
B
R

IC
S

R
S

-98-38
F

ridlender
&

Indrika:
A

n
n

-ary
zip

W
ith

in
H

askell

BRICS
Basic Research in Computer Science

An n-ary zipWith in Haskell

Daniel Fridlender
Mia Indrika

BRICS Report Series RS-98-38

ISSN 0909-0878 December 1998



Copyright c© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/98/38/



An n-ary zipWith in Haskell

Daniel Fridlender∗† Mia Indrika‡

Abstract

The aim of this note is to present an alternative definition of the
zipWith family in the Haskell Library Report [5]. Because of the dif-
ficulties in defining a well-typed function with a variable number of
arguments, [5] presents a family of zipWith functions. It provides zip
functions zipWith2, zipWith3, . . . , zipWith7. For each n, zipWithn
zips n lists with a n-ary function. Defining a single zipWith func-
tion with a variable number of arguments seems to require dependent
types. Inspired by [3], we show, however, how to define such a function
in Haskell by means of a binary operator for grouping its arguments.
For comparison, we also give definitions of zipWith in languages with
dependent types.

1 zipWith in the Haskell library

The Haskell library [5] supplies the programmer with a family of functions
zipWith2, zipWith3, . . . , zipWith7 indexed by the number of lists to which
it applies.

For instance, zipWith4 is defined as follows.

∗BRICS, Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
†Department of Computer Science, University of Aarhus,
Building 540, Ny Munkegade, DK-8000 Århus C, Denmark.
E-mail: daniel@brics.dk
‡Department of Computing Science,
Chalmers University of Technology and Göteborg University,
412 96 Göteborg, Sweden.
E-mail: indrika@cs.chalmers.se

1



zipWith4 :: (a->b->c->d->e) -> [a]->[b]->[c]->[d]->[e]

zipWith4 z (a:as) (b:bs) (c:cs) (d:ds)

= z a b c d : zipWith4 z as bs cs ds

zipWith4 _ _ _ _ _ = []

In addition zipWith2 is simply called zipWith and the function map can
actually be thought of as the function zipWith1.

The programmer rarely needs a zipWithn with n > 7, the idea is that if
it is necessary, he or she can follow the same pattern of those in the library
to implement it.

We want to define a well-typed function zipWith which given a function f

of type (a1->a2->...->an->b) and n lists of types [a1], [a2], . . . [an],
respectively, returns a list of type [b] obtained by zipping the n lists with
the function f.

Defining such a general version of zipWith seems to require dependent
types. Section 4 shows examples of how to write that function in Agda [2],
a functional language with dependent types. However, we show in Section 2
that it is also possible to define a general zipWith in Haskell, a language
which does not have dependent types.

We will compare the different alternatives from the point of view of a user
of zipWith concerning what has to be written in order to use zipWith. For
that comparison we will show how to write an expression that zips the lists
[1..], "hi" and "world", with the ternary function (,,) which constructs
a triple from its arguments.

Using the definitions from the Haskell library, we would write

zipWith3 (,,) [1..] "hi" "world"

which gives as result

[(1, ’h’, ’w’), (2, ’i’, ’o’)].

2 An n-ary zipWith function

As mentioned above, defining a general version of zipWith seems to require
dependent types. However, as already shown by Danvy [3] for the printf

function, it is sometimes possible to represent such functions in a language
without dependent types. We apply a similar idea to the example of zipWith.

2



2.1 A first solution

A first solution essentially consists of replacing each of the lists with a list-
of-functions transformer by means of the function inzip.

inzip :: [a] -> [a->b]->[b]

inzip (a:as) (f:fs) = f a : inzip as fs

inzip _ _ = []

Given a list as1 of type [a1], inzip as1 transforms lists whose ele-
ments are functions of type a1->b (for any type b) into lists of type [b].
Given in addition a list as2 of type [a2], the composition of the transformer
inzip as2 with inzip as1 gives another transformer, which now transforms
lists of functions of type a1->a2->b (for any type b) into lists of type [b].

inzip as2 . inzip as1 :: [a1->a2->b] -> [b]

This leads us to define the following composition between transformers:

(~~~) :: (a->b) -> (b->c) -> (a->c)

(~~~) = flip (.)

Hence, given n lists as1, as2, . . . , asn of types [a1], [a2], . . . , [an],
respectively, by composition one obtains the following transformer:

inzip as1 ~~~ inzip as2 ~~~ ... ~~~ inzip asn

:: [a1->a2->...->an->b] -> [b]

It only remains to create a list of functions on which this transformer
will operate. Given a function f of type a1->a2->...->an->b, that list will
consist of the infinite repetition of f.

Thus, given a function and a transformer the function zipWith is imple-
mented as follows.

zipWith f t = t (repeat f)

3



In general, the function f will be of type a1->a2->...->an->b and the
transformer t of type [a1->a2->...->an->b] -> [b]. This means that we
want zipWith to have type

(a1->a2->...->an->b) -> ([a1->a2->...->an->b]->[b]) -> [b]

for every n. Again, the type of zipWith depends on the number of lists to
be zipped. But fortunately, zipWith as defined above admits a more general
and simple type.

zipWith :: a -> ([a]->b) -> b

With this, our example would be written

zipWith (,,) (inzip [1..] ~~~ inzip "hi" ~~~ inzip "world").

2.2 Another solution

Still, we would like to be able to use zipWith without having to type in so
long transformers. One way to do that, is to define an operator ~~ which
combines inzip with the operator ~~~. It should satisfy the equation.

as ~~ rest = inzip as ~~~ rest

This equation, which can be taken as its definition, tells us that ~~ asso-
ciates to the right and that its type is

(~~) :: [a] -> ([b] -> c) -> [a->b] -> c

A way to understand ~~ is that it applies each function from its third
argument to the corresponding element in the first argument giving an inter-
mediate result of type [b]. To this, the second argument is applied to obtain
the final result. The second argument is thus a continuation.

The example given above can be written now

zipWith (,,) ([1..] ~~ "hi" ~~ inzip "world")

4



or also, using the initial continuation id and the law as ~~ id = inzip as,

zipWith (,,) ([1..] ~~ "hi" ~~ "world" ~~ id)

Disregarding the unpleasant presence of id, we can think of the opera-
tor ~~ as a way of grouping the lists to be zipped.

3 Performance

From the point of view of the computation, using the solution above cannot
be more efficient than using the one in [5]. Whether or not it is (strictly) less
efficient depends on the techniques for deforestation [6] that the compiler has.
This is because the extra computation of our solution occurs when creating
and consuming the infinite list produced with the function repeat. With ad-
vanced deforestation techniques the compiler will transform the applications
of zipWith into applications of functions equivalent to those provided in the
Haskell library.

Even without advanced techniques, the loss in performance is not signif-
icant.

4 zipWith with dependent types

As mentioned before, a possibility for well typing a general zipWith is by
means of dependent types like in Agda [2] or Cayenne [1].

In such languages a natural way to write zipWith is by defining a type
which depends on the arity. This is the main idea behind the solution pre-
sented in the Appendix A for the language Agda. Observe that, because of
the limitations of type inference in the presence of dependent types, much
more type information must be explicitly given in the program. For that
reason, besides the arity n, a family of types A indexed by positive numbers
is an argument of zipWith. In practice, only a finite initial segment of the
family is important, namely A 1, A 2, . . . , A n.

With this solution, the example above would be written as follows (using
Haskell-like notations to harmonize with the previous example)

5



A (n :: Pos) :: Set =

case n of

(one) -> Int

(s n’) -> case n’ of

(one) -> Char

(s n’’) -> Char

zipWithN A 3 (Int,Char,Char) (,,) [1..] "hi" "world"

Appendix B gives another definition in Agda as proposed by Lennart
Augustsson. In this solution, the type information is given as a list of types.
The length of the list provides implicitly the arity. Thus, instead of using
the family of types A and arity n the list would consist of the types A 1, A 2,
. . . , A n. This is possible thanks to the ability of the language to define a
type (actually, a kind) ListT whose elements are lists of types.

Using this solution, one can write

argsT :: ListT

argsT = ConsT Int (ConsT Char (OneT Char))

zipWithT argsT (Int,Char,Char) (,,) [1..] "hi" "world"

5 Discussion

As shown above, dependent types make possible to define elegant versions
of zipWith. However, they have the inconvenience of forcing the user to
write down type information for every application of zipWith. The solution
given in Section 2 presents some advantage in this sense. On the other hand,
having to write the initial continuation id is inconvenient.

We do not see a completely satisfactory way out of this problem. An
alternative would be to have an extra operator ~~~~ to be used for grouping
the last two lists, writing for example

zipWith f (as ~~ bs ~~ cs ~~~~ ds)

instead of

6



zipWith f (as ~~ bs ~~ cs ~~ ds ~~ id).

Another alternative could be to define begin and end so that one can write
instead

zipWith f (begin ~~ as ~~ bs ~~ cs ~~ ds ~~ end).

In this last case, the definition of zipWith needs to be slightly modified.
Notice that it is impossible to type in Haskell a general function zipWith

such that we can just write

zipWith f as1 as2 ... asn

for every n, every f of type a1->a2->...->an->b, and every as1, as2, . . . ,
asn of type [a1], [a2], . . . , [an], respectively. To see this, consider the case
n = 3. The expression zipWith f as1 as2 must be both a function and a
list. A function, since it is applied to as3. And a list, because f is of type
a1->a2->x for some type x, hence zipWith f as1 as2 is a list of type [x].

We remark that our definition of zipWith can be transformed into an-
other definition that would work for call-by-value languages. In this case,
infinite lists are implemented as streams. A stream either is empty or can
be represented as a pair of its first element and a thunk (function of no ar-
guments) that returns the rest of the stream. The initial continuation id

becomes a function that converts a stream into a list. Appendix C presents
a definition of zipWith in the language Scheme [4].

As Magnus Carlsson pointed out to us, from the point of view of a Haskell
programmer it may be convenient to write

repeat (,,) ‘zap‘ [1..] ‘zap‘ "hi" ‘zap‘ "world"

for our example, where zap associates to the left and can be defined as
flip inzip. This captures the computation behind the definition of zipWith
and ~~ in Section 2 in a more natural way. But this avoids one of the issues
we wanted to address here: the one of defining without dependent types a
function (zipWith) which seems to require them.

He also proposed to apply similar techniques to other families of functions
in the Haskell library, like the family of liftM.

7



6 Acknowledgments

We are grateful to Magnus Carlsson and Olivier Danvy for their interest and
useful discussions.

References

[1] Lennart Augustsson. Cayenne — a language with dependent types.
http://www.md.chalmers.se/~augustss/cayenne/paper.ps, 1998.

[2] Catarina Coquand. Agda documentation. http://www.md.chalmers.

se/~catarina/agda/doc.html, 1998.

[3] Olivier Danvy. Functional unparsing. Technical Report BRICS RS-98-
12, Department of Computer Science, University of Aarhus, Aarhus, Den-
mark, May 1998. Supersedes the earlier report BRICS RS-98-5. Extended
version of an article to appear in the Journal of Functional Programming.

[4] R. Kelsey, W. Clinger, and J. Rees (editors). Revised5 Report on the
Algorithmic Language Scheme. Report, February 1998.

[5] J. Peterson, K. Hammond, L. Augustsson, J. Fasel, A. Gordon, M. Jones,
S. Peyton Jones, and A. Reid. The Haskell Library Report Version 1.4.
http://haskell.org/onlinelibrary/, April 1997.

[6] Philip Wadler. Deforestation: Transforming programs to eliminate trees.
Theoretical Computer Science, 73:231–248, 1990. (Special issue of selected
papers from 2’nd ESOP.).

A First zipWith in Agda

data Pos = one | s (n :: Pos)

data List (A :: Set) = nil | cons (a :: A) (as :: List A)

data Pair (A, B :: Set) = pair (a :: A) (b :: B)

(^) (A :: Pos -> Set) (n :: Pos) :: Set =

case n of

(one) -> A one@_

(s n’) -> Pair (A^n’) (A n)

8



Fun (A :: Pos -> Set) (n :: Pos) (B :: Set) :: Set =

case n of

(one) -> A one@_ -> B

(s n’) -> Fun A n’ (A n -> B)

fst (A,B :: Set) (p :: Pair A B) :: A =

case p of (pair a b) -> a

snd (A,B :: Set) (p :: Pair A B) :: B =

case p of (pair a b) -> b

(*) (A :: Pos -> Set) (n :: Pos) :: Set = List (A n)

zip (A,B :: Set) (as :: List A) (bs :: List B) :: List (Pair A B) =

case as of

(nil) -> nil@_

(cons a as’) ->

case bs of

(nil) -> nil@_

(cons b bs’) -> cons@_ (pair@_ a b) (zip A B as’ bs’)

map (A,B :: Set) (f :: A -> B) (as :: List A) :: List B =

case as of

(nil) -> nil@_

(cons a as’) -> cons@_ (f a) (map A B f as’)

currys (A :: Pos -> Set) (n :: Pos) (B :: Set) (f :: A^n -> B)

:: Fun A n B =

case n of

(one) -> f

(s n’) -> currys A

n’

(A n -> B)

(\(a :: A^n’) -> \(b :: A n) -> f (pair@_ a b))

uncurrys (A :: Pos -> Set) (n :: Pos) (B :: Set) (f :: Fun A n B)

:: A^n -> B =

case n of

(one) -> f

(s n’) -> \(ab :: Pair (A^n’) (A n)) ->

uncurrys A

n’

(A n -> B)

f

(fst (A^n’) (A n) ab)

(snd (A^n’) (A n) ab)

9



zipTN (A :: Pos -> Set) (n :: Pos) (ts :: ((*) A)^n) :: List (A^n) =

case n of

(one) -> ts

(s n’) -> case ts of

(pair ts’ as) ->

zip (A^n’) (A n) (zipTN A n’ ts’) as

zipN (A :: Pos -> Set) (n :: Pos) :: Fun ((*) A) n (List (A^n)) =

currys ((*) A) n (List (A^n)) (zipTN A n)

zipWithTN (A :: Pos -> Set) (n :: Pos) (B :: Set) (f :: A^n -> B)

(ts :: ((*) A)^n) :: List B =

map (A^n) B f (zipTN A n ts)

zipWithN (A :: Pos -> Set) (n :: Pos) (B :: Set) (f :: Fun A n B)

:: Fun ((*) A) n (List B) =

currys ((*) A) n (List B) (zipWithTN A n B (uncurrys A n B f))

B Second zipWith in Agda

ListT :: Type = data oneT (a :: Set) | consT (a :: Set) (ts :: ListT)

oneT (a :: Set) :: ListT = oneT@_ a

consT (a :: Set) (ts :: ListT) :: ListT = consT@_ a ts

LListT (ts :: ListT) :: ListT =

case ts of

(oneT t) -> oneT (List t)

(consT t ts) -> consT (List t) (LListT ts)

FunT (ts :: ListT) (a :: Set) :: Set =

case ts of

(oneT t) -> t -> a

(consT t ts) -> t -> FunT ts a

ProdT (ts :: ListT) :: Set =

case ts of

(oneT t) -> t

(consT t ts) -> Pair t (ProdT ts)

curryT (ts :: ListT) (a :: Set) (f :: ProdT ts -> a) :: FunT ts a =

case ts of

(oneT t) -> \(x :: t) -> f x

(consT t ts) -> \(x :: t) ->

curryT ts a (\(xs :: ProdT ts) -> f (pair@_ x xs))

10



uncurryT (ts :: ListT) (a :: Set) (f :: FunT ts a) :: ProdT ts -> a =

case ts of

(oneT t) -> \(x :: t) -> f x

(consT t ts) -> \(p :: ProdT (consT t ts)) ->

case p of

(pair x xs) -> uncurryT ts a (f x) xs

zipT (ts :: ListT) (xs :: ProdT (LListT ts)) :: List (ProdT ts) =

case ts of

(oneT t) -> xs

(consT t ts) -> zip t

(ProdT ts)

(fst (List t) (ProdT (LListT ts)) xs)

(zipT ts (snd (List t) (ProdT (LListT ts)) xs))

zipWithT (ts :: ListT) (a :: Set) (f :: FunT ts a)

:: FunT (LListT ts) (List a) =

curryT (LListT ts)

(List a)

(\(xs :: ProdT (LListT ts)) -> map (ProdT ts)

a

(uncurryT ts a f)

(zipT ts xs)

)

C zipWith in Scheme

(define make-stream

(lambda (value thunk) (cons value thunk)))

(define null-stream ’())

(define stream-null?

(lambda (s) (eq? s null-stream)))

(define tail

(lambda (s) ((cdr s))))

(define head car)

(define repeat

(lambda (v) (make-stream v (lambda () (repeat v)))))

11



(define inzip

(lambda (l)

(lambda (s) (if (or (null? l) (stream-null? s))

null-stream

(make-stream

((head s) (car l))

(lambda () ((inzip (cdr l)) (tail s))))))))

(define ~~~

(lambda (t1 t2)

(lambda (k) (t2 (t1 k)))))

(define ~~

(lambda (l t) (~~~ (inzip l) t)))

(define id

(lambda (s) (if (stream-null? s)

’()

(cons (head s) (id (tail s))))))

(define zipWith

(lambda (f t) (t (repeat f))))

12



Recent BRICS Report Series Publications

RS-98-38 Daniel Fridlender and Mia Indrika. An n-ary zipWith in
Haskell. December 1998. 12 pp.

RS-98-37 Ivan B. Damg̊ard, Joe Kilian, and Louis Salvail. On the
(Im)possibility of Basing Oblivious Transfer and Bit Commit-
ment on Weakened Security Assumptions. December 1998.
22 pp. To appear inAdvances in Cryptology: International Con-
ference on the Theory and Application of Cryptographic Tech-
niques, EUROCRYPT ’99 Proceedings, LNCS, 1999.

RS-98-36 Ronald Cramer, Ivan B. Damg̊ard, Stefan Dziembowski, Mar-
tin Hirt, and Tal Rabin. Efficient Multiparty Computations
with Dishonest Minority. December 1998. 19 pp. To appear
in Advances in Cryptology: International Conference on the
Theory and Application of Cryptographic Techniques, EURO-
CRYPT ’99 Proceedings, LNCS, 1999.

RS-98-35 Olivier Danvy and Zhe Yang.An Operational Investigation of
the CPS Hierarchy. December 1998.

RS-98-34 Peter G. Binderup, Gudmund Skovbjerg Frandsen, Peter Bro
Miltersen, and Sven Skyum. The Complexity of Identifying
Large Equivalence Classes. December 1998. 15 pp.

RS-98-33 Hans Ḧuttel, Josva Kleist, Uwe Nestmann, and Massimo
Merro. Migration = Cloning ; Aliasing (Preliminary Version).
December 1998. 40 pp. To appear in6th International Work-
shop on the Foundations of Object-Oriented, FOOL6 Informal
Proceedings, 1998.

RS-98-32 Jan Camenisch and Ivan B. Damg̊ard. Verifiable Encryption
and Applications to Group Signatures and Signature Sharing.
December 1998. 18 pp.

RS-98-31 Glynn Winskel. A Linear Metalanguage for Concurrency.
November 1998. 21 pp.

RS-98-30 Carsten Butz.Finitely Presented Heyting Algebras. November
1998. 30 pp.


