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Timed Bisimulation and Open Maps

Thomas Hune and Mogens Nielsen

BRICS∗Department of Computer Science, University of
Aarhus, Denmark, {baris,mn}@brics.dk

Abstract

Formal models for real-time systems have been studied intensively
over the past decade. Much of the theory of untimed systems have
been lifted to real-time settings. One example is the notion of bisimu-
lation applied to timed transition systems, which is studied here within
the general categorical framework of open maps. We define a category
of timed transition systems, and show how to characterize standard
timed bisimulation in terms of spans of open maps with a natural
choice of a path category. This allows us to apply general results from
the theory of open maps, e.g. the existence of canonical models and
characteristic logics. Also, we obtain here an alternative proof of de-
cidability of bisimulation for finite transition systems, and illustrate
the use of open maps in finite presentations of bisimulations

1 Introduction

When specifying and reasoning about a computing system, it is often suf-
ficient to view its behavior from a classical point of view in terms of com-
putations defined as sequences of atomic discrete actions of the system. For
some systems, however, it is essential to include more detailed information.
In the specification of a controller of a railway crossing it is not sufficient to
state that the gate is closed when the train is at the crossing. It is equally
important to specify timing constraints on the actions of gate closing and

∗Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
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train crossing. Formal models for such so-called real-time systems have been
studied intensively over the past decade, e.g. the timed automata [AD90],
timed process algebras [Wan90], timed nets [LPY95], and timed Petri Nets
[MBC+95].

Much of the theory of untimed systems has been lifted successfully to
these models of real-time behavior of systems. As examples, many results
from automata theory apply also to timed automata, [AD90, AD94, ACM97],
and a number of timed versions of classical specification logics have been
studied, [AH91, LLW95].

In this paper we focus on the classical notion of bisimulation [Mil89]
which has already been introduced and studied for real-time models by many
researchers, e.g. in [Wan90, AKLN95, NSY93, AM94]. A large part of the
elegant theory of bisimulation for transition systems and reactive languages
has been lifted to the real-time setting. As an example, bisimulation was
shown decidable for finite timed transition systems by Čerāns [Čer92], and
efficient algorithms checking for bisimilarity have been discovered [LLW95,
WL97] and implemented in tools for automatic verification [KN94] .

Our aim here is to apply the general categorical framework of open maps
[JNW96] to timed transition systems. The open map approach provides a
general concept of bisimulation for any categorical model of computation, i.e.
models consisting of objects (systems) and morphisms (to be thought of as
simulations between two systems). The general definition is in terms of spans
of so-called open maps, which are those morphisms which, roughly speaking,
reflect as well as preserve behavior. Formally, the definition of open maps is
parameterized not just on a categorical presentation of a model (i.e. on the
choice of morphisms), but also on a notion of computation path and what it
means to extend a computation path by another.

For the standard model of transition systems, computation paths are nat-
urally chosen as sequences of consecutive transitions, formally picked out by
a morphisms from strings of actions, extended by standard composition of
strings. With this choice, it was shown in [JNW96] that the open map bisim-
ulation simply specializes to Milner’s notion of bisimulation. However, many
other behavioral equivalences are captured by the open morphism approach,
e.g. Hoare’s trace equivalence and Milner’s weak bisimulation, both of which
may be obtained by slightly changing the notion of path extension from the
one indicated above [CN96]. Also, the open morphism approach has been ap-
plied successfully to different categories of models, e.g. probabilistic [CN96],
higher-order models [CFW98], and models with independence [JNW96].
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Rather than having bisimulations defined in terms of two parameters, a
model and a path category, it was suggested in [JNW96] to study presheaves
as models derived directly from path categories. Intuitively, a presheaf rep-
resents the effect of gluing together a set of computation paths to form a
nondeterministic computation, and hence can be looked upon as labelled
transition systems, in which the labels are morphisms of path extension.
Following [WN96] this yields logical and game-theoretic characterizations of
open morphisms and their bisimulations on presheaves. Furthermore, mod-
els and their notion of bisimulation can be understood in a uniform way via
their representation as presheaves, and via this representation, the charac-
terizations can be specialized to concrete models. The characteristic logics
take the form of Hennessy-Milner like modal logics, with modalities indexed
by path morphisms (path extensions, future modalities) and their inverses
(path projections, past modalities).

Here we define a category of timed transition systems, where the mor-
phisms are to be thought of as simulations, with computation paths which
are equivalent to the standard notion of runs of timed words. We show the
derived notion of bisimulation in terms of open maps to coincide with the
standard timed bisimulation from e.g. [Čer92]. Hence, we may apply the
general results from [JNW96], e.g. obtaining canonical models and charac-
teristic games and logics.

Furthermore, we show within the framework of open maps that bisimi-
larity is decidable for finite timed transition systems. As for many existing
results for timed models, including results concerning verification of real-time
systems, our proof relies heavily on the idea behind the regional construc-
tion of [AD90, AD94], which essentially provides a finite description of the
uncountable behavior of a finite real-time system.

One of the main advantages of Milners notion of bisimulation for untimed
transition systems, is the fact that for two transition systems, the property
of being bisimilar may be expressed in terms of presenting an explicit bisim-
ulation between the two systems, i.e. a relation on the states of the two
systems. Unfortunately, this property does not generalize to the setting of
timed transition systems, where bisimulations are defined in terms of the
uncountable unfolded version of given timed transition systems, and where
the decision procedures from e.g. [Čer92] produce relations over nontrivial
regional constructions. Here, we obtain as a corollary, a way of presenting
bisimilarity between two finite timed transition systems in terms of a span
with a finite vertex.
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In Section 2 we define formally our category of timed transition systems
and computation paths, and the set-up is shown to have a number of useful
properties following the approach of [JNW96]. Next, in Section 3 the result-
ing notion of bisimulation is studied, and it is shown to coincide with the
standard notion of timed bisimulation. A new proof of the decidability of
timed bisimulation is provided in Section 4, and the use of open maps to ex-
press bisimulations is illustrated. We briefly address the issue of robustness
of our approach in Section 5 by extending our results to models with state
time-invariants. Section 6 contains some conclusions and ideas for future
work.

This paper is an extended version of [HN98] appearing in the proceedings
of MFCS’98.

2 A Category of Timed Transition Systems

In the following we define the categorical set-up for our use of the open map
approach.

The objects of our model category will be timed transition systems, i.e.
timed automata in the sense of Alur and Dill [AD94] without accepting states
and acceptance conditions (called timed transition tables in [AD94]).

Definition 1 (Timed Transition Systems) A timed transition system is
a quintuple (S,Σ, sin, X, T ) where

• S is a set of states and sin is the initial state.

• Σ is a finite alphabet of actions.

• X is a set of clock variables.

• T is the set of transitions such that T ⊆ S×Σ×∆×2X×S where ∆ is
a clock constraint generated by the grammar ∆ ::= c ]x |x+ c ]y |∆∧∆
in which ] ∈ {≤, <,≥, >}, c is a real valued constant and x, y are clock
variables. A transition (s, σ, δ, λ, s′) is written s σ

δ,λ
→ s′.

Timed transition systems are to be thought of as generalizations of stan-
dard transition systems, having runs over timed words as obvious general-
izations of words over an alphabet.
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Definition 2 (Timed Words) A timed word over an alphabet Σ is a finite
sequence of pairs α = (σ1, τ1)(σ2, τ2)(σ3, τ3) · · · (σn, τn), where for all 1 ≤ i ≤
n, σi ∈ Σ, τi ∈ R+ and furthermore τi < τi+1.

A pair (σ, τ) represents an occurrence of action σ at time τ relative to the
starting time (0) of the execution.

Example 1 The timed transition system in Figure 1 has two clocks x and
y, and three actions a,b,c. The state s0 is the initial state.

m m m-R

I

-

a
x ≤ 1
{y}
b y ≤ 2, ∅

2 < y < 4 ∧ x > 4
{x, y}

cs0 s2s1

Figure 1: A timed transition system .

Before introducing formally computations of timed transition systems, we
need the notion of a clock evaluation.

Definition 3 (Clock Evaluation) A clock evaluation ν is a function ν :
X → R+ which assigns times to the clock variables of a system. We define
(ν + c)(x) := ν(x) + c for all clock variables x. If λ is a set of clock variables
then ν[λ 7→ 0](x) := 0 if x ∈ λ, and ν(x) otherwise.

A constraint δ is satisfied by clock evaluation ν iff the expression δ[ν(x)/x]1

evaluates to true. A constraint δ defines a subset of Rn where n is the number
of clocks in X. We will speak of this subset as the meaning of δ and write it
[[δ]]X . As an example the meaning of the constraint on the transition from s0

to s1 in Figure 1 is the hatched area in Figure 2. A clock evaluation defines
a point in Rn which we shall denote by [[ν]]X , so the constraint δ is satisfied
for the clock evaluation ν if and only if [[ν]]X ∈ [[δ]]X .

Definition 4 Let T be a timed transition system. A configuration is a pair
〈s, ν〉, where s is a state and ν is a clock evaluation. A run of T is a se-
quence 〈s0, ν0〉σ1

τ1
→ 〈s1, ν1〉σ2

τ2
→ · · · σn

τn
→ 〈sn, νn〉 such that for all i > 0 there

is a transition si−1
σi
δi,λi
→ si such that [[νi−1 + (τi − τi−1)]]X ∈ [[δi]]X and

1δ[y/x] is syntactic substitution of y for x in δ.
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Figure 2: Interpretation of constraint [[x ≤ 1]]{x,y}.

νi = (νi−1 + (τi − τi−1))[λi 7→ 0]. The state s0 is the initial state of T ,
ν0 is the constant 0 function, and τ0 is defined to be 0. A run as above is
said to generate the timed word (σ1, τ1) (σ2, τ2) (σ3, τ3) · · · (σn, τn).

Example 2 A run in the timed transition system in Figure 1 generating the
timed word (a, 0.9)(c, 2.3) is

〈s0, [0, 0]〉 a
0.9
→ 〈s1, [0.9, 0]〉 c

2.3
→ 〈s2, [2.3, 1.4]〉

where [2.3, 1.4] denotes the clock assignment assigning 2.3 to the clock variable
x and 1.4 to y.

Another run in the timed transition system could be

〈s0, [0, 0]〉 a
0.7
→ 〈s1, [0.7, 0]〉 b

4.2
→ 〈s0, [0, 0]〉 a

4.4
→ 〈s1, [0.2, 0]〉 b

8.3
→ 〈s0, [0, 0]〉

which generates the timed word (a, 0.7)(b, 4.2)(a, 4.4)(a, 8.3).

The morphisms of our model category will be simulation morphisms follow-
ing the approach of [JNW96]. This leads to the following definition of a
morphism, consisting of two functions, one mapping states of the simulated
system to simulating states of the other, and one mapping clocks of the
simulating system to simulated clocks of the other.

Definition 5 A morphism (m, η) between timed transition systems T1 and T2

consists of two components; a map m : S1 → S2 between the states and a map
η : X2 → X1 between the clocks. These maps must satisfy that m(sin1 ) = sin2
and whenever there is a transition in T1 of the form s1

σ
δ1,λ1
→ s′1 then there is

a transition m(s1) σ
δ2,λ2
→ m(s′1) in T2 satisfying the following two constraints:
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• λ2 = η−1(λ1) where η−1(λ1) = {x ∈ X2 | η(x) ∈ λ1}

• [[δ1]]X1 ⊆ [[δ2[η(x)/x]]]X1

Example 3 Consider the map m from the states of the timed transition
system in Figure 3 to the states of the one in Figure 1, mapping states with
index i to si, paired with the map η sending the clock variable x to z and
y to u. We leave it to the reader to check to check that m, η constitute a
morphism .

Æ

��

Æ

��

Æ

��

Æ

��

Æ

��

-

?

-
6

�

?

a
z ≤ 1
{u}

b
2 < u < 4 ∧ z > 4

{z, u}

b

2 < u < 3 ∧ z > 4
{z, u}

z ≤ 1, {u}
a

u ≤ 1, ∅
ct1

t0

u0

u1 t2

Figure 3: A timed transition system.

Definition 6 For a function η : X ′ → X and a clock evaluation ν : X → R+

we define η−1(ν) : X ′ → R+, the inverse image of ν under η, as

η−1(ν)(x) := ν(η(x))

Theorem 1 Given two timed transition systems T and T ′ and a morphism
(m, η) from T to T ′. If 〈s0, ν0〉σ1

τ1
→ 〈s1, ν1〉σ2

τ2
→ · · · σn

τn
→ 〈sn, νn〉 is a run of T gen-

erating the timed word (σ1, τ1)(σ2, τ2)(σ3, τ3) · · · (σn, τn), then 〈m(s0), η−1(ν0)〉
σ1

τ1
→ 〈m(s1), η−1(ν1)〉σ2

τ2
→ · · · σn

τn
→ 〈m(sn), η−1(νn)〉 is a run of T ′ generating the

same timed word.

Proof We will prove this by induction on the length of the run.
As base case, we have the empty run with just one configuration. Since

the initial state of T is mapped to the initial state of T ′ and all clock values
initially are set to 0, we also have ∀x′ ∈ X ′ : η−1(ν0)(x′) = 0 which is the
initial clock evaluation for a run in T ′.

For the induction step, assume T is in the configuration 〈si, νi〉, T ′ is in
the configuration 〈m(si), η

−1(νi)〉, and T can extend its run by

〈si, νi〉
σi+1

τi+1

→ 〈si+1, νi+1〉

7



extending the generated timed word with the element (σi+1, τi+1).
The extension uses some transition

si
σi+1

δi+1,λi+1

→ si+1

in T satisfying [[νi+(τi+1−τi)]]X ∈ [[δi+1]]X . From the definition of a morphism
we must have some transition

m(si)
σi+1

δ′i+1,λ
′
i+1

→ m(si+1)

in T ′ such that λ′i+1 = η−1(λi+1) and [[δi+1]]X ⊆ [[δ′i+1[η(x)/x]]]X . From the
latter property we get that [[η−1(νi)+(τi+1−τi)]]X′ ∈ [[δ′i+1]]X′ so the transition
can be used to extend the run in T ′, obtaining

(m(si), η
−1(νi))

σi+1

τi+1

→ (m(si+1), ν ′i+1)

where

ν ′i+1 = (η−1(νi) + (τi+1 − τi))[λ′i+1 7→ 0]

= (η−1(νi) + (τi+1 − τi))[η−1(λi+1) 7→ 0]

= (η−1(νi + (τi+1 − τi)))[η−1(λi+1) 7→ 0]

= η−1((νi + (τi+1 − τi))[λi+1 7→ 0])

= η−1(νi+1)

2

Example 4 Using the morphism from Example 3 the run

〈t0, [0, 0]〉 a
0.7
→ 〈t1, [0.7, 0]〉 b

4.2
→ 〈t2, [0, 0]〉 a

4.4
→ 〈t3, [0.2, 0]〉 b

8.3
→ 〈t0, [0, 0]〉

in the timed transition system in Figure 3 is simulated by the second run in
Example 2. Here [0.7, 0] is notation for ν assigning the value 0.7 to the clock
z and the value 0 to u.

So, in the formal sense of Theorem 1 we have shown that the morphisms
from Definition 5 do represent a notion of simulation. Our category of timed
transition systems is defined as follows.

8



Definition 7 The category CTTSΣ has timed transition systems with al-
phabet Σ as objects, and the morphisms from Definition 5 as arrows. For

morphisms T (m,η)−−−→ T ′ and T ′ (m′,η′)−−−−→ T ′′ composition is defined as (m′, η′) ◦
(m, η) := (m′ ◦m, η ◦η′). The identity morphism is the morphism where both
m and η are the identity function.

Proposition 1 CTTSΣ is a category.

Proof The only non-trivial part of the proof is to see that composition is

well-defined. Assume we have morphisms T (m,η)−−−→ T ′ and T ′ (m′,η′)−−−−→ T ′′. A
transition s1

σ
δ,λ
→ s2 in T implies the existence of a transition m(s1) σ

δ′,λ′→ m(s2)

in T ′ where λ′ = η−1(λ) and [[δ]]X ⊆ [[δ′[η(x)/x]]]X . This transition implies
the existence of a transition m′(m(s1)) σ

δ′′,λ′′→ m′(m(s2)) in T ′′ where λ′′ =

η
′−1(λ′) = η

′−1(η−1(λ)) and [[δ′]]X ⊆ [[δ′′[η′(x)/x]]]X . Combining these facts
we get [[δ]]X ⊆ [[δ′′[(η ◦ η′)(x)/x]]]X from which we conclude that composition
is well-defined.

2

CTTSΣ has a number of useful properties. For our purpose here we only
need the following.

Theorem 2 CTTSΣ has (binary) products.

Proof Given two timed transition systems T1 = (S1,Σ, s
in
1 , X1, T1) and

T2 = (S2,Σ, s
in
2 , X2, T2), we define the product of the two systems as T1×T2 =

(S1×S2,Σ, (s
in
1 , s

in
2 ), X1∪· X2, T ), where X1∪· X2 denotes the disjoint union

of X1 and X2, and the set of transitions T consists of all transitions of the
form (s1, s2) σ

δ1∧δ2,λ1∪λ2
→ (s′1, s

′
2) such that si

σ
δi,λi
→ s′i belongs to Ti for i = 1, 2.

The projections (mi, ηi) : T1×T2 → Ti for i = 1, 2 are defined as expected,
withmi as the projection on states and ηi is the embedding ofXi intoX1∪· X2.
It follows easily that this defines products in CTTSΣ.

2

Theorem 3 CTTSΣ has pullbacks.

9



Proof Given two morphisms (m1, η1) : T1 → T and (m2, η2) : T2 → T , we
construct T1×T T2 and two morphisms (m′i, η

′
i) : T1×T T2 → Ti such that

(m1, η1) ◦ (m′1, η
′
1) = (m2, η2) ◦ (m′2, η

′
2) (1)

The construction of m′i and the states of T1×T T2 is based on pullbacks in
the category of sets with functions. Similarly the construction of η′i and the
clocks of T1×T T2 is based on pushouts in the category of sets with functions,
i.e. the clocks of T1×TT2 are the equivalence classes of the equivalence relation
R over X1 ∪· X2 generated by R0 where

R0 = {(x1, x2) | ∃x ∈ X.η1(x) = x1 and η2(x) = x2},

and η′i sends a clock variable of Ti to the equivalence class to which it belongs.
More specifically we define T1×T T2 as follows.

• S×T : {(s1, s2) ∈ S1 × S2 |m1(s1) = m2(s2)}

• sin×T : (sin1 , s
in
2 )

• X×T : the equivalence classes of R defined above

• T×T : (s1, s2) σ
δ1[η′1(x)/x]∧δ2[η′2(x)/x],η′1(λ1)∪η′2(λ2)

→ (s′1, s
′
2), whenever si

σ
δi,λi
→ s′i

and (s1, s2), (s′1, s
′
2) belongs to S×T .

With m′i(s1, s2) = si we leave it for the reader to check that (m′i, η
′
i) is indeed

a morphism, and it follows immediately from the underlying conditions from
the category of sets with functions that the required commutativity of (1) is
satisfied.

Now consider T ′ with morphisms (m′′i , η
′′
i ) : T ′ → Ti for i = 1, 2, such

that the following diagram commutes.

T ′ (m′′1 ,η
′′
1 )

##

(m′′2 ,η
′′
2 )

  

T1×T T2
(m′1,η

′
1)

//

(m′2,η
′
2)

��

T1

(m1,η1)

��
T2 (m2,η2)

// T
The required morphism (m, η) from T ′ to T1×T T2 is defined as expected, i.e.
m(s′) = (m′′1(s′), m′′2(s′)) and η(x) = η′′1(x)∪η′′2 (x). We leave it for the reader

10



to check that (m, η) indeed is a morphism. Finally, from the underlying
constructions in the category of sets with functions we get that the required
commutativities (m′′i , η

′′
i ) = (m′i, η

′
i) ◦ (m, η) hold for i = 1, 2.

2

2.1 A Path Category

Following the standards of timed transition systems and [JNW96], we would
like to choose timed words over Σ with word extension as our category of
computation paths. However, it is not immediately clear how to see for-
mally this choice as a subcategory of CTTSΣ, as required in the approach of
[JNW96].

Definition 8 Given a timed word α = (σ1, τ1) (σ2, τ2) (σ3, τ3) · · · (σn, τn), we
define a timed transition system Tα: 0 σ1

δ1,λ1
→ 1 σ2

δ2,λ2
→ · · · σn

δn,λn
→ n as follows. The

states are the integers 0..n, with 0 as the initial state, and the set of clock
variables, X, consists of the 2n subsets of states {1, 2, . . . , n}. We define λi
and δi as

λi = {x| i ∈ x} and δi =
∧
x∈X

(x = τi − τI(i,x))

where I(i, x) := max{k ∈ x ∪ {0} | k < i}, and τ0 := 0. The index returned
by I(i, x) is the index of the last state at which x was reset. We write Tα for
the transition system in CTTSΣ representing α.

The only purpose of this seemingly ad hoc construction is that it allows us to
represent the category of timed words with extension inside CTTSΣ, and to
identify runs of α in T with morphisms from Tα to T , as expressed formally
in the following two results.

Proposition 2 The construction of Tα from α above, extends to a full and
faithful functor from the category of timed words (as objects) and word ex-
tension (as morphisms) into CTTSΣ

Proof The main observation is that for all timed words α, α′, there is at
most one morphism between Tα and Tα′ .

2

11



Theorem 4 Given a timed transition system T and a timed word α =
(σ1, τ1)(σ2, τ2) . . . (σn, τn). For each run of α in T ,

〈s0, ν0〉
σ1

τ1
→ 〈s1, ν1〉

σ2

τ2
→ . . .

σn

τn
→ 〈sn, νn〉 (2)

we may associate a morphism (m, η) : Tα → T where:

m(i) = si

η(x) = {i | 1 ≤ i ≤ n and νi(x) = 0}

Furthermore, this association is a bijection between the runs of α in T and

the morphisms Tα
(m,η)−−−→ T .

Proof It follows from the definition of runs and the definition of Tα that
(m, η) as defined is indeed a morphism.

Now, let (m, η) be a morphism from Tα to T . With (m, η) we associate
the run of the form (2) where

si = m(i)

νi(x) =

{
0 if i = 0 or i ∈ η(x)
νi−1(x) + (τi − τi−1) otherwise

Again, it follows from the definition of morphisms that this indeed defines a
run of α in T .

It is easily shown that the correspondence given above is one to one.

2

3 Timed Bisimulation

Given our categories of timed transition systems and paths, we can now
apply the general framework from [JNW96], defining notions of open maps
and bisimulation.

Definition 9 (Open Map [JNW96]) A morphism T (m,η)−−−→ T ′ in CTTSΣ

is T W-open iff for all timed words α and α′, and morphisms such that the
following diagram commutes:

12



Tα
(p,ηp) //

(f,ηf )

��

T
(m,η)

��
Tα′

(q,ηq) // T ′
there exists a morphism (p′, ηp′) : Tα′ → T such that the in the diagram

Tα
(p,ηp) //

(f,ηf )

��

T
(m,η)

��
Tα′

(q,ηq) //

(p′,ηp′ )|||

>>|||

T ′
the two triangles commute.

Definition 10 Two timed transition systems T1 and T2 are T W-bisimilar

iff there exists a span T1
(m,η)←−−− T (m′,η′)−−−−→ T2 with vertex T of T W-open

morphisms.

Example 5 In Figure 4 the (only) two morphisms from T to T ′ are open.
We leave it for the reader to check that this is indeed the case.

T : T ′:

m mm m

m m m

m

m

? ?

R 	

?

?

�
��	

@
@@R

�
��	

@
@@R

a
2 ≤ x ≤ 4
{y}

a
2 ≤ y ≤ 4
{x}

a
2 ≤ x ≤ 4
{y}

a
2 ≤ y ≤ 4
{x}

b
y ≤ 1
∅

c
x ≤ 1
∅

b
y ≤ 1
∅

c
x ≤ 1
∅

Figure 4: Two bisimilar timed transition systems.

Notice that it follows from [JNW96] and Theorem 3 that T W-bisimulation
is exactly the equivalence generated by T W-open maps. Our next aim is to
characterize T W-open morphisms.

Definition 11 Given a timed transition system T , a configuration 〈s, ν〉 of
T is reachable iff T has a run with an occurrence of 〈s, ν〉.

13



Theorem 5 A morphism T1
(m,η)−−−→ T2 is open iff for all reachable configu-

rations 〈s1, ν〉 in T1, and for all ν ′ = ν + τ whenever there is a transition
m(s1) σ

δ2,λ2
→ s′2 such that [[η−1(ν ′)]]X2 ∈ [[δ2]]X2 , then there exists a transition

s1
σ

δ1,λ1
→ s′1 such that m(s′1) = s′2, [[ν ′]]X1 ∈ [[δ1]]X1, and λ2 = η−1(λ1).

Proof

Assume T1
(m,η)−−−→ T2 is open, and that the configuration 〈s1, ν〉 is reach-

able in T1, i.e. we have a run of some timed word α ending in 〈s1, ν〉. From
the assumptions of the theorem the (m, η)-image of this run in T2 may be
extended by some σ-timed transition 〈m(s1), η−1(ν)〉 σ

τ ′→ 〈s′2, η−1[λ2 7→ 0]〉.
Hence we have a commuting diagram with α′ = α(σ, τ ′)

Tα
(q,ηq) //

��

T1

(m,η)
��

Tα′
(q′,ηq′ )// T2

¿From the definition of openness we get a mediating morphism

Tα
(q,ηq) //

��

T1

(m,η)
��

Tα′
(q′,ηq′ )

//

(p,ηp)
}}}

>>}}}

T2

¿From this diagram, it follows from Theorem 1 and Theorem 4 that there
exists a transition s1

σ
δ1,λ1
→ s′1 such that m(s′1) = s′2, [[ν ′]]X1 ∈ [[δ1]]X1 , and

λ2 = η−1(λ1).
For the if part of the theorem, assume the we have a commuting square

Tα
(q,ηq) //

��

T1

(m,η)
��

Tα′
(q′,ηq′ )// T2

In the following we assume that α′ = α(σ, τ ′), i.e. that α′ is an extension
of of α by a single timed action. The general case follows from repeated
applications of the arguments in the following.

¿From Theorem 4, the morphism (q, ηq) defines a run of α in T1 ending
in some configuration 〈s1, ν〉, mapped by (m, η) to 〈m(s1), η−1(ν)〉. Now,
(q′, η q′) implies that there is some transition m(s1) σ

δ2,λ2
→ s′2 in T2, such that

[[η−1(ν ′)]]X2 ∈ [[δ2]]X2 , where ν ′ = ν + τ for some τ determined by α′. From
the assumptions of the theorem, we now get that there exists a transition

14



s1
σ

δ1,λ1
→ s′1, such that m(s′1) = s′2, [[ν ′]]X1 ∈ [[δ1]]X1 , and λ2 = η−1(λ1). Using

Theorem 4 this implies the existence of a morphism from Tα′ to T1, for which
the commutativity properties required by openness follows by the properties
listed above.

2

The standard notion of timed bisimulation is defined in terms of config-
urations as follows.

Definition 12 (Timed Bisimulation [Čer92, AM94]) Two timed tran-
sition systems are bisimilar iff there exists a relation R over configurations
(〈s, νs〉, 〈t, νt〉) of the two systems satisfying (〈sin, ν0

s 〉, 〈tin, ν0
t 〉) ∈ R and for

all (〈s, νs〉, 〈t, νt〉) ∈ R
• whenever 〈s, νs〉στ→ 〈s′, ν ′s〉 then 〈t, νt〉στ→ 〈t′, ν ′t〉 with (〈s′, ν ′s〉, 〈t′, ν ′t〉) ∈ R

for some 〈t′, ν ′t〉.

• whenever 〈t, νt〉στ→ 〈t′, ν ′t〉 then 〈s, νs〉στ→ 〈s′, ν ′s〉 with (〈s′, ν ′s〉, 〈t′, ν ′t〉) ∈ R
for some 〈s′, ν ′s〉.

Theorem 6 Two timed transition systems T1 and T2 are T W-bisimilar iff
they are bisimilar according to Definition 12.

Proof Assume T1 and T2 to be T W-bisimilar with span of open maps

T
(m1,η1)

~~~~~~~~~ (m2,η2)

  @@@@@@@

T1 T2

Define R to be the following relation of configurations of T1 and T2:

〈s1, ν1〉R〈s2, ν2〉 iff
there exists a reachable configuration 〈s, ν〉 of T such that si =
mi(s) and νi = η−1

i (ν) for i = 1, 2.

It follows easily from Theorem 5 that R satisfies the required properties of
Definition 12.

Assume T1 and T2 to be bisimilar with relation R as defined in Defini-
tion 12. We construct a span of open maps with vertex T defined as follows.

The states of T will be pairs of “R-related runs” of T1 and T2 - formally
defined as follows.

15



Two runs of a timed word α = (σ1, τ1)(σ2, τ2) . . . (σn, τn), n ≥ 0
in T1 and T2 respectively

〈s0
i , ν

0
i 〉

σ1

τ1
→ 〈s1

i , ν
1
i 〉

σ2

τ2
→ . . .

σn

τn
→ 〈sni , νni 〉, i = 1, 2 (3)

are said to be R-related iff

〈sj1, ν
j
1〉R〈s

j
2, ν

j
2〉for 0 ≤ j ≤ n

The initial state of T is the pair of initial configurations of T1 and T2.
The clock variables of T will be the disjoint union of the clock variables

of T1 and T2, X1 ∪· X2.
Finally for each pair of R-related runs of the form (3), there will be

an incoming transition in T from the pair of R-related runs of ending in
(〈sn−1

1 , νn−1
1 〉, 〈sn−1

2 , νn−1
2 〉) of the form σn

δ,λ
→, where

δ =
∧

x∈Xi,i=1,2

(x = νn−1
i (x) + (τn − τn−1))

λ = {xi ∈ Xi | i = 1, 2 and νni (xi) = 0}

The open morphisms from T to Ti is (mi, ηi) : T → Ti, i = 1, 2 where the
mi-value on a pair of R-related runs as in (3) is taken to be sni , and ηi is the
injection function from Xi to X1 ∪· X2. It follows from the construction that
(mi, ηi) are morphisms, and openness follows from Theorem 5.

2

Example 6 Concider the timed transition systems in Figure 5. It is easy
to see that there is exactly one morphism from T to Ti, for i = 1, 2, and
that this morphism is open. Hence, we have a span of open maps between T1

and T2 (with T as vertex), and bisimilarity between T1 and T2 follows from
Theorem 6.

Notice that there are simple arguments following Theorem 5 for openness
of the morphisms in the example above. Hence we suggest spans of open
maps as a convenient framework for presentations of bisimilarity of finite
timed transition systems. In the next section this will be supported by two
decidability results: openness of morphisms and bisimilarity for finite timed
transition systems.
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m m m m

m m m m

m m

m m

m

m m

m m m m

m m m m

T

T1 T2

a
y ≤ 1 ∧ u ≤ 1
{x, z}

a
x ≤ 1 ∧ u ≤ 1
{y, z}

b
x ≥ 0∧
z ≥ 0

b
x ≥ 0∧
z ≥ 0

b
x ≥ 0∧
z ≥ 0

b
x ≥ 0∧
z ≥ 0

c
y ≤ 1∧
u ≤ 1

c
x ≤ 1∧
z ≤ 1

c
y ≤ 1∧
z ≤ 1

c
x ≤ 1∧
u ≤ 1

?

c
u ≤ 1 ?

c
z ≤ 1 ?

c
x ≤ 1 ?

c
y ≤ 1

? ? ? ?

�
�

��	

@
@
@@R

�
�
��	

@
@
@@R

? ?

?

�
��	

@
@@R

�
��	

@
@@R

b b b b
z ≥ 0 z ≥ 0 x ≥ 0 x ≥ 0

? R 	

a
u ≤ 1
{z}

a
y ≤ 1
{x}

a
x ≤ 1
{y}

? ?

Figure 5: Three systems with a span.
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4 Decidability

In this section we restrict ourselves to finite timed transition systems, i.e.
systems with a finite number of states, clocks and transitions, and for which
all constants referred to in constraints have rational values. By scaling the
rational constants we assume without loss of generality in the following that
all constants are integer valued [AD94].

To get a decidable characterization of openness we introduce the notion
of regions, [AD94].

Definition 13 (Region[AD94]) Given a finite set of clock variables X and
an integer constant c, a region is an equivalence class of the equivalence
relation ∼= over clock valuations, where ν ∼= ν ′ iff

• For each x ∈ X : bν(x)c = bν′(x)c2 or both ν(x) > c and ν ′(x) > c.

• For every pair of clock variables x, y ∈ X where both ν(x) ≤ c and
ν(y) ≤ c we have that fract(ν(x)) ≤ fract(ν(y)) iff fract(ν ′(x)) ≤
fract(ν ′(y)).

• For every clock variable x ∈ X where ν(x) ≤ c we have fract(ν(x)) = 0
iff fract(ν ′(x)) = 0.

For a clock valuation ν, let [ν] denote the region to which it belongs. Let
RX,c denote the (finite) set of regions associated with X and c. Given regions
reg, reg′ ∈ RX,c, reg

′ ∈ Reach(reg) iff there exists ν ∈ reg and τ ∈ R+

such that ν + τ ∈ reg′. Finally, for a finite timed transition system T an
extended state is defined as any pair 〈s, reg〉, where s is a state of T and reg
is a region over the set of clock variables of T .

Proposition 3 Consider finite timed transition systems T and T ′ with clock
variables X and X’ respectively, and let c be an integer constant greater than
or equal to the largest constant referred to in transition constraint expressions
in T and T ′.

For any T -constraint expression δ and any region reg ∈ RX,c, [[reg]]X ⊆
[[δ]]X iff [[reg]]X ∩ [[δ]]X 6= ∅. For any reg′ ∈ RX,c, and any ν, ν ′ ∈ reg, reg′ is
reachable from ν iff it is reachable from ν ′.

Consider a morphism (m, η) from T to T ′ with reg, reg′ ∈ RX,c, then

2We use bxc for the largest integer smaller than or equal to x and fract(x) := x−bxc.
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• η−1(reg) ∈ RX′,c

• if reg′ ∈ Reach(reg) then η−1(reg′) ∈ Reach(η−1(reg))

Proof First two properties follow from e.g. [AD94]. The regional properties
of morphisms follow by simple calculation.

2

Our operations on clock evaluations can be extended to regions which will
be used below. We can now give a characterization of open maps in terms
of extended states.

Theorem 7 Consider finite timed transition systems T1 and T2 with clock
variables X1 and X2 respectively, and associated regions defined with respect
to some integer constant greater than or equal to the largest constant referred
to in transition constraint expressions in T1 and T2. A morphism (m, η) :
T1 → T2 is open iff for all reachable extended states 〈s1, reg〉 in T1, and for
all reg′ ∈ Reach(reg), whenever there is a transition m(s1) σ

δ2,λ2
→ s′2 such that

[[η−1(reg′)]]X2 ⊆ [[δ2]]X2 , then there exists a transition s1
σ

δ1,λ1
→ s′1 such that

m(s′1) = s′2, λ2 = η−1(λ1) and [[reg′]]X1 ⊆ [[δ1]]X1 .

Proof Follows from Theorem 5 and Proposition 3.

2

Notice that Theorem 7 implies the following decidability result of openness
of a morphism between two finite timed transition systems.

Theorem 8 Given two finite timed transition systems T1 and T2 and a mor-
phism (m, η) : T1 → T2 , openness of (m, η) is decidable.

Proof Follows immediately form Theorem 7 and Proposition 3.

2

For untimed transition systems, decidability of bisimulation follows e.g.
from the fact that a span of open maps between two finite transition systems
imply a span with a vertex being a subsystem of their product, see [JNW96].
Unfortunately, this result does not generalize completely to our setting here.
However, we still have the following.
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Theorem 9 Given two finite timed transition systems T1 and T2 , if there
exists a span of open maps

T
(m,η)

~~~~~~~~~ (m′,η′)

  @@@@@@@

T1 T2

then there is a finite vertex T×R of size bounded by the size of T1 and T2 and
with open morphisms

T

(m,η)

�����������������

(m′,η′)

��222222222222222

T×R
(p,ηp)

zzz

||zzz
(q,ηq)

DDD

""DDD

T1 T2

Proof Assume without loss of generality that the clock variables of T1 and
T2 are disjoint. If ν and ν ′ are clock evaluations for T1 and T2 respectively we
shall write ν ] ν ′ for the combined clock evaluation over the disjoint union
of the clock variables of T1 and T2, satisfying (ν ] ν ′) := ν(x) if x ∈ X1 and
(ν]ν ′) := ν ′(x) if x ∈ X2. Let c be an integer constant greater than or equal
to the largest constant mentioned in transition constraint expressions in T1

and T2, and let all regions in the following be defined with respect to c. The
timed transition system T×R is defined in the following way.

• S×R is the set of pairs 〈s1, s2〉 for which there exists a reachable con-
figuration 〈s, ν〉 in T such that m(s) = s1 and m′(s) = s2.

• The initial state sin×R is 〈sin1 , sin2 〉 where sin1 is the initial state of T1

and sin2 the initial state of T2.

• X×R = X1 ∪· X2.

• The transitions of T×R are defined as follows. For all runs in T

〈sin, ν0〉
σ1

τ1
→ 〈s1, ν1〉

σ2

τ2
→ . . .

σn

τn
→ 〈s, ν〉

with an extended run of the form

〈sin, ν0〉
σ1

τ1
→ 〈s1, ν1〉

σ2

τ2
→ . . .

σn

τn
→ 〈s, ν〉σ

τ
→ 〈s′, ν ′〉
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we introduce a transition

〈m(s), m′(s)〉 σ
δ̂,λ̂
→ 〈m(s′), m′(s′)〉

in T×R, where λ̂ consists of all clock variables x from T1 and x′ from
T2, for which ν

′−1(η(x))) = 0 or ν
′−1(η′(x′))) = 0, and δ̂ is the logical

expression defining the region to which η−1(ν+(τ−τn))]η′−1(ν+(τ−
τn)) belongs.

This completes the definition of T×R. Obviously, the size is bounded
by the size of T1 and T2. The number of states is bounded by |S1| ∗ |S2|.
The number of regions over the disjoint union of X1 and X2 with constant
c, is |X|! ∗ 2|X| ∗ (2c + 2)|X| where |X| = |X1| + |X2|, so there are at most
|Σ| ∗ (|X|! ∗ 2|X| ∗ (2c+ 2)|X|) ∗ 2|X| transitions between any two states.

The morphisms from T×R to T1 and T2 are the projections (p, ηp) and
(q, ηq) respectively, where p(〈s1, s2〉) = s1 and similarly for q. The function
ηp is the identity function on the clock variables of T1 and ηq is the identity
function on the clock variables of T2. We need to verify that these are mor-
phisms and that they are open. The proof for (p, ηp) will be shown here, and
the arguments for (q, ηq) are symmetric.

To verify that the projection (p, ηp) is a morphism, consider a transi-
tion 〈m(s), m′(s)〉 σ

δ̂,λ̂
→ 〈m(s′), m′(s′)〉 in T×R as defined above. From def-

inition and Theorem 1 this implies the existence in T1 of some transition
m(s) σ

δ1,λ1
→ m(s′) realizing 〈m(s), η−1(ν)〉σ

τ
→ 〈m(s′), η−1(ν ′)〉, i.e. such that

[[η−1(ν) + (τ − τn)]]X1 ∈ [[δ1]]X1 and λ1 = {x1 ∈ X1 | η−1(ν ′)(x1) = 0}.
This implies [[η−1

p (δ̂)]]X1 ⊆ [[δ1]]X1 , and hence [[δ̂]]X× ⊆ [[η−1(δ̂)[ηp(x)/x]]]X× ⊆
[[δ1[ηp(x)/x]]]X× , and λ1 = η−1

p (λ̂).
To show that (p, ηp) is open, we show that it has the property from

Theorem 7. Notice first that from construction, for any reachable extended
state in T×R of the form (〈s1, s2〉, reg) there exists a reachable configuration
〈s, ν〉 in T such that m(s) = s1, m′(s) = s2, and η−1(ν) ∪ η′−1(ν) ∈ reg.

Assume the extended state 〈s1, s2, reg〉 is reachable in T×R. Consider
reg′ ∈ Reach(reg) and a transition s1

σ
δ1,λ1
→ s′1 in T1 for which [[η−1

p (reg′)]]X1 ⊆
[[δ1]]X1 . We must show the existence of a transition in T×R of the form
〈s1, s2〉 σδ̂,λ̂→ 〈s

′
1, s
′
2〉, such that [[reg′]]X× ⊆ [[δ̂]]X× and λ1 = η−1

p (λ̂).

Since 〈s1, s2, reg〉 is reachable we have a reachable configuration 〈s, ν〉 in
T such that m(s) = s1, m

′(s) = s2, and η−1(ν)∪· η′−1(ν) ∈ reg. Let τ be such
that η−1(ν+τ)∪· η′−1(ν+τ) ∈ reg′, and hence [[η−1(ν+τ)]]X1 ∈ [[η−1

p (reg′)]]X1 ⊆
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[[δ1]]X1 . We obtain from Theorem 5 the existence in T of a transition s σ
δ,λ
→ s′

such that m(s′) = s′1, [[ν + τ ]]X ∈ [[δ]]X and λ1 = η−1(λ). Hence from
construction we have 〈s1, s2〉 σδ̂,λ̂→ 〈m(s′), m′(s′)〉, where [[δ̂]]X× = [[reg′]]X× and

λ1 = η−1(λ) = η−1
p (λ̂).

2

¿From the proof of Theorem 9, we have the following corollary.

Corollary 1 Given two finite timed transition systems, timed bisimulation
is decidable.

5 Extension with invariants

In this section we will extend the timed transition systems with invariants
[LPY97] on the states and argue that the results from the preceding sections
can be generalized to the extended model without problems. We will state
the results for the new model and hints to some of the proofs, all of which are
simple extensions of the proofs for the model without invariants on states.

Definition 14 (Timed Transition Systems with invariants) A timed
transition system with invariants is six tuple (S,Σ, s0, X, T, I) where the first
five components are as in Definition 1 and I assigns to each state an invari-
ant. Invariants are given by the same syntax as constraints, so the invariant
for state s, ιs, can be generated by the grammar ∆ from Definition 1.

The meaning of a invariant ιs, [[ιs]]X , is defined in the same way as the
meaning of a constraint. In the definition of runs over a timed transition
system with invariants, the invariant of a state must be satisfied when the
state is entered and until the next state is entered. More formally, in the
definition of a run

〈s0, ν0〉
σ1

τ1
→ 〈s1, ν1〉

σ2

τ2
→ · · · σn

τn
→ 〈sn, νn〉

we require ∀i ∈ {0, 1, . . . , n − 1}, ∀τ ∈ [0, τi − τi−1) : [[νi + τ ]]X ∈ [[ιsi ]]X
where τ0 = 0, and for the last state [[νn]]X ∈ [[ιsn ]]X . We define a new kind
of morphism which is going to be an extension of the ones from Definition 5
taking invariants into account.

22



Definition 15 A morphism (m, η) between two timed transition systems
with invariants T and T ′ consists of the same components as the morphisms
in Definition 5 with one extra constraint:

• If a state s in T is mapped by m to a state m(s) in T ′ then [[ιs]]X ⊆
[[ιm(s)[η(x)/x]]]X .

This definition ensures that if an invariant is satisfied in some configuration in
T the invariant of the simulating configuration is also satisfied. This implies
that we still have morphisms as simulations as stated in Theorem 1.

With this notion of morphisms we have a category as in Definition 7,
which we denote CTTSιΣ.

Proposition 4 CTTSιΣ has products and pullbacks.

The construction of T1×T T2 follows the one in the proof of Theorem 3 where
the invariant of the state 〈s1, s2〉 is defined such that [[ι〈s1,s2〉]]X× = [[ιs1 ]]X× ∩
[[ιs2 ]]X× . The invariants on the states in the product is defined in the same
way.

As our category of computations we would again like to choose timed
words over Σ with word extensions. Like for timed transition systems we
choose a representation of these in terms of our models following the approach
of [JNW96]. This is going to look very much like the representation we
defined for timed transition systems, we just need to add invariants to all the
states.

Definition 16 Given a timed word α = (σ1, τ1) (σ2, τ2) (σ3, τ3) · · · (σn, τn)
we define a timed transition system T ια 0 σ1

δ1,λ1
→ 1 σ2

δ2,λ2
→ · · · σn

δn,λn
→ n, as in

Definition 8, where the invariants are defined inductively to be of the form∧
x∈X(cx ≤ x < c′x). The initial the invariant is∧

x∈X
(0 ≤ x < τ1)

Assume the invariant on the state i-1 is
∧
x∈X(ci−1

x ≤ x < c̃i−1
x ), then the

invariant for state i is∧
x∈X

(if x ∈ λi then (0 ≤ x < τ̃i) else (c̃i−1
x ≤ x < c̃i−1

x + τ̃i))
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where τ̃i = τi − τi−1. The constraint on the final state is∧
x∈X

(if x ∈ λi then (x = 0) else (x = c̃i−1
x ))

Using this construction we still get an embedding of the category of timed
words with extensions into CTTSιΣ, with properties as in Theorem 4.

The characterization of open maps is a little more complicated to state
with the invariants. The proof though is again just a simple extension of the
proof of Theorem 5 using the constraint for the invariants and the condition
for runs.

Proposition 5 A morphism (m, η) : T1 → T2 is open iff for all reachable
configurations 〈s1, ν〉 for all ν ′ = ν + τ such that ∀τ ′ : τ ′ < τ ⇒ [[η−1(ν +
τ ′)]]X2 ∈ [[ιm(s1)]]X2 whenever there is a transition m(s1) σ

δ2,λ2
→ s′2 if [[ν]]X2 ∈

[[δ2]]X2 and [[ν]]X2 ∈ [[ιs′2 ]]X2 for ν = η−1(ν ′) then there exists a transition
s1

σ
δ1,λ1
→ s′1 such that m(s′1) = s′2, [[ν ′]]X1 ∈ [[δ1]]X1, λ2 = η−1(λ1), and ∀τ ′ <

τ : [[ν + τ ′]]X1 ∈ [[ιs1 ]]X1 , [[ν ′]]X1 ∈ [[ιs2 ]]X1 .

We also have a characterization in terms of extended states equivalent to
Theorem 7, using the property that if one clock evaluation in a region satisfies
an invariant then all the clock evaluations of that region satisfy the invariant.
Given this, the proof of the theorem for extended states follows directly from
the proof of Theorem 7. With the characterization of the open maps in terms
of extended states, we again have the decidability of openness for morphisms
between finite timed transition systems with invariants, and we can construct
the finite vertex if such one exists.

Theorem 10 Given to finite timed transition systems with invariants T1 and
T2 if there exists a span of open maps

T
(m,η)

~~~~~~~~~ (m′,η′)

  @@@@@@@

T1 T2
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then there is a finite T×R giving a span of open maps

T

(m,η)

�����������������

(m′,η′)

��222222222222222

T×R
(p,ηp)

zzz

||zzz
(q,ηq)

DDD

""DDD

T1 T2

The construction of T×R is almost the same as in the proof of Theorem 10.
The meaning of the invariant of the state 〈s1, s2〉 is the intersection [[ιs1 ]]X× ∩
[[ιs2 ]]X× as in the construction used for the pullback.

Again the decidability of the bisimulation follows directly from the con-
struction of the vertex and the decidability of openness.

6 Conclusion

We have illustrated how to apply the general framework of open maps to the
setting of timed systems, providing a way of expressing a bisimulation purely
within the framework of timed transition systems. Furthermore, a decision
procedure for bisimulation was presented within this framework.

We propose the span of open maps idea as a useful way of expressing
timed bisimulations for finite systems. On the other hand, we do not claim
that our alternative decision procedure as presented here is more efficient
than existing ones, e.g. [LLW95, WL97].

The categorical formulations in terms of open maps suggest applying gen-
eral results from the categorical setting to concrete timed bisimulations, like
the one studied here. One particularly interesting example is the character-
istic path logic obtained from [JNW96]. It would be interesting to study this
logic and its relation to existing timed logics from the literature.
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