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Abstract. In this paper we provide a complete characterization of the class of

properties of (networks of) timed automata for which model checking can be

reduced to reachability checking in the context of testing automata.

1 Introduction

The main motivation for the work presented in this paper stems from our practi-

cal experience with Uppaal [8], a tool for the veri�cation of behavioural prop-

erties of real-time systems speci�ed as networks of timed automata [3]. One

of the main design criteria behind Uppaal has been that of e�ciency, and

its computational engine has originally been restricted to a collection of e�-

cient algorithms for the analysis of simple reachability properties of systems.

However, in practice one often wants to examine a model to discover whether it

enjoys a number of properties that cannot be directly expressed via reachability.

Model checking of properties other than plain reachability ones may currently

be carried out in Uppaal as follows. Given a property φ to model check, the

user must provide a test automaton Tφ for it. The test automaton must be

such that the original system S has the property expressed by φ precisely when

none of the distinguished reject states of Tφ can be reached by S‖Tφ, i.e., the
agent obtained by making the test automaton interact with the system under

investigation. This raises the question of which properties may be analyzed by

Uppaal in this manner. In this paper we answer this question by providing a

complete characterization of the class of properties of (networks of) timed au-

tomata for which model checking can be reduced to reachability testing in the

sense outlined above.
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In our previous study [2], we have considered SBLL, a property language

suitable for expressing safety and bounded liveness properties of real-time sys-

tems. In particular, we have shown that SBLL is testable, in the sense that

suitable test automata may be derived for any property of SBLL. However,

as we shall demonstrate in this paper, SBLL is not expressive complete with

respect to reachability testing because it cannot express all the properties for

which test automata can be derived. As the main result of this paper, we present

an extension, L−∀S , of SBLL which is shown to characterize exactly the limit of

the testing approach. More precisely we show that:

� every property ψ of L−∀S is testable, in the sense that there exists a test

automaton Tψ such that S satis�es ψ if and only if S‖Tψ cannot reach a

reject state, for every system S; and

� every test automaton T is expressible in L−∀S , in the sense that there exists

a formula ψT of L−∀S such that, for every system S, the agent S‖T cannot

reach a reject state if and only if S satis�es ψT .

This expressive completeness result will be obtained as a corollary of a stronger

result pertaining to the compositionality of the property language L−∀S . A prop-

erty language is compositional i� every property φ of a composite system S‖T
can be reduced to a necessary and su�cient property φT of the component

S. As the property φT is required to be expressible in the property language

under consideration, compositionality clearly puts a demand on its expressive

power. Let Lbad be the property language with only one property φnb, express-

ing that no reject state can ever be reached (a simple safety property). We prove

that L−∀S is the least expressive, compositional extension of the language Lbad
(Thm. 5.4). This yields the desired expressive completeness result because any

compositional property language that can express the property φnb is expressive

complete with respect to reachability testing (Propn. 5.3).

The paper is organized as follows. After reviewing the variation on the

model of timed automata which will be considered in this study (Sect. 2), we

introduce test automata and describe how they can be used to test for properties

via reachability analysis (Sect. 3). The property language studied in this paper

is presented in Sect. 4. We then proceed to argue that the language L−∀S is

testable (Sect. 4.1). Our main results are presented in Sect. 5. Ibidem we

show that L−∀S is the least expressive, compositional property language that can

express the aforementioned safety property φnb, and use this result to derive its

expressive completeness with respect to reachability testing.

2 Preliminaries

Timed Labelled Transition Systems Let A be a �nite set of actions, and

U be a �nite set of urgent actions disjoint from A. We use Act to stand for

A ∪ U and let a, b, c range over it. We assume that Act comes equipped with a

mapping · : Act→ Act such that a = a, for every a ∈ Act. Moreover, we require

that a ∈ A i� a ∈ A, for every action a. (Note that, since A and U are disjoint,

it is also the case that a ∈ U i� a ∈ U .) We let Actτ stand for Act ∪ {τ}, where
τ is a symbol not occurring in Act, and use µ to range over it. The symbol τ
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will stand for an internal action of a system. Let N and R≥0 denote the sets of

natural and non-negative real numbers, respectively. We use D to denote the

set of delay actions {ε(d) | d ∈ R≥0}, and L to stand for the union of Actτ and

D. The meta-variable α will range over L.
A timed labelled transition system (TLTS) is a structure T = 〈S,L, s0,−→〉

where S is a set of states, s0 ∈ S is the initial state, and −→⊆ S × L × S is a

transition relation satisfying the following properties:

� (Time Determinism) for every s, s′, s′′ ∈ S and d ∈ R≥0, if s
ε(d)−→ s′ and

s
ε(d)−→ s′′, then s′ = s′′;

� (Time Additivity) for every s, s′′ ∈ S and d1, d2 ∈ R≥0, s
ε(d1+d2)−→ s′′ i�

s
ε(d1)−→ s′

ε(d2)−→ s′′, for some s′ ∈ S;

� (0-Delay) for every s, s′ ∈ S, s ε(0)−→ s′ i� s = s′;

� (Forward Persistence of Urgent Actions) for every s, s′, s′′ ∈ S,
a ∈ U and d ∈ R≥0, if s

ε(d)−→ s′ and s
a−→ s′′, then there exists s ∈ S such

that s′
a−→ s;

� (Backward Persistence of Urgent Actions) for every s, s′, s′′ ∈ S,
a ∈ U and d ∈ R≥0, if s

ε(d)−→ s′ and s′
a−→ s′′, then there exists s ∈ S such

that s
a−→ s.

As usual, we write s
α−→ to mean that there is some state s′ such that s

α−→ s′,
and s 6 α−→ if there is no state s′ such that s

α−→ s′.

The axioms of time determinism, time additivity and 0-delay are standard

in the literature on TCCS (see, e.g., [9]). Those dealing with urgent actions

are motivated by the particular kind of timed automaton model considered in

veri�cation tools like HyTech [5] and Uppaal [8].

A delaying computation is a sequence of transitions s0
α1−→ s1

α2−→ . . .
αn−→ sn

(n ≥ 0) such that αi = τ or αi ∈ D, for every i ∈ {1, .., n}. Following [9], we

now proceed to de�ne versions of the transition relations that abstract from the

internal evolution of states as follows:

s
a

=⇒ s′ i� ∃s′′. s
τ−→∗ s′′ a−→ s′

s
ε(d)
=⇒ s′ i� there exists a delaying computation

s = s0
α1−→ s1

α2−→ . . .
αn−→ sn = s′ with d =

∑
{di | αi = ε(di)}

By convention, if the set {di | αi = ε(di)} is empty, then
∑
{di | αi = ε(di)} is

0. We de�ne a collection of transition relations parameterized by a set of urgent

3



actions S as follows:

s
ε(d)−→S s

′ i� s
ε(d)−→ s′ and ∀d′ ∈ [0, d[, a ∈ S, s′ ∈ S. s ε(d

′)−→ s′ implies s′ 6 a−→

s
ε(d)
=⇒S s

′ i� there exists a delaying computation

s = s0
α1−→S s1

α2−→S . . .
αn−→S sn = s′ with

d =
∑
{di | αi = ε(di)}

where the relation
τ−→S coincides with

τ−→. Intuitively, s
ε(d)−→S s

′ holds if s can
delay d units of time, and no action in the set S becomes enabled before time

d during this delay activity. Note that, since the set S only contains urgent

actions, this amounts to requiring that either d = 0 or s 6 a−→, for every a ∈ S.
Similarly, s

ε(d)
=⇒S s

′ holds if there exists a delaying computation of duration d

from state s whose delay transitions with positive duration occur only in states

in which none of the urgent actions in S are enabled.

De�nition 2.1 (Operations on TLTSs).

� Let Ti = 〈Si,L, s0
i ,−→i〉 (i ∈ {1, 2}) be two TLTSs. The parallel composi-

tion of T1 and T2 is the TLTS T1 ‖ T2 = 〈S1×S2,L, (s0
1, s

0
2),−→〉, where the

transition relation −→ is de�ned by the rules in below:

(1)
s1

µ−→1s
′
1

s1‖s2
µ−→s′1‖s2

(2)
s2

µ−→2s
′
2

s1‖s2
µ−→s1‖s′2

(3)
s1

a−→1s
′
1 s2

a−→2s
′
2

s1‖s2
τ−→s′1‖s′2

(4)
s1
ε(d)−→1s

′
1 s2

ε(d)−→2s
′
2

s1‖s2
ε(d)−→s′1‖s′2

d = 0 or ∀a ∈ U .
¬(s1

a−→1 ∧ s2
a−→2)

where si, s
′
i are states of Ti (i ∈ {1, 2}), µ ∈ Actτ , a, a ∈ Act and d ∈ R≥0.

In the above rules, and in the remainder of the paper, we use the more

suggestive notation s ‖ s′ in lieu of (s, s′).
� Let T = 〈S,L, s0,→〉 be a TLTS and let L ⊆ Act be a set of actions.

The restriction of T over L is the TLTS T \L = 〈S\L,L, s0\L,;〉, where
S\L = {s\L | s ∈ S} and the transition relation ; is de�ned by the rules

below:

(1)
s
τ−→s′

s\L τ
;s′\L (2)

s
ε(d)−→s′

s\Lε(d)
; s′\L

(3)
s

a−→s′
s\L a
;s′\L a, a 6∈ L

where s, s′ are states of T , L ⊆ Act, a ∈ Act, and d ∈ R≥0.

The reader familiar with TCCS [9] may have noticed that the above de�nition

of parallel composition has strong similarities with that of TCCS parallel com-

position � the only di�erence being that in TCCS all actions are urgent. This

yields precisely the parallel composition operator used in Uppaal [8].
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Timed Automata Let C be a set of clocks. We use B(C) to denote the set of
boolean expressions over atomic formulae of the form x ∼ p and x−y ∼ p, with
x, y ∈ C, p ∈ N, and ∼∈ {<,>,=}. Expressions in B(C) are interpreted over

the collection of time assignments. A time assignment, or valuation, v for C is a

function from C to R≥0. Given a condition g ∈ B(C) and a time assignment v,

the boolean value g(v) describes whether g is satis�ed by v or not. (Note that

B(C) is closed under negation.) For every time assignment v and d ∈ R≥0, we

use v + d to denote the time assignment which maps each clock x ∈ C to the

value v(x) + d. Two assignments u and v are said to agree on the set of clocks

C ′ i� they assign the same real number to every clock in C ′. For every subset

C ′ of clocks, [C ′ → 0]v denotes the assignment for C which maps each clock

in C ′ to the value 0 and agrees with v over C\C ′. For an assignment u and a

subset C ′ of C, we write u � C ′ for the restriction of u to the set of clocks C ′.
Given two disjoint sets of clocks C1, C2, and two valuations v1, v2 for the clocks

of C1 and C2 respectively, v1 : v2 denotes the valuation for the clocks of C1∪C2

such that (v1 : v2)(x) = v1(x) i� x ∈ C1 and (v1 : v2)(x) = v2(x) i� x ∈ C2.

The notion of timed automaton we use in this paper is a variation on the

original one introduced by Alur and Dill [3], and underlies that used in, e.g.,

HyTech [5] and Uppaal [8].

De�nition 2.2. A timed automaton is a tuple A = 〈Actτ ,N, n0, C,E〉 where
N is a �nite set of nodes, n0 is the initial node, C is a �nite set of clocks, and

E ⊆ N×N×Actτ×2C×B(C) is a set of edges. The tuple e = 〈n, ne, µ, re, ge〉 ∈ E
stands for an edge from node n to node ne (the target of e) with action µ, where

re denotes the set of clocks to be reset to 0 and ge is the enabling condition (or

guard) over the clocks of A. All the timed automata we shall consider in this

paper will satisfy the following constraint:

- (Urgency) if 〈n, ne, µ, re, ge〉 ∈ E and µ ∈ U , then ge is a tautology, i.e.,

ge is satis�ed by every valuation for the clocks in C.

In what follows, we shall assume that the clocks used in timed automata come

from a �xed, countably in�nite collection of clocks CA.

The timed automaton depicted in Figure 1 has �ve nodes labelled n0 to n4,

one clock x, actions a ∈ U and b ∈ A, and four edges. The edge from node n1

to node n2, for example, is guarded by x ≥ 0, is labelled with the urgent action

a and resets clock x. Note that the guards of edges labelled with the urgent

action a are tautologies. A state of a timed automaton A is a pair (n, v) where
n is a node of A and v is a time assignment for C. The operational semantics

of a timed automaton A is given by the TLTS TA = 〈S,L, (n0, [C → 0]),−→〉,
where S is the set of states of A, and −→ is the transition relation de�ned as

follows (µ ∈ Actτ , ε(d) ∈ D):

(n, v)
µ−→ (n′, v′) i� ∃e = 〈n, n′, µ, re, ge〉 ∈ E. ge(v) ∧ v′ = [re → 0]v

(n, v)
ε(d)−→ (n′, v′) i� n = n′ and v′ = v + d

5



n0

n1

n2

x = 0
b

n4

n3

a

x ≥ 0

x := 0

x = 0
τ

x ≥ 0
a

Figure 1: Timed automaton A (a ∈ U and b ∈ A)

3 Testing Automata

As mentioned in Sect. 1, the main aim of this paper is to present a complete

characterization of the class of properties of (networks of) timed automata for

which model checking can be reduced to reachability analysis. In this section we

take the �rst steps towards the de�nition of model checking via (reachability)

testing by de�ning testing. Informally, testing involves the parallel composition

of the tested automaton with a test automaton. The testing process then con-

sists in performing reachability analysis in the composed system restricted over

all non internal actions. We say that the tested automaton fails the test if a

special reject state of the test automaton is reachable in the parallel composition

(restricted over all non internal actions) from their initial con�gurations, and

passes otherwise. The formal de�nition of testing then involves the de�nition of

what a test automaton is, how the parallel composition is performed and when

the test has failed or succeeded. We now proceed to make these notions precise.

De�nition 3.1. A test automaton is a tuple T = 〈Actτ ,N,NT , n0, C,C0, E〉
where Actτ , N , n0, C, and E are as in De�nition 2.2, NT ⊆ N is the set of

reject nodes, and C0 ⊆ C is the set of clocks whose value must be 0 at the

beginning of every run of the automaton.

An initial valuation for T is any valuation for the set of clocks C that assigns

the value 0 to every clock in C0. An initial state of T is any state (n0, u0) of T
with u0 an initial valuation.

In what follows, we shall assume that the clocks used in test automata come

from a �xed, countably in�nite collection of clocks CT disjoint from CA.

De�nition 3.2. Let T be a TLTS and let T be a test automaton. We say

that a node n of T is reachable from a state (s1 ‖ s2)\Act of (T ‖ TT )\Act i�
there is a delaying computation leading from (s1 ‖ s2)\Act to a state whose TT
component is of the form (n, u).

A state s of T fails the test T from the initial state (n0, u0) i� a reject node

of T is reachable in (T ‖ TT )\Act from the state (s ‖ (n0, u0))\Act. Otherwise,
we say that s passes the test T from the initial state (n0, u0).
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k := 0

mT

τ

m0

m1

a
k > 0

(a)

k := 0

mT

τ

m0

m1

b
k > 0

(b)

Figure 2: The test automata Ta and Tb

Example 3.3. Consider the timed automaton A of Figure 1 and the test au-

tomaton Tb (b ∈ U) of Figure 2(b), where we label the arrow coming into the

initial node m0 of Tb with the assignment k := 0 to denote the fact that clock

k is contained in C0. (This convention will be used throughout the paper.)

The reject node mT of the test automaton is reachable from the initial state of

(A ‖ Tb)\Act as follows. First the automaton A can execute the τ -transition

and go to node n1, thus preempting the possibility of synchronizing on channel

b with Tb. Next both automata can let a positive amount of time pass, thus

enabling the τ -transition from node m0 in Tb and making mT reachable. In this

case we say that A fails the test. If we test A using the automaton Ta (a ∈ U)
of Figure 2(a), then, in all cases, A and Ta must synchronize on a and, since a

is urgent, no positive initial delay is possible. It follows that the reject node mT

of Ta is unreachable, and A passes the test.

4 Property Languages

In our previous study [2] we considered SBLL, a dense-time property language

with clocks suitable for the speci�cation of safety and bounded liveness prop-

erties of TLTSs. For the sake of clarity in the subsequent discussion, we now

recall the syntax of the language SBLL � modi�ed to take into account the cur-

rent distinction between urgent and non-urgent actions. The interested reader

is referred to [2] for more information.

De�nition 4.1 (The Property Language SBLL). Let K be a countably in-

�nite set of clocks, disjoint from CA and including CT . We use fail to denote

an action symbol not contained in Act. The set SBLL of formulae over K is

generated by the following grammar:

ϕ ::= ff | ϕ1 ∧ ϕ2 | g ∨ ϕ | ∀∀ϕ |
[a]ϕ | 〈a〉tt (a ∈ U) | x in ϕ | X | max(X,ϕ)

g ::= x ∼ p | x− y ∼ p

where a ∈ Act∪{fail}, x, y ∈ K, p ∈ N, ∼∈ {<,>,=}, X is a formula variable

and max(X,ϕ) stands for the maximal solution of the recursion equation X = ϕ.
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Following [7], the formulae in SBLL were interpreted in [2] over extended states

of TLTSs, i.e., over pairs of the form 〈s, v〉, where s is a state of a TLTS and

v is a valuation for the clocks in K. For the sake of clarity in the presentation,

we recall that the satisfaction relation for SBLL is the largest relation satisfying

the relevant implications in Table 1 below and

〈s, u〉 |= ∀∀ϕ ⇒ ∀d ∈ R≥0,∀s′. s
ε(d)
=⇒ s′ implies 〈s′, u+ d〉 |= ϕ .

Our main result in op. cit. was that the property language SBLL is testable over

states of timed automata, in the sense that, for every formula ϕ ∈ SBLL, we can

construct a test automaton Tϕ such that every extended state 〈s, u〉 of a timed

automaton satis�es ϕ i� it passes the test Tϕ, in the sense of Defn. 3.2. It is now

natural to wonder whether every property ϕ that is testable in this fashion can

be expressed in the property language SBLL. This amounts to asking whether

every test automaton T is expressible in the language SBLL, in the sense that

there exists a formula ψT of SBLL such that every timed automaton A passes

the test T if and only if A satis�es ψT .

The starting point of our current investigation is the realization that test

automata have a greater expressive power than the speci�cation language SBLL.

As an example, consider the test automaton T depicted in Fig. 3, where a is an

urgent action. It can be shown that the property tested by the automaton in

m1

a τ
k := 0

m2

m3

τ
k = 0

mT

m0

k := 0

b

Figure 3: A test automaton that cannot be expressed in SBLL (a ∈ U)

Fig. 3 is not expressible in the language SBLL. Intuitively, the property that is

tested by the automaton in Fig. 3 requires that, by delaying without enabling

an a action in the process, a state can only evolve to one in which it cannot

perform the action b.

The kind of test automaton depicted in Fig. 3 suggests an enrichment of the

property language SBLL in which the delay construct ∀∀ is parameterized by a set

of urgent actions, whose elements should not become enabled as a state delays.

It is perhaps surprising that, as we shall show in the sequel (cf. Thm. 5.5), this

simple extension of SBLL yields a property language that is expressive complete

8



with respect to the collection of reachability properties expressible by means of

test automata, in the sense of Defn. 3.2.

The property language we study here is an extension of the one considered

in [2] (cf. Defn. 4.1), and is closely related to the modal logic Lν presented in

[7], and further investigated in [6].

De�nition 4.2. The property language L∀S consists of the formulae over K

generated by the grammar obtained from the one in Defn. 4.1 by replacing

constructs of the form ∀∀ϕ with ∀∀Sϕ, where S is a collection of urgent actions.

We use L−∀S to stand for the collection of formulae in L∀S that do not contain

occurrences of the basic propositions 〈a〉tt.
We write g in lieu of g ∨ ff, and clocks(ϕ) for the collection of clocks occurring

in the formula ϕ. We use the standard de�nition of closed formulae. In the

remainder of this paper, every formula will be closed.

Given a TLTS T = 〈S,L, s0,−→〉, we interpret, as usual, the closed formulae
in L∀S over extended states. We recall that an extended state is a pair 〈s, u〉
where s is a state of T and u is a time assignment for the formula clocks in K.

The satisfaction relation |= is the largest relation included in S ×L∀S satisfying

the implications in Table 1. We refer the reader to [2] for a discussion of the

de�nition of |=. Note that, since fail is not contained in Act, every extended

state of a TLTS trivially satis�es formulae of the form [fail]φ. The role played
by these formulae in the developments of this paper will become clear in Sect. 5.

4.1 Testing L−∀S

In Sect. 3 we have seen how we can perform tests on states of TLTSs. We

now aim at using test automata to determine whether a given state of a TLTS

satis�es a formula in L−∀S .

De�nition 4.3 (Testing Properties). Let ϕ be a formula in L∀S , and con-

sider a test automaton Tϕ = 〈Actτ ,N,NT ,m0, C,C0, E〉. For every extended

state 〈s, u〉 of a TLTS T , we say that 〈s, u〉 passes the test Tϕ i� no reject node

of Tϕ is reachable from the state (s ‖ (m0, [C0 → 0](u � C)))\Act.
The test automaton Tϕ tests for the formula ϕ (and we say that ϕ is testable)

i� the following holds: for every TLTS T and every extended state 〈s, u〉 of T ,

〈s, u〉 |= ϕ i� 〈s, u〉 passes the test Tϕ . (1)

If (1) holds for arbitrary states of timed automata then we say that the test

automaton Tϕ tests for the formula ϕ (and that ϕ is testable) over states of

timed automata.

Adapting constructions �rst developed in [2], we can now prove that:

Theorem 4.4. Every formula in L−∀S is testable, and every formula in L∀S is

testable over states of timed automata.

We remark here that the property languages SBLL and L∀S are not testable

because there is no test automaton for the formula 〈a〉tt. On the other hand,

the languages L∀S and L−∀S are equally expressive over states of timed automata.

We refer the interested reader to the full version of this work [1] for more details.
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〈s, u〉 |= ff ⇒ false

〈s, u〉 |= ϕ1 ∧ ϕ2 ⇒ ∀s′. s τ−→∗ s′ implies 〈s′, u〉 |= ϕ1 and 〈s′, u〉 |= ϕ2

〈s, u〉 |= g ∨ ϕ ⇒ ∀s′. s τ−→∗ s′ implies g(u) or 〈s′, u〉 |= ϕ

〈s, u〉 |= [a]ϕ ⇒ ∀s′. s a
=⇒ s′ implies 〈s′, u〉 |= ϕ

〈s, u〉 |= 〈a〉tt ⇒ ∀s′. s τ−→∗ s′ implies s′
a−→ s′′ for some s′′

〈s, u〉 |= ∀∀Sϕ ⇒ ∀d ∈ R≥0 ∀s′. s
ε(d)
=⇒S s

′
implies 〈s′, u+ d〉 |= ϕ

〈s, u〉 |= x in ϕ ⇒ ∀s′. s
τ−→∗ s′ implies 〈s′, [x→ 0]u〉 |= ϕ

〈s, u〉 |= max(X,ϕ) ⇒ ∀s′. s
τ−→∗ s′ implies 〈s′, u〉 |= ϕ{max(X,ϕ)/X}

Table 1: Satisfaction implications

5 Compositionality and Expressive Completeness

We have previously shown that every property ϕ which can be expressed in the

language L∀S (and, a fortiori, in SBLL) is testable over states of timed automata,

and that L−∀S is testable over states of TLTSs, in the sense of Defn. 4.3. We now

address the problem of the expressive completeness of these property languages

with respect to test automata and (reachability) testing. More precisely, we

study whether all properties that are testable over TLTSs can be expressed

in the property languages SBLL and L−∀S�in the sense that, for every test

automaton T , there exists a formula ψT such that every extended state of a

TLTS passes the test T if and only if it satis�es ψT . Indeed, we have already

enough information to claim that the language SBLL is strictly less expressive

than the formalism of test automata. In fact, the automaton depicted in Fig. 3

is nothing but a test automaton for the formula ∀∀{a}[b]ff, which cannot be

expressed in SBLL. Our aim in this section is to argue that, unlike SBLL, the

language L−∀S is expressive complete, in the sense that every test automaton

T may be expressed as a property in the language L−∀S in the precise technical

sense outlined above. In the proof of this expressive completeness result, we shall

follow an indirect approach by focusing on the compositionality of a property

language L with respect to test automata and the parallel composition operator

‖. As we shall see (cf. Propn. 5.3), if a property language L is compositional

with respect to timed automata and ‖ (cf. Defn. 5.2) then it is complete with

respect to test automata and reachability testing (cf. Defn. 5.1). We begin with

some preliminary de�nitions, introducing the key concepts of compositionality

and (expressive) completeness.

De�nition 5.1 (Expressive completeness). A property language L over the

set of clocks K is (expressive) complete (with respect to test automata and

testing) if for every test automaton T there exists a formula ϕT ∈ L such that,

for every extended state 〈s, u〉 of a TLTS, 〈s, u〉 |= ϕT i� 〈s, u〉 passes the test
T .

Compositionality, on the other hand, is formally de�ned as follows [6]:
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De�nition 5.2 (Compositionality). A property language L over the set of

clocks K is compositional (with respect to test automata and ‖) if, for every

ϕ ∈ L and every test automaton T = 〈Actτ ,N,NT , n0, C,C0, E〉 (with C dis-

joint from clocks(ϕ)), there exists a formula ϕ/T ∈ L over the set of clocks

C ∪ clocks(ϕ) such that, for every state s of a TLTS and every valuation u for

K,

〈s ‖ (n0, [C0 → 0](u � C)), u〉 |= ϕ ⇔ 〈s, [C0 → 0]u〉 |= ϕ/T .

Our interest in compositionality stems from the following result that links it to

the notion of completeness. In the sequel, we use Lbad to denote the property

language that only consists of the formula ∀∀∅[fail]ff, where fail is a fresh

action not contained in Act.

Proposition 5.3. Let L be a property language (over a set of clocks K) that

includes Lbad. Suppose that L is compositional with respect to test automata

and the parallel composition operator ‖. Then L is complete with respect to test

automata and testing.

Since L−∀S is an extension of Lbad, in light of the above proposition an approach

to proving that it is expressive complete is to establish that it is compositional

with respect to test automata and ‖. This is the import of the following stronger

result:

Theorem 5.4. The property language L−∀S is the least expressive extension of

Lbad that is compositional with respect to test automata and ‖.

In light of Propn. 5.3, we may �nally obtain that:

Theorem 5.5. The property language L−∀S is complete with respect to test au-

tomata and testing.

For example, the properties tested by the test automata in Figs. 2(a) and 3 may

be expressed in L−∀S as k in ∀∀{a}(k = 0) and ∀∀{a}[b]ff, respectively.
It is interesting to remark here that the property language L−∀S is testable also

over timed automata with invariants and committed nodes, which are precisely

those used in Uppaal. Moreover, Thm. 5.5 also holds for the model of timed

automata with invariants. We refer the interested reader to [4] for details on

these results.
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