
B
R

IC
S

R
S

-97-9
H

enriksen
&

T
hiagarajan:

A
P

roductVersion
ofD

ynam
ic

Linear
T

im
e

Tem
poralLogic

BRICS
Basic Research in Computer Science

A Product Version of
Dynamic Linear Time Temporal Logic

Jesper G. Henriksen
P. S. Thiagarajan

BRICS Report Series RS-97-9

ISSN 0909-0878 April 1997

Copyright c© 1997, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/97/9/

A Product Version of
Dynamic Linear Time Temporal Logic∗

Jesper Gulmann Henriksen
BRICS†, Department of Computer Science,

University of Aarhus, Denmark
email: gulmann@brics.dk

P. S. Thiagarajan‡

SPIC Mathematical Institute, Madras, India
email: pst@smi.ernet.in

April 1997

Abstract

We present here a linear time temporal logic which simulta-
neously extends LTL, the propositional temporal logic of linear
time, along two dimensions. Firstly, the until operator is strength-
ened by indexing it with the regular programs of propositional
dynamic logic (PDL). Secondly, the core formulas of the logic are
decorated with names of sequential agents drawn from fixed finite
set. The resulting logic has a natural semantics in terms of the
runs of a distributed program consisting of a finite set of sequen-
tial programs that communicate by performing common actions
together. We show that our logic, denoted DLTL⊗, admits an ex-
ponential time decision procedure. We also show that DLTL⊗ is
expressively equivalent to the so called regular product languages.

∗Appears in the proceedings of the eighth International Conference on
Concurrency Theory (CONCUR’97), Warsaw, Poland.
†Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
‡Part of this work was done while visiting BRICS.
Part of this work has been supported by IFCPAR Project 1502-1.

1

Roughly speaking, this class of languages is obtained by starting
with synchronized products of (ω-)regular languages and closing
under boolean operations. We also sketch how the behaviours
captured by our temporal logic fit into the framework of labelled
partial orders known as Mazurkiewicz traces.

1 Introduction

We present a linear time temporal logic which extends LTL, the proposi-
tional temporal logic of linear time [8, 13] along two dimensions. Firstly,
we strengthen the until modality by indexing it with the regular pro-
grams of PDL, propositional dynamic logic [1, 4]. Secondly, we consider
networks of sequential agents that communicate by performing common
actions together. We then reflect this in the logic by decorating the
“core” formulas with the names of the agents. The resulting logic, de-
noted DLTL⊗, is a smooth generalization of the logic called product
LTL [16] and the logic called dynamic linear time temporal logic [5].

DLTL⊗ admits a pleasant theory and our technical goal here is to
sketch the main results of this theory. We believe that these results
provide additional evidence — in a non-sequential setting — suggesting
that our technique of combining dynamic and temporal logic as initiated
in [5] is a fruitful one.

In the next section we introduce dynamic linear time temporal logic.
We then state two main results concerning this logic. In Section 3 we
define regular product languages. These are basically boolean combina-
tions of synchronized products of (ω-)regular languages. We then present
a characterization of this class of languages in terms of networks of Büchi
automata that coordinate their activities by synchronizing on common
letters.

In Section 4 we formulate the temporal logic DLTL⊗, the main object
of study in this paper. In Section 5 we establish an exponential time de-
cision procedure for this logic by exploiting the Büchi automata networks
presented in Section 3. In the subsequent section we show that DLTL⊗

captures exactly the class of regular product languages. It is worth noting
that this is the first temporal logical characterization of this important
class of distributed behaviours. In the final section we sketch how the be-
haviours described by our temporal logic (i.e. regular product languages)
lie naturally within the domain of regular Mazurkiewicz trace languages.

2

2 Dynamic Linear Time Temporal Logic

One key feature of the syntax and semantics of our temporal logic is
that actions will be treated as first class objects. The usual presentation
of LTL [8, 13] is based on states; they are represented as subsets of a
finite set of atomic propositions. We wish to bring in actions explicitly
because it is awkward, if not difficult, to define synchronized products of
sequential components in a purely state-based setting. This method of
forming distributed systems is a common and useful one. Moreover, it is
the main focus of attention in this paper. Hence it will be handy to work
with logics in which both states and actions can be treated on an equal
footing. As a vehicle for introducing some terminology we shall first
introduce an action-based version of LTL denoted LTL(Σ). We begin
with some notations.

Through the rest of the paper we fix a finite non-empty alphabet Σ.
We let a, b range over Σ and refer to members of Σ as actions. Σ∗ is the
set of finite words and Σω is the set of infinite words generated by Σ with
ω = {0, 1, . . .}. We set Σ∞ = Σ∗∪Σω and denote the null word by ε. We
let σ, σ′ range over Σ∞ and τ, τ ′, τ ′′ range over Σ∗. Finally, � is the usual
prefix ordering defined over Σ∗ and prf(σ) is the set of finite prefixes of
σ.

The set of formulas of LTL(Σ) is then given by the syntax:

LTL(Σ) ::= > | ∼α | α ∨ β | 〈a〉α | α U β.

For convenience we have avoided introducing atomic propositions and

instead just deal with the constant > and its negation ∼> ∆⇐⇒ ⊥.
Through the rest of this section α, β will range over LTL(Σ). The modal-
ity 〈a〉 is an action-indexed version of the next-state modality of LTL. A
model is a ω-sequence σ ∈ Σω. For τ ∈ prf(σ) we define σ, τ |= α via:

• σ, τ |= >.

• σ, τ |= ∼α iff σ, τ 6|= α.

• σ, τ |= α ∨ β iff σ, τ |= α or σ, τ |= β.

• σ, τ |= 〈a〉α iff τa ∈ prf(σ) and σ, τa |= α.

• σ, τ |= α U β iff there exists τ ′ such that ττ ′ ∈ prf(σ) and σ, ττ ′ |=
β. Further, for every τ ′′ such that ε � τ ′′ ≺ τ ′, it is the case that
σ, ττ ′′ |= α.

3

It is well known that LTL(Σ) is equal in expressive power to the
first order theory of sequences [2, 7]. Consequently this temporal logic
is quite limited in in terms of what it can not say. As an example,
let Σ = {a, b}. Then the property “at every even position the action
b is executed” is not definable in LTL(Σ). This observation, made in
a state-based setting by Wolper, is the starting point for the extension
of LTL called ETL [20, 21]. The route that we have taken to augment
the expressive power of LTL(Σ) is similar in spirit but quite different
in terms of the structuring mechanisms made available for constructing
compound formulas. A more detailed assessment of the similarities and
the differences between the two approaches is given in [5].

The extension that we have proposed is called DLTL(Σ). It basi-
cally consists of indexing the until operator with the programs of PDL
(e.g. [1]). We start by defining the set of regular programs (expressions)
generated by Σ. This set is denoted by Prg(Σ) and its syntax is given
by:

Prg(Σ) ::= a | π0 + π1 | π0; π1 | π∗.
With each program we associate a set of finite words via the map || · || :
Prg(Σ) −→ 2Σ∗. This map is defined in the standard fashion:

• ||a|| = {a}.

• ||π0 + π1|| = ||π0|| ∪ ||π1||.

• ||π0; π1|| = {τ0τ1 | τ0 ∈ ||π0|| and τ1 ∈ ||π1||}.

• ||π∗|| =
⋃
i∈ω ||πi||, where

– ||π0|| = {ε} and

– ||πi+1|| = {τ0τ1 | τ0 ∈ ||π|| and τ1 ∈ ||πi||} for every i ∈ ω.

The set of formulas of DLTL(Σ) is given by the following syntax.

DLTL(Σ) ::= > | ∼α | α ∨ β | α Uπβ, π ∈ Prg(Σ)

A model is a ω-sequence σ ∈ Σω. For τ ∈ prf(σ) we define σ, τ |= α
just as we did for LTL(Σ) in the case of the first three clauses. As for
the last one,

• σ, τ |= α Uπβ iff there exists τ ′ ∈ ||π|| such that ττ ′ ∈ prf(σ) and
σ, ττ ′ |= β. Moreover, for every τ ′′ such that ε � τ ′′ ≺ τ ′, it is the
case that σ, ττ ′′ |= α.

4

Thus DLTL(Σ) adds to LTL(Σ) by strengthening the until operator.
To satisfy α Uπβ, one must satisfy αUβ along some finite stretch of
behaviour which is required to be in the (linear time) behaviour of the
program π. We now wish to state two of the main results of [5]. To do
so, we first say that a formula α ∈ DLTL(Σ) is satisfiable if there exist
σ ∈ Σω and τ ∈ prf(σ) such that σ, τ |= α. Secondly, we associate with
a formula α the ω-language Lα via:

Lα
def
= {σ ∈ Σω | σ, ε |= α}.

A language L ⊆ Σω is said to be DLTL(Σ)-definable if there exists some
α ∈ DLTL(Σ) such that L = Lα. Finally, we assume the notions of Büchi
and Muller automata and ω-regular languages as formulated in [17].

Theorem 2.1

(i) Given an α0 ∈ DLTL(Σ) one can effectively construct a Büchi au-
tomaton Bα0 of size 2O(|α0|) such that L(Bα0) 6= ∅ iff α0 is satisfi-
able. Thus the satisfiability problem for DLTL(Σ) is decidable in
exponential time.

(ii) L ⊆ Σω is ω-regular iff L is DLTL(Σ)-definable.

It is also easy to formulate and solve a natural model checking prob-
lem for DLTL(Σ) where finite state programs are modelled as Büchi
automata. But we shall not enter into details here.

To close out the section we shall point to two useful derived operators
of DLTL(Σ):

• 〈π〉α ∆⇐⇒ > Uπα.

• [π]α
∆⇐⇒ ∼〈π〉∼α.

Suppose σ ∈ Σω is a model and τ ∈ prf(σ). It is easy to see that σ, τ |=
〈π〉α iff there exists τ ′ ∈ ||π|| such that ττ ′ ∈ prf(σ) and σ, ττ ′ |= α. It
is also easy to see that σ, τ |= [π]α iff for every τ ′ ∈ ||π||, ττ ′ ∈ prf(σ)
implies σ, ττ ′ |= α. In this sense, the program modalities of PDL acquire
a linear time semantics in the present setting. As shown in [5] the second
part of Theorem 2.1 goes through even for the the sublogic of DLTL(Σ)
obtained by banishing the until operator and instead using 〈π〉α and the
boolean connectives. For an example of what can be said in this sublogic,
assume Σ = {a, b} and define πev to be the program ((a + b); (a + b))∗.

5

Then the formula [πev]〈b〉> says ”at every even position the action b is
executed”.

Next we note that a ∈ Σ is a member of Prg(Σ) and the until operator

of LTL(Σ) can be obtained via: αUβ ∆⇐⇒ αUΣ∗β. Due to second part
of Theorem 2.1 we now have that both syntactically and semantically,
LTL(Σ) is a proper fragment of DLTL(Σ).

To conclude the section, we note that the material presented here can
be easily extended to include finite sequences over Σ as well. We shall
assume from now on that this extension has indeed been carried out.

3 Regular Product Languages

A restricted but very useful model of finite state concurrent programs
consists of a fixed number of finite state sequential programs that coor-
dinate their activities by performing common actions together. A regular
product language is an abstract specification of the linear time behaviour
of such concurrent programs. The idea is to start with synchronized prod-
ucts of regular languages and close under boolean operations. Formally,
we start with a distributed alphabet Σ̃ = {Σi}Ki=1, a family of alpha-
bets with each Σi a non-empty finite set of actions. One key point is
that the component alphabets are not necessarily disjoint. Intuitively,
Loc = {1, . . . , K} is the set of names of communicating sequential pro-
cesses synchronizing on common actions, where Σi is the set of actions
which require the participation of the agent i. Through the rest of the
paper we fix a distributed alphabet Σ̃ = {Σi}Ki=1 and set Σ =

⋃K
i=1 Σi.

We carry over the terminology developed in the previous section for deal-
ing with finite and infinite sequences over Σ. In addition, for σ ∈ Σ∞

and i ∈ Loc we denote by σ � i the projection of σ down to Σi. In other
words, it is the sequence obtained by erasing from σ all occurrences of
symbols that are not in Σi. We let i, j, k range over Loc = {1, . . . , K}
and define Loc(a) = {i | a ∈ Σi}. We note that Loc(a) is the set of
processes that participate in each occurrence of the action a.

Next we define the K-ary operator ⊗ : 2Σ∞1 × . . .× 2Σ∞K → 2Σ∞ by

⊗(L1, . . . , LK) = {σ ∈ Σ∞ | σ � i ∈ Li for each i ∈ Loc}.

Usually we will write ⊗(L1, . . . , LK) as L1 ⊗ L2 ⊗ . . .⊗ LK . Finally, we
will say that the language L ⊆ Σ∞ is regular iff L∩Σ∗ is a regular subset
of Σ∗ and L∩Σω is an ω-regular subset of Σω. Regular product languages
can be built up as follows.

6

Definition 3.1 L ⊆ Σ∞ is a direct regular product language over Σ̃ iff
L = L1 ⊗ . . .⊗ LK with Li a regular subset of Σ∞i for each i ∈ Loc.

We let R⊗0 (Σ̃) be the class of direct regular product languages over

Σ̃.

Definition 3.2 The class of regular product languages over Σ̃ is denoted
R⊗(Σ̃) and is the least class of languages containing R⊗0 (Σ̃) and satisfy-
ing:

• If L1, L2 ∈ R⊗(Σ̃) then L1 ∪ L2 ∈ R⊗(Σ̃).

In what follows we will often suppress the mention of the distributed
alphabet Σ̃. It is easy to prove that R⊗ is closed under boolean opera-
tions. The proof of this result as well as other results mentioned in this
section can be found in [15]. Just as ω-regular languages are captured
by Büchi automata, we can capture regular product languages with the
help of networks of Büchi automata. For convenience such automata will
be termed product automata.

Definition 3.3 A product automaton over Σ̃ is a structure

A = ({Ai}i∈Loc, Qin),

where each Ai = (Qi,−→i, Fi, F
ω
i) satisfies:

• Qi is a non-empty finite set of i-local states.

• −→i ⊆ Qi×Σi×Qi is the transition relation of the ith component.

• Fi ⊆ Qi is a set of finitary accepting states of the ith component.

• F ω
i ⊆ Qi is a set of infinitary accepting states of the ith component.

Moreover, Qin ⊆ Q1 × . . .×QK is a set of global initial states.

Thus, a product automaton is a network of local automata with a
global set of initial states. It is necessary to have global initial states
in order to obtain the required expressive power. Each local automaton
is equipped to cope with both finite and infinite behaviours using the
finitary and infinitary accepting states. The infinitary accepting states
are to be interpreted as defining a Büchi acceptance condition. This
will become clear once we define the language accepted by a product

7

automaton. We choose to deal with both finite and infinite component
behaviours because the global behaviour can always induce finite local
behaviours. In other words, even if ω-behaviour is the main focus of
interest, a global infinite run will consist of one or more components
running forever but with some other components, in general, quitting
after making a finite number of moves. The notational complications
involved in artificially making all components to run forever do not seem
to be worth the trouble.

Let A be a product automaton over Σ̃. Then QAG = Q1 × . . . × QK

is the set of global states of A. The i-local transition relations induce a
global transition relation −→A ⊆ QAG × Σ×QAG as follows:

q
a−→A q′ iff q[i]

a−→i q
′[i] for each i ∈ Loc(a) and

q[i] = q′[i] for each i 6∈ Loc(a),

where q[i] denotes the ith component of q = (q1, . . . , qK). A run of A
over σ ∈ Σ∞ is a mapping ρ : prf(σ) → QAG satisfying that ρ(ε) ∈ Qin

and ρ(τ)
a−→A ρ(τa) for all τa ∈ prf(σ). The run is accepting iff the

following conditions are satisfied for each i:

• If σ � i is finite then ρ(τ)[i] ∈ Fi for some τ ∈ prf(σ) with τ � i =
σ � i.

• If σ � i is infinite then ρ(τ)[i] ∈ F ω
i for infinitely many τ ∈ prf(σ).

We next define

L(A) = {σ ∈ Σ∞ | there exists an accepting run of A over σ}.

The next result established relates regular product languages to prod-
uct automata.

Theorem 3.4 L ∈ R⊗(Σ̃) iff L = L(A) for some product automaton A
over Σ̃.

We will later give solutions to the satisfiability problem for a product
version of DLTL with the help of product automata. The following results
will be useful in this context. In stating these results we take the size of
the product automaton A to be |QAG|.

Lemma 3.5

8

• Let A be a product automaton. The question L(A)
?

6= ∅ can be
effectively decided in time O(n2), where n is the size of A.

• Let A1 and A2 be product automata of sizes n1 and n2, respectively.
Then a product automaton A of size O(n1n2) with L(A) = L(A1)∩
L(A2) can be effectively constructed.

4 A Product Version of DLTL

We now wish to design a product version of DLTL denoted DLTL⊗(Σ̃).
It will turn out to have the expressive power of regular product languages
over Σ̃. The set of formulas and their locations are given by:

• > is a formula and loc(>) = ∅.

• Suppose α and β are formulas. Then so are ∼α and α ∨ β. Fur-
thermore, loc(∼α) = loc(α) and loc(α ∨ β) = loc(α) ∪ loc(β).

• Suppose α and β are formulas such that loc(α), loc(β) ⊆ {i} and
suppose π ∈ Prg(Σi). Then α Uπi β is a formula. Moreover,
loc(α Uπi β) = {i}.

We note that each formula in DLTL⊗(Σ̃) is a boolean combination of

formulas taken from the set
⋃
i∈Loc DLTL⊗i (Σ̃) where, for each i,

DLTL⊗i (Σ̃) = {α | α ∈ DLTL⊗(Σ̃) and loc(α) ⊆ {i} }.

Once again, we have chosen to avoid dealing with atomic propositions
for the sake of convenience. They can be introduced in a local fashion
as done in [15]. The decidability result to be presented will go through
with minor notational overheads.

As before, we will often suppress the mention of Σ̃. We will also often
write τi, τ

′
i and τ ′′i instead of τ � i , τ ′ � i and τ ′′ � i, respectively with

τ, τ ′, τ ′′ ∈ Σ∗.
A model is a sequence σ ∈ Σ∞ and the semantics of this logic is given

as before, with τ ∈ prf(σ).

• σ, τ |= >.

• σ, τ |= ∼α iff σ, τ 6|= α.

• σ, τ |= α ∨ β iff σ, τ |= α or σ, τ |= β.

9

• σ, τ |= α Uπi β iff there exists τ ′ such that τ ′i ∈ ||π|| (recall that
τ ′i = τ ′ � i) and ττ ′ ∈ prf(σ) and σ, ττ ′ |= β. Further, for every
τ ′′ ∈ prf(τ ′), if ε � τ ′′i ≺ τ ′i then σ, ττ ′′ |= α.

We will say that a formula α ∈ DLTL⊗(Σ̃) is satisfiable if there exist
σ ∈ Σ∞ and τ ∈ prf(σ) such that σ, τ |= α. The language defined by α
is given by

Lα
def
= {σ ∈ Σ∞ | σ, ε |= α}.

We say that L ⊆ Σ∞ is DLTL⊗(Σ̃)-definable if there exists some α ∈
DLTL⊗(Σ̃) with Lα = L.

5 A Decision Procedure for DLTL⊗

We will show the satisfiability problem for DLTL(Σ) is solvable in de-
terministic exponential time. This will be achieved by effectively con-
structing a product automaton Aα for each α ∈ DLTL⊗(Σ̃) such that
the language accepted by Aα is non-empty iff α is satisfiable. Our con-
struction is a common generalization of the one for product LTL in [16]
and the one for DLTL(Σ) in [5]. The solution to the satisfiability prob-
lem will at once lead to a solution to the model checking problem for
programs modelled as synchronizing sequential agents.

Through the rest of the section we fix a formula α0 ∈ DLTL⊗. In
order to construct Aα0 we first define the (Fischer-Ladner) closure of α0.
As a first step let cl(α0) be the least set of formulas satisfying:

• α0 ∈ cl(α0).

• ∼α ∈ cl(α0) implies α ∈ cl(α0).

• α ∨ β ∈ cl(α0) implies α, β ∈ cl(α0).

• α Uπi β ∈ cl(α0) implies α, β ∈ cl(α0).

We will now take the closure of α0 to be CL(α0) = cl(α0) ∪ {∼α | α ∈
cl(α0)}. From now on we shall identify ∼∼ α with α. Set CLi(α0) =

CL(α0)∩DLTL⊗i (Σ̃) for each i. We will often write CL instead of CL(α0)
and CLi instead of CLi(α0). All formulas considered from now on will
be assumed to belong to CLi unless otherwise stated.

An i-type atom is a subset A ⊆ CLi which satisfies:

• > ∈ A.

10

• α ∈ A iff ∼α 6∈ A.

• α ∨ β ∈ A iff α ∈ A or β ∈ A.

• β ∈ A and ε ∈ ||π|| implies α Uπi β ∈ A.

The set of i-type atoms is denoted ATi. We next define the predi-
cate Member(α, (A1, . . . , AK)) for each α ∈ CL(α0) and (A1, . . . , AK) ∈
AT1 × . . . × ATK . For convenience this predicate will be denoted as
α ∈ (A1, . . . , AK) and is given inductively by:

• Let α ∈ CLi. Then α ∈ (A1, . . . , AK) iff α ∈ Ai.

• Let α = ∼β. Then α ∈ (A1, . . . , AK) iff β 6∈ (A1, . . . , AK).

• Let α = β ∨ γ. Then α ∈ (A1, . . . , AK) iff β ∈ (A1, . . . , AK) or
γ ∈ (A1, . . . , AK).

The set of i-type until requirements is the subset of CLi given by

Reqi = {α Uπi β | α Uπi β ∈ CLi}.

We shall let ξ, ξ′ range over Reqi. For each ξ = α Uπi β ∈ Reqi we fix
a finite state automaton Aξ such that L(Aξ) = ||π|| where L(Aξ) is the
language of finite words accepted by Aξ. We shall assume each such
Aξ is of the form Aξ = (Qξ,−→ξ, Iξ, Fξ) where Qξ is the set of states,
−→ξ ⊆ Qξ×Σ×Qξ is the transition relation, Iξ ⊆ Qξ is the set of initial
states and Fξ ⊆ Qξ is the set of final states. Without loss of generality,
we shall assume that ξ 6= ξ′ implies Qξ ∩ Qξ′ = ∅ for every ξ, ξ′ ∈ Reqi.
We set Qi =

⋃
ξ∈Reqi Qξ and Q̂i = Qi × {0, 1}.

The product automaton Aα0 associated with α0 is now defined to
be Aα0 = ({Ai}i∈Loc, Qin) where for each i, Ai = (Si,=⇒i, Fi, F

ω
i) is

specified as

1. Si ⊆ ATi × 2Qi × 2Q̂i × {stop, go} × {0, 1} × { ↓,X} such that

(A,X, X̂, s, x, f) ∈ Si

iff the following conditions are satisfied for each ξ = α Uπi β:

(i) If β ∈ A then Fξ ⊆ X. (Recall that Aξ = (Qξ,−→ξ, Iξ, Fξ)).

(ii) If α ∈ A and q ∈ X for some q ∈ Iξ then α Uπi β ∈ A.

11

(iii) If α Uπi β ∈ A then either β ∈ A and ε ∈ ||π|| or (q, 1−x) ∈ X̂
for some q ∈ Iξ. (Note that we are considering the candidate

(A,X, X̂, s, x, f) for membership in Si).

(iv) If (q, z) ∈ X̂ with q 6∈ Fξ or β 6∈ A then α ∈ A.

2. The transition relation =⇒i ⊆ Si ×Σi × Si is defined as follows:

(A,X, X̂, s, x, f)
a

=⇒i (B, Y, Ŷ , t, y, g)

iff the following conditions are satisfied for each ξ = α Uπi β ∈ Reqi:

(i) s = go.

(ii) Suppose q′ ∈ Qξ ∩ Y and q
a−→ξ q

′ and α ∈ A. Then q ∈ X.

(iii) Suppose (q, z) ∈ X̂ with q ∈ Qξ. Suppose further that q 6∈ Fξ
or β 6∈ A. Then (q′, z) ∈ Ŷ for some q′ with q

a−→ξ q
′.

(iv) If f = X then (y, g) = (1− x, ↓). If f = ↓ then,

(y, g) =

 (x, ↓), if there exists (q, x) ∈ X̂ such that
q 6∈ Fξ or β 6∈ A

(x,X), otherwise.

3. Fi = {(A,X, X̂, s, x, f) | s = stop and X̂ = ∅}.

4. F ω
i = {(A,X, X̂, s, x, f) | f = X}.

Finally, Qin ⊆ Q1 × . . .×QK is specified as

((A1, X1, X̂1, s1, x1, f1), . . . , (AK , XK , X̂K , sK , xK , fK)) ∈ Qin

iff α0 ∈ (A1, . . . , AK) and (xi, fi) = (0,X) for every i ∈ Loc.
The main result of this section can now be formulated.

Theorem 5.1 L(Aα0) = Lα0 where Aα0 is as defined above. Hence
α0 is satisfiable iff L(Aα0) 6= ∅. Moreover, the size of Aα0 is 2O(|α0|)

and consequently the satisfiability problem for DLTL⊗(Σ̃) is decidable in
exponential time.

Proof: Let σ ∈ L(Aα0) by the accepting run ρ : prf(σ) → QAG. For

each τ ∈ prf(σ) let ρ(τ)[i] = (Aτi , Xτi, X̂τi , sτi, xτi , fτi). Then a detailed

12

examination of the above construction reveals that for all τ ∈ prf(σ) and
δ ∈ CLi,

σ, τ |= δ iff δ ∈ Aτi .
By definition of Qin we are assured that α0 ∈ (ρ(ε)[1], . . . , ρ(ε)[K]).
Hence a simple induction on the structure of α0 will show that σ, ε |= α0.

Conversely, if α0 is satisfiable we may assume that σ, ε |= α0 for
some σ. We will construct an accepting run ρ : prf(σ) → QAG. For each

τ ∈ prf(σ) and each i, we set ρ(τ)[i] = (Aτi , Xτi , X̂τi, sτi , xτi , fτi) and
define the various components of this tuple as follows. First we define
Aτi by Aτi = {α ∈ CLi | σ, τ |= α}. Next sτi is defined as sτi = stop
iff σ � i = τi (recall the convention τ � i = τi). In defining the other
components it will be convenient to adopt the following terminology.

Let ξ = α Uπi β and q ∈ Qξ and τi ∈ Σ∗i . Then an accepting run of Aξ
over τi starting from q is a map R : prf(τi) −→ Qξ such that R(ε) = q,

R(τi) ∈ Fξ and R(τ ′′i)
a−→ξ R(τ ′′i a) for every τ ′′i a ∈ prf(τi). In case q ∈ Iξ

we shall just say that R is an accepting run of Aξ over τi.
Let ξ = α Uπi β and q ∈ Qξ. Then q ∈ Xτi iff there exist τ ′ and R′ such

that ττ ′ ∈ prf(σ), σ, ττ ′ |= β, and for every τ ′′ ∈ prf(τ ′), if ε � τ ′′i ≺ τ ′i
then σ, ττ ′′ |= α. Furthermore, R′ should be an accepting run of Aξ over
τ ′i starting from q.

To specify the remaining three components we shall make use of a
chronicle of obligations.

We’ll say that (τ, ξ) is an obligation if τ ∈ prf(σ) and ξ = α Uπi β ∈
Reqi such that σ, τ |= α Uπi β but σ, τ 6|= β or ε 6∈ ||π||. Let (τ, ξ) be an
obligation. We shall say that the pair (τ ′, R′) is a witness for (τ, ξ) iff
ττ ′ ∈ prf(σ) and σ, ττ ′ |= β and for every τ ′′ ∈ prf(τ ′), if ε � τ ′′i ≺ τ ′i
then σ, ττ ′′ |= α. Furthermore, τ ′i ∈ ||π|| and R′ is an accepting run of
Aξ over τ ′i . A chronicle set CH is a set of quadruples satisfying that if
(τ, ξ, τ ′, R′) ∈ CH then (τ, ξ) is an obligation and (τ ′, R′) is witness for
(τ, ξ). Moreover, for every obligation (τ, ξ) there is a unique element of
the form (τ, ξ, τ ′, R′) in CH. We fix such a set CH which clearly exists.

Now xτi and fτi are defined by mutual induction as follows. For the
base case, (xε, fε) = (0,X). For the induction step, let τ = τ ′a. Suppose
a /∈ Σi. Then (xτi , fτi) = (xτ ′i , fτ ′i). So assume that a ∈ Σi. If fτ ′i = X
then (xτi , fτi) = (1 − xτ ′i , ↓). Suppose fτ ′i = ↓. Then (xτi , fτi) = (xτ ′i , ↓)
if there exists (τ ′′, ξ1, τ

′′′, R′1) ∈ CH such that τ ′′ � τ ′ ≺ τ ′′τ ′′′ and
xτ ′′i = 1− xτ ′i . Otherwise, fτi = X and xτi = xτ ′i .

The only remaining component to be dealt with is X̂τi . This is now

defined via: (q, z) ∈ X̂τi iff there exists (τ ′, ξ, τ ′′, R′1) ∈ CH such that

13

for some τ ′′′ ∈ prf(τ ′′), τ ′i � τi = τ ′iτ
′′′
i and furthermore R′1(τ ′′′i) = q and

xτ ′i = 1− z. Using these definitions it is not difficult to show that ρ is an
accepting run.

Finally, by Lemma 3.5 it suffices to show that our construction yields
a product automaton of exponential size. Clearly, CL(α0) is linear in
α0, and surely then |AT1| + . . . + |ATK| = 2O(|α0|). Moreover, it is well-
known that each π ∈ Prg(Σi) in polynomial time can be converted to
a finite (non-deterministic) automaton with a linear state space (see [6]
for a recent account of such conversions). Then both Q1 + . . . + QK

and Q̂1 + . . . + Q̂K are of size O(|α0|). Consequently, |QAG| = 2O(|α0|) as
required. 2

The procedure outlined above also lends itself to a solution to the
model checking problem, which is defined as for DLTL except that a
finite-state program is now simply a product automaton P. Once again,
we do not wish to enter into details.

6 An Expressiveness Result

We now wish to show that our logic is expressively complete with re-
spect to the regular product languages. In fact we will identify a natural
sublogic — to be denoted DLTL⊗− — which also enjoys this property.

The syntax of the formulas of DLTL⊗−(Σ̃) remains as for DLTL⊗(Σ̃),
but the until modality is to be restricted to the derived operator 〈 〉i.
Formally, the set of formulas and locations of this sublogic is obtained
via:

• > is a formula and loc(>) = ∅.

• Suppose α and β are formulas so are ∼ α and α ∨ β. Moreover
loc(∼α) = loc(α) and loc(α ∨ β) = loc(α) ∪ loc(β).

• Suppose α is formula such that loc(α) ⊆ {i} and π ∈ Prg(Σi).
Then 〈π〉iα is formula. Moreover, loc(〈π〉iα) = {i}.

Proposition 6.1 If L ∈ R⊗(Σ̃) then L is DLTL⊗−(Σ̃)-definable.

Proof: It suffices to show that the claim holds for L ∈ R⊗0 (Σ̃) because

each member of R⊗(Σ̃) is a finite union of languages in R⊗0 (Σ̃).

14

Let L = L1⊗. . .⊗LK ∈ R⊗0 (Σ̃). Then each Li∩Σ∗i is regular. Clearly
Li∩Σ∗i = ||πi|| for some πi ∈ Prg(Σi). Now define αi∗ = 〈πi〉i[π′i]i⊥ where
π′i = (a1 + . . .+ an) with Σi = {a1, . . . , an}.

Next, Li∩Σω
i is ω-regular. Hence it is accepted, due to McNaughton’s

theorem [10], by a deterministic Muller automaton. Choose such an
automaton M = (Q, qin,−→,F), which we, without loss of generality,
assume to be complete. (See [5] for the formal details). For q, q′ ∈ Q we
set Lq,q′ = {τ | q τ−→ q′}, which is obviously a regular subset of Σ∗i . So
we can fix πq,q′ ∈ Prg(Σi) such that Lq,q′ = ||πq,q′||. Moreover, by the
determinacy of M it follows that Lq,q′ ∩ Lq,q′′ 6= ∅ implies q′ = q′′. We
now define

αiω =
∨
F∈F

∨
q∈F
〈πqin,q〉i

(∧
q′ 6∈F

[πq,q′]i⊥ ∧
n−1∧
j=0

[πq,qj]i〈πqj ,qj⊕1〉i>
)

with the assumption {q0, q1, . . . , qn−1} is an enumeration of the F ∈ F
under consideration and “⊕” denotes addition modulo n. It is easy to
show that σ � i ∈ Li ∩ Σω

i iff σ, ε |= αiω.
The required formula α is given by α =

∧
i∈Loc α

i where αi = αi∗ ∨αiω
for each i. It is a routine exercise to establish Lα = L1 ⊗ . . .⊗ LK .

2

On the other hand, Theorem 3.4 together with Theorem 5.1 states
that Lα0 is a product language over Σ̃ for any α0 ∈ DLTL⊗(Σ̃). Since
DLTL⊗− is a sublogic of DLTL⊗ we have the following expressiveness
result.

Corollary 6.2 Let L ⊆ Σ∞. Then the following statements are equiva-
lent:

(i) L ∈ R⊗(Σ̃).

(ii) L is DLTL⊗−(Σ̃)-definable.

(iii) L is DLTL⊗(Σ̃)-definable.

7 Discussion

We shall conclude this section by placing regular product languages in
the broader context of regular Mazurkiewicz trace languages. For an in-
troduction to (Mazurkiewicz) traces related to the concerns of the present

15

paper, we refer the reader to [11]. We shall assume the bare minimum of
the background material on traces.

We begin by noting that the distributed alphabet Σ̃ = {Σi}Ki=1 in-
duces the trace alphabet (Σ, IΣ̃) where the irreflexive and symmetric
independence relation IΣ̃ ⊆ Σ× Σ is given by:

a IΣ̃ b iff Loc(a) ∩ Loc(b) = ∅.

Recall that Loc(x) = {i | x ∈ Σi} for x ∈ Σ. We shall write I in-
stead of IΣ̃ from now on. This independence relation in turn induces the
equivalence relation ≈I ⊆ Σ∞ × Σ∞ (from now on written as ≈) given
by:

σ ≈ σ′ iff σ � i = σ′ � i for every i ∈ Loc.

The ≈-equivalence classes of Σ∞ constitute the set of finite and infinite
traces generated by the trace alphabet (Σ, I). Traces can be — upto
isomorphisms — uniquely represented as certain Σ-labelled posets where
the labelling functions respect I in a natural manner. A trace language
is just a subset of Σ∞/ ≈.

A language L ⊆ Σ∞ is trace consistent in case σ ∈ L and σ ≈ σ′

implies σ′ ∈ L, for every σ, σ′. The point is, a trace consistent language
L canonically represents the trace language {[σ]≈ | σ ∈ L}. We extend

this idea to logical formulas by saying that α ∈ DLTL⊗(Σ̃) is trace con-
sistent iff Lα is trace consistent. It is easy to show that every formula of
DLTL⊗(Σ̃) is trace consistent. An important feature of properties defined
by trace consistent formulas is that they can often be verified efficiently
using partial order based reduction techniques [3, 12, 18]. Consequently,

DLTL⊗(Σ̃) provides a flexible and powerful means for specifying trace
consistent properties of distributed programs. As it turns out, every
formula of DLTL⊗(Σ̃) defines — via the canonical representation — a
regular trace language contained in Σ∞/ ≈. Hence by Corollary 6.2,
every regular product language corresponds to a regular trace language.

The converse however is not true. To bring this out, consider the
distributed alphabet Σ̃ = {{a, a′, c}, {b, b′, c}} and the language L =
{cab, cba, ca′b′, cb′a′}ω. Then it is easy to check that L is trace consistent
and ω-regular and that it is not a regular product language. In a forth-
coming paper we shall deal with the problem of extending DLTL⊗(Σ̃) so
as to capture all of the regular trace languages.

16

References

[1] Fischer, M. J., Ladner, R. E.: Propositional dynamic logic of regular
programs. Journal of Computer and System Sciences 18(2) (1979)
194–211

[2] Gabbay, A., Pnueli, A., Shelah, S., Stavi, J.: On the temporal anal-
ysis of fairness. Proceedings of the 7th Annual Symposium on Prin-
ciples of Programming Languages, ACM (1980) 163–173

[3] Godefroid, P.: Partial-order Methods for the Verification of Concur-
rent Systems. Lecture Notes in Computer Science 1032, Springer-
Verlag (1996)

[4] Harel, D.: Dynamic logic. In Gabbay, D., Guenthner, F., eds.: Hand-
book of Philosophical Logic, Vol. II, Reidel, Dordrecht (1984) 497–
604

[5] Henriksen, J. G., Thiagarajan, P. S.: Dynamic linear time temporal
logic. BRICS technical report RS-97-8, Department of Computer
Science, University of Aarhus, Denmark (1997)

[6] Hromkovič, J., Seibert, S., Wilke, T.: Translating regular expres-
sions into small ε-free nondeterministic automata. Proceedings of
the 12th Annual Symposium on Theoretical Aspects of Computer
Science, Lecture Notes in Computer Science 1200, Springer-Verlag
(1997) 55–66

[7] Kamp, H. R.: Tense Logic and the Theory of Linear Order. Ph.D.
thesis, University of California (1968)

[8] Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Con-
current Systems (Specification), Springer-Verlag (1992)

[9] Mazurkiewicz, A.: Concurrent program schemes and their interpre-
tations. Technical report DAIMI PB-78, Department of Computer
Science, University of Aarhus, Denmark (1977)

[10] McNaughton, R.: Testing and generating infinite sequences by a
finite automaton. Information and Control 9 (1966) 521–530

[11] Mukund, M., Thiagarajan, P. S.: Linear time temporal logics over
Mazurkiewicz traces. Proceedings of the 21st Intl. Symposium on

17

Mathematical Foundations of Computer Science, Lecture Notes in
Computer Science 1113, Springer-Verlag (1996) pp. 62–92

[12] Peled, D.: Partial order reduction: model checking using represen-
tatives. Proceedings of the 21st Intl. Symposium on Mathematical
Foundations of Computer Science, Lecture Notes in Computer Sci-
ence 1113, Springer-Verlag (1996) 93–112

[13] Pnueli, A.: The temporal logic of programs. Proceedings of the
18th Annual Symposium on Foundations of Computer Science, IEEE
(1977) 46–57

[14] Thiagarajan, P. S.: A trace based extension of linear time tempo-
ral logic. Proceedings of the 9th Annual Symposium on Logic in
Computer Science, IEEE (1994) 438–447

[15] Thiagarajan, P. S.: PTL over product state spaces. Technical re-
port TCS-95-4, School of Mathematics, SPIC Science Foundation,
Madras (1995)

[16] Thiagarajan, P. S.: A trace consistent subset of PTL. Proceedings
of the 6th International Conference on Concurrency Theory, Lecture
Notes in Computer Science 962, Springer-Verlag (1995) 438–452

[17] Thomas, W.: Automata over infinite objects. In van Leeuwen, J.,
ed., Handbook of Theoretical Computer Science, Vol. B: Formal
Models and Semantics, Elsevier/MIT Press (1990) 133–191

[18] Valmari, A.: A stubborn attack on state explosion. Formal Methods
in Systems Design 1 (1992) 285–313

[19] Vardi, M. Y., Wolper, P.: An automata-theoretic approach to auto-
matic program verification. Proceedings of the 1st Annual Sympo-
sium on Logic in Computer Science, IEEE (1986) 332–345

[20] Wolper, P.: Temporal logic can be more expressive. Proceedings of
the 22nd Annual Symposium on Foundations of Computer Science,
IEEE (1981) 340–348

[21] Wolper, P., Vardi, M. Y., Sistla, A. P.: Reasoning about infinite
computation paths. Proceedings of the 24nd Annual Symposium on
Foundations of Computer Science, IEEE (1983) 185–194

18

Recent BRICS Report Series Publications

RS-97-9 Jesper G. Henriksen and P. S. Thiagarajan.A Product Version
of Dynamic Linear Time Temporal Logic. April 1997. 18 pp. To
appear in Concurrency Theory: 7th International Conference,
CONCUR ’97 Proceedings, LNCS, 1997.

RS-97-8 Jesper G. Henriksen and P. S. Thiagarajan.Dynamic Linear
Time Temporal Logic. April 1997. 33 pp.

RS-97-7 John Hatcliff and Olivier Danvy. Thunks and theλ-Calculus
(Extended Version). March 1997. 55 pp. Extended version of
article to appear in the Journal of Functional Programming.

RS-97-6 Olivier Danvy and Ulrik P. Schultz. Lambda-Dropping: Trans-
forming Recursive Equations into Programs with Block Struc-
ture. March 1997. 53 pp. Extended version of an article
to appear in the 1997 ACM SIGPLAN Symposium on Par-
tial Evaluation and Semantics-Based Program Manipulation
(PEPM ’97), Amsterdam, The Netherlands, June 1997.

RS-97-5 Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke.First-
Order Logic with Two Variables and Unary Temporal Logic.
March 1997. 18 pp. To appear inTwelfth Annual IEEE Sym-
posium on Logic in Computer Science, LICS ’97 Proceedings.

RS-97-4 Richard Blute, Jośee Desharnais, Abbas Edalat, and Prakash
Panangaden. Bisimulation for Labelled Markov Processes.
March 1997. 48 pp. To appear inTwelfth Annual IEEE Sym-
posium on Logic in Computer Science, LICS ’97 Proceedings.

RS-97-3 Carsten Butz and Ieke Moerdijk. A Definability Theorem for
First Order Logic. March 1997. 10 pp.

RS-97-2 David A. Schmidt. Abstract Interpretation in the Operational
Semantics Hierarchy. March 1997. 33 pp.

RS-97-1 Olivier Danvy and Mayer Goldberg. Partial Evaluation of the
Euclidian Algorithm (Extended Version). January 1997. 16 pp.
To appear in the journal Lisp and Symbolic Computation.

RS-96-62 P. S. Thiagarajan and Igor Walukiewicz.An Expressively Com-
plete Linear Time Temporal Logic for Mazurkiewicz Traces. De-
cember 1996. i+13 pp. To appear inTwelfth Annual IEEE Sym-
posium on Logic in Computer Science, LICS ’97 Proceedings.

