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Generating hard tautologies using predicate
logic and the symmetric group

Søren Riis∗†

Meera Sitharam ‡§

September 1998

Abstract

We introduce methods to generate uniform families of hard
propositional tautologies. The tautologies are essentially gener-
ated from a single propositional formula by a natural action of
the symmetric group Sn.

The basic idea is that any Second Order Existential sentence
Ψ can be systematically translated into a conjunction φ of a finite
collection of clauses such that the models of size n of an appro-
priate Skolemization Ψ̃ are in one-to-one correspondence with the
satisfying assignments to φn: the Sn-closure of φ, under a nat-
ural action of the symmetric group Sn. Each φn is a CNF and
thus has depth at most 2. The size of the φn’s is bounded by
a polynomial in n. Under the assumption NEXPTIME 6= co-
NEXPTIME, for any such sequence φn for which the spectrum
S := {n : φn satisfiable} is NEXPTIME-complete, the tautologies
¬φn 6∈S do not have polynomial length proofs in any propositional
proof system.

Our translation method shows that most sequences of tau-
tologies being studied in propositional proof complexity can be
systematically generated from Second Order Existential sentences
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2Part of this work was done while visiting the Fields Institute, Toronto, Canada
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and moreover, many natural mathematical statements can be con-
verted into sequences of propositional tautologies in this manner.

We also discuss algebraic proof complexity issues for such se-
quences of tautologies. To this end, we show that any Second Or-
der Existential sentence Ψ can be systematically translated into
a finite collection of polynomial equations Q̄ = 0 such that the
models of size n of an appropriate skolemization Ψ̃ are in one-to-
one correspondence with the solutions to Q̄n = 0: the Sn-closure
of Q̄ = 0, under a natural action of the symmetric group Sn. The
degree of Q̄n is the same as that of Q̄, and hence is independent
of n, and the number of variables is no more than a polynomial in
n. Furthermore, using results in [19] and [20], we briefly describe
how, for the corresponding sequences of tautologies φn, the rich
structure of the Sn closed, uniformly generated, algebraic systems
Q̄n has profound consequences on on the algebraic proof complex-
ity of φn.

I Introduction

Algebraic deductive systems have been used in automatic (First Order)
theorem proving for several decades. Roughly speaking, these systems
translate the axioms (First Order logic sentences), and the theorem to
be proved, into polynomial equations, in such a way that the proof of the
theorem can be obtained as a proof of membership in the ideal generated
by these polynomial equations. Several algorithms for such equational
reasoning have been developed, based on Cylindrical Algebraic Decompo-
sition, Hilbert’s Nullstellensatz, Gröbner bases, Wu-Ritt Characteristic
sets, etc., and have turned out to be effective, e.g, for geometry theorem
proving [6], [9], [12], [21]. Many of these algebraic deductive systems
have the advantage of being automatizable in that the time taken to find
the proof is strongly related to the length of the proof.

More recently, algebraic deductive systems have been employed in the
context of proving lower bounds on the proof complexity of propositional
tautologies [4], [5], [7], [8]. Showing the nonexistence of polynomial (in
n) length proofs for a sequence of tautologies φn, is directly linked to the
NP 6= co-NP question: the link becomes stronger with the strength of
the proof system used.

In this paper, we first give a systematic method of translating an Ex-
istential Second Order sentence Ψ into a sequence of depth 2 polynomial
size propositional formulae φn such that φn is satisfiable (or ¬φn is not
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a tautology), if and only if a Ψ has a model of size n.
We give an analogous algebraic version of this: a systematic method

of translating an Existential Second Order sentence Ψ into a polynomial
system Q̄ such that the Sn-closure Q̄n of Q̄ has a solution if and only if
Ψ has a model of size n. Since Q̄n is uniformly generated by Sn-closure,
its degree is independent of n, and its number of variables is bounded by
a polynomial in n.

More specifically, the system Q̄ is based on an appropriate (non-
unique) Skolemization Ψ̃ of Ψ, and the models M |= Ψ̃ of size n are
directly related to the ideal IΨ,n generated by the polynomials in Q̄n In
particular, there is a 1-1 correspondence between models of Ψ̃ of size n
and points on the (discrete) algebraic variety defined by IΨ,n.

Krajicek has pointed out (personal communication) that Paris and
Wilkie applied a translation procedure very similar to ours. This is in-
deed correct. They introduced this translation in their proof of The-
orem 26 (see [14]) in the setting of non-standard models for Bounded
Arithmetic. The Paris-Wilkie translation shows how bounded first order
formulas can be translated into a sequence of polynomial size bounded
depth propositional formulas (see for example [10] for a definition of this).
Paris and Wilkie do not consider the case where one is translating formu-
las involving uninterpreted function symbols. Actually in our case both
function symbols as well as relational symbols are uninterpreted. This
is crucial for getting the Sn-closure properties we are using. Our idea of
introducing uninterpreted functions (via Skolemization) plays a crucial
role. Without this idea we would NOT get a sequence of polynomial
equations of bounded degree. Neither would we get a translation leading
to a finitely generated Sn-closed sequence of satisfiability problems.

Our translation shows that many natural mathematical problems can
be converted into questions of propositional satisfiability, and thence to
questions about the existence of solutions to polynomial equations. For
example, the question of whether there is a nilpotent group of size n is
identical to the question of whether there is a model of size n for the
Existential Second Order statement “the universe is a nilpotent group”.
Clearly, many natural problems in algebra, number theory, graph theory,
or combinatorics can be phrased in this manner.

Our translation highlights the fact that many tautologies used for
showing algebraic proof complexity lower bounds, such as various match-
ing principles, versions of the pigeonhole principle, and primality princi-
ple [4], [5], [7], [11] can indeed be obtained from natural Second Order
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Existential statements. We illustrate this using examples.
More significantly, we introduce a method to systematically generate

hard propositional tautologies from Second Order Existential sentences.
The method relies on sentences that have a hard spectrum and we show
how to generate uniform sequences of tautologies that have no polynomial
length proofs provided NEXPTIME 6= co-NEXPTIME.

In addition, we briefly sketch how this method works for algebraic
proof systems such as Nullstellensatz and Polynomial Calculus proof sys-
tems (unconditionally, with no additional assumptions from complexity
theory). The sequences of propositional formulae φn obtained using our
translation have a rich algebraic structure due to the symmetries in the
corresponding polynomial systems. This symmetry permits the repre-
sentation theory of Sn to be used in analyzing the proof complexity of
the corresponding tautologies, in various algebraic deductive systems.

Ajtai was the first to consider and analyse uniform Sn-closed fami-
lies of linear equations [1], [2], [3]. In [19], [20] we prove various new
and rather deep theorems related to algebraic proof complexity. These
theorems strongly relies on the fact that our translation gives finitely
generated Sn-closed systems of propositional formulas (polynomial equa-
tions).

II The Translation

We first develop the required notation and definitions.

Let ∃r denote the second order existential quantifier for r-ary relations.
Let ∃′s denote the Second Order Existential quantifier for s-ary functions.
Let ∃ and ∀ denote the first order quantifiers.

A pure atomic formula is of the form: R(t1, . . . , tl) or f(t1, t2, . . . , tl) = s
or t = s where R is an l-ary relation and f is an l-ary function and
s, t, t1, . . . , tl are (not necessarily distinct) variables.

A Second Order Existential sentence Ψ is strict (recalling the class
MaxSNP [13]) if it is of the following form:

∃r1R1 . . .∃ruRu∃′s1
f1 . . .∃′sv

fv∀z1, . . . , zw η(~z)

where η(~z) := η(z1, z2, . . . , zw) is a Boolean combination of pure atomic
formulas. The strongest results are achieved if we assume η is in Con-
junctive Normal Form. Let Ψn denote the sentence which is achieved
from Ψ by restricting all quantifiers to the universe {1, 2, . . . , n}.
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For an arbitrary Second Order Existential sentence (on prenex normal
form)

Ψ = ∃r1R1 . . .∃ruRu∃′s1
f1 . . .∃′sv

fv η̃

where η̃ :≡ ∀z1∃y1 . . .∀zw∃yw η(z1, y1 . . . , zw, yw); a corresponding strict
version Ψ̃ is obtained by Skolemization: we eliminate all first order exis-
tential quantifiers by introducing Skolem functions g such that

Ψ̃ := ∃r1R1 . . .∃ruRu∃′s1
f1 . . .∃′sv

fv∃′1g1 . . .∃′wgwη′

where η′ ≡ η(z1, g1(z1) . . . , zw, gw(z1, . . . , zw)). It should be noticed that
different Skolemizations in general might lead to different Ψ̃.

Next, consider the ring IF[xj,ej : ej ∈ {1, . . . , n}rj , 1 ≤ j ≤ u] of polyno-
mials over a field IF and the vector space Πn,d spanned by those poly-
nomials of degree at most d. Notice that this vector space is closed
under the following action of the symmetric group Sn: Q(xj,ej ) ∈ Πn,d ⇒
∀π ∈ Snπ(Q(xj,ej)) ∈ Πn,d, where π(Q(xj,ej)) := Q(xj,π(ej)), and for
ej := (e1,j , . . . , erj ,j) ∈ {1, . . . , n}rj , π(ej) is the natural action defined
as: (π(e1,j), . . . , π(erj ,j)).

In general, given a set of polynomials Q̄ where Q̄ := {Q1, . . . , Qm}, each
Qi ∈ Πl,d, for some fixed l, we say that a sequence of polynomial systems
Q̄n is Sn-closed and uniformly generated from Q̄, if for all n, Q̄ ⊆ Q̄n,
and Qi ∈ Q̄n ⇒ π(Qi) ∈ Q̄n ∀π ∈ Sn.
We are now ready to state our translation result.

Theorem 1 Let Ψ be a Second Order Existential Sentence and let Ψ̃ be
a strict version obtained by a (non-unique) Skolemization. Then there
is a sequence of propositional formulae φΨ̃,n and a polynomial system

Q̄Ψ̃ ∈ Πl,d, for some constants l and d depending only on Ψ, such that
the following hold.

1. Each φΨ̃,n is a CNF (i.e. conjunctions of disjunctions of literals
and negation of literals) such that there is a 1-1 correspondence
between the models of Ψ̃ of size n and satisfying truth assignments
to φΨ̃,n.

2. For each n, the conjunction of clauses that form φΨ̃,n is closed
under the group action Sn and is generated by closing a fixed, finite
set φ of clauses under a natural action of the symmetric group Sn.
(Some of these clauses are formal clauses containing n literals).
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3. Let Q̄Ψ̃,n ∈ Πn,d be a Sn-closed sequence of polynomial systems

uniformly generated from Q̄Ψ̃ (hence Q̄Ψ̃,n has degree d independent
of n, and has a number of variables that is polynomially bounded in
n). There is a 1-1 correspondence between the models of Ψ̃ of size
n and the solutions to Q̄Ψ̃,n = 0.

4. Let φΨ̃,n be as above. Then Ψ does not have a model of size n if
and only if φΨ̃,n not is satisfiable if and only if ¬φΨ̃,n is a tautology

if and only if there is no solution to Q̄Ψ̃,n = 0

Proof. Let Ψ̃ be a strict Second Order Existential sentence in which the
quantifier-free first order part η is in CNF. We translate the sequence Ψ̃n

into a sequence of propositional formulas as follows:
For given n we fix the collection of Boolean variables which consists

of:
q

(1)
i1,i2,...,ir1

, . . . , q
(u)
i1,i2,...,iru

as well as p
(1)
i1,i2,...,is1 ,is1+1

, . . . , p
(v)
i1,i2,...,isv+1

where

each ij ∈ {1, 2, . . . , n}.
Translate the sequence Ψ̃n into a sequence of propositional formulas

as follows:
For each selection i1, i2, . . . , iw ∈ {1, 2, . . . , n} we let γ := ηi1,i2,...,iw

denote the propositional formula which appears by performing the fol-
lowing operations.
(1) Replacing each zj in η by the number ij .

(2) Replace each atomic formula Rl(j1, j2, . . . , jrl) in γ by q
(l)
j1,j2,...,jrl

where

j1, . . . are numbers ∈ {1, 2, . . . , n} after performing the replacement in
(1).
(3) Replace each atomic formula fl(j1, j2, . . . , jsl) = jsl+1 in γ by

p
(l)
j1,j2,...,jrl ,jsl+1

where j1, . . . are numbers ∈ {1, 2, . . . , n} after performing

the replacement in (1).
Thus, removing the universal quantifier on the variables zi of η gives
us a conjunction of a set Cn of O(nw) CNF formulae of fixed length
independent of n. Notice that for any n, the set Cn can be obtained
uniformly by the natural action of Sn on the fixed set Cl of clauses,

where l ≤
u∑
j
ru +

v∑
j

(sv + 1).

To complete the process, we need to assert that the fm are functions,
i.e, that they take exactly one value. To do this, we first supplement the
set of fixed length formulae in Cn by additional simple clauses of the form
¬p(m)

i1,i2,...ism ,j
∨ ¬p(m)

i1,i2,...ism ,j
′, one for each j, j′ ∈ {1, 2, . . . , n} with j 6= j′
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and for each i1, i2, . . . ∈ {1, 2, . . . , n}. Thus for each n, the resulting
collection Dn of fixed length, CNF formulae can still be obtained by
Sn-closure of the fixed set Dl of formulae.

Finally to assert that the function fm takes at least 1 value, for each
and for each i1, i2, . . . ∈ {1, 2, . . . , n}, we need to include into the collec-

tion Dn formal clauses of the type ∨jp(m)
i1,i2,...ism ,j

. Such clauses vary with
n (as does the length), however, in a uniform manner. Again, for each n,
the resulting collection En of formal CNF formulae can still be obtained
by Sn-closure of the fixed set El of formal formulae.

Now φΨ̃,n is taken to be the conjunction This formula φΨ̃,n is a con-
junction of CNF’s and formal disjunctive clauses. in En. Thus (letting
n = l) φΨ̃,l can be reduced to a finite conjunction of formal clauses and
the clauses in φΨ̃,n are generated from these formal clauses by an appli-
cation of the symmetric group Sn. Hence φΨ̃,n is a conjunction of a set
of polynomially many clauses. Clearly, from any satisfying assignment
for φΨ̃,n we can read-off a model of Ψn.

Next we notice that the same idea can be used to produce a system
of polynomial equations, one for each clause in φΨ̃,n, over any given
field IF, by replacing each disjunction x ∨ y by the polynomial (1 −
x).(1− y), ¬x by the polynomial x and replacing the formal disjunction

∨jp(m)
i1,i2,...ism ,j

- arising from functions fm in Ψ̃ - by a formal sum of the

form Σj p
(m)
i1,i2,...,ism ,j

− 1. This replacement is not valid for general dis-
junctions, but works in this particular case due to the presence of the
other disjunctions ¬p(m)

i1,i2,...ism ,j
∨¬p(m)

i1,i2,...ism ,j
′, for each distinct pair j, j′.

Finally we add for each variable x the equation x2 − x = 0.
The closure under Sn ensures that different solutions to Q̄Ψ̃,n = 0

(that are not isomorphic under Sn) correspond to non-isomorphic models
of Ψ̃. In fact, the number of non-isomorphic models M |= Ψ̃n is inversely
related to the size of the ideal IΨ̃,n generated by the polynomials in Q̄.
Clearly the ideals IΨ̃,n are closed under Sn as well. Knowledge of IΨ̃,n

allows us uniquely to determine all models of Ψ̃n, since there is a 1-1
correspondence between models of Ψ̃n and points on the algebraic variety
defined by Iψ,n.

III Some Examples

Example (dense linear ordering)
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Fix the language L = L(R, f) where R is a binary relation symbol
and f is a binary function symbol. Consider the L-sentence: η ≡
(∀x, y, z (R(x, y)∧R(y, z)⇒ R(x, z))∧ (∀x, y(R(x, y)⇒ (¬R(y, x)∨x =
y))) ∧(∀x, y(R(x, y)∨R(y, x)∨x = y)) ∧∀x, y(R(x, y)⇒ R(x, f(x, y))∧
R(f(x, y), y)).

The sentence is a formalization of “R is a linear ordering whose dense-
ness is witnessed by f”. The sentence ∃R∃fη is a strict second order
existential sentence.

We show how the translation works on this example. Rewrite the
L(R, f)-sentence as: η ≡ ∃R∃f ∀i, j, k[(¬R(i, j) ∨¬R(j, k) ∨ R(i, k))∧
(¬R(i, j) ∨ ¬R(j, i) ∨ i = j) ∧(R(i, j) ∨ R(j, i) ∨ i = j) ∧(¬R(i, j) ∨
(R(i, f(i, j)) ∧¬R(j, f(i, j)) ∧ R(f(i, j), j)))].

Now introduce variables xij and yijk with the intended idea that xij =
1 ⇐⇒ R(i, j) and yijk = 1 ⇐⇒ f(i, j) = k. This gives polynomial
equations:
xijxjk(1− xik) = 0 for all i, j, k, xijxji = 0 for all i 6= j,

(1− xij)(1− xji) = 0 for all i 6= j, and xijyijl(1− xilxlj) = 0 for all i, j, l.
Besides we add the equations:
x2
ij − xij = 0 for all i, j, y2

ijk − yijk = 0 for all i, j, k,∑
l
yijl − 1 = 0 for all i, j, and yijkyijl = 0 for all i, j, k 6= l.

These equations can be simplified and some equations (like y2
ijk−yijk = 0)

are superfluous because they can be derived from the other equations. A
natural simplification gives the following system of equations:
xijxjkxki = 0 for i 6= k, j, xij + xji − 1 = 0 for all i, j,
xijyijl(1− xilxlj) = 0 for i, j, l,

∑
l
yijl − 1 = 0 for all i, j,

x2
ij − xij = 0 for all i, j, and yijkyijl = 0 for all i, j, k 6= l

Finally we can get a fixed set of generating equations. For example,
yijkyijl = 0 for all i, j, k 6= l is generated (under the action of Sn) by the 6
equations for indices in {1, 2, 3, 4}: y123y124 = 0, y112y113 = 0, y111y112 =
0, y121y122 = 0, y121y123 = 0, y122y123 = 0. ♣
The next example shows how one can treat constants in a translation.
More significantly, it shows how a sequence of tautologies, commonly
studied in the context of algebraic proof complexity lower bounds [4],[5],
[7] can be obtained from a Second Order sentence using this translation.

Example (onto-PHP): Fix the language L = L(f, c). Consider the
Second Order Universal sentence in the language L.

Ψ ≡ ∀f ((∃x, yf(x) = f(y) ∧ x 6= y) ∨ (∃xf(x) = c)).
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This statement is a formalization of the principle that there is no onto
map f : U → U which avoids the point {c}. The negation η is on the
form:

η ≡ ∃f ((∀i, j f(i) = f(j)→ i = j) ∧ (∀i f(i) 6= c)).

Now introduce variables xij and yj with the intention that xij = 1↔
f(i) = j and yj = 1↔ c = j. This gives the equations:
xijxik = 0 for all i, j 6= k xijyj = 0 for all i, j,∑
j
xij−1 = 0 for all i , yiyj = 0 for all i, j and the equation

∑
j
yj−1 = 0.

A different set of equations for the onto-PHP (more specifically onto-
PHPn−1

n ) was considered in [4],[5],[7]. This system of equations essen-
tially appears by letting yn = 1. Notice that this system is only closed
under Sn−1. Furthermore, other sequences of tautologies studied in proof
complexity, such as various matching principles, the primality principle
[4],[5], [7], [11] etc. can also be obtained from Second Order sentences
using our translation. ♣

IV Construction of Hard Tautologies

One of the most fundamental questions in the theory of proof complexity
is the following: how to obtain families of tautologies which do not have
short proofs in a given system of propositional calculus?

First, consider the opposite question. How to obtain easy tautolo-
gies? One easy class of tautologies arises from a Second Order Universal
sentence Ψ which is a tautology of predicate logic. This happens when Ψ
is valid in all models, i.e. not only is it valid in all finite models, but also
holds in all infinite models. We call such tautologies absolute tautologies.
Their importance was noticed in [15], [16], [17] and [18] in the setting
of Bounded Arithmetic. The term “absolute” is borrowed from forcing
in set theory. Absolute tautologies (in non-standard models) always re-
main true and are preserved in generic extensions of the universe. The
corresponding sequence of propositional tautologies φn are easy to prove:
essentially one can take the finite proof in predicate logic and turn it into
a proof in propositional calculus. With the right stock of rules one can
achieve this in a constant number of steps.

Now consider tautologies like the pigeonhole principle. This holds for
finite models, but fails for infinite models. This already suggests that
these tautologies are somewhat harder to prove. For such tautologies

9



there is no longer a proof in predicate logic so different n’s require dif-
ferent treatments. On the other hand tautologies like the pigeonhole
principle are still provable in a uniform way.

One way of constructing hard sequences of tautologies is to ensure
that different values of n require distinctly different proofs. To do this,
we consider Second Order Existential sentences Ψ for which the spec-
trum S := {n ∈ N : ∃M |= Ψn} has high complexity. The proof of the
following theorem formalizes this observation (the proof is fairly straight-
forward).

Theorem 2 Consider a Second Order Existential sentence Ψ for which
the spectrum S := {n ∈ N : ∃M |= Ψn} is NEXPTIME-complete. (Here
we assume that the input is n, coded in binary). For any Skolemization
Ψ̃, obtain the sequence of propositional formulae φΨ̃,n as in Theorem 1.
Now the sequence of propositional tautologies {¬φΨ̃,n}n 6∈S does not have
polynomial (in n) length proofs (in any propositional proof system), unless
NEXPTIME = co-NEXPTIME.

Next we briefly sketch a related method of generating unconditionally
hard propositional tautologies, based on our translation. This method
applies only to algebraic proof systems in particular, the Nullstellensatz
system (NS) and the Polynomial Calculus system (PC) studied in the
context of proof complexity lower bounds [4], [5], [7]. The idea behind
NS and PC is to translate the given propositional tautology φn into an
equivalent system of polynomial equations Q̄(x̄) = 0 over some field
IF in the standard manner described in the proof of Theorem 1. The
task of proving φn can thus be rephrased as the task of showing that
Q̄(x̄) = 0 does not have a 0/1-solution over IF. According to a weak
version of Hilbert’s Nullstellensatz, this is equivalent to showing that the
ideal generated by Q̄ ∪ I (where I := {x2 − x, x variable}) contains the
constant polynomial 1. An NS-proof is a list of witnessing polynomials P̄
such that

∑
PiQi = 1, where Pi ∈ P̄ and Qi ∈ Q̄∪ I. The degree of the

proof is the maximum degree of the witnessing polynomials P̄ , and acts
as a natural proof complexity measure: a constant degree d NS proof
implies that one can find the proof in time O(nO(d)), simply by solving
a linear system to obtain the coefficients of the witnessing polynomials
Pi. Notice that the number of variables in the system Q̄ is a trivial upper
bound on the degree of the NS proof since the polynomials x2−x for each
variable x have been added to Q̄. See [8] for a description of PC proofs.
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The closure under Sn combined with the uniformity allows us to ex-
tract strong lower bounds on the degree as well as on the size of Nullstel-
lensatz proofs as well as Polynomial Calculus proofs. Our analysis relies
on the structure of the sequence of linear spans Un of the Sn-closed, se-
quences Q̄n ∈ Πn,d generated from a fixed polynomial system Q̄ ∈ Πl,d

obtained in Theorem 1. These vector spaces that are also closed under
the natural action of Sn are so-called IFSn modules, studied extensively
in the representation theory of Sn. In [19], we provide a non-traditional
analysis of the structure of uniformly generated sequences of IFSn mod-
ules for fields IF of characteristic 0. The gist of these results is that
complete and precise decomposition of these module sequences into irre-
ducible modules (beyond isomorphism types) can be uniformly specified,
and as a result there is a single polynomial p(n) that captures the dimen-
sion of such module sequences for all but finitely many singular values of
n, and moreover, for these singular n, the dimension is bounded above
by p(n).
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RS-98-17 Roberto Bruni, Jośe Meseguer, Ugo Montanari, and Vladimiro
Sassone.A Comparison of Petri Net Semantics under the Collec-
tive Token Philosophy. September 1998. 20 pp. To appear in4th
Asian Computing Science Conference, ASIAN ’98 Proceedings,
LNCS, 1998.

RS-98-16 Stephen Alstrup, Thore Husfeldt, and Theis Rauhe.Marked
Ancestor Problems. September 1998.

RS-98-15 Jung-taek Kim, Kwangkeun Yi, and Olivier Danvy. Assessing
the Overhead of ML Exceptions by Selective CPS Transforma-
tion. September 1998. 31 pp. To appear in the proceedings of
the 1998 ACM SIGPLAN Workshop on ML, Baltimore, Mary-
land, September 26, 1998.

RS-98-14 Sandeep Sen.The Hardness of Speeding-up Knapsack. August
1998. 6 pp.

RS-98-13 Olivier Danvy and Morten Rhiger.Compiling Actions by Partial
Evaluation, Revisited. June 1998. 25 pp.

RS-98-12 Olivier Danvy. Functional Unparsing. May 1998. 7 pp. This
report supersedes the earlier report BRICS RS-98-5. Extended
version of an article to appear in Journal of Functional Pro-
gramming.

RS-98-11 Gudmund Skovbjerg Frandsen, Johan P. Hansen, and Pe-
ter Bro Miltersen. Lower Bounds for Dynamic Algebraic Prob-
lems. May 1998. 30 pp.

RS-98-10 Jakob Pagter and Theis Rauhe.Optimal Time-Space Trade-Offs
for Sorting. May 1998. 12 pp.

RS-98-9 Zhe Yang.Encoding Types in ML-like Languages (Preliminary
Version). April 1998. 32 pp.


