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BRICS∗, Aalborg University, Denmark

Yi Wang Justin Pearson
Department of Computer Systems, Uppsala University, Sweden

December, 1998

Abstract

We sketch a BDD-like structure for representing unions of simple con-
vex polyhedra, describing the legal values of a set of clocks given bounds
on the values of clocks and clock differences.

1 Introduction

The basic problem we are trying to tackle is the combination BDD’s and DBM’s
(difference bound matrices) in order to allow completely BDD-based approach
to the verification of continuous real-time systems. Early appraches in this
direction are [WTD95] and [Bal96]. Another inspiration for this work comes
from [ST98]. Some of the ideas come from the implementation of a decision
algorithm for timed bisimulation ([WL97]).

2 Definition of CDD’s

We assume a finite set of real-valued clocks C = {X1, . . . , Xk}. We are interested
in a data structure to represent and manipulate sets of possible values of these
clocks. In particular, we shall confine ourselves to sets being the finite unions of
simple convex polyhedra. The simple convex polyhedra are described by bounds
on the individual clocks and clock differences of the form Xi −Xj . These kind
of sets occur typically in the analysis of real-time systems when modelled as
timed automata.

∗BRICS: Basic Research in Computer Science, Centre of the Danish National Research
Foundation
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For a uniform treatment, we assume an additional clock X0 which always has
value zero. Then the absolute value of clock Xi is referred to as Xi −X0.

Let V := {v : C → R} be the set of clock valuations. Then any polyhedra
described by clock differences is a subset of V .

A clock constraint has the form m ≤ Xi −Xj ≤ n, where i, j ∈ {0, . . . , k} and
m,n are integers. Instead of ≤ also < can be used in the lower and the upper
bound. We will always require i > j, as m ≤ Xi − Xj ≤ n is the same as
−n ≤ Xj −Xi ≤ −m. Note that for i = j, we always have 0 ≤ Xi −Xj ≤ 0.

For any constraint, we call the pair (i, j) the type of the constraint. It is obvious
that in any description of a convex set, at most one constraint per type is needed.
As mentioned before, we always assume i > j. We define a linear ordering on the
types, which we denote by v . This ordering is the “reversed lexicographical”
ordering, i.e. (i, j) v (i′, j′) iff either j < j′ or j = j′ and i ≤ i′.
In the following, any set describable by a conjunction of clock constraints will
be called a zone. A federation is any finite union of zones.

We will now define a data structure called clock difference diagrams (short:
CDD) which can be used to represent federations. The basic idea is derived
from BDD’s, but adapted to the fact that our variables do not range over a
simple two-valued alphabet, but over the real numbers instead.

While the idea of a BDD is that of a decision-diagram branching on the different
single values of the variables of a term, a CDD node branches with respect to
intervals of the reals for a given clock difference, i.e. a CDD node is associated
with the type of the clock difference for which it is testing. The size and the
number of the intervals is not fixed. However there can only be a finite number
of intervals, and they must be compatible with the clock constraints (i.e. they
are intervals with integer bounds, and any bound can either be included or not).
Remember that a major idea in BDD’s is that of sharing identical substructures,
therefore a BDD is in fact an acyclic graph rather than a tree, and so will be
the CDD’s.

In the general case we will not require that the intervals belonging to one node
are disjoint. We will however show that there is an easy way to obtain disjoint
intervals if needed, as most of our operations will require disjoint intervals.

The finite number of intervals within a node is assured by not differentiating be-
tween points when a clock exceeds a given maximal value M . Thus the intervals
(+M,+∞) and (−∞,−M) cannot be further partitioned. If an operation yields
a subinterval intersecting one of these, then this subinterval must be extended
with the whole interval.

There are two special nodes called True and False. They are used to indicate
that along a certain path all valuations belong to the federation or do not belong
to the federation. In general, our graphs will be complete, i.e. for any valuation
there is at least one path leading to either a True or a False node.

Thus a CDD consists of the following kinds of nodes:

2



• end-nodes, which are either True or False, and which have no successor,

• inner nodes, which for a fixed type branch to nodes for different constraints
(intervals) of this type
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Figure 1: Three Simple Examples

Example 1, 2 and 3 as given in Figure 1 are simple examples of CDD’s. Note
that instead of True we use boxes with a 1 inside (like in BDD’s). We have
also not drawn the False end-nodes. Remember that there are many different
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ways to represent a federation as a CDD. Note also that Example 1 uses sharing
of the nodes of type (2, 0), i.e. those giving constraints on Y .

A clock difference diagram is defined as a directed, acyclic graph, which has

• a node called the start node from which all nodes of the graph are reach-
able,

• inner nodes written as ((i, j), (I1, T1), . . . , (Iq, Tq)) where (i, j) is the type
of a constraint, the In are intervals of the real numbers, and the Tn are
CDD’s again. We require completeness, i.e.

⋃
n∈{1,... ,q} In = R.

• end-nodes which are either True or False.

Note that a node in a CDD defines a subgraph of all nodes reachable from this
node. This subgraph can be seen as a CDD with the current node as the start
node. We will identify a node and the sub CDD defined by it.

The interpretation of such a CDD should now be obvious: If we take a path
from the start node to an end-node, this path describes a zone given by the
conjunction of the clock constraints on this path. A clock constraint on a path
is the constraint representing the interval which we had to choose to follow the
branches building the path. If the path ends in True, then all valuations of
this zone belong to the federation. The CDD represents the union of all zones
described by paths leading to True.

In order to formalize the semantics of CDD’s, we use the following notation:

• given a type (i, j) and an interval I of the reals, then I(i, j) denotes the
clock constraint having type (i, j) which restricts the value of Xi −Xj to
the interval I.

• given a clock constraint φ and a valuation v, by φ(v) we denote the appli-
cation of φ to v, i.e. the boolean value derived from replacing the clocks
in φ by the values given in v.

Note that typically we will use the notation jointly, i.e. I(i, j)(v) expresses the
fact that v fulfills the constraint given by the interval I and the type (i, j).

As an example, if the type is (2, 1) and I = [3, 5), then I(i, j) would be the
constraint 3 ≤ X2 −X1 < 5. For v where v(X2) = 9 and v(X1) = 5.2 we would
find that I(i, j)(v) is true, while for v′ with v′(X2) = 3 and v′(X1) = 4 we would
have I(i, j)(v′) is false.

Using this, we can formally define the semantics of a CDD by

• [[True]] := V ,

• [[False]] := ∅,
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• [[((i, j), (I1, T1), . . . , (Iq , Tq))]] :=
⋃
n∈{1,... ,q}{v ∈ [[Tn]]|In(i, j)(v) = True}

Note that this semantics is defined so that any valuation v for which there is a
path to True in the CDD will be part of the set described by the CDD. This
includes the case where there might be another path for v leading to a zero,
which seems rather counter intuitive. In fact, the False end-nodes could be
clipped from the CDD’s without doing harm. They are mainly used here to make
some formal treatment more easy (e.g. definition of union and intersection). A
good implementation would not need to store them.

2.1 Reducing Redundancy

A major point in the coding is to get rid of redundancies as much as possible.
Therefore we require orderedness and disjointness.

Orderedness: Remember that we assume some ordering on the types. We
further assume that True and False have a type. Their types are the maximal
elements in the order, i.e. they are larger than any other type. Given a node N
of a CDD, we can now speak of the node’s type denoted by type(N). We say
that a CDD is ordered if for any node T = ((i, j), (I1, T1), . . . , (Iq, Tq)) it is true
that for all n ∈ {1, . . . , q} that type(T ) v type(Tn) and type(T ) 6= type(Tn).
This means that along any path, the types are increasing, and that no type
occurs twice along the path.

In the following, we will always assume that our CDD’s are ordered. All our
operations will keep orderedness. Note that in fact Examples 1 to 3 were already
ordered.

Disjointness: We say that a CDD T = ((i, j), (I1, T1), . . . , (Iq, Tq)) is disjoint
if all intervals are disjoint, i.e. for all n,m ∈ {1, . . . , q}, from n 6= m it follows
that In∩Im = ∅, and if all sub CDD’s Tn are disjoint as well. The CDD’s True

and False are disjoint by definition.

Basically we will always require disjointness. However some of our operations
will destroy disjointness. But there is a simple way to go from an ordered CDD
to a disjoint ordered CDD which will be explained later.

Figure 2 shows how to represent Example 2 as a disjoint CDD. It also gives a
different graphical representation of the set fitting more the CDD representation.

Sharing: In order to reduce memory for the storing of a CDD we want to have
as much sharing of subgraphs as possible. So within a CDD we require that if
there are two subgraphs which are isomorphic then they should be the same.
It is of course always possible to construct a maximally shared CDD from any
given CDD.
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Figure 2: Enforcing Disjointness

We can generalize this rule for sharing. If there are two neighboring or over-
lapping subintervals in a node which point to the same subgraph, then the two
intervals can be replaced by their union, pointing to the subgraph. Also, if a
node contains (−∞,+∞) as the only interval, this node may be removed by
redirecting all pointers to the node to its subgraph.

2.2 Normal Form

Certain operations on CDD’s require the CDD to be in a defined normal form,
analogously to the case of DBM’s for zones. A CDD in normal form is required
to have maximal sharing, and be ordered and disjoint. Further we require that
along any path leading to True, the constraints must be the tightest possible,
i.e. if we replace a constraint along a path by a tighter one, then the semantics
of the CDD changes.

We will see further down how to obtain a CDD in normal form from an ordered
and disjoint CDD.

3 Operations on CDD’s

The most simple operations on CDD’s are union and intersection. Assume two
CDD’s TA, TB given, which are ordered and disjoint. Then the CDD TC =
TA ∪ TB is constructed recursively in the following way:

• if TA = False, then TC := TB,

• if TA = True, then TC := True,

• if TA 6∈ {True, False} and type(TA) 6= type(TB), assume w.l.o.g. type(TA) v
type(TB). Let TA = ((i, j), (I1, T1), . . . , (Iq , Tq)), then
TC := ((i, j), (I1, T1 ∪ TB), . . . , (Tq, Tq ∪ TB)).
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• if TA 6∈ {True, False} and type(TA) = type(TB), then
let TA = ((i, j), (I1, T1), . . . , (Iq, Tq)) and TB = ((i, j), (J1, S1), . . . , (Jr, Sr)).
Then

TC := ((i, j), (I1 ∩ J1, T1 ∪ S1), (I1 ∩ J2, T1 ∪ S2), . . . , (I1 ∩ Jr, T1 ∪ Sr),
(I2 ∩ J1, T2 ∪ S1), . . . ,
. . . (Iq ∩ Jr, Tq ∪ Sr))

where empty intervals can safely be discarded.

Note that this operation keeps orderedness and disjointness. Sharing can be
maintained as well using the same dynamic methods as with BDD’s.

The intersection is basically the same, where only the non-recursive step has to
be adjusted. The CDD TC = TA ∩ TB is constructed by

• if TA = False, then TC := False,

• if TA = True, then TC := TB,

• else replace Tn ∪ Sm everywhere in the above by Tn ∩ Sm.

3.1 Enforcing Disjointness

Given these basic operations, it is now easy to see how to enforce disjointness.
Assume a CDD TA = ((i, j), (I1, T1), . . . , (Iq, Tq)) where Iq−1∩Iq 6= ∅. Then the
CDD T = ((i, j), (I1, T1), . . . , (Iq−1, Tq−2), (Iq−1\Iq, Tq−1), (Iq\Iq−1, Tq), (Iq−1∩
Iq, Tq−1 ∪ Tq)) will have the same semantics, but the overlap between the last
two intervals is gone. Applying this iteratively to all pairs of overlapping in-
tervals and then recursively to all sub-CDD’s will yield a disjoint CDD. Note
that the union operation on CDD’s required here does not destroy disjointness,
guaranteeing termination.

Figure 2 shows how Example 2 looks like after enforcing disjoint intervals.

3.2 Setting clocks and letting time pass

Two very important operations in the analysis of timed automata, which we
are aiming at, is the setting of a clock and letting time pass. Note that for
these operations we need to assume normal form of the CDD. Note that these
operations are mainly generalizations of their simpler DBM counterparts (where
they require canonical form).

Setting a clock Xi (i 6= 0) to a constant c is done by replacing intervals in nodes.
All intervals describing values of the clock Xi itself now become just [c, c], so a
subgraph

((i, 0), (I1, T1), . . . , (Iq, Tq))

7



is replaced by

((i, 0), ([c, c], T1), . . . , ([c, c], Tq))

The difference between Xi and another clock Xj is then the difference between 0
andXj minus the new value c ofXi. Note that subgraphs ((i, j), (I1, T1), . . . , (Iq, Tq))
where j 6= 0 resp. ((j, i), (I1, T1), . . . , (Iq, Tq)) are reached by going through an
interval I for type (j, 0), due to orderedness. This interval gives the difference
between Xj and zero. Replacing is done by changing the subgraphs to

((i, j), (c− I, T1), . . . , (c− I, Tq))

resp.

((j, i), (I − c, T1), . . . , (I − c, Tq))

where c − I and I − c are defined as extensions of normal subtraction, i.e.
c− I := {c− x | x ∈ I} and I − c := {x− c | x ∈ I}.

1 2 3 4 5

1

2

3

4

x

y − x

y

[ ] ][

] ] [ ] [ [

1 2 3 4

2 2 2

0 1 -1 0 -2 -1

1

Figure 3: Setting Y to two

Figure 3 shows how Example 2 looks like after setting Y to two. Note that
to do this correctly, it is necessary to make Example 2 disjoint and put it into
normal form (as seen in Figure 2 and 6). However, the result is not the most
compact form for this federation. Additional rules could be defined to gain a
more compact form.

The future of a CDD is also computed straight forward by removing the upper
bounds on all clocks, so ((i, 0), (I1, T1), . . . , (Iq, Tq)) becomes ((i, 0), (I ′1, T1), . . . , (I ′q , Tq))
where I ′n := (k,∞) if k was the strict lower bound of In, and I ′n := [k,∞) if k
was the non-strict lower bound of In. Figure 4 and 5 gives an example.

In both cases disjointness is destroyed, but can be regained using the method
explained in the previous section.
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Figure 4: Computing the Future

4 Normal Form

The normal form we are using is closely related to the normal form (or canonical
form) of DBM’s. As a path in a CDD describes a zone, there is a translation
from DBM’s into paths and vice versa. Given a path, the DBM is constructed
by filling in all the places where the path gives a constraint. The remaining
places are just filled with the most general constraint (normally +∞).

Given a DBM, a path is constructed by just filling in the constraints of the
different types. In general, a DBM has two constraints for each type, defining
the lower and the upper bound, thus giving the interval needed for the path.
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To bring an arbitrary ordered and disjoint CDD T into normal form – i.e. each
path to True has only the tightest constraints – one may proceed as follows:

• start with the empty set as the result CDD R,

• for each path in the given CDD T leading to True, compute its DBM,

• now compute the canonical DBM (using shortest path algorithms),

• construct a CDD P from this DBM, which has only one path leading to
True,

• now add P to R by computing R ∪ P

• once the complete CDD R is constructed, start the process over again
until the result is stable, i.e. the CDD one starts from is the same as the
computed one

Note that termination of this procedure is guaranteed, as in the worst case all
intervals will have the form [c, c] or (c, c + 1), if they are not subintervals of
(−∞,−M) or (+M,+∞).

In Figure 6 we give the normal form the disjoint version of Example 2. Note
that only the consequences for Y −X had to be added. Also all the CDD’s in
Figure 3 and Figure 4, 5 are in normal form.

Note that however for a given federation, in general there will be more than one
CDD in normal form. In the following we will justify the term “normal form”
despite this fact. The main idea here is that in addition to being in normal
form the partitioning into intervals within a node is crucial for the structure of
the CDD. We will now define what it means that a CDD is “at least as finely
partitioned” or even “as finely partitioned” as another CDD.

Given two CDD’s TA and TB, we say that TA is finer partitioned than TB iff

10



[ [ ] ]
1 2 3 4

1 3 1 4 2 4

x

y

y − x ] ] [ ] [ [

-1 2 -2 2 -2 1

1

Figure 6: Normal Form

• either TA = False,

• or TB = True,

• or if TA has the form ((i, j), (I1, T1), . . . , (Iq , Tq)) and TB the form
((i, j), (J1, S1), . . . , (Jr, Sr)), and for each n ∈ {1, . . . , q} there is m ∈
{1, . . . , r} such that In ⊆ Jm and Tn is finer partitioned than Sm.

Note that if TN is the CDD T after applying the normal from procedure, then
TN is always finer partitioned than T .

There is a simple way to turn a given CDD TA into a CDD which is finer
partitioned than a given CDD TB. By TA / TB we describe the operation of
making TA as fine as TB.

• if TB = True or TB = False, then TA / TB := TA,

• if TA = False, then TA / TB := TA,

• if TA = True and TB = ((i, j), (J1, S1), . . . , (Jr, Sr)), then TA / TB :=
((i, j), (J1, T rue / S1), . . . , (Jr, T rue / Sr)).

• if TA, TB 6∈ {True, False}, then let TA = ((i, j), (I1, T1), . . . , (Iq , Tq)) and
TB = ((i′, j′), (J1, S1), . . . , (Jr, Sr)),

– if type(TA) 6= type(TB) and type(TA) v type(TB), then TA / TB :=
((i, j), (I1, T1 / TB), . . . , (Iq, Tq / TB))

– if type(TA) 6= type(TB) and type(TB) v type(TA), then TA / TB :=
((i′, j′), (J1, TA / S1), . . . , (Jr, TA / Sr))
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– if type(TA) = type(TB), then TA / TB :=

((i, j), (I1 ∩ J1, T1 / S1), (I1 ∩ J2, T1 / S2), . . . , (I1 ∩ Jr, T1 / Sr),
(I2 ∩ J1, T2 / S1), . . . ,
. . . (Iq ∩ Jr, Tq / Sr))

where empty intervals can safely be discarded.

If two CDD’s are mutually finer partitioned, then we will call them equally fine
partitioned. Using this notion, we can give a theorem which justifies our notion
of normal form.

Theorem 1 Let TA, TB be two CDD’s which are equally fine partitioned and in
normal form. Then [[TA]] = [[TB]] iff TA and TB are graph-isomorphic.

5 Deciding inclusion and equality

A basic question which arises in the reachability analysis of timed automata is
if a given federation is included in or even equal to another. Obviously checking
TA ⊆ TB is the same as deciding if TA ∩ T C

B is the empty set.

We have already defined how to compute intersection. Complementing CDD’s
is very simple, one just needs to exchange the True and False nodes (due
to completeness and disjointness). Testing for the empty set can be done by
bringing a CDD into normal form. A CDD in normal form is the empty set iff
all its end-nodes are False.

The most costly operation involved in this is the computation of the normal
form. Below we will comment on how to make this more efficient.

6 Local Transformations on CDD’s

Bringing a CDD into normal form is a costly operation. In this section we point
out how we can improve on this by using some local transformations on the CDD
which does not change its semantics. These local transformations can then be
used during other operations, or even as operations on their own, to make a
CDD “more normal”. At the end of the section, we will show how checking for
emptyness of a CDD can be speeded up using the local transformations.

The main idea of the transformations is that we allow constraints to be pro-
pogated through the graph. These constraints can then be combined by the local
information in a node, and can be used to simplify the nodes. They can also
be combined in order to produce new constraints to be propagated in the CDD.
This ideas are in fact extensions of the idea used in [LPW95] und [KLLPW97].
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The most simple rule is that any interval in a node can propagate the constraint
imposed by itself on the type of the node either up- or downwards the CDD.
Further any constraint which arrives at a node can be forwarded to the other
nodes up- and downwards in the graph. These very basic rules are illustrated
in Figure 7.

I(i, j)

I(i, j)

I

I(i, j)

J(i′, j′)

J(i′, j′)

I

(i, j)

I(i, j)

(i, j)

J(i′, j′)

J(i′, j′)

Figure 7: Simple Propagation

To make use of these rules, of course it is necessary to add some data structure
to the CDD’s which takes care of constraint propagation. There are many ways
to do this, and we will not comment on the straight forward details here.

When a constraint of its own type arrives at a node, the node can decide to
use this constraint to refine its partitioning into intervals. The stronger case is
if the constraints arrives from a higher level in the graph. Then the constraint
can be used to tighten the intervals in the node. However care must be taken if
sharing is present, as the tightening will only be valid for the path from which
the constraint was received. Therefore in the general case the node must be
duplicated before tightening. This is illustrated in Figure 8. This operation is
correct as we really can rely on the fact that the constraint is true within the
path where I came from.

We can define this tightening formally. Assume a CDD ((i0, j0), (H1, S1), . . . , (Hr, Sr))
which sends the constraint J(i, j) to its child Sm, which is of type (i, j). Let
Sm = ((i, j), (I1, T1), . . . , (Iq, Tq)). Then

S′m = ((i, j), (I1 ∩ J, T1), . . . , (Iq ∩ J, Tq)), (JC, False))

would be the tightening of Sm w.r.t. J(i, j). We do not replace Sm by S′m in
the CDD (which would mean we would replace it for all subgraphs which share
it), but we only replace it in the node the constraint J(i, j) came from, i.e. the
CDD now becomes ((i0, j0), (H1, S1), . . . , (Hm, S

′
m), . . . , (Hr, Sr)).

If the constraint comes from one of the paths starting in the node, then we
cannot make such a strong tightening. However we can still split the interval,
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I

T S

becomes

T

I

S

J(i, j)

I − JI ∩ J

0

(i, j)

(i, j)

Figure 8: Tightening Intervals

hoping that this will lead to tighter bounds during further constraint propaga-
tion. Duplication happens in this step as well, see Figure 9

I(i, j)

J(i, j)

becomes

(i, j) I ∩ J I − J

Figure 9: Tightening Intervals

So if a constraint J(i, j) arrives from below at ((i, j), (I1, T1), . . . , (Iq, Tq)),
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then this CDD can be turned into ((i, j), (I1 ∩ J, T1), . . . , (Iq ∩ J, Tq), (I1 ∩
JC, T1), . . . , (Iq ∩ JC, Tq)).

Further we can compute new constraints by combining an arriving constraint
and the constraint given by the interval in the node. This is done when the ar-
riving constraint and the node have “neighbouring” types, i.e. there is a common
index in the two types as e.g. in (i, j) and (i, k). Such neighbouring constraints
can be combined into a new one by exploiting transitivity of the constraints, so
the resulting constraint of the example would be of type (j, k) (assuming j > k).
If I(i, j) and J(r, s) are two neighbouring constraints, then I(i, j) ⊕ J(r, s) is
the combination of the two constraints.

The definition of this operation is rather straight forward, assuming we have
interval addition I + J := {x + y | x ∈ I, y ∈ J} and subtraction I − J :=
{x− y | x ∈ I, y ∈ J}. Then

I(i, j)⊕ J(i′, j′) = I + J(i, j′) j = i′

I(i, j)⊕ J(i′, j′) = I + J(i′, j) i = j′

I(i, j)⊕ J(i′, j′) = J − I(j, j′) i = i′, j > j′

I(i, j)⊕ J(i′, j′) = I − J(j′, j) i = i′, j′ > j
I(i, j)⊕ J(i′, j′) = J − I(i′, i) j = j′, i′ > i
I(i, j)⊕ J(i′, j′) = I − J(i, i′) j = j′, i > i′

Figure 10 shows how to propagate combined constraints.

I(i, j)

I(i, j)

J(i′, j′)

I(i, j)
⊕
J(i′, j′)

J(i′, j′)

I(i, j)
⊕
J(i′, j′)

Figure 10: Combining Intervals

Note that all these rules only describe hwo to propagate simple constraints.
They can of course be used to propgate more complex constraints as well.
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As a simple example of how propagating constraints can be used we illustrate
this with a simple example of testing for inclusion. The example is given in
Figure 11 and 12.

A

x

y

1 3

1 3

1

1

[ [
1 2

1 1

]

[ [

[ ]
-1 1 -2 2

]

B x

y

y − x

Figure 11: Testing for inclusion

[ [ ]
1 2 3

[ ] [ ]
1 3 1 3

]
-1 2

] [ ]
-2 2

0 0

0 0 0 0

0 01 1 1 1

1 3
[ [

[ [
1 1

-1 2 -2 2
] ] [ ]

0 1

Bc

1

[ [ ]
1 2 3

[ ] [ ]
1 3 1 3

]
-1 2

] [ ]
-2 2

0 0

0 0 0 0

0 01 1 1 1

1 ≤ x < 2

−1 < y − x ≤ 2

x

y

y − x

2 ≤ x ≤ 3

−2 ≤ y − x ≤ 1

A ∪Bc

Propagation

Figure 12: Testing for inclusion

The CDD A is the zone from example 2 which is more to the right (i.e. its has

16



smaller values for clock X). The CDD B is the future of example 2, as given
in Figure 4. Obviously A must be included in B. Figure 11 shows how A ∩BC

looks like. Now we must test if this CDD is empty. The general approach would
be to put it into normal form, and then check if all end-nodes are False.

Here however we simply propagate the clock difference Y −X downward. This
is down by first propagating the constraint on X to the Y -nodes, and then
propagating Y − X further down. This immediately results in all end-nodes
becoming False by using downwards tightening. Already after five steps it
can be decided that set inclusion holds, instead of going through the complete
computation of the normal form.

So the basic approach for deciding emptiness of a CDD would be to propagate
as much constraints as possible while traversing the graph once either upwards
or downwards. In practice, often thereafter it will already be clear if the CDD is
empty. Only if after traversing the CDD there are still paths leading to True,
the normal form must be computed. Note that for emptiness checking when
traversing the graph from below, we need to start at the True node only.

We also propose that for the computing of the future and setting a clock it is not
necessary first to compute the normal form, but instead for the future it is only
necessary to propagate the (real) differences between clocks downwards, while
for the set operation the constraints implied by the clock’s old value should be
combined with all neighbouring constraints once while going through the graph
downwards.
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