c′ = (R[a′], σ′)↓, that is, there is terminal d′ with
c′ →∗ d′. Lemma 24 implies that c ∼w d and c′ ∼w d′. These two equivalences
together with c ∼w c′ imply d ∼w d′ by (∼ Symm) and (∼ Trans). On the
other hand, if c does not converge, neither does c′, since c ∼w c′ implies that
if c′ converges so does c. In all, we have shown that condition (1) holds if c
converges, and that condition (2) holds if c does not.

For the backwards implication, we must show that conditions (1) and
(2) both imply that c ∼w c′. Given condition (1), Lemma 24 asserts that
c ∼w d and c′ ∼w d′. These two equivalences, with d ∼w d′, (∼ Symm) and
(∼ Trans) imply c ∼w c′. Finally, condition (2) implies c ∼w c′ by definition
of experimental equivalence and Lemma 23(2). 2

It is possible to formulate garbage collection principles for unused ob-
jects in terms of experimental equivalences. We call a location ι garbage in
(a, σ@[ι 7→ o]@σ′) if the configuration is well formed, ` (a, σ@[ι 7→ o]@σ′) ok ,
and it is also well formed without (ι 7→ o) in the store, ` (a, σ@σ′) ok ; that
is, a and σ@σ′ make no reference to ι. Reduction is independent of garbage:

Lemma 26 Suppose ι is garbage in (a, σ@[ι 7→ o]@σ′). Then (a, σ@[ι 7→
o]@σ′) →n (v, σn@[ι 7→ on]@σ′n) if and only if o = on, ι /∈ dom(σn@σ′n), and
(a, σ@σ′)→n (v, σn@σ′n).

Proof By inspection of the reduction rules we see that (a, σ@[ι 7→ o]@σ′)→
(a1, σ1@[ι 7→ o1]@σ′1) if and only if o = o1, ι /∈ dom(σ1@σ′1), and (a, σ@σ′)→
(a1, σ1@σ′1). Furthermore, for any such transition, ι is again garbage in
(a1, σ1@[ι 7→ o1]@σ′1). The result follows by induction on the length of the
computations. 2

We use the lemma to obtain the following garbage collection law which
says that if ι is garbage in a configuration c, it can be garbage collected up
to experimental equivalence at any w such that `w c ok and ι /∈ w.
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Lemma 27 Suppose ι is garbage in (a, σ@[ι 7→ o]@σ′). If `w (a, σ@σ′) ok
then (a, σ@[ι 7→ o]@σ′) ∼w (a, σ@σ′).

Proof For every R with locs(R) ⊆ w and fv(R) = {•}, ι is garbage in
(R[a], σ@[ι 7→ o]@σ′). Therefore (R[a], σ@[ι 7→ o]@σ′) l (R[a], σ@σ′) follows
from the preceding lemma. 2

Experimental equivalence is only an auxiliary relation. Our main inter-
est is operational equivalence for static terms which we introduce below.
However, the experimental equivalence relation on configurations is useful
because some facts about reduction, such as Lemmas 24, 25 and 27, are best
expressed as equivalences between configurations.

4.2 Operational Equivalence

From experimental equivalence on configurations we derive an equivalence
relation on static terms, operational equivalence. First, let a substitution, ρ,
be a finite map from variables to locations; we write ρ : {x1, . . . , xn} → w

whenever ρ = [xi 7→ ιi
i∈1..n] and ιi ∈ w for all i ∈ 1..n. Let aρ be the term

obtained from a static term a by substituting ρ(x) for x for every x ∈ dom(ρ).
(These substitutions denoted by ρ are a special case of the substitutions
denoted by s in Section 2.4.) Now, we define two static terms a and a′ to be
operationally equivalent, written a ≈ a′, if and only if (aρ, σ) ∼dom(σ) (a′ρ, σ)
holds for all well formed stores σ and substitutions ρ : fv(a) ∪ fv(a′) →
dom(σ).

Operational equivalence is an equivalence relation on static terms:

(≈ Refl)
locs(a) = ∅

a ≈ a

(≈ Trans)
a ≈ a′′ a′′ ≈ a′

a ≈ a′

(≈ Symm)
a ≈ a′

a′ ≈ a

We define operational equivalence only for static terms because we want
to study program equivalences that programmers can use for manipulations
of program text. Also, most automatic program transformations, as may
take place in compilers, deal with static program text or code. Locations
are dynamic entities, created during reduction of configurations. A location
only carries meaning in the context of a particular store. Therefore we only
consider locations in connection with configurations and experimental equiv-
alence. Our modular formulation of operational equivalence on static terms
via experimental equivalence on configurations is often convenient for proofs:
after instantiation of static terms a and a′ into configurations (aρ, σ) and
(a′ρ, σ), one can apply the simpler theory of experimental equivalence.
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The following lemma asserts that operational equivalence is Mason and
Talcott’s CIU equivalence: static terms a and a′ are equivalent if and only if
all ‘closed instantiations’ (variable substitutions ρ and stores σ) of all ‘uses’
(reduction contexts R) either both converge or neither converges.

Lemma 28 For all static terms a and a′, a ≈ a′ if and only if (R[a]ρ, σ) l
(R[a′]ρ, σ), for all static reduction contexts R, well formed stores σ, and
substitutions ρ : fv(R[a]) ∪ fv(R[a′])→ dom(σ).

Proof Follows straightforwardly from the definition of ≈ and ∼. For the
forward implication, we use the fact that R[a]ρ = (Rρ)[aρ] and Rρ is again
a reduction context. For the reverse implication, note that any reduction
context R′ can be written in the form Rρ, for some static reduction context
R and substitution ρ. 2

An easy consequence of Lemma 28 is that operational equivalence is pre-
served by static reduction contexts:

Lemma 29 If a ≈ a′ then R[a] ≈ R[a′], for all static reduction contexts R.

So equivalent terms in identical static reduction contexts are again equiv-
alent. Conversely, identical static terms in equivalent reduction contexts are
also equivalent:

Lemma 30 If R[x] ≈ R′[x] and x /∈ fv(R) ∪ fv(R′), then R[a] ≈ R′[a], for
all static terms a.

Proof We must show

(R[a]ρ, σ) ∼dom(σ) (R′[a]ρ, σ) (15)

whenever ` σ ok and ρ : fv(R[a]) ∪ fv(R′[a])→ dom(σ). Note that R[a]ρ =
(Rρ)[aρ] and R′[a]ρ = (R′ρ)[aρ].

If (aρ, σ)↓ does not hold, then both (R[a]ρ, σ)↓ and (R′[a]ρ, σ)↓ are false,
by Lemma 23(2), hence (15) holds by Lemma 25.

Otherwise assume (aρ, σ)→∗ (ι, σ′), for some ι and σ′. Then (R[a]ρ, σ)→∗
((Rρ)[ι], σ′) and (R′[a]ρ, σ) →∗ ((R′ρ)[ι], σ′). Now (15) follows by repeated
applications of Lemma 24 if

((Rρ)[ι], σ′) ∼dom(σ) ((R′ρ)[ι], σ′) (16)

But note that (Rρ)[ι] = R[x]ρ′ and (R′ρ)[ι] = R′[x]ρ′ if ρ′ = (x 7→ ι) :: ρ.
Therefore, by the assumption R[x] ≈ R′[x] and by definition of ≈, we have

(R[x]ρ′, σ′) ∼dom(σ′) (R′[x]ρ′, σ′)

hence also (16) holds, by Lemma 1 and (∼ Anti). 2
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4.3 Laws of Operational Equivalence

From Lemma 30 and the definition of operational equivalence, combined with
the laws for experimental equivalence above, it is possible to show a multitude
of laws of operational equivalence for the constructs of the calculus. We now
show a selection of such laws and we give an equational proof of βv-reduction
for the encoding of call-by-value functions from Section 2.

The let construct satisfies laws corresponding to those of Moggi’s compu-
tational λ-calculus (Moggi 1989), presented here in the form given by Talcott
(1998):

Proposition 8

(1) (let x = y in b) ≈ b{{y/x}}

(2) (let x = a in R[x]) ≈ R[a], if x /∈ fv(R)

Proof Part (1) is immediate from definition of ≈ and Lemma 24. For
(2), by Lemma 30 it suffices to show (let x = x in R[x]) ≈ R[x] which is
immediate from (1). 2

Moggi’s eta law is just Proposition 8(2) with R = •. To prove associa-
tivity:

let x = a in (let x = a′ in b) ≈ let x = (let x = a in a′) in b (17)

we first use Proposition 8(1), Lemma 29 and Lemma 30 to rewrite the left
hand side to

let x = a in (let x = (let x = x in a′) in b)

which, by Proposition 8(2) with R = (let x = (let x = • in a′) in b), rewrites
to the right hand side of (17).

The effect of invoking a method that has just been updated is the same
as running the method body of the update with the self parameter bound to
the updated object:

Proposition 9

(let x = a.`⇐ ς(x)b in R[x.`]) ≈ (let x = a.`⇐ ς(x)b in R[b])

Proof By Lemma 30 it suffices to show the law for some y /∈ fv(b) in place
of a. This case holds by definition of ≈ and, if y is instantiated to a location
pointing to an object with an ` method, by five applications of Lemma 24;
if the object has no ` method, neither side of the equation converges. 2
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There are laws for object constants and their interaction with the other
constructs of the calculus:

Proposition 10 Suppose o = [`i = ς(xi)bi
i∈1..n] and j ∈ 1..n.

(1) (let xj = o in R[xj .`j]) ≈ (let xj = o in R[bj ])

(2) o.`j ≈ (let xj = o in bj)

(3) (o.`j ⇐ ς(x)b) ≈ [`i = ς(xi)bi
i∈1..j−1, `j = ς(x)b, `i = ς(xi)bi

i∈j+1..n]

(4) clone(o) ≈ o

(5) (let x = o in R[clone(x)]) ≈ (let x = o in R[o]), if x /∈ fv(o)

(6) (let x = o in b) ≈ b, if x /∈ fv(b)

(7) (let x = a in let y = o in b) ≈ (let y = o in let x = a in b), if x /∈ fv(o)
and y /∈ fv(a)

Proof Parts (3) and (5) are immediate from definition of ≈ and a few
applications of Lemma 24.

Part (1) is established by Proposition 9 together with (3) and Lemma 29:

let xj = o in R[xj .`j ] ≈ let xj = o.`j ⇐ ς(xj)bj in R[xj .`j ]

≈ let xj = o.`j ⇐ ς(xj)bj in R[bj ]

≈ let xj = o in R[bj ]

Part (2) is immediate from (1) and Proposition 8(2).
Part (4) follows from Proposition 8(2), (5) and (6):

clone(o) ≈ let x = o in clone(x) where x /∈ fv(o)

≈ let x = o in o

≈ o

Part (6) is direct from the definition of ≈, Lemma 24 and Lemma 27.
Part (7) requires a more elaborate argument, first expanding the definition

of ≈ and then analysing the possible reduction sequences of arbitrary closed
instances, exploiting that reduction is independent of garbage, Lemma 26.
Suppose ` σ ok and ρ : fv(let x = a in let y = o in b)→ dom(σ). We must
show

((let x = a in let y = o in b)ρ, σ) ∼dom(σ) ((let y = o in let x = a in b)ρ, σ)
(18)
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First observe that

((let y = o in let x = a in b)ρ, σ)→ ((let x = a in b)ρ′, (ι 7→ oρ) :: σ)

where ρ′ = (y 7→ ι) :: ρ, for some ι /∈ dom(σ). Note that aρ′ = aρ and
ι is garbage in (aρ, (ι 7→ oρ) :: σ). Therefore, by Lemma 26, either both
(aρ′, (ι 7→ oρ) :: σ) and (aρ, σ) go wrong or diverge, or (aρ′, (ι 7→ oρ) :: σ)→n

(ι′, σn@[ι 7→ oρ]@σ′n) and (aρ, σ) →n (ι′, σn@σ′n), for some n, ι′, σn and σ′n.
If they go wrong or diverge, (18) holds by Lemma 23(2) and Lemma 25.
Otherwise, again by Lemma 23,

((let x = a in b)ρ′, (ι 7→ oρ) :: σ)→n ((let x = ι′ in b)ρ′, σn@[ι 7→ oρ]@σ′n)

((let x = a in let y = o in b)ρ, σ)→n ((let x = ι′ in let y = o in b)ρ, σn@σ′n)

Each reduces further to (bρ′′, σn@[ι 7→ oρ]@σ′n), where ρ′′ = (x 7→ ι′) :: ρ′. By
repeated applications of Lemma 24, we conclude (18). 2

The next proposition gives laws for method update and its interaction
with method selection and cloning.

Proposition 11 Let notation a;b abbreviate let x = a in b where x /∈ fv(b).

(1) (let x = a.`⇐ ς(x)b in R[x]) ≈ (let x = a in R[x.`⇐ ς(x)b])

(2) (a.`⇐ ς(x)b).`⇐ ς(x′)b′ ≈ a.`⇐ ς(x′)b′

(3) (y.` ⇐ ς(x)b); (z.`′ ⇐ ς(x′)b′); a ≈ (z.`′ ⇐ ς(x′)b′); (y.` ⇐ ς(x)b); a, if
` 6= `′

(4) clone(y.`⇐ ς(x)b) ≈ (let z = clone(y) in (y.`⇐ ς(x)b); z.`⇐ ς(x)b)

Proof Similar to the proof of Proposition 9. 2

Let us look at two examples of equational reasoning using the laws above.

Example 1: Pairs

Recall that pair(a, b) is the object:

[fst = ς(s)a, snd = ς(s)b, swap = ς(s)let x = s.fst in let y = s.snd in
(s.fst ⇐ ς(s′)y).snd ⇐ ς(s′)x]

for some s /∈ fv(a) ∪ fv(b). First, let us prove that the fst and snd methods
work as projections:

pair(a, b).fst ≈ let s = pair(a, b) in a by Prop. 10(2)

≈ a by Prop. 10(6)
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Analogously, we derive that pair(a, b).snd ≈ b.
To show that the swap method indeed swaps the components of a pair,

we can argue as follows:

pair(x, y).swap

≈ let s = pair(x, y) in
let x′ = s.fst in let y′ = s.snd in

(s.fst ⇐ ς(s′)y′).snd ⇐ ς(s′)x′ by Prop. 10(2)

≈ let s = pair(x, y) in
let x′ = x in let y′ = s.snd in

(s.fst ⇐ ς(s′)y′).snd ⇐ ς(s′)x′ by Prop. 10(1)

≈ let s = pair(x, y) in
let y′ = s.snd in

(s.fst ⇐ ς(s′)y′).snd ⇐ ς(s′)x by Prop. 10(7) and 8(1)

≈ let s = pair(x, y) in
let y′ = y in

(s.fst ⇐ ς(s′)y′).snd ⇐ ς(s′)x by Prop. 10(1)

≈ let s = pair(x, y) in
(s.fst ⇐ ς(s′)y).snd ⇐ ς(s′)x by Prop. 10(7) and 8(1)

≈ (pair(x, y).fst ⇐ ς(s′)y).snd ⇐ ς(s′)x by Prop. 8(2)

≈ pair(y, y).snd ⇐ ς(s′)x by Prop. 10(3)

≈ pair(y, x) by Prop. 10(3)

We note that pair(a, b).swap ≈ pair(b, a) fails in general, for instance if a
or b diverges, because a and b are evaluated in the course of the swap on the
left hand side and they are not evaluated on the right hand side. However,
by an elaboration of the previous derivation, we can show:

pair(a, b).swap ≈ let x = a in let y = b in pair(y, x)

for arbitrary static terms a and b with x /∈ fv(b).

Example 2: Functions

For the second example, recall the encoding of call-by-value functions from
Section 2.1:

λ(x)b
def
= [arg = ς(z)z.arg , val = ς(s)let x = s.arg in b]

b(a)
def
= let y = a in (b.arg ⇐ ς(z)y).val

where s, y /∈ fv(b) and y 6= z /∈ fv(a). From the laws for let and for object
constants, we can show that βv-reduction is valid:

(λ(x)b)(y) ≈ b{{y/x}} (19)
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Let o = [arg = ς(z)y, val = ς(s)let x = s.arg in b], then

(λ(x)b)(y)

≈ ((λ(x)b).arg ⇐ ς(z)y).val by Prop. 8(1)

≈ o.val by Prop. 10(3) and Lemma 29

≈ let s = o in let x = s.arg in b by Prop. 10(2)

≈ let x = o.arg in b by Prop. 8(2)

≈ let x = (let z = o in y) in b by Prop. 10(2) and Lemma 29

≈ let x = y in b by Prop. 10(6) and Lemma 29

≈ b{{y/x}} by Prop. 8(1)

These examples as well as the derivations of some of the laws above
suggest the usefulness of equational reasoning for understanding and manip-
ulating imperative object programs.

4.4 Congruence

The derivation of (19) used the fact that operational equivalence is preserved
by reduction contexts, Lemma 29. More generally, in order to exercise com-
positional equational reasoning it is necessary that operational equivalence is
preserved by arbitrary term constructs. This property can be formalised in
terms of compatible refinement (Gordon 1994). Given a relation on terms S,

its compatible refinement, Ŝ, relates terms with identical outermost syntactic
constructors and with immediate subterms pairwise related by S, as defined
by the following axiom schemes.

(Comp x) x Ŝ x.

(Comp Object) [`i = ς(xi)bi
i∈1..n]Ŝ [`i = ς(xi)b

′
i
i∈1..n] if bi S b′i for i ∈ 1..n.

(Comp Select) a.` Ŝ a′.` if a S a′.

(Comp Update) a.`⇐ ς(x)b Ŝ a′.`⇐ ς(x)b′ if a S a′ and b S b′.

(Comp Clone) clone(a) Ŝ clone(a′) if a S a′.

(Comp Let) let x = a in b Ŝ let x = a′ in b′ if a S a′ and b S b′.

Let a relation be compatible if and only if it contains its compatible re-
finement. Let a congruence be a compatible equivalence relation.

Proposition 12 Operational equivalence is a congruence.
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Proof Operational equivalence is an equivalence relation, so it remains to
show that it is compatible, that is, a≈̂a′ implies a ≈ a′. The proof is adapted
from the corresponding congruence proof for a λ-calculus with references in
(Honsell, Mason, Smith, and Talcott 1993). We prove a ≈ a′ by case analysis
of the derivation of a ≈̂ a′.

(Comp x) Here a = a′ = x, for some variable x, and a ≈ a′ holds because
≈ is reflexive, (≈ Refl).

(Comp Clone) Here a = clone(a0), a′ = clone(a′0), and a0 ≈ a′0. But then
a ≈ a′ is immediate from Lemma 29 with R = clone(•).

(Comp Select) Immediate from Lemma 29 as in the previous case.

(Comp Update) Here a = a0.` ⇐ ς(x)b, a′ = a′0.` ⇐ ς(x)b′, a0 ≈ a′0 and
b ≈ b′. By Lemma 29, a0 ≈ a′0 implies a0.` ⇐ ς(x)b ≈ a′0.` ⇐ ς(x)b.
Because ≈ is transitive the result follows if a′0.` ⇐ ς(x)b ≈ a′0.` ⇐
ς(x)b′. By Lemma 30, this again follows if

y.`⇐ ς(x)b ≈ y.`⇐ ς(x)b′

for some y /∈ fv(b). Consider any σ and ρ such that ` σ ok and
ρ : ({y} ∪ fv(b) ∪ fv(b′)− {x})→ dom(σ). We must show that

(ι.`⇐ ς(x)bρ, σ) ∼dom(σ) (ι.`⇐ ς(x)b′ρ, σ)

where ι = ρ(y). If the object σ(ι) has no ` method, both configurations
are stuck and the equivalence holds by Lemma 25. Otherwise it follows
by Lemma 24 if

(ι, σ1) ∼dom(σ) (ι, σ′1)

where σ1 and σ′1 are the updated stores obtained from σ by replacing
the method at label ` in σ(ι) by methods ` = ς(x)bρ and ` = ς(x)b′ρ,
respectively. To prove this, we must show that

(R[ι], σ1) l (R[ι], σ′1)

for all R with locs(R) ⊆ dom(σ) and fv(R) = {•}. Let relation T
relate stores with identical domains and with objects pairwise identical
or having ` methods ` = ς(x)bρ and ` = ς(x)b′ρ, respectively, and all
other methods identical. In particular, σ1 T σ′1. We shall argue that

(a, σ) l (a, σ′) for all a, σ and σ′ such that σ T σ′
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Suppose (a, σ)↓, that is, there exist n and a terminal configuration d
such that (a, σ)→n d. We show (a, σ′)↓ by induction on n:

If n = 0, (a, σ) is a terminal configuration, that is, a is a value, and
then (a, σ′) is terminal too.

Otherwise there exists (a1, σ1) such that (a, σ)→ (a1, σ1) →n−1 d. By
inspection of the reduction rules we see that (a, σ′) → (a1, σ

′
1) with

σ1 T σ′1, unless a is of the form a = R[ι.`] where σ(ι) and σ′(ι)
have methods ` = ς(x)bρ and ` = ς(x)b′ρ, respectively. In that case
(a1, σ1) = (R[bρ′], σ) and (a, σ′)→ (R[b′ρ′], σ′) where ρ′ = (x 7→ ι) :: ρ.
Since (R[bρ′], σ) →n−1 d in one less step than (a, σ) →n d, we get
(R[bρ′], σ′)↓ by the induction hypothesis. Moreover, b ≈ b′ implies
(bρ′, σ′) ∼dom(σ′) (b′ρ′, σ′). Hence (R[bρ′], σ′) l (R[b′ρ′], σ′) and we ob-
tain (R[b′ρ′], σ′)↓ and (a, σ′)↓, as required.

This completes the induction on n and we conclude that (a, σ)↓ implies
(a, σ′)↓. The reverse implication is symmetrical. So (a, σ) l (a, σ′), as
required.

(Comp Object) Follows from case (Comp Update) by repeated applica-
tions of Proposition 10(3).

(Comp Let) Here a = (let x = a0 in b), a′ = (let x = a′0 in b′), a0 ≈ a′0 and
b ≈ b′. Firstly, a0 ≈ a′0 implies (let x = a0 in b) ≈ (let x = a′0 in b),
by Lemma 29. Next, b ≈ b′ implies (let x = x in b) ≈ (let x = x in b′)
and (let x = a′0 in b) ≈ (let x = a′0 in b′), by Proposition 8(1) and
Lemma 30. Finally, a ≈ a′ because ≈ is transitive, (≈ Trans). 2

4.5 Contextual Equivalence

We call a relation S on static terms adequate if and only if a S a′ implies
(a, []) l (a′, []), for all closed terms a and a′.

Proposition 13 Operational equivalence is adequate.

Proof Immediate from the definition of operational and experimental
equivalence, by taking the empty substitution, empty store, and empty re-
duction context. 2

Proposition 14 Operational equivalence is the largest compatible and ade-
quate relation on static terms.
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Proof We must show that any compatible and adequate relation S is
included in ≈.

Suppose a S a′. By appeal to Lemma 28, a ≈ a′ holds if

(R[a]ρ, σ) l (R[a′]ρ, σ) (20)

for any given static reduction context R and any σ and ρ such that ` σ ok
and ρ : fv(R[a]) ∪ fv(R[a′])→ dom(σ).

Suppose σ = [ιi 7→ oi
i∈1..n], oi = [`ij = ς(xij)aij

j∈1..qi], and ρ = [xh 7→
ιih

h∈1..m] with {i1 . . . im} ⊆ {1 . . . n}. Then let ωi = [`ij = ς(x)x.`ij
j∈1..qi],

pick n distinct variables z1 . . . zn, and let bij be obtained from aij by replacing
every occurrence of location ιk by variable zk for k ∈ 1..n, for all j ∈ 1..qi
and i ∈ 1..n. Let

b = let z1 = ω1 in . . . let zn = ωn in
(...(z1.`11 ⇐ ς(x11)b11)...).`1q1 ⇐ ς(x1q1)b1q1 ;
...
(...(zn.`n1 ⇐ ς(xn1)bn1)...).`nqn ⇐ ς(xnqn)bnqn ;
let x1 = zi1 in . . . let xm = zim in R[a]

and let b′ be the same as b but with a′ in place of a (notation a; b abbreviates
let x = a in b where x /∈ fv(b)). Then b S b′ holds, since a S a′ and S
is compatible, and therefore (b, []) l (b′, []), since S is adequate. One can
check that (b, [])→∗ (R[a]ρ, σ) and (b′, [])→∗ (R[a′]ρ, σ). By determinacy of
reduction, it follows, as in the proof of Lemma 24, that (aρ, σ) l (b, []) and
(b′, []) l (a′ρ, σ). Finally, we conclude (20), as required, because the relation
l is transitive. 2

Clearly, operational equivalence is also the largest adequate congruence on
static terms. It follows that it coincides with Morris-style contextual equiva-
lence, sometimes known as observational congruence (Meyer and Cosmadakis
1988), where we take convergence of programs as our means of observation.
Instead of the usual definition of contextual equivalence in terms of variable
capturing contexts, one can equivalently define it as the relation between
static terms which are related by a compatible and adequate relation; more
concretely, for any two terms a and a′, let {(a, a′)}c be the least compatible
relation that relates them, defined inductively by the rules:

(Ctx a a′)

a {(a, a′)}c a′

(Ctx Comp)

b ̂{(a, a′)}c b′

b {(a, a′)}c b′
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Then a and a′ are contextually equivalent if and only if {(a, a′)}c is adequate.
The coincidence between operational and contextual equivalence reads as
follows:

Theorem 4 Operational (CIU) equivalence coincides with contextual equiv-
alence.

Proof We must prove that a ≈ a′ if and only if {(a, a′)}c is adequate. The
‘if’ direction is immediate from the previous proposition because a {(a, a′)}c
a′ and {(a, a′)}c is compatible and adequate. Conversely, {(a, a′)}c is con-
tained in ≈, by induction on the definition of {(a, a′)}c, since ≈ is closed
under (Ctx a a′) and (Ctx Comp) by the assumption a ≈ a′ and by (≈
Comp). Therefore {(a, a′)}c is adequate since ≈ is adequate. 2

The definitions of experimental equivalence and operational equivalence
are formulated in terms of reduction contexts, stores and substitutions. That
makes it easy to relate experimental and operational equivalence to the
substitution-based operational semantics in equivalence proofs. In contrast,
the definition of contextual equivalence is robust and abstract because it is
not dependent on details of the operational semantics: it only refers to static
terms and adequacy (convergence). Theorems 1, 2, and 3 imply that ade-
quacy can equivalently be defined on the basis of any of the three operational
semantics of Section 2 or the abstract machine of Section 3. Furthermore,
the definition of adequacy is unaffected by the choice of store model for the
operational semantics (see the discussion below).

4.6 Discussion and Related Work

The store model

The object store model is well-suited for operational reasoning because it
makes clear that method updates are not shared between different labels and
different objects. For example, it was easy to prove Proposition 11(3):

(y.`⇐ ς(x)b); (z.`′ ⇐ ς(x′)b′); a ≈ (z.`′ ⇐ ς(x′)b′); (y.`⇐ ς(x)b); a

In the method store model of Abadi and Cardelli (Abadi and Cardelli
1996), object values are of the form [`i 7→ ιi

i∈1..n], and stores map loca-
tions to methods. A static term would be instantiated to a configuration
by applying a substitution of free variables to object values and by pairing
the resulting term with an associated method store. The definition of CIU
equivalence would have to constrain the object values and method store used
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in instantiations: the resulting configuration would need to be such that
different occurrences of object values do not share methods unless the occur-
rences are identical. For example, without this constraint, there is a closing
instantiation of the above equation such that one side converges while the
other diverges. Take b = x, b′ = x′.`′, and a = z.`′, and substitute the object
[` 7→ ι] for y, and the object [`′ 7→ ι] for z, two objects that share the method
ι but that are not identical. Now, if we run each side in the method store
[ι 7→ ς(x)[]], we find that the left hand side diverges, whereas the right hand
side converges to ([`′ 7→ ι], [ι 7→ ς(x)x]).

On the other hand, one advantage of the method store model is that it
makes it easy to verify that different copies of the empty object are equivalent,
for instance,

let x = [] in [` = ς(s)x] ≈ [` = ς(s)[]] (21)

is an instance of Proposition 8(1) because [] is a value. In our object store
model, the proof of (21) becomes somewhat involved and requires a tedious
argument analogous to that of Lemma 27.

Functions

To keep the exposition simple and focused on imperative objects, the theory
of operational equivalence is only presented for the core calculus. The def-
inition of operational equivalence and the results for the core calculus can
be extended to the full calculus with functions considered in the previous
sections, along the lines of the similar work on a λ-calculus with references
by Honsell, Mason, Smith, and Talcott (Honsell et al. 1993). All the laws
in Section 4.3 remain valid for the full calculus. Nonetheless, the extension
of the theory of operational equivalence is not conservative; for instance,
(let y = clone(z) in []) ≈ [] is a valid equation in the theory for the core
calculus, where every value is an object location, but not in the theory for
the full calculus, where z may be instantiated to a function value λ(x)b and
(let y = clone(λ(x)b) in [], σ) is stuck whereas ([], σ) terminates for any store
σ.

Related work

The congruence proof we have presented, based on that of Honsell, Mason,
Smith, and Talcott (1993), is quite simple, considering that the imperative
object calculus is a higher-order, state-based language. Alternatively, it is
possible to adapt Howe’s general method for proving congruence of simu-
lation orderings (Howe 1996) to CIU equivalence; see Gordon (1998) for an
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example of this for the stateless object calculus of Abadi and Cardelli (1996).
Talcott (1998) presents another proof method based on a notion of uniform
computation. These proof methods scale up more smoothly when, for exam-
ple, functions are added to the calculus, but for the core calculus our direct
approach is simpler.

Some transformations for rearranging side effects are rather cumbersome
to express in terms of equational laws as they depend on variables being
bound to distinct locations. We have not pursued this issue in great depth.
For further study it would be interesting to consider program logics such
as VTLoE (Honsell, Mason, Smith, and Talcott 1993) or specification logic
(Reynolds 1982; Reddy 1998) where it is possible to express such conditions
directly.

Earlier work on operational equivalence for object calculi has been con-
cerned with stateless objects. For instance, Gordon and Rees (1996) and
Gordon (1998) characterise contextual equivalence exactly via forms of bisim-
ilarity induced by the primitive operational semantics of objects. See Stark
(1997) for an account of the difficulties of defining bisimulation in the pres-
ence of imperative effects.

In recent work, Kleist and Sangiorgi (1998) translate the first-order typed
imperative object calculus into a typed π-calculus. Among other results,
they verify typed versions of some of our laws by translation into bisimilar
π-calculus processes. In comparison, working directly with the operational
semantics as we do seems to be simpler than establishing and reasoning about
an encoding.

The main influence on this section has been the literature on operational
theories for functional languages with state. Our experience is that exist-
ing techniques for functional languages with state scale up well to deal with
the object-oriented features of the imperative object calculus. CIU equiva-
lence was introduced by Mason and Talcott (1991) and has been the topic of
much research; see Talcott (1998) for an overview of this work as well as a
more general presentation of the theory. Functional languages with state ac-
commodate imperative object-oriented programming styles; see for example
Abelson and Sussman (1985). Operational equivalences of imperative objects
in this style have been studied using CIU equivalence by Mason and Talcott
(1991, 1992, 1995). But program equivalences for imperative object-oriented
languages do not seem to have received much study so far. Our results are
a first step and indicate an interesting algebra of imperative objects. Many
subtleties of the theory of operational equivalence are shared with theories
for functional languages with state, including the examples of Meyer and
Sieber (1988). These subleties have been addressed by advanced operational
methods (Honsell, Mason, Smith, and Talcott 1993; Pitts and Stark 1998)
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which should be interesting to study for objects too, but we have not explored
these issues here in any depth.

Several authors have studied operational equivalences for languages with
concurrent objects (Agha, Mason, Smith, and Talcott 1997; Jones 1996;
Walker 1995; Sangiorgi 1997), but the technique of CIU equivalence was
not used in these studies.

5 A Refinement: Static Resolution of Labels

In Section 3 we showed how to compile the imperative object calculus to
an abstract machine that represents objects as finite lists of labels paired
with method closures. In each pair, the first component is the label, and the
second component is the method closure. A frequent operation is to resolve
a method label, that is, to compute the offset of the method with that label
from the beginning of the list. This operation is needed to implement both
method select and method update. In general, resolution of method labels
needs to be carried out dynamically since one cannot in general compute
statically the object to which a select or an update will apply. However,
when the select or update is performed on a newly created object, or to self,
it is possible to resolve method labels statically. The purpose of this section is
to exercise our framework by presenting an algorithm for statically resolving
method labels in these situations, and proving its correctness, Theorem 5.

We begin in Section 5.1 by extending our calculus to allow method se-
lects and method updates with respect to integer offsets as well as labels.
We present the optimisation algorithm in Section 5.2, give an example in
Section 5.3, and prove the correctness of the algorithm in Section 5.4. We
discuss related work in Section 5.5.

5.1 Integer Offsets

To represent our intermediate language, we begin by extending the syntax
of terms so that selects and updates may be performed on (positive) integer
offsets, i or j.

a, b ::= . . . | a.j | a.j ⇐ ς(x)b terms, 0 < j

As before, we say that a term, a, of this extended language is a static term
if and only if locs(a) = ∅.

The intention is that at runtime, a resolved select o.j proceeds by running
the jth method of object o. If the jth method of object o has label `, this
will have the same effect as o.`. Similarly, an update o.j ⇐ ς(x)b proceeds by
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updating the jth method of object o with method ς(x)b. If the jth method
of object o has label `, this will have the same effect as o.`⇐ ς(x)b.

To make this precise, the operational semantics of Section 2 and the
abstract machine and compiler of Section 3 may easily be extended with
integer offsets. We suppress all the details apart from the following.

We extend the reduction contexts of Section 2.2 as follows:

R ::= . . . | R.j | R.j ⇐ ς(x)b reduction context

We extend the small-step substitution-based semantics of Section 2.2 and
the big-step substitution-based semantics of Section 2.3 with these axioms
and rules:

(Red Offset Select) (R[ι.j], σ)→ (R[bj{{ι/xj}}], σ)
if σ(ι) = [`i = ς(xi)bi

i∈1..n] and j ∈ 1..n.

(Red Offset Update) (R[ι.j ⇐ ς(x)b], σ)→ (R[ι], σ′)
if σ(ι) = [`i = ς(xi)bi

i∈1..n], j ∈ 1..n and
σ′ = σ + (ι 7→ [`i = ς(xi)bi

i∈1..j−1, `j = ς(x)b, `i = ς(xi)bi
i∈j+1..n]).

(Subst Offset Select)
(a, σ0) ⇓ (ι, σ1) σ1(ι) = [`i = ς(xi)bi

i∈1..n] j ∈ 1..n (bj{{ι/xj}}, σ1) ⇓ (v, σ2)

(a.j, σ0) ⇓ (v, σ2)

(Subst Offset Update)
(a, σ0) ⇓ (ι, σ1) σ1(ι) = [`i = ς(xi)bi

i∈1..n] j ∈ 1..n
σ2 = σ1 + (ι 7→ [`i = ς(xi)bi

i∈1..j−1, `j = ς(x)b, `i = ς(xi)bi
i∈j+1..n])

(a.j ⇐ ς(x)b, σ0) ⇓ (ι, σ2)

All the results proved in Sections 2 and 3 remain true for this extended
language.

The reduction contexts used in the definition of experimental equivalence
now include include selects and updates with integer offsets. By enrich-
ing the syntax with integer offsets we make both experimental equivalence
and operational equivalence finer grained. For instance, in the original lan-
guage the order of methods in an object may be permuted without affecting
operational equivalence. For example, if a = [`1 = [], `2 = ς(s)s.`2] and
b = [`2 = ς(s)s.`2, `1 = []], then a ≈ b. But this equation fails in the pres-
ence of reduction contexts with integer offsets, since, for instance, (a.1, [])
converges but (b.1, []) diverges. Although the equivalences are finer grained,
all the results proved in Section 4 hold for the extended calculus.
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5.2 A Static Resolution Algorithm

We need the following definitions to express the static resolution algorithm.

A,B ::= [`i
i∈1..n] layout type, `i distinct

E ::= [xi 7→ Ai
i∈1..n] environment, xi distinct

For an object o = [`i = ς(xi)bi
i∈1..n], let layout(o) = [`i

i∈1..n].
The algorithm infers a layout type, A, for each term it encounters. If the

layout type A is [`i
i∈1..n], with n > 0, the term must evaluate to an object

o with layout(o) = A. On the other hand, if the layout type A is [], nothing
has been determined about the layout of the object to which the term will
evaluate. An environment E is a finite map that associates layout types to
the free variables of a term.

We express the algorithm as the following recursive routine resolve(E, a),
which takes an environment E and a static term a with fv(a) ⊆ dom(E),
and produces a pair (a′, A), where static term a′ is the residue of a after
resolution of labels known from layout types to integer offsets, and A is the
layout type of both a and a′. We use p to range over both labels and integer
offsets.

resolve(E, x)
def
= (x,E(x)) where x ∈ dom(E)

resolve(E, [`i = ς(xi)ai
i∈1..n])

def
= ([`i = ς(xi)a

′
i
i∈1..n], A)

where A = [`i
i∈1..n]

and (a′i, Bi) = resolve((xi 7→ A) :: E, ai), xi /∈ dom(E), for each i ∈ 1..n

resolve(E, a.p)
def
={

(a′.j, []) if j ∈ 1..n and p = `j
(a′.p, []) otherwise
where (a′, [`i

i∈1..n]) = resolve(E, a)

resolve(E, a.p⇐ ς(x)b)
def
={

(a′.j ⇐ ς(x)b′, A) if j ∈ 1..n and p = `j
(a′.p⇐ ς(x)b′, A) otherwise
where (a′, A) = resolve(E, a), A = [`i

i∈1..n]
and (b′, B) = resolve((x 7→ A) :: E, b), x /∈ dom(E)

resolve(E, clone(a))
def
= (clone(a′), A) where (a′, A) = resolve(E, a)

resolve(E, let x = a in b)
def
= (let x = a′ in b′, B)

where (a′, A) = resolve(E, a)
and (b′, B) = resolve((x 7→ A) :: E, b), x /∈ dom(E)



64

5.3 Example of Static Resolution

To illustrate the algorithm in action, consider the object pair(x, y):

[fst = ς(s)x, snd = ς(s)y, swap = ς(s)let x = s.fst in let y = s.snd in
(s.fst ⇐ ς(s′)y).snd ⇐ ς(s′)x]

Then, for arbitrary layout types A and B,

resolve([x 7→ A, y 7→ B], pair(x, y)) = (pair ′(x, y), [fst, snd , swap])

where pair ′(x, y) denotes the object:

[fst = ς(s)x, snd = ς(s)y, swap = ς(s)let x = s.1 in let y = s.2 in
(s.1⇐ ς(s′)y).2⇐ ς(s′)x]

All method selects and method updates in the object have been statically re-
solved. The layout type [fst , snd , swap] asserts that pair(x, y) and pair ′(x, y)
will evaluate to objects with this layout. This means, not surprisingly, that
any select or update of fst , snd or swap on pair(x, y) are statically resolved.
For instance:

resolve([x 7→ A, y 7→ B], pair(x, y).swap) = (pair ′(x, y).3, [])

Here, the empty layout type [] asserts that nothing is known about the layout
of the objects returned by pair(x, y).swap and pair ′(x, y).3. So, if we select
swap twice, the second method select is not resolved:

resolve([x 7→ A, y 7→ B], pair(x, y).swap.swap) = (pair ′(x, y).3.swap, [])

5.4 Verification of the Algorithm

To allow proofs by induction on derivations, we begin by representing the
algorithm by an inductively defined relation,↔. We need an auxiliary notion
of a store type, a finite map sending locations to layout types:

Σ ::= [ιi 7→ Ai
i∈1..n] store type, ιi distinct

By the following rules, we define a resolution relation on terms, (E,Σ) `
a↔ a′ : A, intended to mean that in environment E and store type Σ, and
at layout type A, term a may be resolved to term a′ by turning some of the
labels in a into integer offsets in a′.
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(Layout x)
x ∈ dom(E)

(E,Σ) ` x↔ x : E(x)

(Layout ι)
ι ∈ dom(Σ)

(E,Σ) ` ι↔ ι : Σ(ι)

(Layout Object) (where B = [`i
i∈1..n] and xi /∈ dom(E))

((xi 7→ B) :: E,Σ) ` ai ↔ a′i : Ai ∀i ∈ 1..n

(E,Σ) ` [`i = ς(xi)ai
i∈1..n]↔ [`i = ς(xi)a

′
i
i∈1..n] : B

(Layout Select 1)
(E,Σ) ` a↔ a′ : A

(E,Σ) ` a.`↔ a′.` : []

(Layout Select 2)
(E,Σ) ` a↔ a′ : A

(E,Σ) ` a.j ↔ a′.j : []

(Layout Select 3) (where j ∈ 1..n)
(E,Σ) ` a↔ a′ : [`i

i∈1..n]

(E,Σ) ` a.`j ↔ a′.j : []

(Layout Update 1) (where x /∈ dom(E))
(E,Σ) ` a↔ a′ : A ((x 7→ A) :: E,Σ) ` b↔ b′ : B

(E,Σ) ` a.`⇐ ς(x)b↔ a′.`⇐ ς(x)b′ : A

(Layout Update 2) (where x /∈ dom(E))
(E,Σ) ` a↔ a′ : A ((x 7→ A) :: E,Σ) ` b↔ b′ : B

(E,Σ) ` a.j ⇐ ς(x)b↔ a′.j ⇐ ς(x)b′ : A

(Layout Update 3) (where x /∈ dom(E), A = [`i
i∈1..n] and j ∈ 1..n)

(E,Σ) ` a↔ a′ : A ((x 7→ A) :: E,Σ) ` b↔ b′ : B

(E,Σ) ` a.`j ⇐ ς(x)b↔ a′.j ⇐ ς(x)b′ : A

(Layout Clone)
(E,Σ) ` a↔ a′ : A

(E,Σ) ` clone(a)↔ clone(a′) : A

(Layout Let) (where x /∈ dom(E))
(E,Σ) ` a↔ a′ : A ((x 7→ A) :: E,Σ) ` b↔ b′ : B

(E,Σ) ` let x = a in b↔ let x = a′ in b′ : B

We need the (Layout ι) rule and store types so that the resolution relation
is defined on arbitrary terms. Even though the resolve(E, a) routine takes
a static term a as its input, we cannot simply define the resolution relation
on static terms. If we did so, we would not be able to prove Proposition 15,
which relates resolution and evaluation, since terms containing locations may
arise from evaluation of static terms.
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This resolution relation on terms includes all the possible outcomes of
running the algorithm:

Lemma 31 Suppose that a is a static term and E is an environment with
fv(a) ⊆ dom(E). If routine resolve(E, a) returns (a′, A), then the judgment
(E, []) ` a↔ a′ : A is derivable.

Proof By induction on the number of recursive calls made by the routine
resolve(E, a), using all the rules but (Layout ι). 2

For illustration, let us revisit the pair example from Section 5.1. Via
(Layout Object), (Layout x), (Layout Let), (Layout Select 3) and (Layout
Update 3) we may derive:

([x 7→ A, y 7→ B], []) ` pair(x, y)↔ pair ′(x, y) : [fst , snd , swap]

Further, via (Layout Select 3) and (Layout Select 1) we derive:

([x 7→ A, y 7→ B], []) ` pair(x, y).swap ↔ pair ′(x, y).3 : []

([x 7→ A, y 7→ B], []) ` pair(x, y).swap.swap ↔ pair ′(x, y).3.swap : []

We will make precise the connection between evaluation and resolution
in Proposition 15. Since evaluation is defined on configurations, to state
the proposition we first need need to extend the resolution relation to stores
and configurations. By the following rules, we define a resolution relation,
` σ ↔ σ′ : Σ, on store pairs, and another, ` c↔ c′ : (A,Σ), on configuration
pairs:

(Layout Store) (where dom(Σ) = dom(σ) = dom(σ′))
Σ(ι) = layout(σ(ι)) = layout(σ′(ι))
([],Σ) ` σ(ι)↔ σ′(ι) : Σ(ι) ∀ι ∈ dom(Σ)

` σ ↔ σ′ : Σ

(Layout Config)
([],Σ) ` a↔ a′ : A Σ ` σ ↔ σ′

` (a, σ)↔ (a′, σ′) : (A,Σ)

For example, consider the store σ = [ι1 7→ o1, ι2 7→ o2] and a store type
Σ = [ι1 7→ A1, ι2 7→ A2] such that ` σ ↔ σ : Σ. Then, using the rules above,
we may derive:

` (pair(ι1, ι2).swap, σ)↔ (pair ′(ι1, ι2).3, σ) : ([],Σ)
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where pair ′(ι1, ι2) is the object pair(ι1, ι2) with all labels resolved, as in
the previous example. Given the set of rules defining the resolution rela-
tion, we cannot derive a layout type other than [] for pair(ι1, ι2).swap and
pair ′(ι1, ι2).3.

To see the effect of evaluation on the layout type of these configurations,
we derive:

(pair(x, y).swap, σ) ⇓ (ι, (ι 7→ pair(ι2, ι1)) :: σ)

and
(pair ′(x, y).3, σ) ⇓ (ι, (ι 7→ pair ′(ι2, ι1)) :: σ)

where ι /∈ dom(σ), by the evaluation rules from Section 2.3 and Section 5.1.
Moreover, using the rules above, we may derive:

` (ι, (ι 7→ pair(ι2, ι1)) :: σ)↔ (ι, (ι 7→ pair ′(ι2, ι1)) :: σ) : (A, (ι 7→ A) :: Σ)

where A = [fst , snd , swap].
This example shows that, as one might expect, evaluation increases the

accuracy of the layout types derivable for a configuration. In seeking to verify
the resolve routine, we introduced the resolution relation because it includes
all the results of running resolve, Lemma 31, but also because we can prove
that resolution is preserved by evaluation, Proposition 15. We first need the
following substitution lemma.

Lemma 32 (E′@[x 7→ A]@E ′′,Σ) ` a ↔ a′ : B, ι ∈ dom(Σ) and Σ(ι) = A
imply (E′@E ′′,Σ) ` a{{ι/x}} ↔ a′{{ι/x}} : B.

Proof A routine induction on the derivation of the judgment (E ′@[x 7→
A]@E ′′,Σ) ` a↔ a′ : B. 2

If Σ and Σ′ are store types, let Σ ≤ Σ′ if and only if dom(Σ) ⊆ dom(Σ′)
and Σ(ι) = Σ′(ι) for each ι ∈ dom(Σ).

Proposition 15 Suppose that ` c↔ c′ : (A,Σ).

(1) Whenever c ⇓ d there are d′, A′ and Σ′ such that c′ ⇓ d′, ` d ↔ d′ :
(A′,Σ′) and Σ ≤ Σ′. Moreover, A 6= [] implies A = A′.

(2) Whenever c′ ⇓ d′ there are d, A′ and Σ′ such that c ⇓ d and ` d↔ d′ :
(A′,Σ′) and Σ ≤ Σ′. Moreover, A 6= [] implies A = A′.

Proof We shall prove part (1); part (2) follows by an almost symmetric
argument. The proof proceeds by induction on the derivation of c ⇓ d.

We show the case for (Subst Select).
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(Subst Select) In this case c = (a.`j, σ0), (a, σ0) ⇓ (ι, σ1), σ1(ι) = [`i =
ς(xi)bi

i∈1..n], j ∈ 1..n and (bj{{ι/xj}}, σ1) ⇓ d. Only (Layout Config) can
derive ` (a.`j , σ0) ↔ c′ : (A,Σ), so c′ must take the form (b′, σ′0) with
([],Σ) ` a.`j ↔ b′ : A and ` σ0 ↔ σ′0 : Σ. Either (Layout Select 1),
(Layout Select 2) or (Layout Select 3) can derive ([],Σ) ` a.`j ↔ b′ : A.
We shall consider the latter case:

(Layout Select 3) Here b′ = a′.j and A = [], with ([],Σ) ` a ↔ a′ :
B, j ∈ 1..m and `′j = ` where B = [`′i

i∈1..m]. Since j ∈ 1..m, B 6=
[]. By (Layout Config), ` σ0 ↔ σ′0 : Σ and ([],Σ) ` a↔ a′ : B im-
ply ` (a, σ0) ↔ (a′, σ′0) : (B,Σ). Hence, by induction hypothesis,
(a, σ0) ⇓ (ι, σ1) and B 6= [] imply there is a configuration d1 and
a store type Σ1 such that (a′, σ′0) ⇓ d1, ` (ι, σ1) ↔ d1 : (B,Σ1)
and Σ ≤ Σ1. Hence d1 = (ι, σ′1) with ([],Σ1) ` ι ↔ ι : B, which
implies that ι ∈ dom(Σ1), Σ1(ι) = B and ` σ1 ↔ σ′1 : Σ1. By
the latter, ([],Σ1) ` σ1(ι) ↔ σ′1(ι) : B. The latter implies that
layout([`i = ς(xi)bi

i∈1..n]) = B, and therefore that B = [`i
i∈1..n],

m = n and each `i = `′i. It also implies there is o′ with σ′1(ι) = o′

and o′ = [`i = ς(xi)b
′
i
i∈1..n]. By (Layout Object), there is Aj with

([xj 7→ B],Σ1) ` bj ↔ b′j : Aj. By Lemma 32, ι ∈ dom(Σ1)
implies ([],Σ1) ` bj{{ι/xj}} ↔ b′j{{ι/xj}} : Aj . By (Layout Config),
` (bj{{ι/xj}}, σ1) ↔ (b′j{{ι/xj}}, σ′1) : (Aj,Σ1). By induction hypothe-
sis, the latter and (bj{{ι/xj}}, σ1) ⇓ c′ imply there are d′, A′ and Σ′

such that (b′j{{ι/xj}}, σ′1) ⇓ d′, ` c′ ↔ d′ : (A′,Σ′) and Σ1 ≤ Σ′. By
(Subst Offset Select), we have c′ = (a′.j, σ′0) ⇓ d′. We have Σ ≤ Σ′

from Σ ≤ Σ1 and Σ1 ≤ Σ′, since ≤ is clearly transitive. Finally,
A 6= [] implies A = A′ holds vacuously, since A = [].

The cases for (Layout Select 1) and (Layout Select 2) are very similar.

We omit the remaining cases, which are no harder than the one shown. The
case for (Subst Update) is similar to the one shown. The cases for (Subst
Offset Select) and (Subst Offset Update) are slightly simpler than (Subst
Select) and (Subst Update) respectively. The remaining cases are routine. 2

Lemma 33 Suppose ([xi 7→ [] i∈1..n], []) ` a ↔ a′ : A. Consider any re-
duction context R with locs(R) = ∅ such that fv(R) − {•, x1, . . . , xn} =
{xn+1, . . . , xn+m}. Then ([xi 7→ [] i∈1..n+m], []) ` R[a] ↔ R[a′] : B for some
B.

Proof By induction on the size of the reduction context R, with appeal
to rules (Layout Select 1), (Layout Select 2), (Layout Update 1), (Layout
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Update 2), (Layout Clone) and (Layout Let). Moreover, we need the facts
that the ↔ relation is reflexive (if locs(a) ⊆ dom(Σ) and fv(a) ⊆ dom(E)
then (E,Σ) ` a ↔ a : A holds for some A) and satisfies environment weak-
ening (if dom(E) ⊆ dom(E ′) and E(x) = E ′(x) for each x ∈ dom(E), then
(E,Σ) ` a↔ a′ : A implies (E ′,Σ) ` a↔ a′ : A). 2

Lemma 34 Given ([xi 7→ [] i∈1..n], []) ` a ↔ a′ : B, a store type Σ and a
substitution ρ : {x1, . . . , xn} → dom(Σ), there is B′ such that ([],Σ) ` aρ↔
a′ρ : B′. Moreover, B 6= [] implies B = B′.

Proof By induction on the derivation of ([xi 7→ [] i∈1..n], []) ` a ↔ a′ : B.
2

Theorem 5 Suppose a is a static term with free variables x1,. . . ,xn. If
routine resolve([xi 7→ [] i∈1..n], a) returns (a′, A), then a ≈ a′.

Proof By Lemma 28, to show a ≈ a′, it suffices to prove (R[a]ρ, σ) l
(R[a′]ρ, σ), for all static reduction contexts R, well formed stores σ, and
substitutions ρ : fv(R[a]) ∪ fv(R[a′]) → dom(σ). Consider any static reduc-
tion context R, any well formed store σ and any substitution ρ : fv(R[a]) ∪
fv(R[a′]) → dom(σ). Let E = [xi 7→ [] i∈1..n] and E ′ = [xi 7→ [] i∈1..n+m]
where {xn+1, . . . , xn+m} = fv(R) − {•, x1, . . . , xn}. By Lemma 31, we may
derive (E, []) ` a ↔ a′ : A. By Lemma 33, (E, []) ` a ↔ a′ : A im-
plies (E′, []) ` R[a] ↔ R[a′] : B for some B. If σ = [ιi = oi

i∈1..n], let
Σ = [ιi = layout(oi)

i∈1..n]. By Lemma 34, (E ′, []) ` R[a] ↔ R[a′] : B and
ρ : {x1, . . . , xn+m} → dom(Σ) imply ([],Σ) ` R[a]ρ ↔ R[a′]ρ : B′ for some
B′. By (Layout Store), Σ ` σ ↔ σ. Hence by (Layout Config), we have
` (R[a]ρ, σ)↔ (R[a′]ρ, σ). Suppose that (R[a]ρ, σ)↓. By Theorem 1 there is
c with (R[a]ρ, σ) ⇓ c. By Proposition 15(1), ` (R[a]ρ, σ) ↔ (R[a′]ρ, σ) im-
plies there is c′ such that (R[a′]ρ, σ) ⇓ c′, and therefore (R[a′]ρ, σ)↓, again by
Theorem 1. Similarly, by Proposition 15(2) and ` (R[a]ρ, σ) ↔ (R[a′]ρ, σ),
(R[a′]ρ, σ)↓ implies (R[a]ρ, σ)↓. Therefore (R[a]ρ, σ) l (R[a′]ρ, σ), as re-
quired to establish that a ≈ a′. 2

Our prototype implementation of the imperative object calculus opti-
mises any closed static term a by running the routine resolve([], a) to obtain
an optimised term a′ paired with a layout type A. By the theorem, this op-
timisation is correct in the sense that a′ is operationally equivalent to a. In
fact the theorem applies to applications of the resolve routine to open terms.
Inasmuch as we may regard a module as a term with free variables, the
theorem would justify use of resolve during separate compilation of modules.
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On a limited set of test programs, the algorithm converts a majority of
selects and updates into the optimised form. However, the speedup ranges
from modest (10%) to negligible; the interpretive overhead in our bytecode-
based system tends to swamp the effect of optimisations such as this. It is
likely to be more effective in a native code implementation.

5.5 Discussion and Related Work

In general, there are many algorithms for optimising access to objects; see
Chambers (1992), for instance, for examples and a literature survey. The
idea of statically resolving labels to integer offsets is found also in the work
of Ohori (1992), who presents a λ-calculus with records and a polymorphic
type system such that a compiler may compute integer offsets for all uses
of record labels. Our system is rather different, in that it exploits object-
oriented references to self.

In contrast to Ohori’s type system, we have not integrated our lay-
out types with a conventional type system that guarantees the absence of
unchecked runtime errors. Our system of layout types could probably be
integrated with one or other of Abadi and Cardelli’s type systems for the
imperative object calculus, to obtain a unified type system that avoided
unchecked runtime errors and moreover could determine statically the layout
of certain objects. Instead, our implementation checks programs using one
of Abadi and Cardelli’s type systems in one pass, and in a separate pass
uses the algorithm from this section to optimise updates and selects. This
separation avoids the complications of a unified type system.

Two alternative approaches to program analysis for untyped object calculi
are the abstract flow logic control flow analysis for the imperative object
calculus by Nielson and Nielson (1998) and the set-based control flow analysis
for a concurrent, imperative object calculus by di Blasio, Fisher, and Talcott
(1997). Both should be adaptable to the problem of statically resolving
method offsets. These approaches are rather more complex than ours but
may lead to more precise results.

6 Conclusions

In this paper, we have collated and extended a range of operational techniques
in order to verify aspects of the implementation of a small object-oriented
programming language, Abadi and Cardelli’s imperative object calculus.

First, we presented both a big-step and a small-step substitution-based
operational semantics for the calculus and proved them equivalent to a closure-
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based operational semantics like that given by Abadi and Cardelli (Theorem 1
and Theorem 2).

Next, we designed an object-oriented abstract machine as a straightfor-
ward extension of Leroy’s abstract machine with instructions for manipulat-
ing objects. Our third result is a correctness proof for the abstract machine
and its compiler (Theorem 3). Such results are rather more difficult than
proofs of interpretive abstract machines. Our contribution is a direct proof
method which avoids the need for any metalanguage—such as a calculus of
explicit substitutions.

Our fourth result is that Mason and Talcott’s CIU equivalence coincides
with Morris-style contextual equivalence (Theorem 4). This is the first result
about program equivalence for the imperative object calculus, a topic left
unexplored by Abadi and Cardelli’s book. The selection of laws of program
equivalence that we establish is a first step towards an algebra of imperative
objects that may be useful for future work on imperative object-oriented
languages. Already, typed versions of some of our laws have been verified for
a typed imperative object calculus (Kleist and Sangiorgi 1998).

One benefit of CIU equivalence is that it allows the verification of compiler
optimisations. We illustrate this by proving that an optimisation algorithm
from our implementation preserves contextual equivalence (Theorem 5).
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