
B
R

IC
S

R
S

-98-28
R

.P
agh:

Low
R

edundancy
in

D
ictionaries

w
ithO

(1
)

W
orstC

ase
Lookup

T
im

e

BRICS
Basic Research in Computer Science

Low Redundancy in Dictionaries with
O(1) Worst Case Lookup Time

Rasmus Pagh

BRICS Report Series RS-98-28

ISSN 0909-0878 November 1998

Copyright c© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/98/28/

Low redundancy in dictionaries with O(1) worst case
lookup time

Rasmus Pagh

November 1998

Abstract

A static dictionary is a data structure for storing subsets of a finite universe U ,
so that membership queries can be answered efficiently. We study this problem in a
unit cost RAM model with word size Ω(log |U |), and show that for n-element subsets,
constant worst case query time can be obtained using B +O(log log |U |) + o(n) bits of
storage, where B = dlog2

(|U |
n

)
e is the minimum number of bits needed to represent all

such subsets. The solution for dense subsets uses B + O(|U | log log |U |
log |U |) bits of storage,

and supports constant time rank queries. In a dynamic setting, allowing insertions and
deletions, our techniques give an O(B) bit space usage.

1 Introduction

Consider the problem of storing a subset S of a finite set U , such that membership queries,
“u ∈ S?”, can be answered in worst-case constant time on a unit cost RAM. Since we are
interested only in membership queries, we assume that U = {0, . . . , m− 1}. We restrict the
attention to the case where elements of U can be represented within O(1) machine words.
In particular it is assumed that the usual RAM operations (including multiplication) on
numbers of size mO(1) can be done in constant time.

Our goal will be to solve this data structure problem using little memory, measured in
consecutive bits1. We express the complexity in terms of m = |U | and n = |S|, and often
consider the asymptotics when n is a function of m. Since the queries can distinguish any
two subsets of U , we need at least

(
m
n

)
different memory configurations, that is, at least

B = dlog
(
m
n

)
e bits (log is base 2 throughout this paper). Using Stirling’s approximation to

the factorial function, one can get B = n log m
n

+ (m − n) log m
m−n − O(log n(m−n)

m
), see [3].

For n = o(m) the dominant term is n log m
n

, since (m− n) log m
m−n = Θ(n).

Previous work

The (static) dictionary is a very fundamental data structure, and it has been heavily stud-
ied. We will focus on the development in space consumption for worst case constant time

1A part of the last word may be unused, and the query algorithm must work regardless of the contents
of this part

1

lookup schemes. A bit vector is the simplest possible solution to the problem, but the space
complexity of m bits is poor compared to B unless n ≈ m/2. During the 70’s, schemes
were suggested which obtain a space complexity of O(n) words, that is O(n logm) bits, for
restricted cases (e.g. “dense” or very sparse sets). It was not until the early 80’s that Fred-
man, Komlós and Szemerédi [6] found a hashing scheme using O(n) words in the general
case. A refined solution in their paper uses B + O(n logn + log logm) bits. Brodnik and
Munro [3] construct a static dictionary using O(B) bits for any m and n. In the journal
version of this paper [2], they achieve B+O(B

log log logm
) bits, and raise the question whether a

more powerful model of computation is needed to further tighten the gap to the information
theoretic minimum.

Yao [11] showed that in a restricted model, where words in the data structure must
contain elements of S, the number of words necessary for o(logn) time lookup cannot be
bounded by a function of n. Fich and Miltersen [5] showed that on a RAM with standard
unit cost arithmetic operations but without division and bit operations, o(logn) time lookup
requires Ω(m/nε) words of memory for any ε > 0. In [8] a RAM with bit operations but
without multiplication is considered, and a lower bound of mε, for some ε > 0, is shown
when n = mo(1). No lower bound better than the trivial B bits seems to be known without
restrictions on the data structure or the query algorithm.

As for dynamic dictionaries, an O(n) word solution giving constant time lookup and
constant expected amortized time for deletions and insertions is given in [4]. The space
usage is improved in [3], where a solution using O(B) bits (with the same time bounds) is
sketched.

This paper

The result of Brodnik and Munro is strengthened, bringing the additional term of the space
complexity, which we shall call the redundancy, down to o(n) + O(log logm) bits. In par-
ticular, for n = ω(log logm) this means a vanishing number of redundant bits per element
stored. The exact order of the bound, compared with lower bounds on the redundancy of
the solution in [2], is given in the table below.

Range Brodnik/Munro This paper

n < m log logm
logm

n log logm n
√

log logn
logn

+ log logm

m log logm
logm

≤ n < m(log logm
logm

)2/3 n log logm n
√
n/m < n 3

√
log logn

logn

n ≥ m(log logm
logm

)2/3 min(n log logm, m
(log logm)O(log log logm)) m log logm

logm
< n 3

√
log logn

logn

We also show how to associate information from some domain to each element of S (solving
the partial function problem), with the same redundancy as above, except for the last case
(the “dense” range).

The main observation is that one can save space by “compressing” the hash table part
of data structures based on (perfect) hashing, storing in each cell not the element itself, but
only a quotient — information that distinguishes it from the part of U that hashes to this
cell. This technique, referred to as quotienting, is described in section 3, together with the

2

main construction.
For dense subsets another technique is used, building upon the ideas of range reduction

and a “table of small ranges” (both used in [2]). This dictionary supports rank queries, a
fact which will be used in the construction for the non-dense case. This is treated in section
2.

The first part of section 3 describes a B + O(n + log logm) bit scheme which does not
depend on section 2, and can be read independently.

Section 4 describes a dynamic dictionary (insertions and deletions supported in expected
amortized constant time), which uses O(B) bits.

2 Dense subsets

In this section we describe a data structure for storing sets, which is space efficient for dense
subsets (say, n = Ω(m log logm/ logm)). The data structure will support queries on the
ranks of elements (where the rank of u is defined as rank(u) = |{v ∈ S|v ≤ u}|). Using rank
queries, it is possible to do membership queries; therefore we will call the data structure
presented a static rank dictionary.

We split the universe into blocks Ui of size b (b < logm to be determined). Without loss
of generality, assume m = b ·s for some s ∈ N — otherwise pad U with at most b−1 dummy
elements, increasing the final space consumption with O(b) bits. Let Ui = {b·i . . . b·(i+1)−1}
denote the ith block. Blocks are grouped into clusters of c blocks each.

The idea will be to “explicitly” store the rank of the first element of each block, and
store a compressed representation of the block itself. Extraction of rank information from
this compressed form is done by table lookup. The ranks are stored using a 2-level structure
(also used by Tarjan and Yao in [10]): The “A” level holds the rank of the first element in
each cluster, and the “B” level holds the offset in rank for each block within the clusters,
see Figure 1. Pointers to the compressed blocks are stored in the same way.

c blocks

B

s blocks

.

. A

. . . .b bitsU

Figure 1: Splitting of U and structure of A and B tables

Let ptr(i) denote a pointer to the compressed representation of block i and let bxcy =
bx/yc · y be the largest number less than x which is a multiple of y. The representation
consists of the following:

• Table Ar (dlogme bits/element), where Ar[i] = rank(b · c · i), i = 0 . . . ds/ce − 1.

3

• Table Br (dlog(c logm)e bits/element), where Br[i] = rank(b · i) − rank(b · bicc), i =
0 . . . s− 1.

• Table Ap (dlogme+ 1 bits/element), where Ap[i] = ptr(c · i), i = 0 . . . ds/ce − 1.

• Table Bp (dlog(c logm)e+1 bits/element), where Bp[i] = ptr(i)−ptr(bicc), i = 0 . . . s−
1.

• A bit string C containing the ordered compressed representations of blocks. The rep-
resentation of block i is the number x = |S ∩Ui|, dlog logme bits, followed by dlog

(
b
x

)
e

bits representing S ∩ Ui.

• Table D (dlog logme bits/element), where D[x, y, z] is the rank of the zth element of
the set with x elements and compressed representation the first bits of y (if any such
set exists, otherwise undefined), x, z = 0 . . . b, y = {0, 1}b. Elements are numbered
1 . . . b, the 0th element has rank 0 by definition.

A query for the rank of u can now be processed as follows (C[a . . . b] denotes the bit string
starting with C[a] and ending with C[b− 1]):

1. Calculate the block i = bu/bc, and cluster j = bi/cc.

2. Determine the rank of v = i · b as rank(v) = Ar[j] +Br[i].

3. Determine the location of the compressed block as ptr(i) = Ap[j] +Bp[i].

4. Set x = C[ptr(i) . . .ptr(i)+dlog(c logm)e] and y = C[ptr(i)+dlog(c logm)e . . .ptr(i)+
dlog(c logm)e+ b].

5. return rank(u) = rank(v) +D[x, y, u− v].

The correctness of the returned result should be immediate.

Analysis

It remains to be seen that the asserted space bounds on the table elements hold. Clearly
the elements of tables Ar and Ap can be represented with dlogme and dlogme + 1 bits,
respectively (the latter because C has length less than 2m). Br holds non-negative integers
bounded by the largest possible difference in rank within a span of c consecutive blocks, that
is, the elements are in the range 0 . . . b · c, so certainly dlog(c logm)e bits is sufficient. Sim-
ilarly, Bp holds non-negative integers bounded by the largest possible difference in position
between the compressed representations within a span of c consecutive blocks. And since
the compressed representation of a block occupies less than 2b bits, we are done.

Now, for the analysis of the representation size, we need the following lemma from [3] on
the total size of the compressed blocks:

Lemma 1 Let xi = |S ∩ Ui| and Bi = dlog
(
b
xi

)
e. Then

∑s−1
i=0 Bi < B + s.

4

Proof. We have
∑s−1

i=0 Bi <
∑s−1

i=0 log
(
b
xi

)
+ s ≤ B + s. The latter inequality follows from

the fact that
∏s−1

i=0

(
b
xi

)
is the number of sets having xi elements in block i, which is a subset

of all n-subsets in U . 2

Summing up the representation sizes (leaving out O(logm) bits for various pointers) we
have:

• O(m logm
bc

) bits in each of Ar and Ap.

• m log(c logm)
b

+O(m/b) bits in each of Br and Bp.

• m log logm
b

+O(m/b) bits within C for representing set sizes

• Less than B + dm/be bits in C for representing sets (by Lemma 1).

• 2bbdlog be bits for D.

Setting b = c = α logm, for some 0 < α < 1 we get the following:

Theorem 2 A static rank dictionary with worst case constant query time, can be represented
using B +O(m log logm

logm
) bits.

By letting α vary by at most a factor of 2, b and c can be set to a power of 2, making
multiplication and division a matter of shifting. Navigating the 3-dimensional array D can
also be made easy by extending each side of the “cube” to have length a power of two. The
reader is invited to verify that this means the above result holds, even if the query algorithm
can use only AC0 instructions.

Construction

We now sketch how to construct the static rank dictionary in O(n + m log logm
log2m

) time. For

word length Θ(logm) this is proportional to the time needed to read the input and write
the representation, and thus optimal.

The construction algorithm will assume that the elements of S are given as a sorted list,
u1 < · · · < un. This merely factors out the problem of sorting: Starting with an unordered
list of elements of S and the corresponding rank dictionary, one can trivially sort in linear
time.

First consider tables Ar and Br. They may easily be filled out while running through
u1 . . . un. However, in the case of Br it is inefficient to fill in consecutive identical elements
one at a time. Using a small table of precomputed words containing repetitions of element-
size patterns, and appropriate shift and masking operations, one can fill any part of a word
with a repeating element pattern. Thus the cost of filling out Br can be brought down to
the number of words in the representation of Br plus the number of changes in the offset, n.

For C we use a 2b-element table T , containing for any possible block the compressed
representation and its length. Constructing C is then merely a matter of using each block
as an index into the table. As positions of compressed representations get known, Ap and
Bp are filled out similarly to Ar and Br.

5

The table T may be constructed in several ways. A simple one is to compute each
element in turn as a sum of at most b binomial coefficients (from a precomputed table). This
approach takes time O(b2b) which is o(m log logm

log2m
).

D is constructed by running through T , for each T [i] filling in the fields in D concerning
the block coded by i. Again, a small precomputed table is used, this time for counting bits.
The cost of all this is proportional to the number of entries in D, which is again o(m log logm

log2m
).

We can now state the following:

Theorem 3 The static rank dictionary of Theorem 2 can be constructed from a sorted list
of elements in S, in time O(n+ m log logm

log2m
).

3 Non-dense subsets

This section presents a static dictionary, which is space efficient unless the set S is dense (in
which case the dictionary of the previous section is used). As mentioned in the overview, the
compact representation achieved stems from the observation that each bucket j of a hash
table may be resolved with respect to the part of the universe hashing to bucket j, which
we denote by Aj .

We phrase this in terms of injective functions on the Aj . Consider the lookup procedure
of a dictionary using a perfect hash function h, and a table T:

proc lookup(x)

return (T[h(x)]=x);

end

If q is a function which is 1-1 on each Aj (we call this a quotient function), and we let
T’[i]:=q(T[i]), then the following program is equivalent:

proc lookup’(x)

return (T’[h(x)]=q(x));

end

Thus, given a description of q, it suffices to use the hash table T’. The gain is that q may
have a range significantly smaller than U (ideally q would enumerate the elements hashing
to each bucket), and thus fewer bits are needed to store the elements of T’.

We still need to argue that q need not be too expensive in terms of memory usage
or evaluation time. The FKS perfect hashing scheme [6] has a quotient function which is
evaluable in constant time, and costs no extra space in that its parameters k, p and a are
part of the data structure already:

qk,p : u 7→ (u div p) · dp/ae+ (k · u mod p) div a

Intuitively, this function gives the information that is thrown away by the modulo ap-
plications of the scheme’s top level hash function (so in fact it is 1-1 even on the elements
hashing to each bucket in the top level hash table). Since p = O(m), the range of the
function is O(m/n), so log m

n
+O(1) bits suffice for each hash table element.

6

Example This example assumes familiarity with the FKS scheme [6] (and is in fact
the example in that paper subjected to quotienting). We look at U = {1, . . . , 30}, S =
{2, 4, 5, 15, 18, 30}, and choose p = 31, k = 2. The elements have the following quotient
values:

u 2 4 5 15 18 30
qk,p(u) 0 1 1 5 0 4

The quotient values take the place of elements in the data structure. The corresponding
elements of S are written in quotes.

|W |
2

k’ k’ k’k’ |W | |W ||W |

0 2 3 4 5 61

2

10 11 12 13 14 15 16 22 23 2417 18 19 20 21987

4 5 6

7 10 16 22

1 2 1 2 3 1 1

"18" "15""30"

01 501 1 4

"4" "5" "2"

k

Figure 2: FKS scheme with quotienting

2

Schmidt and Siegel [9] show how to simulate the FKS hashing scheme in a “minimal”
version (i.e. the hash table has size n), using O(n + log logm) bits of storage for the hash
function (still with constant lookup time).

One can thus get a space usage of n log m
n

+ O(n) bits for the hash table elements, and
O(n+ log logm) for the hash function, that is:

Proposition 4 The static dictionary problem with worst case constant lookup time can be
solved using B +O(n+ log logm) bits of storage.

Together with the dictionary of the previous section, this gives our first improvement of the
result in [2]. As a corollary, we get a partial answer to an open problem stated in [5]:

Corollary 5 When n = ω(log logm/ log log logm), the static dictionary problem with worst
case constant lookup time can be solved using n words of storage (word size logm).

Proof. The dictionary of Proposition 4 uses n logm − n log n + Θ(n + log logm) bits. By
assumption n log n = ω(log logm), so this is less than n logm bits for n > N , where N is
some sufficiently large constant. For n ≤ N we can simply list the elements of S. 2

7

Refinement

To achieve a redundancy sub-linear in n, we cannot use the hash functions of [9], since
the representation is Ω(n) bit redundant (and it is far from clear, whether a constant time
evaluable minimal, perfect hash function can have o(n) bit redundancy). Also, it must be
taken care of that o(1) bit is wasted in each hash table cell, i.e. nearly all bit patterns in all
cells must be possible independently.

To use less space for storing the hash function, we will not require it to be perfect, but
only to be perfect on some sufficiently large subset of S (which we handle first). The rest of
S may then be handled by a dictionary that wastes more bits per element.

We use a hash function family from [6]: For any prime p and positive integers k, a, define
the function

hk,p : u 7→ (k · u mod p) mod a

The family is indexed by k, p — parameter a is regarded as “fixed” since it will depend
only on m and n. Parameter p, where p > a, will be chosen later. The corresponding
quotient function family is qk,p defined earlier. We prove that qk,p is indeed appropriate:

Lemma 6 Let Aj(k, p) = {u ∈ U | hk,p(u) = j} be the subset of U hashing to j. For any j,
qk,p is 1-1 on Aj(k, p). Furthermore, qk,p[U] ⊆ {0, . . . , r − 1}, where r = dm/pe · dp/ae.

Proof. Let u1, u2 ∈ Aj(k, p) be such that qk,p(u1) = qk,p(u2), in particular u1 div p =
u2 div p and (k · u1 mod p) div a = (k · u2 mod p) div a. By the latter equation and the
assumption on u1, u2, we have k · u1 mod p = k · u2 mod p, so since p is prime and k 6= 0,
u1 mod p = u2 mod p. Since also u1 div p = u2 div p it must be the case that u1 = u2.
The bound on the range of qk,p is straightforward. 2

We shall make use of the following result from [6], which states that that one can get an
“almost 1-1 on S” hash function hk,p by hashing to a super-linear size table:

Lemma 7 If the map u 7→ u mod p is 1-1 on S, there exists k such that hk,p is 1-1 on a
set S1 ⊆ S, where |S1| ≥ (1− O(n

a
))|S|.

Without loss of generality, we will assume S1 to be maximal, i.e. hk,p[S1] = hk,p[S].
The idea will be to build two dictionaries: One for S1 of Lemma 7, and one for S2 = S\S1.

Lookup may then be accomplished by querying both dictionaries.
The dictionary for S1 consists of the function hk,p of Lemma 7, together with an a-element

“virtual” hash table (a < n logn to be determined). The virtual table contains n1 = |S1| non-
empty cells; to map these positions into n1 consecutive memory locations, we need a partial
function defined on hk,p[S] and mapping these elements bijectively to {1, . . . , n1}. The static
rank dictionary of section 2 is used for this (two rank queries are used in order to determine
if a position is used). Figure 3 shows an overview of the construction. By Theorem 2 the
rank dictionary uses nearly minimal memory: n1 log a

n1
+ (a−n1) log a

a−n1
+O(a log logn

logn
) bits.

The first term is n1 log a
n

+ O(n2/a). The second term is less than n1

ln 2
; we show something

slightly stronger:

Lemma 8 The following estimate holds: (m− n) log m
m−n = n

ln 2
−Θ(n2/m).

8

h rank

u

Virtual table

Real table

h(u) rank(h(u))

1{1, .. , n }

{0, .. , a-1}

U

Figure 3: Overview of the dictionary for S1

Proof. We can assume n = o(m). The Taylor series ln(1 − x) = −
∑

i>0 x
i/i shows

ln(1 − 1/x) = −1/x − 1/2x2 − O(x−3). Writing (m − n) log m
m−n = n−m

ln 2
ln(1 − n/m) and

plugging in the above with x = m/n gives the result. 2

It is interesting to note that hk,p and the rank dictionary constitute a perfect hash function
for S1, but use more space2 than the O(n + log logm) bits sufficient the represent such a
function. However, as we shall see, the rank dictionary encodes just enough information on
S to justify this extra use of space.

We next show that the memory used for the hash table elements in the S1 dictionary,
n1dlog re bits, can be made close to n1 log m

n
:

Lemma 9 There exists a prime p = O(n2 lnm) such that for any A ≤ 3p with A =
O(n logn), there is a value of a, with A/3 ≤ a ≤ A, and:

1. The map u 7→ u mod p is 1-1 on S.

2. n1dlog re = n1 log m
a

+O(na/m+ n12/21)

Proof. The memory used for storing each table element is dlog re. This can be made close
to log r:

Claim 10 For any x, y ∈ R+ and z ∈ N, with x/z ≥ 3, there exists z′ ∈ {z +
1, . . . , 3z}, such that dlogdx/z′e + ye ≤ log(x/z′) + y +O(z/x+ 1/z).

Proof. Since x/z ≥ 3, it follows that logdx
z
e + y and logd x

3z
e + y, have different

integer parts. So there exists z′, z < z′ ≤ 3z, such that dlogd x
z′ e+ ye ≤ logd x

z′−1
e+y.

A simple calculation gives logd x
z′−1
e+y = log x

z′−1
+y+O(z/x) = log x

z′ +log z′

z′−1
+

y +O(z/x) = log x
z′ + y +O(z/x+ 1/z), and the conclusion follows. 2

Since log r = logdp/ae + logdm/pe and p/A > 3, the claim gives (for any p) an a such that
dlog re = log r +O(a/p+ 1/a).

2When a = ω(n), which will be the case

9

Parameter p is chosen such that u 7→ u mod p is 1-1 on S, such that it is not too big (it
needs to be stored) and such that r is not much larger than m/a.

Claim 11 In both of the following ranges, there exists a prime p, such that u 7→ u
mod p is 1-1 on S:

1. n2 lnm ≤ p ≤ 3n2 lnm (this will be our choice when m > n3 lnm)

2. m < p < m+m12/21 (this will be our choice when m ≤ n3 lnm)

Proof. The existence of a suitable prime between n2 lnm and 3n2 lnm is guar-
anteed by the prime number theorem (in fact, at least half of the primes in the
interval will work). See [6, Lemma 2] for details. By [7] the number of primes
between m and m+mθ is Ω(mθ/ logm) for any θ > 11/20. Take θ = 12/21 and let
p be such a prime; naturally the map is then 1-1. 2

For an estimate of log r in terms of m, n and a, we look at the cases for p in Claim 11:

1. log r ≤ log(m
a

(1 + a
p

+ p
m

)) = log(m/a) + O(a/p + p/m) = log(m/a) + O(1/n), since

a = O(n logn)

2. log r = logdp/ae ≤ logdm+m12/21

a
e ≤ log(m

a
(1 + a

m
+ m−9/21)) = log(m/a) + O(a/m +

m−9/21)

This, together with Claim 10, gives that the n1 hash table entries use n1 log(m/a)+O(na/m+
n12/21) bits. 2

We can now compute the total space consumption for the S1 dictionary:

• O(logn + log logm) bits for the k, p and a parameters, and for various pointers (the
whole representation has size < n logm bits).

• n1 log a
n

+ n1

ln 2
+O(a log logn

logn
+ n2/a) bits for the “virtual table” mapping.

• n1 log m
a

+O(na
m

+ n12/21) bits for the hash table contents.

This adds up to n1 log m
n

+ n1

ln 2
+O(n

2

a
+ na

m
+ a log logn

logn
+ log logm) bits.

We now look at the space of the dictionary for S2. First note that since S2 ⊆ ∪j∈hk,p[S1]A(k, j),
the rank dictionary offers a constant time computable map, which is 1-1 on S2, namely
ρ2 : u 7→ r · rank(hk,p(u)) − qk,p(u), where the rank is with respect to hk,p[S1] (i.e. the set
stored in the rank dictionary). A dictionary for ρ2[S2] is constructed with respect to the uni-
verse U2 = ρ2[U] (a query for u will be “converted”, in constant time, into a query for ρ2(u)).
We then only have to deal with a universe of size |U2| = O(mn/a). The S2 dictionary may
be built using the dictionary of Proposition 4, without wasting too many bits: The space
usage is n2 log |U2|

n2
+ n2

ln 2
+ O(n2 + log logm) = n2 log m

n
+ n2

ln 2
+ O(n2/a + log logm). Thus,

10

the total space usage of our scheme is n log m
n

+ n
ln 2

+O(n
2

a
+ na

m
+ a log logn

logn
+ log logm) bits.

Using the estimate in Lemma 8 this is

B +O(
n2

a
+
na

m
+
a log log n

log n
+ log logm) bits

We now get the main theorem:

Theorem 12 The static dictionary problem with worst case constant lookup time can be
solved with storage:

1. B +O(n
√

log logn/ log n+ log logm) bits, for n < m log logm
logm

.

2. B +O(n
√
n/m) bits, for m log logm

logm
≤ n < m(log logm

logm
)2/3.

3. B +O(m log logm
logm

) bits, for n ≥ m(log logm
logm

)2/3.

Proof. In case 1. choose a = Θ(n
√

logn/ log log n). In case 2. choose a = Θ(
√
mn) in the

above construction. In case 3. we use the dictionary of the previous section. 2

We have not associated any information with the elements of our set. In the non-dense case,
it is possible to store a partial function defined on S, mapping into a finite set V , with the
exact same redundancy as in Theorem 12 (this time the information theoretical minimum
is BV = B + n log |V |). The data structure is a simple modification of the above; the value
of a is chosen such that the information packed in a hash table cell (quotient and function
value) comes from a domain of size close to a power of 2.

Theorem 13 The static partial function problem with worst case constant lookup time can
be solved with storage:

1. BV +O(n
√

log logn/ log n+ log logm) bits, for n < m log logm
logm

.

2. BV +O(n
√
n/m) bits, for n ≥ m log logm

logm
.

For n = Θ(m) the rank dictionary gives a o(n) bit redundant solution when |V | is a power
of 2, but it seems hard to avoid wasting Ω(1) bit for each function value for general |V |.

3.1 Construction

We now sketch how to construct the static dictionary described above, in expected time
O(n + (log logm)O(1)). The last part of the expression comes from the time needed to find
the prime p of the hash function, but is so small that it can be ignored unless m is very large
compared to n.

First note that the hardest part is finding the parameters p and k of the hash function,
and building the dictionary for S2:

11

• Parameter a is simple to compute according to Claim 10, for example by binary search
on the interval in which a is wanted.

• Theorem 3 implies that the rank dictionary for hk,p[S] with respect to {0, . . . , a − 1}
can be constructed in time O(n) (The initial sorting can be done in linear time using
Radix-sort).

• Filling in quotient values in the hash table is clearly possible in constant time per
element once hk,p, qk,p and the rank dictionary are available.

Parameter p is found by randomly choosing numbers from the interval given in Claim 11.
Each such number chosen is checked for primality (using a probabilistic check which uses
expected time poly-logarithmic in the number checked [1], that is, time (logn+log logm)O(1)).
When a prime is found, it is checked that the map u 7→ u mod p is 1-1 on S (time O(n)
using Radix-sort on the function values). The following sharpening of the statement of Claim
11 implies that all of this takes expected time O(n+ (log logm)O(1)):

Claim 11’

1. When choosing a random number in {x, . . . , x+ y}, where x12/21 ≤ y ≤ 2x, it is prime
with probability Ω(1/ log x).

2. When choosing a random prime q ∈ {n2 lnm, . . . , 3n2 lnm}, the map u 7→ u mod q is
1-1 on S with probability at least 1/2.

Proof. Same as Claim 11. 2

Parameter k is chosen at random and checked for the inequality of Lemma 7 (in time
O(n)). For a large enough constant in the big-oh of Lemma 7, the expected number of
attempts made before finding a suitable k is constant, and thus the expected time for the
choice is O(n).

The dictionary for S2 (based on [9]) can be built in expected time O(|S2|). This is not
described in [9], but the only real change compared to the expected O(n) time construction
in the FKS scheme is how to choose second-level hash functions: At all times maintain a
linked list of all buckets for which no resolving hash function has been found. In each of log n
rounds, a hash function resolving buckets containing at least half the remaining elements of
S2 is found. When randomly selecting hash functions, the expected number of unsuccessful
attempts each round is constant, and the cost of an attempt is proportional to the number
of remaining elements. So the expected time for choosing all hash functions is linear.

Thus we have:

Theorem 14 The data structure of Theorem 12 can be constructed in expected time O(n+
(log logm)O(1)).

12

4 Dynamic version

In this section we outline how to apply quotienting to building a space efficient dynamic
dictionary, supporting insertion and deletion of elements. The dictionary uses O(B) bits,
matching the bound achieved in [3] (more precisely, the data structure at all times resides
within a contiguous memory segment of O(B) bits). For simplicity, the model will not be a
RAM, but a cell probe model, i.e. we only count the number of memory accesses (the result
in [3] holds in a weaker RAM model). In particular, tiny data structures residing within
a single word can trivially be handled. We require that the query and update routines are
“memoryless”, i.e. know nothing about the set stored when they are started.

It has been known for some time how to implement dynamic dictionaries using O(n) words
[4]. This is O(n logm) bits, and since B = n log m

n
+ Θ(n), this is O(B + n logn) bits. That

is, the result in [4] yields:

Theorem 15 There exists a dynamic dictionary requiring O(B+n log n) bits, which supports
worst-case constant time lookup and amortized expected constant time insertion and deletion.

Note that the space consumption is O(B) for n = O(m1−ε), for constant ε > 0, hence we can
concentrate on n = Ω(m1−ε). (But in fact, all we will be using is that a pointer to a bit in
the representation can be stored in O(logn) bits). On the other hand, as already noticed,
for very small universes the dynamic dictionary problem is efficiently solvable:

Lemma 16 In a cell probe model with word size at least m, the dynamic dictionary problem
is solvable in space O(B).

The approach is to use a hash function to split the universe into parts, and handle each
“small universe” by a separate dynamic dictionary. The small universes are Ui = h−1

k,p{i},
i = 0, . . . , a − 1, where a = Θ(n/ logn). (The number of universes is chosen such that
pointers to all dictionaries can be stored in O(n) bits). We denote the corresponding subsets
by Si = S ∩ Ui. The quotient function qk,p is used for injectively mapping elements of Ui
to elements in the range {0, . . . , O(m/a)} (the dictionary handling Ui will work on these
values).

The history of the dynamic dictionary proceeds in phases. Each phase takes expected
O(n) time, and the number of insertions and deletions in a phase starting with a dictionary
of n elements is n/2. At the beginning of each phase, the entire dictionary is rebuilt (in
expected O(n) time). Each small dictionary is given twice as much space as it uses. If it
runs out of space, it is moved and given twice as much space in the upper, unused memory
area. This guarantees that the total space used at any time is O(1) times the space occupied
by the dictionaries.

If we handle each universe by a dictionary of the kind given by Theorem 15, the total
space consumption is O(B+

∑
i |Si| log |Si|) bits (using Lemma 1). We now investigate when

this can be made O(B). Let S̃ be the set of all elements which are in the dictionary during
some phase, starting with n elements; we have the following:

Lemma 17 Let p be a prime such that m < p < 2m. Consider the sets S̃i = S̃ ∩ h−1
k,p{i}.

For at least half the choices of k ∈ {1, . . . , p− 1} we have:
∑

i |S̃i| log |S̃i| = O(n log logn).

13

Proof. By the results in [6], for at least half the choices of k we have
∑

i |S̃i|2 = O(|S̃|2/a) =
O(n logn). This means that the number of S̃i of size more than log n is O(n/ logn), so these
sets contribute only O(n) to the sum. 2

Therefore, with probability at least 1/2 the choice of hash function is “good”. With proba-
bility at most 1/2, the inequality of Lemma 17 fails to hold at some time during the phase.
In this case a new hash function is chosen, and everything is rebuilt. The expected time for
a phase is therefore O(n). We have arrived at:

Proposition 18 There exists a dynamic dictionary requiring O(B + n log log n) bits, which
supports worst-case constant time lookup and amortized expected constant time insertion and
deletion.

This is O(B) bits when n = O(m/ logεm), for constant ε > 0.
In order to deal with the case n = Ω(m/ logεm), each small universe is split into

log n/ log logn “tiny universes” using another hash function. Again, all hash functions and
pointers to the dictionaries of the tiny universes use O(n) bits, since the entire data structure
for the small universe has size logO(1) n. Now the size of each tiny universe is m log log n/n,
which is logεm log log n and hence less than one word. So Lemma 16 can be used to handle
the tiny dictionaries. The analysis of this is similar to that leading to Proposition 18, but
now on two levels (each small dictionary has phases, etc.). We do not go into details, but
just state

Theorem 19 There exists a dynamic dictionary requiring O(B) bits, which supports worst-
case constant time lookup and amortized expected constant time insertion and deletion in a
cell probe model.

5 Conclusion

We have seen that for the static dictionary problem it is possible to come very close to
the information theoretic minimum, while retaining constant lookup time. The important
ingredient in the solution is the concept of quotienting. Thus, the existence of an efficiently
evaluable corresponding quotient function is a good property of a hash function. It is also
crucial for the solution that the hash function used hashes U quite evenly to the buckets.

It would be interesting to determine the exact redundancy necessary to allow constant
time lookup. In particular, it is remarkable that no lower bound is known, without the
restrictions mentioned in the introduction. A lower bound in a cell probe model (where
only the number of memory cells accessed is considered) would be interesting. As for upper
bounds, a less redundant way of mapping the elements of the virtual table to consecutive
memory locations would immediately improve the asymptotic redundancy of our scheme.
The idea of finding a replacement for the hk,p hash function, which can hash to a smaller
“virtual table” or be 1-1 on a larger subset of S will not bring any improvement, because of
a very sharp rise in the memory needed to store a function which performs better than hk,p.

14

References

[1] L. Adleman and M. Huang. Recognizing primes in random polynomial time. In Alfred Aho,
editor, Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pages 462–
469, New York City, NY, May 1987. ACM Press.

[2] A. Brodnik and J. I. Munro. Membership in constant time and almost minimum space. To
appear in SIAM Journal on Computing.

[3] A. Brodnik and J. I. Munro. Membership in constant time and minimum space. Lecture Notes
in Computer Science, 855:72–81, 1994.

[4] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer Auf Der Heide, Hans
Rohnert, and Robert E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM
Journal on Computing, 23(4):738–761, August 1994.

[5] Faith Fich and Peter Bro Miltersen. Tables should be sorted (on random access machines). In
Algorithms and data structures (Kingston, ON, 1995), pages 482–493. Springer, Berlin, 1995.

[6] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with O(1)
worst case access time. J. Assoc. Comput. Mach., 31(3):538–544, 1984.

[7] D. R. Heath-Brown and H. Iwaniec. On the difference between consecutive primes. Invent.
Math., 55(1):49–69, 1979.

[8] Peter Bro Miltersen. Lower bounds for static dictionaries on RAMs with bit operations but no
multiplication. In Automata, languages and programming (Paderborn, 1996), pages 442–453.
Springer, Berlin, 1996.

[9] Jeanette P. Schmidt and Alan Siegel. The spatial complexity of oblivious k-probe hash func-
tions. SIAM J. Comput., 19(5):775–786, 1990.

[10] Robert Endre Tarjan and Andrew Chi Chih Yao. Storing a sparse table. Communications of
the ACM, 22(11):606–611, November 1979.

[11] Andrew Chi Chih Yao. Should tables be sorted? J. Assoc. Comput. Mach., 28(3):615–628,
1981.

15

Recent BRICS Report Series Publications

RS-98-28 Rasmus Pagh. Low Redundancy in Dictionaries withO(1)
Worst Case Lookup Time. November 1998. 15 pp.

RS-98-27 Jan Camenisch and Markus Michels. A Group Signature
Scheme Based on an RSA-Variant. November 1998. 18 pp. Pre-
liminary version appeared in Ohta and Pei, editors,Advances
in Cryptology: 4th ASIACRYPT Conference on the Theory and
Applications of Cryptologic Techniques, ASIACRYPT ’98 Pro-
ceedings, LNCS 1514, 1998, pages 160–174.

RS-98-26 Paola Quaglia and David Walker.On Encodingpπ in mπ. Oc-
tober 1998. 27 pp. Full version of paper to appear inFounda-
tions of Software Technology and Theoretical Computer Science:
18th Conference, FCT&TCS ’98 Proceedings, LNCS, 1998.

RS-98-25 Devdatt P. Dubhashi.Talagrand’s Inequality in Hereditary Set-
tings. October 1998. 22 pp.

RS-98-24 Devdatt P. Dubhashi. Talagrand’s Inequality and Locality in
Distributed Computing. October 1998. 14 pp.

RS-98-23 Devdatt P. Dubhashi.Martingales and Locality in Distributed
Computing. October 1998. 19 pp.

RS-98-22 Gian Luca Cattani, John Power, and Glynn Winskel.A Cate-
gorical Axiomatics for Bisimulation. September 1998. ii+21 pp.
Appears in Sangiorgi and de Simone, editors,Concurrency
Theory: 9th International Conference, CONCUR ’98 Proceed-
ings, LNCS 1466, 1998, pages 581–596.

RS-98-21 John Power, Gian Luca Cattani, and Glynn Winskel.A Rep-
resentation Result for Free Cocompletions. September 1998.
16 pp.

RS-98-20 Søren Riis and Meera Sitharam.Uniformly Generated Submod-
ules of Permutation Modules. September 1998. 35 pp.

RS-98-19 Søren Riis and Meera Sitharam.Generating Hard Tautologies
Using Predicate Logic and the Symmetric Group. September
1998. 13 pp.

RS-98-18 Ulrich Kohlenbach. Things that can and things that can’t be
done in PRA. September 1998. 24 pp.

