
B
R

IC
S

R
S

-98-29
C

am
enisch

&
M

ichels:
P

roving
thata

N
um

ber
is

the
P

roductofTw
o

S
afe

P
rim

es

BRICS
Basic Research in Computer Science

Proving in Zero-Knowledge that a Number
is the Product of Two Safe Primes

Jan Camenisch
Markus Michels

BRICS Report Series RS-98-29

ISSN 0909-0878 November 1998

Copyright c© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/98/29/

Proving in Zero-Knowledge that a Number is
the Product of Two Safe Primes

Jan Camenisch

BRICS∗
Department of Computer Science

University of Aarhus
DK – 8000 Århus C, Denmark
camenisch@daimi.au.dk

Markus Michels†

Entrust Technologies Europe
r3 security engineering ag

Glatt Tower
CH – 8301 Glattzentrum, Switzerland
Markus.Michels@entrust.com

November, 1998

Abstract

This paper presents the first efficient statistical zero-knowledge protocols to
prove statements such as:

• A committed number is a pseudo-prime.

• A committed (or revealed) number is the product of two safe primes, i.e.,
primes p and q such that (p− 1)/2 and (q− 1)/2 are primes as well.

• A given value is of large order modulo a composite number that consists of
two safe prime factors.

So far, no methods other than inefficient circuit-based proofs are known for prov-
ing such properties. Proving the second property is for instance necessary in
many recent cryptographic schemes that rely on both the hardness of computing
discrete logarithms and of difficulty computing roots modulo a composite.

The main building blocks of our protocols are statistical zero-knowledge
proofs that are of independent interest. Mainly, we show how to prove the cor-
rect computation of a modular addition, a modular multiplication, or a modular
exponentiation, where all values including the modulus are committed but not
publicly known. Apart from the validity of the computation, no other informa-
tion about the modulus (e.g., a generator which order equals the modulus) or
any other operand is given. Our technique can be generalized to prove in zero-
knowledge that any multivariate polynomial equation modulo a certain modu-
lus is satisfied, where only commitments to the variables of the polynomial and
a commitment to the modulus must be known. This improves previous results,
where the modulus is publicly known.

We show how a prover can use these building blocks to convince a verifier
that a committed number is prime. This finally leads to efficient protocols for

∗Basic Research in Computer Science, Center of the Danish National Research Foundation.
†Part of this work was done while this author was with Ubilab, UBS, Switzerland.

1

proving that a committed (or revealed) number is the product of two safe primes.
As a consequence, it can be shown that a given value is of large order modulo a
given number that is a product of two safe primes.

Keywords. RSA-based protocols, zero-knowledge proofs of knowledge, primal-
ity tests.

1 Introduction

The problem of proving that a number n is the product of two primes p and q of
special form arises in many recent cryptographic schemes (e.g., [7, 18, 19]) whose se-
curity is based on the infeasibility of computing discrete logarithms and of comput-
ing roots in groups of unknown order. In such scheme there typically is a designated
entity which knows the group’s order and hence can compute roots. Although the
other entities must not learn the group’s order, they still want to be assured that the
order is not smooth, since that would allow the designated entity to compute dis-
crete logarithms. One example of such a group are subgroups of Z∗n. In this case, it
suffices that the designated entity proves that n is the product of two safe primes,
i.e., primes p and q such that (p−1)/2 and (q−1)/2 are primes as well [19]. An other
example of such a group are elliptic curves over Zn. There, nmust be the product of
two primes p and q such that (p + 1)/2 and (q + 1)/2 are also primes [23]. Finally,
standards such as X9.31 require the modulus to be the product of two primes p and
q, where (p − 1)/2, (p + 1)/2, (q − 1)/2, and (q + 1)/2 have a large prime factor1.
Previously, the only way known for proving such properties was applying inefficient
general zero-knowledge proof techniques (e.g., [21, 6, 14]).

Our main results are as follows: First, we provide an efficient protocol to prove
that a committed integer is in fact the modular addition of two committed integer
modulo another committed integer without revealing any other information what-
soever. Then we provide similar protocols for modular multiplication, modular ex-
ponentiation, and, more general, to any multivariate polynomial. Previous protocols
allow only to prove algebraic relations modulo a publicly known integer [5, 8, 16, 14]
were known. Our schemes work also for the class of commitments described in
[14] (that includes discrete-logarithm-based and RSA-based commitment schemes).
Second, we present an efficient zero-knowledge proof for pseudo-primality of a com-
mitted number and, as a consequence, a zero-knowledge proof that an RSA modulus
n consists of two safe primes. The additional advantage of this method is that only a
commitment to n but not n itself must be publicly known. If the modulus n is pub-
licly known, however, more efficient protocols can be obtained by combining our
techniques with known results described in the next paragraph.

Based on the these proofs it is simple to show that a given element a ∈ Z∗n has a
large order modulo a given n = pqwhen (p−1)/2 and (q−1)/2 are primes. First the
prover shows that n is indeed of this form. Then the verifier checks whether a2 6≡ 1

1It should be mentioned, however, that it is unnecessary to add this requirement into the RSA key
generation explicitly. For randomly chosen large primes, the probability that (p − 1)/2, (p + 1)/2, (q −
1)/2, and (q + 1)/2 have a large prime factor is overwhelming. This is sufficient to guarantee that the
Pollard-Rho and Williams p+1 factoring methods [28, 33] do not work. On the other hand, a proof that an
arbitrarily generated RSA modulus is not weak without revealing the prime factors seems to be hard to
obtain, as an infinite number of conditions have to be checked (e.g., see [1]).

2

(mod n) and gcd(a2 − 1, n) = 1 holds. From this it follows that a can only be of
order (p − 1)(q − 1)/4 or (p− 1)(q− 1)/2.

Let us finally summarize related results on proving properties of composite num-
bers. Van de Graaf and Peralta [32] provide an efficient proof that a given modulus
n is of the form n = prqs, where r and s are odd, p and q are primes and p ≡ q ≡ 3
(mod 4). A protocol due to Boyar et al. [3] allows to prove that a given n is square-
free, i.e., there is no prime p with p|n such that p2|n. Hence, if for a given n both
properties can be shown, it follows that n is of form n = pq, where p and q are
primes and p ≡ q ≡ 3 (mod 4). This result was recently strengthened by Gennaro
et al. [20] who present a proof system for showing that a number n satisfying certain
side-conditions is the product of quasi-safe primes, i.e., primes p and q for which
(p − 1)/2 and (q− 1)/2 is a prime power. However, their protocol can not guarantee
that (p− 1)/2 and (q− 1)/2 are indeed primes which is what we are aiming for. Let
us further mention the work of Boneh and Franklin [2], who provide a proof that a
distributively generated number n indeed consists of two primes (without further
showing that these primes are of special form). It should be noted that all these
solutions assume that n is publicly known.

2 Tools

2.1 Commitment Schemes

Our schemes build use commitment schemes that allow to algebraic prove proper-
ties of the committed value. There are two kinds of commitment scheme. The first
kind hides the committed value information theoretically from the verifier (uncondi-
tionally hiding) but is only conditionally binding, i.e., a computationally unbounded
prover can change his mind. The second kind is only computationally hiding but
unconditionally binding. Depending on the kind of the commitment scheme em-
ployed, our schemes will zero-knowledge arguments (proofs of knowledge) or be
zero-knowledge proof systems.

Cramer and Damgård [14] describe a class of commitment schemes allowing to
prove algebraic properties of the committed value. These include RSA-based and
discrete-logarithm-based schemes for both kinds of commitment scheme. An ex-
ample of a computationally binding and unconditionally hiding scheme based on
the discrete logarithm problem is the one to Pedersen [27]. Given are a group G of
prime order Q and two random generators g and h such that log

g
h is unknown

and computing discrete logarithms is infeasible. A value a ∈ ZQ is committed to
as ca := gahr, where r is randomly chosen from ZQ. For easier description, we
will use this commitment scheme for our protocols and hence they will be statistical
zero-knowledge proofs of knowledge. However, the protocol can easily be adapted
to work for all the commitment scheme exposed in [14].

2.2 Various Proof-Protocols Found in Literature

In the following we assume a group G = 〈g〉 of large known order Q and a second
generator h whose discrete logarithm to the base g is not known. We define the

3

discrete logarithm of y to the base g to be any integer x such that y = gx holds, i.e.,
discrete logarithms are allowed to be negative.

We shortly review various systems for proving knowledge of and about discrete
logarithms found in literature.

Proving the knowledge of a discrete logarithm x of a group element y to a basis g [11, 30].
The prover chooses a random r ∈R ZQ and computes t := gr and sends t to the
verifier. The verifier picks a random challenge c ∈R {0, 1}k and sends it to the
prover. The prover computes s := r − cx (mod Q) and sends s to the verifier.
The verifier accepts, iff gsyc = t holds. This protocol is an honest-verifier zero-
knowledge proof of knowledge for k = Θ(poly(logQ)) and a zero-knowledge proof
of knowledge for k = O(log log(Q)) and when serially repeated Θ(poly(logQ))
times. This holds for all other protocols described in this section (when not
mentioned otherwise). Adopting the notation in [7], we denote this protocol
by PK{(α) : y = gα}, where PK stands for “proof of knowledge”.

Proving the knowledge of a representation of the element y to the bases g1, . . . , gl [4,
10], i.e., proving the knowledge of integers x1, . . . , xl such that y =

∏l

i=1 g
xi
i .

This protocol is an extension of the previous one to multiple bases. The prover
chooses random r1, . . . , rl ∈R ZQ, computes t :=

∏l
i=1 g

ri
i , and sends t to

the verifier. The verifier picks a random challenge c ∈R {0, 1}k and sends it to
the prover. The prover computes si := ri − cxi (mod Q) for i = 1, . . . , l and
sends all si’s to the verifier. The verifier accepts, iff t = yc

∏l

i=1 g
si
i holds. This

protocol is denoted PK{(α1, . . . , αl) : y =
∏l

i=1 g
αi
i }.

Proving the equality of the discrete logarithms of the elements y1 and y2 to the bases g
and h, respectively [12]. Let y1 = gx and y2 = hx. The prover chooses a
random r ∈ Z∗Q, computes t1 := gr, t2 := hr, and sends t1, t2 to the verifier.
The verifier picks a random challenge c ∈ {0, 1}k and sends it to the prover.
The prover computes s := r − cx (mod Q) and sends s to the verifier. The
verifier accepts, iff gsyc1 = t1 and hsyc2 = t2 holds. This protocol is denoted by
PK{(α) : y1 = gα ∧ y2 = hα}.

Note that this method allows also to prove that one discrete log is the square
of another one (modulo the group order), e.g., PK{(α) : y1 = gα ∧ y2 = yα1 }.

Proving the knowledge of (at least) one out of the discrete logarithms of the elements y1
and y2 to the base g (proof of OR) [15]. W.l.g., we assume that the prover
knows x = log

g
y1. Then r1, s2 ∈R Z∗Q, c2 ∈R {0, 1}k and computes t1 :=

gr1 , t2 := g
s2y

c2
2 and sends t1 and t2 to the verifier. The verifier picks a ran-

dom challenge c ∈ {0, 1}k and sends it to the prover. The prover computes
c1 := c ⊕ c2 and s1 := r1 − c1x (mod Q) and sends s1, s2, c1, and c2 to the
verifier. The verifier accepts, iff c1 ⊕ c2 = c and ti = gsiycii holds for i ∈ {1, 2}.
This protocol is denoted PK{(α,β) : y1 = gα ∨ y2 = gβ}. In their paper
[15], Cramer et al. generalize this approach to an efficient system for proving
arbitrary monotone statements built with ∧’s and ∨’s.

Proving that a discrete logarithm lies in a given range. The last building block for our
protocols are statistical zero-knowledge proofs that the discrete logarithm x

4

of y to the base g satisfies 2`1 − 2`2 < x < 2`1 + 2`2 for given parameter `1
and `2. The parameter 2`1 acts as an offset and can also chosen to be zero. In
principle, such a proof can be given by committing to every bit of x and prov-
ing that the committed values are indeed 0’s or 1’s and that they are the binary
representation of x. Fortunately, there is a much more efficient way to achieve
this as is shown in [9, 16]. The price one has to pay is that, first, the proto-
col is only statistical zero-knowledge and, second, it can only be shown that
2`1 − 2ε`2+2 < x < 2`1 + 2ε`2+2, where ε > 1 is a security parameter, although
x must lie in the intervals 2`1 − 2`2 < x < 2`1 + 2`2 for the prover being able
to successfully carry out the proof. Finally, if the group’s order is known, only
binary challenges are possible. Since the protocol is not so well known, we
describe it in full detail in Appendix A. The protocol is denoted by

PK{(α) : y = gα ∧ 2`1 − 2 ῭
2 < α < 2`1 + 2

῭
2 },

where ῭
2 denotes ε`2+2 (we will stick to that notation for the rest of the paper).

It should be mentioned, however, that if the order of the group is not known to
the prover (e.g., if a subgroup of an RSA-ring is used) and when believing in the
non-standard strong RSA-assumption2 then larger challenges can be chosen
[16, 17]. Although we describe our protocols for the setting where the group’s
order is known to the prover, all protocols can easily be adapted to the setting
where the prover does not know the group’s order using the techniques from
[16, 17].

All described protocols can be combined in natural ways. First of all, one can use
multiple bases instead of a single one in any of the above proofs. Then, executing any
number of instances of these protocols in parallel and choosing the same challenges
for all of them in each round corresponds to the∧-composition of the statements the
single protocols prove. Using this approach, it is even possible to compose instances
according to any monotone formula [15]. In the following we will use of such com-
positions without having explained the technical details for composition for which
we refer to [5, 8, 15].

3 Secret Computations with a Secret Modulus

In this section we assume that a prover has committed to some integers a, b, d, andn.
We will provide an efficient protocol for proving that ab ≡ d (mod n) holds for the
committed integers without revealing any further information to the verifier (i.e., the
proof is zero-knowledge). However, before we can do so, we need protocols to prove
that a committed integer is the addition or the multiplication of two committed secret
integers modulo a committed secret modulus n.

The algebraic setting is as follows. Let ` be an integer such that −2` < a, b, d, n <
2` holds and ε > 1 be security parameters (cf. Section 2). Furthermore, we assume
that a group G of order Q > 22ε`+5 (= 22

῭+1) and two generators g and h are avail-
able such that log

g
h is not known. This group could for instance be chosen by the

2The strong RSA assumption states that, there exists a probabilistic polynomial-time algorithm G that
on input 1|n| outputs an RSA-modulus n and an element z ∈ Z∗n such that it is infeasible to find integers
e 6∈ {−1, 1} and u such that z ≡ ue (mod n).

5

prover in which case she would have to prove that she has chosen it correctly. Fi-
nally, let the prover’s commitments to a, b, d, and n be ca := gahr1 , cb := gbhr2 ,
cd := g

dhr3 , and cn := gnhr4 , where r1, r2, r3, and r4 are randomly chosen elements
of ZQ.

3.1 Secret Modular Addition and Multiplication

We assume that the verifier already obtained the commitments ca, cb, cd, and cn.
Then the prover can convince the verifier that a + b ≡ d (mod n) holds by running
the protocol denoted3:

S+ := PK
{
(α,β, γ, δ, ε, ζ, η, ϑ,κ, λ) :
ca = g

αhβ ∧ −2
῭
< α < 2

῭
∧ cb = g

γhδ ∧ −2
῭
< γ < 2

῭
∧

cd = g
εhζ ∧ −2

῭
< ε < 2

῭
∧ cn = g

ηhϑ ∧ −2
῭
< η < 2

῭
∧

cd

cacb
= cκnh

λ ∧ −2
῭
< κ < 2 ῭}

.

Alternatively, she can convince the verifier that ab ≡ d (mod n) holds by running
the protocol

S∗ := PK
{
(α,β, γ, δ, ε, ζ, η, ϑ,κ, λ, µ, ξ, ρ, σ) :

ca = g
αhβ ∧ −2

῭
< α < 2

῭
∧ cb = g

γhδ ∧ −2
῭
< γ < 2

῭
∧

cd = g
εhζ ∧ −2

῭
< ε < 2

῭
∧ cn = g

ηhϑ ∧ −2
῭
< η < 2

῭
∧

cd = c
α
bc
ρ
nh
σ ∧ −2

῭
< ρ < 2

῭}
with him.

Remark. In some applications the prover might be required to show that n has some
minimal size. This can by showing that η lies in the range 2`1 − 2 ῭

2 < η < 2`1 + 2
῭
2

instead of −2 ῭
< η < 2

῭ for some appropriate values of `1 and `2 (cf. Section 2.2).

Theorem 1. Let a, b, d, and n be integers that are committed to by the prover as described
above. Then the protocol S+ is a statistical zero-knowledge proof that a + b ≡ d (mod n)
holds. Furthermore, the protocol S∗ is a statistical zero-knowledge proof that ab ≡ d

(mod n) holds.

Proof. The statistical zero-knowledge claims follows from the statistical zero-
knowledgeness of the building blocks.

Let us argue why the modular relations hold. First, we consider what the clauses
prove that S+ and S∗ have in common. Running the prover with either protocol (and
using standard techniques), the knowledge extractor can compute integers â, b̂, d̂,
n̂, r̂1, r̂2, r̂3, and r̂4 such that ca = gâhr̂1 , cb = gb̂hr̂2 , cd = gb̂hr̂3 , and cn = gn̂hr̂4
holds. Moreover,−2 ῭

< â < 2
῭ , −2 ῭

< b̂ < 2
῭ , −2 ῭

< d̂ < 2
῭ , and −2 ῭

< n̂ < 2
῭ holds

for these integers.
When running the prover with S+, the knowledge extractor can further compute

integers r̂5 ∈ ZQ and û with −2 ῭
< û < 2

῭ such that cd/(cacb) = cûnh
r̂5 holds.

3Recall that ῭ denotes ε` + 2.

6

Therefore we have gd̂−â−b̂hr̂3−r̂1−r̂2 = gn̂ûhûr̂4+r̂5 and hence, provided that the
discrete log of h to the base g is not known, we must have

d̂ ≡ â+ b̂+ ûn̂ (mod Q) .

Thus we have d̂ = â+ b̂+ ûn̂+ w̄Q for some integer w̄. Since 22 ῭+1 < Q and due to
the constraints on â, b̂, d̂, n̂, and ûwe can conclude that the integer w̄must be 0 and
hence

d̂ ≡ â+ b̂ (mod n̂)

must hold.
Now consider the case when running the prover with S∗. In this case the

knowledge-extractor can additionally compute integers r̂6 ∈ ZQ and v̂ with −2 ῭
<

v̂ < 2
῭ such that cd = câbc

v̂
nh
r6 and thus gd̂hr̂3 = gâb̂+v̂n̂hâr̂2+v̂r̂4+r̂∗ holds. Again,

provided that the discrete logarithm of h to the base g is not known, we have

d̂ ≡ âb̂+ v̂n̂ (mod Q) .

As before, because of 22 ῭+1 < Q and the constraints on on â, b̂, d̂, n̂, and v̂ we can
conclude that

d̂ ≡ âb̂ (mod n̂)

must hold for the committed values.

3.2 Secret Modular Exponentiation

We now extend the ideas given in the previous paragraph to a method for proving
that ab ≡ d (mod n) holds. Using the same approach as above, i.e., having the
prover to provide an integer ã that equals ab (in Z) and proving this fact, would
required that G has order about 2b` and thus such a proof would become rather
inefficient.

Below we expose a more efficient protocol for proving this which is obtained by
constructing ab (mod n) step by step according to the square & multiply algorithm
(cf. Appendix B for easy reference). (In practice a more enhanced exponentiation
algorithm might be used (see, e.g., [13]), but one should keep in mind that it must
not leak additional information about the exponent.) In the following, we assume
that an upper-bound `b ≤ ` on the length of b is publicly known.

1. Apart from committing to a, b =
∑`b−1

i=0 bi2
i, d, and n the prover must also

commit to all bits of b: let cbi := g
bihr̃i with r̃i ∈R ZQ for i ∈ {0, . . . , `b − 1}.

Furthermore she needs to provide commitments to the intermediary results of

the square & multiply algorithm: let cvi := g
(a2

i
(mod n))hr̂i , (i = 1, . . . , `b−1),

be her commitments to the powers of a, i.e., a2
i

(mod n), where r̂i ∈R ZQ,
and let cui := g

uihr̄i , (i = 0, . . . , `b − 2), where ui := ui−1(a2
i

)bi (mod n),
(i = 1, . . . , `b − 2), u0 = ab0 (mod n), and r̄i ∈R ZQ.

7

2. To prove that ab ≡ d (mod n) holds, the prover sends all her commitments to
the verifier and then they carry out the protocol

Sexp := PK
{
(α,β, ξ, χ, γ, δ, ε, ζ, η, (λi, µi, νi, ξi, σi, τi, ϑi, ϕi, ψi)

`b−1
i=1 , (κi, ρi)

`b−2
i=1 ,) :

ca = g
αhβ ∧ −2

῭
< α < 2

῭
∧ (1)

cd = g
γhδ ∧ −2

῭
< γ < 2

῭
∧ (2)

cn = g
εhζ ∧ −2

῭
< ε < 2

῭
∧ (3)(`b−1∏

i=0

c2
i

bi

)
/cb = h

η ∧ (4)

cv1 = g
λ1hµ1 ∧ . . . ∧ cv`b−1 = g

λ`b−1hµ`b−1 ∧ (5)

cv1 = c
α
ac
ν1
n h

ξ1 ∧ cv2 = c
λ1
v1
cν2n h

ξ2 ∧ . . .∧ cv`b−1 = c
λ`b−2
v`b−2

c
ν`b−1
n hξ`b−1 ∧

(6)

−2
῭
< λ1 < 2

῭
∧ . . . ∧ −2

῭
< λ`b−1 < 2

῭
∧ (7)

−2
῭
< ν1 < 2

῭
∧ . . . ∧ −2

῭
< ν`b−1 < 2

῭
∧ (8)

cu1 = g
κ1hρ1 ∧ . . . ∧ cu`b−2 = g

κ`b−2hρ`b−2 ∧ (9)

−2
῭
< κ1 < 2

῭
∧ . . . ∧ −2

῭
< κ`b−2 < 2

῭
∧ (10)((

cb0 = h
σ0 ∧ cu0/g = h

τ0
)
∨
(
cb0/g = h

ϑ0 ∧ cu0/ca = h
ψ0
))
∧ (11)((

cb1 = h
σ1 ∧ cu1/cu0 = h

τ1
)
∨ (12)(

cb1/g = h
ϑ1 ∧ cu1 = c

λ1
u0
cϕ1n hψ1 ∧ −2

῭
< ϕ1 < 2

῭))
∧ . . . ∧((

cb`b−2 = h
σ`b−2 ∧ cu`b−2/cu`b−3 = h

τi
)
∨ (13)(

cb`b−2/g = h
ϑ`b−2 ∧ cu`b−2 = c

λ`b−2
u`b−3

c
ϕ`b−2
n hψ`b−2 ∧−2

῭
< ϕ`b−2 < 2

῭))
∧((

cb`b−1 = h
σ`b−1 ∧ cd/cu`b−2 = h

τi
)
∨ (14)(

cb`b−1/g = h
ϑ`b−1 ∧ cd = c

λ`b−1
u`b−2

c
ϕ`b−1
n hψ`b−1 ∧ −2

῭
< ϕ`b−1 < 2

῭))}
.

Let us now explain why this protocol proves that ab ≡ d (mod n) holds and
consider the clauses of sub-protocol Sexp. What the Clauses 1–3 prove should be
clear. The Clause 4 shows that the cbi ’s indeed commit to the bits of the integer
committed to in cb (that these are indeed bits is shown in the Clauses 11–14). From
this it can further be concluded that cb commits to a value smaller that 2`b . The
Clauses 5–8 prove that the cvi ’s indeed contain a2

i

(mod n) (cf. Section 3.1). Finally,
the Clauses 9–14 show that cui ’s commit to the intermediary results of the square &
multiply algorithm and that cd commits to the result: The Clauses 9 and 10 show that
the cui ’s commit to integers that lie in {−2῭

+ 1, . . . , 2
῭
− 1} (for cu0 this follows from

Clause 11). Then, Clause 11 proves that either cb0 commits to a 0 and cu0 commits to
a 1 or cb0 commits to a 1 and cu0 commits to the same integer as ca. The Clauses 12
and 13, show that for i = 1 to `b−2 either cbi commits to a 0 and cui commits to same

8

integer as cui−1 or cbi commits to a 1 and cui commits to the modular product of the
value cui−1 commits and of a2

i

(mod n) (which cvi commits to). Finally, Clause 14
proves (in a similar manner as the Clauses 12 and 13) that cd commits to the result
of the square & multiply algorithm and thus to ab (mod n).

Theorem 2. Let a, b, d, and n be integers that are committed in ca, cb, cd, and cn by the
prover and let cb0 , . . . , cb`−1 , cv1 , . . . , cv`b−1 , cu0 , . . . , cu`b−2 be her auxiliary commit-
ments. Then the protocol Sexp is a statistical zero-knowledge proof that the equation ab ≡ d
(mod n) holds.

Proof. The proof is straight forward from Theorem 1 and the explanations given
above that cb0 , . . . , cb`−1 , cv1 , . . . , cv`b−1 , cu0 , . . . , cu`b−2 , S implement the square
& multiply algorithm step by step.

In the following, when denoting a protocol, we will abbreviate the protocol Sexp

by a clause like
(
αβ ≡ γ (mod δ)

)
to the statement that is proven and assume that

the prover send the verifier all necessary commitments; e.g.,

PK
{
(α,β, γ, δ, α̃, β̃, γ̃, δ̃) : ca = g

αhα̃ ∧ cb = g
βhβ̃ ∧ cd = g

γhγ̃ ∧

cn = g
δhδ̃ ∧

(
αβ ≡ γ (mod δ)

)}
.

3.3 Efficiency Analysis

For both S+ and S∗ the prover and the verifier both need to compute 5 multi-
exponentiations per round. The communication per round is about the size of 10
group elements and 5ε` bits in case of S+ and about the size of 11 group elements
and 5ε` bits in case of S∗.

In case of the exponentiation proof the verifier and the prover need to com-
pute about 6`b multi-exponentiations per round, while the prover needs to compute
about 3`b multi-exponentiations for the commitments to the intermediary results of
the square & multiply algorithm. The communication cost per round is about the
size of 12`b group elements and 4`bε` bits and an initial 3`b group element which
are the commitments to the intermediary results of the square & multiply algorithm.

3.4 Extension to a General Multivariate Polynomial

Let us outline how the correct computation of a general multivariate polynomial
equation of form

f(x1, . . . , xt, a1, . . . , al, b1,1, . . . , bl,t, n) =

l∑
i=1

ai

t∏
j=1

x
bi,j
j ≡ 0 (mod n)

where all integers x1, . . . , xt, a1, . . . , al, b1,1, . . . , bl,t, and n might only given as
commitments can be shown: The prover commits to all the summands s1 :=
a1
∏t
j=1 x

b1,j
j (mod n), . . . , sl := al

∏t

j=1 x
bl,j
j (mod n) and shows that the sum of

these summands is indeed zero modulo n. Then, she commits to all the product
terms p1,1 := xb1,11 (mod n), . . . , pt,l := xbl,tt (mod n) of the product and shows

9

that si ≡ ai
∏t
j=1 pi,j (mod n). Finally, she shows that pi,j ≡ xbi,jj (mod n) using

the modular exponentiation proof described above and that for all i the same xj is in
pi,j. Clearly, several such polynomials can be combined as well.

4 A Proof That a Secret Number is a Pseudo-Prime

In this section we describe how the prover and the verifier can carry out a primality
test for an integer that is only given by a commitment. Some primality tests reveal
information about the structure of the prime and are hence not suited unless one is
willing to give away this information. Examples of such tests are the Miller-Rabin
test [26, 29] or the one based on Pocklington’s theorem. A test that does not reveal
such information is the one due to Lehmann [25] which we describe in the next sub-
section.

4.1 Lehmann’s Primality Test

Lehmann’s primality test is variation of the Solovay-Strassen [31] primality test and
based on the following theorem [24]:

Theorem 3. An odd integer n > 1 is prime if and only if

∀a ∈ Z∗n : a(n−1)/2 ≡ ±1 (mod n) and ∃a ∈ Z∗n : a(n−1)/2 ≡ −1 (mod n) .

This theorem suggest the following probabilistic primality test:

• choose k random bases a1, . . . , ak ∈ Z∗n,

• check whether a
(n−1)/2

i ≡ ±1 (mod n) holds for all i’s and whether
a
(n−1)/2

i ≡ −1 (mod n) holds for at least one i.

The probability that a non-prime n passes this test is at most 2−k. Note that in case
n and (n − 1)/2 are both odd, the condition that a(n−1)/2i ≡ −1 (mod n) holds for
at least one i can be omitted. In this special case the Lehmann-test is equivalent to
the Miller-Rabin test and the failure probability is at most 4−k [29].

4.2 Proving the Pseudo-Primality of a Committed Number

We now show how the prover and the verifier can do Lehmann’s primality test for
a number committed by prover such that the verifier is convinced that the test was
correctly done but does not learn any other information. The general idea is that the
prover commits to t random bases ai (of course, the verifier must be assured that
the ai’s are chosen at random) and then prove that for these bases a(n−1)/2i ≡ ±1
(mod n) holds. Furthermore, the prover must commit to a base, say ã, such that
ã(n−1)/2 ≡ −1 (mod n) holds to satisfy the second condition in Theorem 3.

Let ` be an integer such that n < 2` holds and let ε > 1 be security parameter. As
in the previous section, a group G of prime order Q > 22ε`+5 and two generators g
and h are chosen, such that log

g
h is not known. Let cn := gnhrn with rn ∈R ZQ

be the prover’s commitment to the integer on which the primality test should be

10

performed.

The following four steps constitute the protocol.

1. The prover picks random âi ∈R Zn for i = 1, . . . , t and commits to them as
câi := g

âihrâi with râi ∈R ZQ for i = 1, . . . , t. She sends câ1 , . . . , cât to the
verifier.

2. The verifier picks random integers −2` < ǎi < 2` for i = 1, . . . , t and sends
them to the prover.

3. The prover computes ai := âi + ǎi (mod n), cai := g
aihrai with rai ∈R ZQ,

di := a
(n−1)/2

i (mod n), and cdi := g
dihrdi with rdi ∈R ZQ for all i = 1, . . . , t.

Moreover, the prover commits to (n−1)/2 by cb := g(n−1)/2hrb with rb ∈R ZQ.
Then the prover searches a base ã such that ã(n−1)/2 ≡ −1 (mod n) holds and
commits to ã by cã := gãhrã with rã ∈R ZQ.

4. The prover sends cb, cã, ca1 , . . . , cat , cd1 , . . . , cdt to the verifier and then they
carry out the following (sub-)protocol

Sp := PK
{
(α,β, γ, ν, ξ, ρ, κ, (δi, εi, ζi, ηi, ϑi,κi, ρi, κi, µi, ψi)ti=1 :

cb = g
αhβ ∧ −2

῭
< α < 2

῭
∧ (15)

cn = g
νhξ ∧ −2

῭
< ν < 2

῭
∧ (16)

c2bg/cn = h
γ ∧ (17)

cã = g
ρhκ ∧ (ρα ≡ −1 (mod ν)) ∧ (18)

câ1 = g
δ1hε1 ∧ . . .∧ cât = g

δthεt ∧ (19)

ca1/g
ǎ1 = gδ1cζ1n h

η1 ∧ . . .∧ cat/g
ǎt = gδtcζtn h

ηt ∧ (20)

−2
῭
< δ1 < 2

῭
∧ . . .∧ −2

῭
< δt < 2

῭
∧ (21)

−2
῭
< ζ1 < 2

῭
∧ . . .∧ −2

῭
< ζt < 2

῭
∧ (22)

ca1 = g
ρ1hκ1 ∧ . . .∧ cat = g

ρthκt ∧ (23)(
cd1/g = h

ϑ1 ∨ cd1g = h
ϑ1
)
∧ . . .∧

(
cdt/g = h

ϑt ∨ cdtg = h
ϑt
)
∧ (24)

cd1 = g
µ1hψ1 ∧ . . .∧ cdt = g

µthψt ∧ (25)

(ρα1 ≡ µ1 (mod ν)) ∧ . . .∧ (ραt ≡ µt (mod ν))
}
. (26)

This concludes the protocol. In Step 1 and 2 of the protocol, the prover and the
verifier together choose the random bases a1, . . . , at for the primality test. Each
base is the sum (modulo n) of the random integer the verifier chose and the one
the prover chose. Hence, both parties are ensured that the bases are random, al-
though the verifier does not get any information about the bases finally used in
the primality test. That the bases are indeed chosen according to this procedure
is shown in the Clauses 19–23 of the sub-protocol Sp, the correct generation of the
random values ai, committed in cai , is proved. The Clauses 16–17 prove that in-
deed (n − 1)/2 is committed in cb and the Clause 18 shows that there exists a base
ã such that ã(n−1)/2 ≡ −1 (mod n). In the Clause 24 it is shown that the values

11

committed in cdi are either equal to −1 or to 1. Finally, in Clause 26 (together with
the Clauses 15, 16, 23, and 25) it is proved that a(n−1)/2i ≡ di (mod n), i.e., a(n−1)/2i

(mod n) ∈ {−1, 1} and thus the conditions that n is a prime with error-probability
2−t are met.

Note that all modular exponentiations in Clause 26 have the same b and n and
hence the proofs for these parts can be optimized. In particular, this is the case for
the Clauses 3, 4, and 11–14 in Sexp.

Theorem 4. Given a commitment cn to an integer, the above protocol is a statistical zero-
knowledge proof that the committed integer is a prime with error-probability at most 2−t for
the primality-test.

Proof. The proof is straight forward from the Theorems 1, 2, and 3.

Similar as for modular exponentiation we will abbreviate the above protocol
by adding a clause such as α ∈ pseudoprimes (t) to the statement that is proven,
where t denotes the number of bases used in the primality test.

Remark. If (n − 1)/2 is odd and the prover is willing to reveal that, she can addi-
tionally prove that she knows χ and ψ such that cb/g = (g2)χhψ and −2 ῭

< χ < 2
῭

holds and skip the Clause 18. This results in a statistical zero-knowledge proof that
n of form n = 2w + 1 is prime andw is odd with error-probability at most 2−2t.

4.3 Efficiency Analysis

Assume that the commitment to the prime n is given. Altogether t + 1 proofs that
a modular exponentiation holds are needed where the exponents are about logn
bits. Thus, the verifier needs to compute about 6t logn multi-exponentiations per
round and the prover needs to compute about 2t logn multi-exponentiations for
the commitments to the intermediary results of the square & multiply algorithm.
The communication cost per round is about the size of 12t logn group elements and
4t lognε` bits and an initial 2t logn group element which are the commitments to
the intermediary results of the square & multiply algorithm and the commitments to
the bases for the primality test.

5 Proving that an RSA Modulus Consists of Two Safe
Primes

We finally present protocols for proving that an RSA modulus consists of two safe
primes. First, we restrict ourselves to the case where the modulus is not known to
the verifier, i.e., only a commitment of the modulus is given. Later, we will discuss
improvements for cases when the RSA modulus is known to the verifier.

5.1 A Protocol For a Secret RSA Modulus

Let 2` be an upper-bound on the length of the largest factor of the modulus and let
ε > 1 be a security parameter. Furthermore, a group G of prime order Q > 22ε`+5

12

and two generators g and h are chosen, such that log
g
h is not known and computing

discrete logarithms is infeasible.
Let cn := gnhrn be the prover’s commitment an integer n, where she choose

rn ∈R ZQ and let p and q denote the two prime factors of n. The following is a
protocol that allows her to convince the verifier that cn commits to the product of
two safe (pseudo-)primes.

1. The prover computes the commitments cp := gphrp , cp̃ := g(p−1)/2hrp̃ , cq :=
gqhrb , and cq̃ := g(q−1)/2hrp̃ with rp, rp̃, rq, rq̃ ∈R ZQ and sends all these
commitments to the verifier.

2. The two parties carry out the following protocol

S51 := PK{(α,β, γ, δ, ρ, ν, ξ, χ, ε, ζ, η) :

cp̃ = g
αhβ ∧ (−2

῭
< α < 2

῭
) ∧ (27)

cq̃ = g
γhδ ∧ (−2

῭
< δ < 2

῭
) ∧ (28)

cp = g
ρhν ∧ cq = g

ξhχ ∧ (29)

cp/(c
2
p̃g) = h

ε ∧ cq/(c
2
q̃g) = h

ζ ∧ cn/(cpcq) = h
η ∧ (30)

α ∈ pseudoprimes (t) ∧ γ ∈ pseudoprimes (t)∧ (31)
ρ ∈ pseudoprimes (t) ∧ ξ ∈ pseudoprimes (t)} , (32)

where t denotes the number of bases used in the Lehmann-primality tests.

Theorem 5. Let n be an integer that is committed by cn. Then the above protocol is a
statistical zero-knowledge proof that n is an RSA modulus of form n = pq where p, q, (p −
1)/2 and (q − 1)/2 are primes with error-probability at most 2−t each of for the primality
tests.

Proof. The proof is straight forward from the Theorems 1, 2, and 4.

The efficiency is reigned by the (pseudo-)primality-proofs and thus about four
times as high as for a single (pseudo-)primality-proof (cf. Subsection 4.3).

5.2 A Protocol For a Publicly Known RSA Modulus

We now consider the case where the modulus n is publicly known. In case n ful-
fils certain side-conditions (see below), it is more efficient to first run the protocol
due to Gennaro et al. [20] (which includes the proofs proposed by Peralta & van
de Graaf [32] and by Boyar et al. [3]). This protocol is a statistical zero-knowledge
proof system that there exist two integers a, b ≥ 1 such that n consists of two primes
p = 2p̃a + 1 and q = 2q̃b + 1with p, q, p̃, q̃ 6≡ 1 (mod 8), p 6≡ q (mod 8), and p̃ 6≡ q̃
(mod 8). Given the fact that (p − 1)/2 and (p − 1)/2 are prime powers, the prob-
ability that they pass a single round of the Lehmann’s primality test for any a > 1

and b > 1, is at most p̃1−a ≤
√
2/(p− 1) and q̃1−a ≤

√
2/(q− 1), respectively, if

they are not prime. Hence, if p and q are sufficiently large, a single round of the
Lehmann-primality test on (p − 1)/2 and (q − 1)/2 will be sufficient to prove their
(pseudo-)primality.

We now describe the protocol that allows the prover to prove the verifier that a
given integer n is the product of two safe (pseudo-)primes.

13

1. First the prover computes cp := gphrp , cp̃ := g(p−1)/2hrp̃ , cq := gqhrb , and
cq̃ := g(q−1)/2hrp̃ with rp, rp̃, rq, rq̃ ∈R ZQ and sends these commitments
together with n to the verifier.

2. The prover and the verifier carry out the protocol by Gennaro et al. [20]

3. and then the protocol denoted

S52 := PK{(α,β, γ, δ, ρ, ε, ξ, χ, ε, ζ, η) :

cp̃ = g
αhβ ∧ (−2

῭/2 < α < 2
῭/2) ∧ cq̃ = g

γhδ ∧ (−2
῭/2 < δ < 2

῭/2) ∧

(33)

cp = g
ρhε ∧ cq = g

ξhχ ∧ cp/(c
2
p̃g) = h

ε ∧ cq/(c
2
q̃g) = h

ζ ∧ (34)

gn/(cpcq) = h
η ∧ γ ∈ pseudoprimes (1) ∧ α ∈ pseudoprimes (1)} .

(35)

Theorem 6. Let n = pq be a given integer that passes the test given in [20] with error
probability at most 2−z for an integer z ≥ 1. Then the above protocol is a statistical zero-
knowledge proof that n is an RSA modulus of form n = pq where p, q, (p − 1)/2 and
(q − 1)/2 are primes with error probability at most 1 − (1 − 2−z)(1 −

√
2/(p− 1))(1 −√

2/(q− 1)) < 2−z +
√
2/(p − 1) +

√
2/(q− 1) + 2−z

√
2/(p − 1)

√
2/(q− 1).

The efficiency for this protocol is dominated by the efficiency of a single round
(i.e., t = 1) of the (pseudo-)primality proof described in the previous section and the
efficiency of protocol of Gennaro et al. [20].

6 Conclusion

We have presented efficient protocols for proving that modular relations among se-
cret values (including the modulus!) hold and for proving that an given (or only
committed-to) number is the product of two safe primes.

We note that it is obvious how to use our techniques to get a protocol for proving
that n is the product of two strong primes [22], i.e., (p − 1)/2, (q − 1)/2, (p + 1)/2
and (q + 1)/2 are primes or have a large prime factor. Lower bounds on p, q, and
on n might also be shown. Also, factors r other than 2 in (p − 1)/r could easily be
incorporated.

References

[1] E. Bach and J. Shallit. Factoring with cyclotomic polynomials. In Proc. 26th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 443–450, 1985.

[2] D. Boneh and M. Franklin. Efficient generation of shared RSA keys. In
B. Kaliski, editor, Advances in Cryptology — CRYPTO ’97, volume 1296 of Lec-
ture Notes in Computer Science, pages 425–439. Springer Verlag, 1997.

[3] J. Boyar, K. Friedl, and C. Lund. Practical zero-knowledge proofs: Giving hints
and using deficiencies. Journal of Cryptology, 4(3):185–206, 1991.

14

[4] S. Brands. Electronic cash systems based on the representation problem in
groups of prime order. In Preproceedings of Advances in Cryptology — CRYPTO
’93, pages 26.1–26.15, 1993.

[5] S. Brands. Rapid demonstration of linear relations connected by boolean oper-
ators. In W. Fumy, editor, Advances in Cryptology — EUROCRYPT ’97, volume
1233 of Lecture Notes in Computer Science, pages 318–333. Springer Verlag, 1997.

[6] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowl-
edge. Journal of Computer and System Sciences, 37(2):156–189, Oct. 1988.

[7] J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.
In B. Kaliski, editor, Advances in Cryptology — CRYPTO ’97, volume 1296 of
Lecture Notes in Computer Science, pages 410–424. Springer Verlag, 1997.

[8] J. Camenisch and M. Stadler. Proof systems for general statements about dis-
crete logarithms. Technical Report TR 260, Institute for Theoretical Computer
Science, ETH Zürich, Mar. 1997.

[9] A. Chan, Y. Frankel, and Y. Tsiounis. Easy come – easy go divisible cash. In
K. Nyberg, editor, Advances in Cryptology — EUROCRYPT ’98, volume 1403 of
Lecture Notes in Computer Science, pages 561–575. Springer Verlag, 1998.

[10] D. Chaum, J.-H. Evertse, and J. van de Graaf. An improved protocol for
demonstrating possession of discrete logarithms and some generalizations. In
D. Chaum and W. L. Price, editors, Advances in Cryptology — EUROCRYPT ’87,
volume 304 of Lecture Notes in Computer Science, pages 127–141. Springer-Verlag,
1988.

[11] D. Chaum, J.-H. Evertse, J. van de Graaf, and R. Peralta. Demonstrating pos-
session of a discrete logarithm without revealing it. In A. M. Odlyzko, editor,
Advances in Cryptology — CRYPTO ’86, volume 263 of Lecture Notes in Computer
Science, pages 200–212. Springer-Verlag, 1987.

[12] D. Chaum and T. P. Pedersen. Wallet databases with observers. In E. F. Brickell,
editor, Advances in Cryptology — CRYPTO ’92, volume 740 of Lecture Notes in
Computer Science, pages 89–105. Springer-Verlag, 1993.

[13] H. Cohen. A Course in Computational Algebraic Number Theory. Number 138 in
Graduate Texts in Mathematics. Springer-Verlag, Berlin, 1993.

[14] R. Cramer and I. Damgård. Zero-knowledge proof for finite field arithmetic, or:
Can zero-knowledge be for free? In H. Krawczyk, editor, Advances in Cryptology
— CRYPTO ’98, volume 1642 of Lecture Notes in Computer Science, pages 424–441,
Berlin, 1998. Springer Verlag.

[15] R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In Y. G. Desmedt, editor, Advances
in Cryptology — CRYPTO ’94, volume 839 of Lecture Notes in Computer Science,
pages 174–187. Springer Verlag, 1994.

15

[16] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove
modular polynomial relations. In B. Kaliski, editor, Advances in Cryptology —
CRYPTO ’97, volume 1294 of Lecture Notes in Computer Science, pages 16–30.
Springer Verlag, 1997.

[17] E. Fujisaki and T. Okamoto. A practical and provably secure scheme for publicly
verifiable secret sharing and its applications. In K. Nyberg, editor, Advances
in Cryptology — EUROCRYPT ’98, volume 1403 of Lecture Notes in Computer
Science, pages 32–46. Springer Verlag, 1998.

[18] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust and efficient sharing
of RSA functions. In N. Koblitz, editor, Advances in Cryptology — CRYPT0 ’96,
volume 1109 of Lecture Notes in Computer Science, pages 157–172, Berlin, 1996.
IACR, Springer Verlag.

[19] R. Gennaro, H. Krawczyk, and T. Rabin. RSA-based undeniable signatures. In
B. Kaliski, editor, Advances in Cryptology — CRYPTO ’97, volume 1296 of Lecture
Notes in Computer Science, pages 132–149. Springer Verlag, 1997.

[20] R. Gennaro, D. Micciancio, and T. Rabin. An efficient non-interactive statisti-
cal zero-knowledge proof system for quasi-safe prime products. In 5rd ACM
Conference on Computer and Communicatons Security, 1998.

[21] O. Goldreich, S. Micali, and A. Wigderson. How to prove all NP statements in
zero-knowledge and a methodology of cryptographic protocol design. In A. M.
Odlyzko, editor, Advances in Cryptology — CRYPTO ’86, volume 263 of Lecture
Notes in Computer Science, pages 171–185. Springer-Verlag, 1987.

[22] J. Gordon. Strong RSA keys. Electronics Letters, 20(12):514–516, 1984.

[23] K. Koyama, U. Maurer, T. Okamoto, and S. Vanstone. New public-key schemes
based on elliptic curves over the ring Zn. In J. Feigenbaum, editor, Advances
in Cryptology — CRYPTO ’91, volume 576 of Lecture Notes in Computer Science,
pages 252–266. Springer-Verlag, 1992.

[24] E. Kranakis. Primality and Cryptography. Wiley-Teubner Series in Computer
Science, 1986.

[25] D. J. Lehmann. On primality tests. SIAM Journal of Computing, 11(2):374–375,
May 1982.

[26] G. L. Miller. Riemann’s hypothesis and tests for primality. Journal of Computer
and System Sciences, 13:300–317, 1976.

[27] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable se-
cret sharing. In J. Feigenbaum, editor, Advances in Cryptology – CRYPTO ’91,
volume 576 of Lecture Notes in Computer Science, pages 129–140. Springer Ver-
lag, 1992.

[28] J. M. Pollard. Theorems on factorization and primality testing. Proc. Cambridge
Philosophical Society, 76:521–528, 1974.

16

[29] M. O. Rabin. Probabilistic algorithm for testing primality. Journal of Number
Theory, 12:128–138, 1980.

[30] C. P. Schnorr. Efficient signature generation for smart cards. Journal of Cryptol-
ogy, 4(3):239–252, 1991.

[31] R. Solovay and V. Strassen. A fast monte-carlo test for primality. SIAM Journal
on Computing, 6(1):84–85, Mar. 1977.

[32] J. van de Graaf and R. Peralta. A simple and secure way to show the validity of
your public key. In C. Pomerance, editor, Advances in Cryptology — CRYPTO ’87,
volume 293 of Lecture Notes in Computer Science, pages 128–134. Springer-Verlag,
1988.

[33] H. C. Williams. A p + 1 method of factoring. Mathematics of Computation,
39(159):225–234, 1982.

A Proving a Secret’s Length in Groups with Known Or-
der

In this section we review the statistical zero-knowledge proof of knowledge of the
discrete logarithm, say x, of y to the base gand that, additionally, x lies within a given
interval. This proof is based on a protocols that appeared in [16, 9].

Prover Verifier

(g,Q, y, x) (g,Q, y)↓ ↓
r ∈R {−2ε`2 , . . . , 2ε`2 }
t := gr -

t

c ∈ {0, 1}
�

c

s := r − c(x − 2`1) (in Z)
-

s

−2ε`2+1
?
< s

?
< 2ε`2+1

t
?
= gs−c2

`1
yc↓

(yes /no)

Figure 1: When repeated sufficiently many times, this protocol allows a prover to
convince a verifier that the secret he committed to in y lies within the bound {2`1 −
2ε`2+2, . . . , 2`1 + 2ε`2+2} for given parameters ε, `1, and `2.

Theorem 7. Let G be a group of prime order Q, g and h two generators of G such that
log

g
h is unknown, ε > 1 be a security parameter, and `1 < logQ and `2 be lengths. Let

y be a public group element. When sequentially repeated j = Θ(poly(logQ)) times, the

17

protocol depicted in Figure 1 is a proof of knowledge of a secret x ∈ {2`1 −2ε`2+2, . . . , 2`1 +
2ε`2+2} such that y = gx and is statistical zero-knowledge for `2 = poly(logQ)) and if
x ∈ {2`1 − 2`2 , . . . , 2`1 + 2`2 }.

Proof (Sketch). Proof of knowledge: First, the knowledge extractor needs two find views
of accepting protocol-runs with the same t but different c’s as usual. Let (t, c, s) and
(t, c̃, s̃) these views. Without loss of generality we can assume that c = 0 and c̃ = 1.
Then we have t = gs−2

`1
y = gs̃ and thus y = gs̃−s+2

`1 . Thus one can compute

x̂ := s̃ − s+ 2`1 (mod Q)

such that y = gx̂ holds. Due to the bounds that s and s̃ satisfy, it follows that
−2ε`2+2 + 2`1 < x̂ < 2ε`2+2 + 2`1 must hold, which was to be shown.

Statistical zero-knowledge: We provide only a simulator for one round of the pro-
tocol. Extending this simulator to a simulator for all rounds is straight forward.

The simulator randomly chooses c′ ∈R {0, 1} and s′ ∈R {−2ε`2 , . . . , 2ε`2 } ac-
cording to the uniform distribution. Using these values, the simulator computes
t ′ = gs

′
yc
′

which he feeds the verifier. If the verifier responds with c′ the simu-
lator outputs (t ′, c ′, s ′). To prove that these values are statistical indistinguishable
from a view of a protocol run with the prover, it suffices to consider the probability
distribution PS(s) of the response s of the prover and PS′(s′) according to which the
simulator chooses s′.

If the prover chooses r uniformly at random from {−2ε`2 , . . . ,−2ε`2 } and the
secret key x − 2`1 randomly from {−2`2 , . . . , 2`2 } according to any distribution, we
have

PS(s)

= 0 for s < −2ε`2 − 2`2
≤ 2−ε`2 for − 2ε`2 − 2`2 ≤ s < −2ε`2 + 2`2
= 2−ε`2 for − 2ε`2 + 2`2 ≤ s ≤ 2ε`2 − 2`2
≤ 2−ε`2 for 2ε`2 − 2`2 < s ≤ 2ε`2 + 2`2
= 0 for 2ε`2 + 2`2 < s .

This holds for any distribution of c over {0, 1}. Thus we have

∑
α∈Z
|PS(α) − PS ′(α)| ≤

2`2+2

2ε`2
=

4

(2`2)(ε−1)

For `2 and ε as stated in the theorem, the last term can be expressed as one over
a polynomial in the input length, and therefore the two distributions are statistical
indistinguishable.

The relation ε`2 + 2 < logQ should hold, as otherwise the any secret value will
lie within the bound.

In the above theorem there is a “hole” in the range of the prover’s secret key x,
i.e., the protocol is complete and zero-knowledge only for (x−2`1) ∈ {−2`2 , . . . , 2`2 }.
For (x−2`1) ∈ {−2ε`2+1, . . . , 2ε`2+1}/{−2`2 , . . . , 2`2 } the prover’s success probability
is smaller than 1 but larger than 2−j, depending on the size of |(x− 2`1)| − 2`2 .

18

B Square & Multiply Algorithm for d ≡ ab (mod n)

The following algorithm computes d ≡ ab (mod n) (we use the same names for all
variables as in Section 3.2).

v0 := a

if b0 = 1 then u0 := a else u0 := 1 fi
for i = 1 to `b − 1 do

vi := vi−1 · vi−1 (mod n) % thus vi ≡ a2
i

(mod n)
if bi = 1 then

ui := ui−1 · vi (mod n) % thus ui ≡ ui−1 · a2
i

(mod n)
else
ui := ui−1

endif
endfor
d := u`b−1

19

Recent BRICS Report Series Publications

RS-98-29 Jan Camenisch and Markus Michels. Proving in Zero-
Knowledge that a Number is the Product of Two Safe Primes.
November 1998. 19 pp.

RS-98-28 Rasmus Pagh. Low Redundancy in Dictionaries withO(1)
Worst Case Lookup Time. November 1998. 15 pp.

RS-98-27 Jan Camenisch and Markus Michels. A Group Signature
Scheme Based on an RSA-Variant. November 1998. 18 pp. Pre-
liminary version appeared in Ohta and Pei, editors,Advances
in Cryptology: 4th ASIACRYPT Conference on the Theory and
Applications of Cryptologic Techniques, ASIACRYPT ’98 Pro-
ceedings, LNCS 1514, 1998, pages 160–174.

RS-98-26 Paola Quaglia and David Walker.On Encodingpπ in mπ. Oc-
tober 1998. 27 pp. Full version of paper to appear inFounda-
tions of Software Technology and Theoretical Computer Science:
18th Conference, FCT&TCS ’98 Proceedings, LNCS, 1998.

RS-98-25 Devdatt P. Dubhashi.Talagrand’s Inequality in Hereditary Set-
tings. October 1998. 22 pp.

RS-98-24 Devdatt P. Dubhashi. Talagrand’s Inequality and Locality in
Distributed Computing. October 1998. 14 pp.

RS-98-23 Devdatt P. Dubhashi.Martingales and Locality in Distributed
Computing. October 1998. 19 pp.

RS-98-22 Gian Luca Cattani, John Power, and Glynn Winskel.A Cate-
gorical Axiomatics for Bisimulation. September 1998. ii+21 pp.
Appears in Sangiorgi and de Simone, editors,Concurrency
Theory: 9th International Conference, CONCUR ’98 Proceed-
ings, LNCS 1466, 1998, pages 581–596.

RS-98-21 John Power, Gian Luca Cattani, and Glynn Winskel.A Rep-
resentation Result for Free Cocompletions. September 1998.
16 pp.

RS-98-20 Søren Riis and Meera Sitharam.Uniformly Generated Submod-
ules of Permutation Modules. September 1998. 35 pp.

RS-98-19 Søren Riis and Meera Sitharam.Generating Hard Tautologies
Using Predicate Logic and the Symmetric Group. September
1998. 13 pp.

