
B
R

IC
S

R
S

-98-24
D

.P.D
ubhashi:

T
alagrand’s

Inequality
and

Locality
in

D
istributed

C
om

puting

BRICS
Basic Research in Computer Science

Talagrand’s Inequality and Locality in
Distributed Computing

Devdatt P. Dubhashi

BRICS Report Series RS-98-24

ISSN 0909-0878 October 1998



Copyright c© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/98/24/



Talagrand’s Inequality and Locality in
Distributed Computing ∗

Devdatt P. Dubhashi †

Department of Computer Science and Engg.

Indian Institute of Technology, Delhi
Hauz Khas, New Delhi 110016

INDIA
emaildubhashi@cse.iitd.ernet.in

October 6, 1998

Abstract

We illustrate the use of Talagrand’s inequality and an extension
of it to dependent random variables due to Marton for the analysis
of distributed randomised algorithms, specifically, for edge colouring
graphs.

1 Introduction

The aim of this paper is to advocate the use of Talagrand’s isoperimetric
inequality [10] and an extension of it due to Marton [5, 6] as a tool for
the analysis of distributed randomized algorithms that work in the locality

∗To appear in the Second International Workshop on Randomization and Approxi-
mation Techniques in Computer Science (RANDOM 98) Barcelona, Spain, October 8–10
1998.
†Work partly done while at BRICS, Department of Computer Science, University of

Aarhus, Denmark. Partially supported by the ESPRIT Long Term Research program of
the EU under contract No. 20244 (ALCOM–IT)
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paradigm. Two features of the inequality are crucially used in the analysis:
first, very refined control on the influence of the underlying variables can be
exercised to get significantly stronger bounds by exploiting the non–uniform
and asymmetric conditions required by the inequality (in contrast to previous
methods) and second, the method, using an extension of the basic inequality
to dependent variables due to Marton [6] succeeds in spite of lack of full
independence amongst the underlying variables. This last feature especially
makes it a particularly valuable tool in Computer Science contexts where lack
of independence is omnipresent. Our contribution is to highlight the special
relevance of the method for Computer Science applications by demonstrating
its use in the context of a class of distributed computations in the locality
paradigm.

We give a high probability analysis of a distributed algorithm for edge–
colouring a graph [8]. Apart from its intrinsic interest as a classical com-
binatorial problem, and as a paradigm example for locality in distributed
computing, edge colouring is also useful from a practical standpoint because
of its connection to scheduling. In distributed networks or architectures an
edge colouring corresponds to a set of data transfers that can be executed
in parallel. So, a partition of the edges into a small number of colour classes
– i.e. a “good” edge colouring– gives an efficient schedule to perform data
transfers (for more details, see [8, 2]). The analysis of edge colouring algo-
rithms published in the literature is extremely long and difficult and that in
[8] is moreover, based an a certain ad hoc extension of the Chernoff-Hoeffding
bounds. In contrast, our analysis is a very simple, short and streamlined ap-
plication of Talagrand’s inequalty, only two pages long.

In § 5, we outline how other edge and vertex colouring algorithms can also
be tackled by the same methods in a general framework. These examples are
intended moreover, as a dramatic illustration of the versatility and power of
the method for the analysis of locality in distributed computing in general.

2 Distributed Edge Colouring

Vizing’s Theorem shows that every graph G can be edge coloured sequentially
in polynomial time with ∆ or ∆+1 colours, where ∆ is the maximum degree
of the input graph (see, for instance, [1]).

It is a challenging open problem whether colourings as good as these
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can be computed fast in a distributed model. In the absence of such a
result one might aim at the more modest goal of computing reasonably good
colourings, instead of optimal ones. By a trivial modification of a well-known
vertex colouring algorithm of Luby it is possible to edge colour a graph using
2∆− 2 colours in O(logn) rounds (where n is the number of processors) [4].

We shall present and analyze a simple localised distributed algorithm that
compute near optimal edge colourings. The algorithm proceeds in a sequence
of rounds. In each round, a simple randomised heuristic is invoked to colour a
significant fraction of the edges successfully. The remaining edges are passed
over to succeeding rounds. This continues until the number of edges is small
enough to employ a brute–force method at the final step. For example, the
algorithm of Luby mentioned above can be invoked when the degree of the
graph becomes small i.e. when the condition ∆� log n is no longer satisfied.

First the algorithm invokes a reduction to bipartite graphs by a standard
procedure, see [8]. We describe the action carried out by the algorithm in a
single round starting with a bipartite graph. At the beginning of each round,
there is a palette of fresh new available colours, [∆], where ∆ is the maximum
degree of the graph at the current stage.

Algorithm P1: There is a two step protocol:

• Each bottom vertex, in parallel, makes a proposal independently of
other bottom vertices by assigning a random permutation of the colours
to their incident edges.

• Each top vertex, in parallel, then picks a winner out of every set of
incident edges that have the same colour. Tentative colours of winner
edges become final.

• The losers– edges who are not winners– are decoloured and passed to
the next round.

It is apparent that the algorithm is truly distributed. That is to say,
each vertex need only exchange information with the neighbours to execute
the algorithm. This and its simplicity makes the algorithms amenable for
implementations in a distributed environment. Algorithm P is exactly the
algorithm used in [8].

1for permutation.
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We focus all our attention in the analysis of one round of the algorithm.
Let ∆ denote the maximum degree of the graph at the beginning of the round
and ∆′ denote the maximum degree of the leftover graph. One can easily
show that E[∆′ | ∆] ≤ β∆, for some constant 0 < β < 1. The goal is to show
that this holds with high probability. This is done in § 4 after the relevant
tools – the concentration of measure inequalities – are introduced in the next
section.

3 Concentration of Measure Inequalities

Talagrand’s isoperimetric inequality for the concentration of measure involves
a product space Ω =

∏
i∈[n] Ωi, equppied with the product measure P =∏

i∈[n] Pi (where the Pis are arbitrary measures on the individual spaces)
and, crucially. a certain notion of “convex distance” between a point x ∈ ω
and a subset A ⊆ Ω:

dT (x,A) := sup∑
α2
i=1

min
y∈A

∑
xi 6=yi

αi. (1)

(The sup is over all reals α1, . . . , αn satisfying the stated condition.) For sets
A,B ⊆ Ω, set dT (A,B) := minx∈A dT (x,B).

Talagrand’s inequality [10] is:

P (A)P (B) ≤ exp
(
−d2

T (A,B)/4
)
, A, B ⊆ Ω. (2)

In an alternative elegant approach, Marton [5, 6] shows that this inequal-
ity is in turn a consequence of certain information–theoretic inequalities.
This requires an analgoue to (1) for distributions. Note that for a one point
set A = {y}, the distance (1) is

dT (x, y) = sup∑
α2
i=1

∑
xi 6=yi

αi.

Now, for distributions P and Q on Ω, we define dT (P,Q) as the minimum of
E[dT (X, Y )] over all joint distributions of X and Y with marginals P and Q

respectively.
We also require the notion of conditional or relative entropy H(P | Q) of

distribution P with respect to Q:

H(P | Q) :=
∑
ω∈Ω

P (ω) log
P (ω)

Q(ω)
. (3)
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(This is also sometimes called the informational divergence and denoted
D(P ||Q).)

The information theoretic inequality is: if P is a product measure, then
for any other measure Q,

dT (P,Q) ≤
√

2H(P | Q). (4)

One can show that the concentration of measure inequality (2) is a conse-
quence of (4).

Marton generalises (4) to the case when the underlying measure P is not
the product measure (i.e. the corresponding variables are not independent).
The setting is very similar to that in martingale inequalities where the un-
derlying variables are “exposed” one by one. Suppose k ≤ n and xk1, x̂

k
1 differ

only in the last co–ordinate:

xk−1
1 = x̂k−1

1 , xk 6= x̂k.

We want to consider the corresponding conditional distributions on the re-
maining variables, once the first k variables are fixed to the values xk1 and
x̂k1 respectively. Let us consider a coupling of the two conditional distribu-
tions P (· | Xk

1 = xk1) and P (· | Xk
1 = x̂k1) and denote this by πnk (· | xk1, x̂k1).

This can be thought of as the joint distribution of a pair of random variable
sequences, (Y n

k , Ŷ
n
k ).

Now for k < i ≤ n, define the “influence” coefficients vi,k(x
k
1, x̂

k
1) by:

vi,k(x
k
1, x̂

k
1) :=

∑
yn
k

(
πnk [Ŷi 6= yi | Y n

k = ynk ]
)2
P [Y n

k = ynk | Y k
1 = xk1]

1/4

(5)

Put vk,k(x
k
1, x̂

k
1) := 1. Set

vi,k := max
xk1 ,x̂

k
1

vi,k(x
k
1, x̂

k
1).

Now define
U := max

i

∑
1≤`≤i

v2
i,`, (6)

and
V := max

k

∑
k≤i≤n

v2
i,k. (7)
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Then the generalisation of (4) is [6, Theorem3.1]:

dT (P,Q) ≤
√
UV

√
2H(P | Q). (8)

As an example of this inequality, consider the space of the m–fold product
of the symmetric group Sn. The measure on each component space is the
uniform measure and on the product space we take the product measure.
To compute the coefficients (5), let us expose the variables component by
component. Having exposed all variables in the first t < m components,
suppose we have further exposed k < n variables in the t + 1st component.
We take the natural coupling that simply swaps the permutation in this
component and is the identity everywhere else. For this coupling, an easy
calculation shows that

vi,k(x
k
1, x̂

k
1) = 1/

√
n− k,

for k within this component and zero everywhere else. Thus

U = max
i

∑
`<i

v2
i,`

= max
i

∑
1≤`<i

1

n− `
= Hn,

where Hn ≈ log n is the nth Harmonic number and

V = max
k

∑
i>k

v2
i,`

= max
k

∑
i>k

1

n− k
= 1.

Hence on the product space Smn of the m–fold product of the symmetric
group, we get the inequality:

dT (P,Q) ≤
√

log n
√

2H(P | Q) (9)

Actually Talagrand is able to prove a stronger result on the symmetric
group. For the m–fold product of the symmetric group, he proves:

P (A)P (B) ≤ exp
(
−d2

T (A,B)/16
)

(10)
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There is a simple packaged form in which it is often convenient to apply
these inequalities. In this form, the two components of the analysis are
separated from each other:

• The probabilistic component which gives a concentration of measure
inequality.

• The smoothness of the function of interest.

In applications, the concentration of measure inequality is taken ready–made
without extra effort and one has only to verify the smoothness conditions on
the function, which is often very easy.

Theorem 1 Let f be a real–valued function on a product space Ω =
∏
i∈[n] Ωi

with a measure P (which is not necessarily with product measure). Suppose
for each x ∈ Ω, there are reals αi(x), i ∈ [n] such that any one of the following
conditions holds:

f(x) ≤ f(y) +
∑
xi 6=yi

αi(x), for all y ∈ Ω, (11)

or,
f(x) ≥ f(y)−

∑
xi 6=yi

αi(x), for all y ∈ Ω. (12)

• If a measure concentration inequality holds in the form

P (A)P (B) ≤ exp
(
−d2

T (A,B)/α
)
, (13)

for some α > 0, and uniformly for all x ∈ Ω,∑
i

α2
i (x) ≤ c, (14)

then we have the following concentration result for f around its median
value M[f ]:

P [|f − M[f ]| > t] ≤ 2 exp

(
− t

2

αc

)
. (15)
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• If a measure concentration inequality holds in the form

dT (P,Q) ≤ α
√

2H(P | Q) (16)

for some α > 0 and also the coefficients αi(x) satisfy

E[
∑
i

α2
i (X)] ≤ c, (17)

then, we have the following concentration result for f around its mean:

P [|f − E[f ]| > t] ≤ 2 exp

(
− t

2

αc

)
. (18)

Note two features of the condition (11)or (12): first the asymmetry: we only
need one of these one–sided versions to hold. Second its non–uniformity: the
coefficients αi are allowed to depend on x. Both these features contribute to
the power of the inequalities in applications.

4 High Probability Analyses

4.1 Top vertices

The analysis is particularly easy when v is a top vertex in Algorithm P. For,
in this case, the incident edges all receive colours independently of each other.
This is exactly the situation of the classical balls and bins experiment: the
incident edges are the “balls” that are falling at random independently into
the colours that represent the “bins”. Let Te, e ∈ E, be the random variables
taking values in [∆] that represent the tentative colours of the edges. Then
the number of edges unsuccessfully coloured around v (and hence the new
degree) is a function f(Te, e ∈ N1(v)), where N1(v) denotes the set of edges
incident on v. It is easily seen that this function has the Lipschitz property
with constant 1: changing only one argument while leaving the others fixed
only changes th evalue of f by at most 1. Thus:

• We can take all coeffcients αi = 1 in (11).

• Since the variables Te, e ∈ N1(v) are independent, we can apply the
Talagrand inequality (2)for the product spaces [∆]N

1(v) when v is a
“top” vertex.
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Hence, applying the first part of Theorem 1, we get the following sharp
concentration result easily:

Theorem 2 Let v be a top vertex in algorithm P and let f be the number of
edges around v that are successfully coloured in one round of the algorithm.
Then,

Pr[|f − E[f ]| > t] ≤ 2 exp

(
−t2
4∆

)
,

For t := ε∆ (0 < ε < 1), this gives an exponentially decreasing probability
for deviations around the mean. If ∆ � logn then the probability that
the new degree of any vertex deviates far from its expected value is inverse
polynomial, i.e. the new max degree is sharply concentrated around its mean.

4.2 Bottom Vertices

The analysis for the “bottom” vertices in Algorithm P is more complicated
in several respects. It is useful to see why so that one can appreciate the
need for a more sophisticated analysis.

To start with, one could introduce an indicator random variable Xe for
each edge e incident upon a bottom vertex v. These random variable are not
independent however. Consider a four cycle with vertices v, a, w, b, where v
and w are bottom vertices and a and b are top vertices. Let’s refer to the
process of selecting the winner (step 2 of the algorithm P) as “the lottery”.
Suppose that we are given the information that edge va got tentative colour
red and lost the lottery— i.e. Xva = 0— and that edge vb got tentative colour
green. We’ll argue intuitively that given this, it is more likely that Xvb = 0.
Since edge va lost the lottery, the probability that edge wa gets tentative
colour red increases. In turn, this increases the probability that edge wb

gets tentative colour green, which implies that edge vb is more likely to lose
the lottery. So, not only are the Xe’s not independent, but the dependency
among them is particularly malicious.

One could hope to bound this effect by using Talagrand’s inequality in
it simplest form. This is also ruled out however, for two reasons. The first
is that the tentative colour choices of the edges around a vertex are not
independent. This is because the edges incident ona vertex are assigned a
permutation of the colours. The second reason applies even if we pretend
that all edges act independently. The new degree of v, a bottom vertex
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in algorithm P is a function f = f(Te, e ∈ N(v)), where N(v) is the set
of edges at distance at most 2 from v. Thus f depends on as many as
∆(∆ − 1) = Θ(∆2) edges. Even if f is Lipshitz with constants di = 1, this
is not enough to get a strong enough bound because d =

∑
i d

2
i = Θ(∆2).

Applying Theorem 1 as above would give the bound

Pr[|f − E[f ]| > t] ≤ 2 exp

(
− t2

Θ(∆2)

)
.

This bound however is useless for t = εE[f ] since E[f ] ≈ ∆/e.
We will use Marton’s extension of Talagrand’s inequality to handle the

dependence and we shall use the asymmetric and non–uniform nature of the
condition (11) to control the effects of the individual random choices much
more effectively.

Let N1(v) denote the set of “direct” edges– i.e. the edges incident on v–
and let N2(v) denote the set of “indirect edges” that is, the edges incident
on a neighbour of v. Let N(v) := N1(v)

⋃
N2(v). The number of edges

unsuccessfully coloured at vertex v is a function f(Te, e ∈ N(v)).
For a tentative colouring Te = ce, choose the coefficients αi(c) as follows.

Recall that edges compete in a “lottery” at the top vertices: for each colour,
one “winner” is picked by a top vertex out of all the edges incident on it that
receive the same tentative colour. Choose αi to be 1 for all unsuccessfully
coloured edges around v and for all “winners” (w, z) such that the edge
(v, w) took part in the lottery that (w, z) won (hence (w, z) was responsible
for (v, w) being unsuccessful and serves as a witness for this fact). All other
αi are 0. Thus at most 2∆ edges have non–zero αi values, and hence

∑
i α

2
i ≤

2∆. To see that (11) holds, let us look at an unsuccessfully coloured edge e
in the colouring x. If it is also unsuccessful in the colouring y, it is counted
in the term f(y). Otherwise, at least one of e or its “witness” e′ must be
coloured differently in y and this will be counted in the second term in the
right–hand side.

The underlying space is S
N̄2(v)
∆ where N̄2(v) := {u | d(u, v) = 2}⋃{v}.

Now applying the measure concentration result for the m–fold product of
the symmetric group S∆ from Marton’s inequality, namely (9) and using the
second part of Theorem 1, we arrive at the following sharp concentration
result:

Theorem 3 Let v be a bottom vertex in algorithm P and let Let f be the
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number of edges successfully coloured around v in one stage of either algo-
rithm. Then,

Pr[|f − E[f ]| > t] ≤ 2 exp

(
− t2

2∆
√

log ∆

)
.

For t = ε∆, this gives a probability that decreases almost exponentially in
∆. As remarked earlier, if ∆� log n, this implies that the new max degree
is sharply concentrated around the mean (with failure probability roughly
inverse polynomial in n).

One can improve this by using the stronger inequality (10) for the sym-
metric group. This gives the bound:

Pr[|f − M[f ]| > t] ≤ 2 exp

(
− t2

32∆

)
.

We first gave the result with Marton’s inequality because although it gives
a somewhat weaker bound in this example, it actually illustrates a general
method with wider applicability.

5 A General Framework

The method used in the last section is actually applicable in a much more
general way to the analysis of a wide range of randomised algorithms in a
distributed setting. In this section, we outline a fairly general framework in
which such concentration results can be directly inferred. Let f be a function
to be computed by a randomised local algorithm in a distributed environment
respresented by a graph G = (V,E). We shall lay down conditions on f
and on algorithms computing f locally that will enable the methods in the
previous section to be extended to to derive a sharp concentration result on
f . In particular, we indicate how the edge colouring algorithm above [8] as
well as the edge and vertex colouring algorithms from [2, 3] follow directly
as well as the analysis of a vertex colouring process in [7].

Suppose that f is a function determined by each vertex v of the graph
assigning labels `(v) to itself and labels `(v, e), e ∈ N(v) to its incident edges
by some randomised process. In the edge colouring problem, the labels on the
edges are their colours (we may assume for instance that the lower numbered
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vertex assigns the colour to an incident edge) and the vertex labels are empty;
in the vertex colouring problems, the vertex labels are the colours and the
edge labels are empty.

The two necessary and sufficient conditions for sharp concentration of f
are as follows:

L: Locality of the function: The function f is Lipschitz : changing any
one label changes the value of f by at most 1. Furthermore, following
Spencer [9], f is h–certifiable for some function h : R → R i.e. for
each x, there is a subset I = I(x) (the “certificate”) of the labels of
size at most h(f(x)) such that for any other y agreeing with x on I,
f(y) ≥ f(x). In edge colouring, the function f is the number of edges
unsuccessfully coloured around a vertex. It is clearly Lipschitz. Also it
is h certifiable for h(x) = 2x since each unsuccessfully coloured vertex
can be attributed to one other adjacent edge of the same colour.

M: Concentration of Measure in the Probability Space: There is
concentration of measure in the underlying space in one of the two
forms (13) or (16) with some positive coefficient α. Marton’s inequality
gives a method for determining this coefficient as α =

√
UV for U and

V determined by (5) through (7). Two particularly important cases in
which this obtains are the following. First we assume that the vertex
label assigned by a vertex is independent of the edge labels it assigns
and that each vertex acts independently of the others.

I: The labels `(v, e) assigned by a vertex to its incident edges are independent
of each other. In this case, the algorithm defines a fully independent
probability space and Talagrand’s inequality (2) applies.

S: The labels `(v, e) assigned by a vertex to its incident edges are given by a
permutation distribution. In this case, the algorithm is symmetric with
respect to the labels. Marton’s theorem yields measure concentration
in the form (16) with α =

√
log n and Talagrand’s inequality for the

symmetric group gives measure concentration in the form (13) with
α = 16.

The condition I obtains in the algorithms in [3, 7] while the condition S
obtains in the algorithm of [8] discussed in detail above.
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Theorem 4 Let f be a Lipschitz function which is h–certifiable computed
by an algorithm satisfying the measure concentration property M for some
α > 0. Then Then

Pr[|f − M[f ]| > t] ≤ 2 exp

(
− t2

αh(M[f ])

)
.

In particular if the algorithm satisfies either full independence I or is sym-
metric, satisfying S, then we have the concentration result:

Pr[|f − M[f ]| > t] ≤ 2 exp

(
− t2

ch(M[f ])

)
,

where the constant c is 4 for the independent case and 16 for the symmetric
case.
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