
B
R

IC
S

R
S

-97-50
D

am
g̊ard

&
P

fitzm
ann:

S
equentialIteration

ofInteractive
A

rgum
ents

BRICS
Basic Research in Computer Science

Sequential Iteration of
Interactive Arguments and
an Efficient Zero-Knowledge
Argument for NP

Ivan B. Damgård
Birgit Pfitzmann

BRICS Report Series RS-97-50

ISSN 0909-0878 December 1997

Copyright c© 1997, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/97/50/

Sequential Iteration of Interactive Arguments and
an Efficient Zero-Knowledge Argument for NP

Ivan Damg̊ard∗and Birgit Pfitzmann†

Abstract

We study the behavior of interactive arguments under sequential iteration, in partic-
ular how this affects the error probability. This problem turns out to be more complex
than one might expect from the fact that for interactive proofs, the error trivially de-
creases exponentially in the number of iterations.

In particular, we study the typical efficient case where the iterated protocol is based
on a single instance of a computational problem. This is not a special case of indepen-
dent iterations of an entire protocol, and real exponential decrease of the error cannot
be expected, but nevertheless, for practical applications, one needs concrete relations
between the complexity and error probability of the underlying problem and that of the
iterated protocol. We show how this problem can be formalized and solved using the
theory of proofs of knowledge.

We also prove that in the non-uniform model of complexity the error probability
of independent iterations of an argument does indeed decrease exponentially – to our
knowledge this is the first result about a strictly exponentially small error probability in
a computational cryptographic security property.

As an illustration of our first result, we present a very efficient zero-knowledge ar-
gument for circuit satisfiability, and thus for any NP problem, based on any collision-
intractable hash function. Our theory applies to show the soundness of this protocol.
Using an efficient hash function such as SHA-1, the protocol can handle about 20000
binary gates per second at an error level of 2−50.

Keywords — Interactive proofs, arguments, proofs of knowledge, computational se-
curity, efficient general primitives, multi-bit commitment, statistical zero-knowledge.

1 Introduction

1.1 Background

An interactive argument, also sometimes called a computationally convincing
proof system, is a protocol in which a polynomial-time bounded prover tries to
∗Aarhus University, BRICS (Basic Research in Computer Science, center of the Danish National Research

Foundation
†University of Saabrücken

1

convince a verifier that a given statement is true, typically a statement of the form
x ∈ L for a given word x and a language L. Interactive arguments were introduced
in various conference papers, which were finally merged into [1].

Compared to the interactive proof systems of [13], arguments require only that
polynomial-time provers cannot cheat with significant probability, whereas inter-
active proofs guarantee this for all provers. On the other hand they enjoy some
advantages: Under reasonable computational assumptions, perfect zero-knowledge
arguments can be constructed for any NP-language [1], i.e., the zero-knowledge
property holds not only against polynomial-time verifiers; this is (probably) not
possible for proof systems [10]. If one has to choose in practice which of the two
properties, soundness of the proof and zero-knowledge, one prefers to have perfect,
one should also consider that in order to cheat in an argument, the prover must
break the underlying computational assumption before the protocol ends, whereas
the zero-knowledge property of a computational zero-knowledge proof system breaks
down if the computational assumption is broken at any later time.

Traditionally, e.g., in [1] (but see later for some exceptions), the notion of argu-
ments seems to have been to modify the definition of proof systems from [13] by no
longer allowing cheating provers unlimited computing resources, and requiring that
the success probability of cheating provers is negligible, i.e., decreases asymptoti-
cally faster than the inverse of any polynomial. We will mention below that even
this is not completely trivial to formalize, but take it as a starting point for the
moment.

Many natural constructions of interactive arguments and proofs start from an
atomic step, in which the prover can cheat with at most some (large) probability
ε, e.g., 1/2, under some computational assumption. This step is then iterated to
reduce the error probability.

For interactive proof systems, it is easy to see that the error probability of m such
sequential iterations is εm. The same is true for parallel iterations, although this is
somewhat less trivial to see [5].

For arguments, the problem is more complex. Bellare et al. show in [6] that
parallel iteration for some types of what they call computationally sound protocols
fails completely to reduce the error. On the positive side, they also show that
parallel iteration of arguments with at most 3 rounds does reduce the error in the
way one might expect: it goes down exponentially until it becomes negligible.

1.2 Our Work

The research reported in this paper started by the observation that from the
results of [8, 9, 1, 16], we could construct an extremely efficient statistical zero-
knowledge argument for Boolean Circuit satisfiability (see section 7). The soundness
of the protocol can be based on any family of collision-intractable hash functions. Its
asymptotic communication complexity is as good as the best known SAT protocols

2

[7, 14]; moreover our intractability assumption is weaker. But most importantly,
our protocol has the potential of being computationally much more efficient. In
practice, if we base the protocol on the well-known hash function SHA-1 [17] and
go for an error probability of 2−50, the protocol can process 20000 binary gates
per second on a standard PC. To the best of our knowledge, this makes it the
computationally most efficient SAT protocol proposed.

The design of the protocol is based on sequential iteration of a basic step, and
soundness of the entire protocol seemed intuitively to follow trivially from the
collision-intractability of the hash function used. However, the real proof of sound-
ness of the protocol turned out to be much more complicated than we expected. It
became apparent that we were in fact looking at a general problem, namely how to
treat sequential iteration of arguments properly. We believe that there are several
reasons for studying this scenario in some detail:

• The exact exponential decrease of the error probability for independent se-
quential iterations does extend from interactive proofs to arguments, but only
if we allow cheating provers to be non-uniform. This is not hard to prove,
but interesting because we are not aware of any previous proof that a com-
putational security property has an exponentially (in contrast to just negli-
gibly) small error probability (under the usual cryptologic assumptions). In
the uniform case, things are more complicated, as detailed below. No gen-
eral sequential iteration lemma for arguments seems to have appeared in the
literature. protocols.

• Most iterated arguments appearing in the literature (including [1] and the
protocol presented in this paper) in fact do not use independent iterations;
instead the soundness of all iterations is based on a single instance of some
computational problem, chosen for the entire protocol. In practice this is
typically a lot more efficient than having to choose a new instance for every
execution, and may in fact be the only option: if one wants to base a protocol
on standard hash functions such as SHA-1, there is only one instance to work
with. Note that this scenario is not a special case of the case with independent
iterations. It requires separate treatment and we have found that in fact it
allows more precise results to be shown.

• For a practical application, it is not enough to have a result of the form: “if
there exists a polynomial-time prover that cheats m iterations with probability
δ, then there is a polynomial-time prover that cheats one iteration with prob-
ability ε”. The basis for security of one iteration will typically be a concrete
hard problem instance, such as a collision-intractable hash function or a large
integer that should be hard to factor. The protocol designer is more likely
to ask “If I’m willing to assume that this particular hash function cannot be
broken in time T with probability ε, and I’m happy with error probability δ,

3

how much time would an enemy need to invest in breaking my protocol?” For
this, the concrete complexity of reductions involved in proofs is important.
We will focus on this in the following.

2 Independent Iterations in the Non-Uniform Model

Our model of uniform feasible computation is probabilistic polynomial-time in-
teractive Turing machines as defined in [13]. For non-uniform computations, we
use probabilistic polynomial-time interactive Turing machines with polynomial ad-
vice. This means that the machine obtains an additional “advice” input which is
a function of the length n of the normal input, and whose length is bounded by a
polynomial in n. 1

For the non-uniform case, we use the following precise definition of arguments:

Definition 2.1 Non-uniform definition of interactive arguments
Let L be a language, (P, V) a pair of probabilistic polynomial-time interactive al-
gorithms with a common input x, and ε : {0, 1}∗ → [0, 1] a function. We say that
(P, V) is an interactive argument for L in the non-uniform model with soundness
error ε if it has the following properties:

• Completeness: If x ∈ L and P is given an appropriate auxiliary input (de-
pending on x), the probability that V rejects is negligible in |x|.

• Soundness: For any non-uniform probabilistic polynomial-time algorithm P ∗

(a cheating prover), there is at most a finite number of values x 6∈ L such that
V accepts in interaction with P ∗ on input x with probability larger than ε(x).

To model more precisely how the systems would be used in practice, one can re-
fine this definition by letting the level of security be determined by special security
parameters, instead of the length of the input. One would typically use two such
parameters, one for computational aspects and one for the tolerated error probabil-
ity. This was omitted in this extended abstract for brevity and for similarity with
other definitions.

We now formally define sequential composition and a view of them as game trees
that will be used in most of the proofs.

Definition 2.2 (Iteration and proof trees) If (P, V) is an interactive argument
and m : IN→ IN a polynomial-time computable function, the m-fold iteration or se-
quential composition is the pair of algorithms (Pm, V m) which, on input x, execute
P or V , respectively, m(|x|) times sequentially and independently. V m accepts if
all its executions of V accept. Typically, m is a constant or the identity function

1It is well-known that this is equivalent to using circuit complexity, the more usual model of non-uniformity
in cryptology. In particular, a polynomial-size circuit family can be simulated by a polynomial-time Turing
machine that takes the description of the circuit for the given input length n as advice input.

4

(i.e., the number of iterations equals the input length, which serves as the security
parameter).

Cheating provers will be denoted by Pm∗; this notation only designates that this is
a non-uniform probabilistic polymial-time algorithm that can interact with V m.

The proof tree for V m, such a Pm∗, and a fixed common input x has a node for
each state that Pm∗ may be in just before an iteration of V . A node has an outgoing
edge for each possible set of random choices that Pm∗ and V might make in the
following iteration; if V rejects in the iteration with this set of random choices, we
truncate off the corresponding edge.

For this non-uniform case, we can show the following theorem about strictly ex-
ponential decrease of the error probability.

Theorem 2.3 Let (P, V) be an interactive argument for a language L in the non-
uniform model with soundness error ε, where ε is a constant, and m a polynomial-
time computable function. Then (Pm, V m) is an interactive argument for L with
soundness error εm (where εm is the function that maps x to ε(x)m(|x|)).

Proof Assume, for contradiction, that there were a non-uniform probabilistic
polynomial-time prover Pm∗ and an infinite number of values x 6∈ L such that V m

accepts in interaction with Pm∗ on input x with probability larger than ε(x)m(|x|).
This implies that there is an infinite number of different input lengths n such that
a value xn with this property and of length n exists.

For each value xn, consider the corresponding proof tree (for the given Pm∗), and
abbreviate ε(xn) by ε and m(|xn|) by m. If T is the number of possible sets of
random choices in each iteration, success probability for Pm∗ larger than εm means
that the tree has at least Tmεm leaves. It easily follows that there is a node with
at least Tε children. We fix one such a node Nn, say the first one in a standard
enumeration of the nodes of the tree.

Now we exploit that we allow non-uniform provers: The particular strategy cor-
responding to the node with large success probability can be given as advice. More
precisely, we construct a prover P ∗ that cheats one iteration as follows: It takes its
advice as a starting state for running Pm∗ for as long as needed to interact with V .
The value f(n) of the advice function for each input length n is the state that labels
the node Nn. This P ∗ is obviously probabilistic polynomial-time and successfully
cheats V on the infinite set of values xn with probability larger than ε, in contra-
diction to the security of the given argument. ut

As to the concrete complexity of the reduction, note that the running time of
P ∗ is bounded by that of Pm∗ on the same value x. (We have not shown that P ∗

can cheat with a too large probability on equally many values x 6∈ L as Pm∗. But
we have shown that if x is long enough so that P ∗ cannot cheat with a too large
probability on any value of this length, then the same holds for Pm∗.)

5

3 Uniform Definitions

Before presenting a specialized treatment of the notion of arguments based on
a fixed instance of a computational problem, let us review general definitions of
arguments in the uniform model. The specialized definition will be a refinement of
such a definition.

A natural version can be derived from the non-uniform definition by simply re-
stricting cheating provers to uniform computations. We assume that this is what
the authors of [1] had in mind, and it comprises the formal definitions specifically
for negligible and constant error in [11], and the language-recognition case of [6].
We will show below, however, why we did not call it a uniform definition.

Definition 3.1 Semi-uniform definition of interactive arguments
We say that (P, V) is an interactive argument for L in the semi-uniform model with
soundness error ε under exactly the same conditions as in 2.1, except that the word
“non-uniform” in the soundness is replaced by “uniform”.
|x|. We say that (P, V) is an interactive argument for L in the semi-uniform model

with negligible soundness error if this property holds for any function ε(x) = |x|−c.

The reason why we did not simply call this definition uniform is the treatment of
the common input x. Typically, the goal with a uniform definition is to be able to
prove that a protocol is secure according to the definition under the assumption that
a certain computational problem is hard for uniform algorithms. If one is willing
to make a stronger, non-uniform complexity assumption, it is more useful to also
prove a stronger, non-uniform security property for the protocol.

However, for Definition 3.1, one will usually need a non-uniform complexity as-
sumption.

Intuitively, one can see this from trying the usual reduction proof: If there exists
a prover P ∗ contradicting Definition 3.1, there exists an infinite set K of inputs
on which P ∗ can cheat V . In order to exploit P ∗ in a reduction to an algorithm
breaking the assumption, one would for each input length need to get hold of an
element from K, if it exists. Nothing in the scenario guarantees us that this can
be done efficiently; thus the only solution seems to be to give the elements of K as
advice. One can actually construct realistic counterexamples where the existence of
a non-uniform algorithm F breaking the assumption can be exploited in a uniform
prover P ∗ contradicting Definition 3.1: In proof systems like [1] that can be broken
if one or more instances of the underlying problem are broken, P ∗ can try to use
its input x as advice in calls to F to break these instances. On an infinite set of
inputs x this will work (at least if x may be longer than the underlying instances
by a polynomial factor, which should usually be no problem).

Thus we also propose a fully uniform definition. It contains a polynomial mes-
sage finder like definitions of the secrecy in encryption schemes [12]. We can leave
completeness unchanged for our purposes; for many practical purposes one would

6

additionally require the existence of a probabilistic polynomial-time algorithm that
generates instances together with the appropriate auxiliary input.

Definition 3.2 Fully uniform definition of interactive arguments
Let L be a language, (P, V) a pair of probabilistic polynomial-time interactive algo-
rithms with a common input x, and ε : IN → [0, 1] a function. We say that (P, V)
is an interactive argument for L in the fully uniform model with soundness error ε
if it has the following properties:

• Completeness: If x ∈ L and P is given an appropriate auxiliary input (de-
pending on x), the probability that V rejects is negligible in |x|.

• Soundness: A cheating prover is modeled by two (uniform) probabilistic poly-
nomial time algorithms M∗ and P ∗, called message finder and main prover.
The input for M ∗ is a security parameter k, and its output should be a value
x 6∈ L of length k and a value viewM∗, which serves as local knowledge that the
cheating prover stores between the two steps. We consider the joint probability
distribution if first M ∗ is run on input k and outputs two values (x, viewM∗),
and then V on input x interacts with P ∗ on input (x, viewM∗).

The soundness requirement is that for any such pair (M ∗, P ∗), there exists at
most a finite number of integers k such that the probability (in the distribution
just defined) that |x| = k, x 6∈ L, and that V accepts is larger than ε(k).

Negligible soundness error is defined as above.

It is clear that any interactive argument for L in the semi-uniform model with
soundness error ε is also an interactive argument for L in the fully uniform model
with at most the same soundness error.

The definition and results in the following sections are all phrased in the fully
uniform model. The results and proofs carry over easily to non-uniform provers,
using essentially the same reductions.

4 Definition of Fixed-Instance Arguments

We now consider the case where the soundness of the entire iterated protocol
is based on a single instance of a computational problem, which is chosen by the
verifier initially. This will almost always be the scenario in a practical application,
also all protocols in [1] are of this form. In this case, it is clear that the error
probability of the iterated protocol cannot decrease strictly exponentially in the
number of iterations, even in the non-uniform model, because it always suffices to
break the one given instance.

The intuition behind the term “based on an instance of a problem” is that if any
prover can convince the verifier on input x 6∈ L with probability greater than some
ε, then the prover can solve the problem instance. We call such a definition relative

7

(to the hardness of the underlying problem) and the definitions presented so far
absolute in comparison. To capture what it means that the prover “can solve” the
problem instance, we use the theory of proofs of knowledge. We do not claim that
the resulting definition covers any conceivable argument where some part is iterated
while another is kept constant, but it does cover all known examples of what people
have understood by basing an iteration on one problem instance.

Before we give our new relative definition of soundness of an interactive argu-
ment, we briefly recall the definition from [4] of a proof of knowledge, with minor
modifications to match our context. For any binary relation R, let R(z) be the set
of y’s such that (z, y) ∈ R, and LR = {z| R(z) 6= ∅}.

Definition 4.1 (Proof of knowledge) Let R be a binary relation, and κ : {0, 1}∗ →
[0, 1]. Let V be a probabilistic polynomial-time interactive Turing machine. We say
that V is a knowledge verifier for R with knowledge error κ if the following two
conditions hold:

• Non-triviality (completeness): There is a prover P such that V always accepts
in interaction with P for all inputs z ∈ LR.

• Validity (soundness): There is a probabilistic oracle machine K (the universal
knowledge extractor) and a constant c such that for every prover P ∗ and every
z ∈ LR, the following holds:

Let p(z) be the probability that V accepts on input z in interaction with P ∗.
Now if p(z) > κ(z), then on input z and access to the oracle P ∗z (P ∗ with fixed
input z), the extractor K outputs a string in R(z) within an expected number
of steps bounded by

|z|c
p(z)− κ(z)

.

By having access to the oracle P ∗z , we mean the possibility to reset it to a previous
state, including the state of the random tape.

This definition makes no statement about the case z 6∈ LR, e.g., it allows P
to “convince” V that it knows a non-trivial factor of a prime. This is ok in our
application where V will choose z ∈ LR.

Further note that cheating provers are not restricted to polynomial time here,
because the time that P ∗ needs comes in indirectly via the time each oracle call of
K needs. We will say more about this in the context of interactive arguments. This
also implies that there would be no need for a computational security parameter;
however, one could easily modify the definition so that the tolerated knowledge
error (or typically a negative logarithm of it) is a free input parameter, instead of
a function of z. The same could then be done for our following definition.

As outlined in the introduction, we now define soundness of an interactive argu-
ment for the case where it is based on the prover’s presumed inability to solve a

8

fixed instance of a computational problem. We use a relation R as described above
to model this computational problem, and the definition describes the idea that
the prover can only argue something false by instead demonstrating knowledge of
a solution to the given problem instance from R.

In order to get one uniform extractor, and not a different one for each value x,
we include the values x in the relation.

Definition 4.2 Relative definition of interactive arguments
Let L be a language, R a binary relation, σ : {0, 1}∗ → [0, 1], and (P, V) a pair
of probabilistic polynomial-time interactive Turing machines, taking two common
inputs x and z. We say that (P, V) is an interactive argument for L with soundness
error σ relative to R if it has the following properties:

• Completeness: If x ∈ L and z ∈ LR, and P is given an appropriate auxiliary
input (depending on x), the probability that V rejects on input (x, z) when
interacting with P is negligible in the minimum of |x| and |z|.

• Soundness relative to R: We require that V satisfies the validity condition of
Definition 4.1, considered as a knowledge verifier for the relation

R′ = {((x, z), y)|x 6∈ L, (z, y) ∈ R}.

with knowledge error σ.

Note that we do not need the non-triviality condition of Definition 4.1. In our case
it would mean that if the prover knows a solution to the problem instance z, he can
in fact cheat the verifier.

The soundness condition, written out, means that for every prover P ∗, every
x 6∈ L, and every z ∈ LR, the following holds: Let p(x, z) be the probability that
V accepts in interaction with P ∗ on input (x, z). If p(x, z) > σ(x, z) (for simplicity
we omitted an additional pair of parantheses denoting that σ operates on the pair
as one string), then the knowledge extractor K, on input (x, z) and access to the
oracle P ∗x,z, outputs a string in R(z) within an expected number of steps bounded
by

(|x|+ |z|)c
p(x, z)− σ(x, z)

.

As in the definition of proofs of knowledge, cheating provers are not restricted to
polynomial time in our soundness condition. The prover’s running time comes in
as follows: If a protocol satisfies the soundness condition and some prover P ∗ with
running time T (x, z) can cheat with probability higher than σ(x, z), there is an
algorithm solving the given instance z in expected time T (x, z) times the number
of steps given above.

We now show that this relative definition implies the absolute definition of sound-
ness if the underlying problem is indeed hard.

9

Proposition 4.3 Let (P, V) be an interactive argument relative to R with negligible
soundness error σ. Let gen be a polynomial-time algorithm that, given a security
parameter k, chooses an element z ∈ LR such that one assumes that no probabilistic
polynomial-time algorithm F , on input (k, z), can find y ∈ R(z) with more than
negligible probability (in k). Moreover, we assume that gen guarantees |z| ≥ k.

Let (P1, V1) be the protocol with input x where the verifier first chooses z using
gen(|x|), and then (P, V) is run on input (x, z). Then (P1, V1) is an interactive
argument for L according to the fully uniform Definition 3.2.

Proof It is clear that P1 and V1 are polynomial-time in |x|, and completeness
follows with the additional condition |z| ≥ k = |x|.

Soundness: Assume there is a pair (M ∗
1 , P

∗
1) of a probabilistic polynomial-time

message finder and main prover contradicting Definition 3.2. Let their joint con-
crete running time on input k be T1(k) and their success probability p1(k). The
assumption that this pair contradicts negligible soundness means that there is a
constant c1 such that p1(k) > k−c1 for infinitely many values k.

Let K be the knowledge extractor and c the constant guaranteed by the relative
Definition 4.2 for (P, V).

Now we construct an algorithm F that breaks the assumption about the under-
lying relation R: On input (k, z), the algorithm F first calls the message finder M∗

1

with input k to obtain a value x and some viewM∗1 . If the length of x is not k, then
F aborts. Otherwise it calls the knowledge extractor K with the input (x, z) and
answers its oracle questions by calling P ∗1 (x, viewM∗1) and giving P ∗1 the value z in
the first step. Note that this oracle P ∗(x, z) is a valid oracle for K. Let its success
probability in cheating V be p(x, z). We have p1(k) =

∑
pM∗1 ,k(x)pgen,k(z)p(x, z),

where pM∗1 ,k(x) and pgen,k(z) are the probabilities with which M ∗
1 (k) and gen(k)

output x and z, respectively.
F lets K run for

2
(k + |z|)c

p1(k)/2− σ(x, z)

steps if
p1(k) > k−c1 > 4σ(x, z); (∗)

otherwise it stops at once. As σ is negligible and the length of the pair (x, z) is at
least k, there are still infinitely many values k where (∗) holds for all (x, z). We
have to show that F is polynomial-time and its success probability non-negligible.

Size: Each step is at most a call to M∗
1 (k) or P ∗1 on an input produced by M ∗

1 (k),
and either runs for at most T1(k) steps. The factor (k+ |z|)c is polynomial because
z is chosen by gen(k). Finally, if any steps are carried out, the denominator gives
at most a factor of 4kc1.

Probability: It is sufficient to consider the values k for which (∗) holds. By
Definition 4.2, K outputs a string in R(z) in an expected number (k+|z|)c/(p(x, z)−
σ(x, z)) of steps whenever x 6∈ L and p(x, z) > σ(x, z). By Markov’s rule, it makes

10

such an output with probability at least 1/2 if run for twice this number of steps.
All conditions are fulfilled if x 6∈ L and p(x, z) > p1(k)/2. By Markov’s rule, this is
the case with probability at least p1(k)/2 (over the independent choices of x and z;
recall that p1(k) is the weighted average of the values p(x, z)).

Altogether, F therefore has a success probability of at least k−c1/4 if its input z is
chosen by gen(k) for an infinite number of values k. This contradicts the assumption
about the underlying relation R.

ut

5 Iteration in the Fixed-Instance Case

Bellare and Goldreich show in [4] that the knowledge error for a protocol iterated
sequentially decreases almost exponentially with the number of iterations:

Theorem 5.1 Let V be a knowledge verifier for relation R with soundness error
κ. Assume that an element y ∈ R(z) can be found in time 2l(z) for any z ∈ LR,
where l is at most polynomial. Then the interactive algorithm V m consisting of m(z)
independent sequential iterations of V on the same input z is a knowledge verifier
for relation R with knowledge error (1 + 1/l)κm. (Recall that l, κ, and m are all
functions of z.)

By the relative definition of interactive arguments, this immediately implies that
the soundness error of the m-fold iteration of such an argument on the same input
(x, z), i.e., with a fixed instances, decreases in exactly the same way.

In [4], the question was raised of whether the factor (1 + 1/l) can be removed.
We show in the following that this is possible in an important class of special cases.
More importantly, we also provide a tighter reduction. The special cases are defined
as follows:

Definition 5.2 (Sharp threshold extractor) Let K be a knowledge extractor
for knowledge verifier V and relation R. The machine K is called a sharp threshold
extractor if the following is satisfied: for any prover P ∗ that on input z convinces V
with probability larger than κ(z), K using P ∗ as oracle runs in an expected number
f(|z|) of steps for some fixed polynomial f .

Many, if not all known proofs of knowledge that one wants to iterate in practice
have sharp threshold extractors. As an example, consider a protocol consisting of
the verifier asking the prover one out of a polynomial number t of questions, and
where the knowledge can be computed in polynomial time from correct answers to
more than g < t questions. Such a protocol has knowledge error g/t and a sharp
threshold extractor, because any prover who convinces the verifier with probability
greater than g/t must be able to answer at least g+ 1 questions, all of which can be
found in a polynomial number of steps by rewinding the prover (at most t times).

11

Theorem 5.3 Let V be a knowledge verifier for relation R with knowledge error
κ. Assume that there is a sharp threshold extractor for V . Then the interactive
algorithm V m consisting of m(z) independent sequential iterations of V on the same
input z is a knowledge verifier for relation R with knowledge error κm.

Proof We fix an input z, so let m(z) = m and κ(z) = κ. Let a be the maximum
number of random bits consumed by V during one iteration and t = 2a. Clearly,
t is the maximal number of distinct interactions that could take place between V
and any fixed prover (including a fixed random tape). Let g be the maximal integer
with g/t ≤ κ.

Fix an arbitrary prover Pm∗ convincing V m on input z with probability p > κm.
Let p(r) be the probability that Pm∗ with a specific random tape r convinces V m.

We consider the proof tree for V m, Pm∗ with a fixed random tape r, and z. In
this case, the edges out of a node correspond to the t possible values of V ’s random
choices in that execution, but those for which V rejects are deleted. A level i is
the set of nodes at a fixed distance i from the root. The nodes in level m, which
correspond to final acceptance by V , are called endnodes and their number is called
end. In our case,

end = p(r)tm. (1)

A node is said to be good (for the extractor) if it has more than g children. Let
Goodi be the number of good nodes in level i. We claim that for all trees, the
number of endnodes is

end ≤ gm +
m−1∑
i=0

(t− g)gm−i−1Goodi. (2)

We show (2) by induction on the number of levels with non-zero value of Goodi:
If (Good0, ..., Goodm−1) = (0, ..., 0), the maximal number of endnodes occurs if all
internal nodes have g children, i.e., we get gm endnodes. Next, assume the formula
holds for any tree with good nodes only up to level j − 1. Consider a tree with
a sequence of the form (Good0, ..., Goodj, 0, ..., 0). Make a new tree by removing
enough children (and all their successors) from the good nodes at level j so that
they have g children left. For each node, we have removed at most t− g children on
level j+1, and each of these can lead to at most gm−(j+1) endnodes, as all nodes are
bad from level j + 1 onwards. The induction hypothesis applies to the remaining
tree, and adding to this the number of endnodes we removed gives the desired result.

The overall strategy for the knowledge extractor will be to find a good node
as quickly as possible, basically by trying random nodes of random trees. The
above claim gives us a lower bound on the number of good nodes, except that the
summation is weighted according to the level of the node. We will therefore not try
levels uniformly, but choose each level i with a probability pi carefully adapted to

12

make the most of the weighted sum: For i = 0, ...,m− 1, let

pi = tigm−i−1pmin, where pmin =
t− g

gm((t/g)m − 1)
.

It is easy to verify that these probabilities add up to 1. Now consider the following
algorithm for a knowledge extractor for V m:

Repeat the following loop until an element in R(z) has been found:

1. Choose the random tape r of Pm∗ uniformly, and choose a level i, using the
probability distribution p0, ..., pm−1.

2. Try to select a node in level i by simulating the protocol, i.e., running the
algorithm V m (with new random choices each time) and using the oracle Pm∗

z

with the random tape r. If V m rejects before we reach level i, go back to step
1.

(Note that this means selecting one of the ti potential nodes in level i with
uniform probability; it is reached if and only if it is in fact in the tree.)

3. Run the sharp threshold extractor K that we have for V for this node, hop-
ing that it is a good node. This means that we answer K’s oracle queries
by rewinding Pm∗

z to the situation after step 2 each time. If K outputs an
element in R(z) within 2f(|z|) steps, where f is the polynomial guaranteed
by Definition 5.2, we output this element and stop. Else, go to step 1.

Let p∗(r) be the probability that we reach step 3 with a good node for a specific
r. We can bound p∗(r) using formulas (1) and (2) and the definition of the pi’s:

p∗(r) =
m−1∑
i=0

piGoodi/t
i

= pmin
m−1∑
i=0

gm−i−1Goodi

=
1

gm((t/g)m − 1)

m−1∑
i=0

(t− g)gm−i−1Goodi

≥ 1

gm((t/g)m − 1)
(p(r)tm − gm)

=
p(r)− (g/t)m

1− (g/t)m

≥ p(r)− (g/t)m

≥ p(r)− κm.

The overall probability p∗ that we reach step 3 with a good node is therefore at
least p− κm.

13

If we reach step 3 with a good node, K succeeds in expected number of steps
f(|z|), because running Pm∗

z with a fixed starting state for one iteration is a valid
oracle for K and V accepts in good nodes with probability at least (g + 1)/t ≥ κ.
The probability that K runs for more than twice its expected number of steps is
at most 1/2 by Markov’s rule. Hence the expected number of times we restart the
loop from step 1 is at most 2/(p−κm), and the number of steps each time is clearly
polynomial. ut
Corollary 5.4 Let (P, V) be an interactive argument for language L with soundness
error σ relative to R. Assume that there is a sharp threshold extractor for V ,
considered as knowledge verifier for the relation R′ defined as in Definition 4.2.
Then the protocol (Pm, V m) consisting of m(z) independent sequential iterations
of (P, V) on the same input (x, z) is an interactive argument for language L with
soundness error σm relative to R.

Proof The completeness condition can easily be seen, and the soundness condi-
tion carries over immediately from the theorem. ut

Let us elaborate a little on what this result means in practice. It does not allow
us to say that the prover cannot cheat with probability better than σm. But we can
say how many computing resources he would need to reach any given goal above
σm. If we look closely at the reduction in the above proof, we see that doing the
loop once corresponds to emulating at most one run of all m iterations, plus running
the knowledge extractor for at most 2f(|z|) steps. Hence we get:

Corollary 5.5 With the notation and assumption as in Corollary 5.4: Any prover
P ∗ that makes the verifier accept all m iterations with probability p(z) > σ(z)m can
be converted into an algorithm that finds an element in R(z) in expected time

2
TP ∗(z)(1 + 2f(|z|)) +mTV (z)

p(z)− σ(z)m
,

where TP ∗(·) and TV (·) are the running times of P ∗ and V , respectively.

Of course, the term f(|z|) coming from the knowledge extractor also includes
oracle calls. For most known protocols, we can evaluate this further:

Corollary 5.6 If we further specialize Corollary 5.5 to the very common case of
protocols where one out of t questions (t constant) is asked in each round, the
expected running time is bounded by

2
TP ∗(z)(1 + t) +mTV (z)

p(z)− σ(z)m
.

Note that the expression in the denominator of this corollary is linear in TP ∗(z),
and therefore gives a very tight connection between the time needed to cheat V and
the time needed to break the computational assumption.

14

6 Independent Iterations in the Uniform Model

For completeness, we now briefly consider the case we have not yet looked at,
namely independent iterations in the uniform model.

Proposition 6.1 Let (P, V) be an interactive argument for a language L according
to Definition 3.2 with constant soundness error c < 1.

Then (Pm, V m), the protocol consisting of m(|x|) = |x| independent sequential
iterations of (P, V) on the same input x, is an interactive argument for L in the
sense of Definition 3.2 with negligible soundess error.

Proof sketch
The proof is very similar to the one for the fixed instance case, and so is only loosely
sketched here. Let a message finder M ∗ and a prover Pm∗ be given that violate the
conclusion of the proposition. The same message finder will be used against V . On
a certain fraction of its outputs, Pm∗ cheats V m with significant probability. For
each such output, we form the proof tree for Pm∗, V m. If every node in the tree is
bad, i.e., the ratio of outgoing edges to the maximum possible is less than c, then
the accept probability would be at most cm, i.e., exponentially small. If fact it is
much larger, namely a polynomial fraction by assumption, and so there must be a
large number of good nodes, one of which can be found using a similar algorithm as
in the proof for the fixed instance case. Using such a node, we can build a prover
contradicting the assumption on (P, V). ut

7 An Efficient Zero-Knowledge Argument for NP

In this section we present an efficient statistical zero-knowledge argument for
Boolean circuit satisfiability, and hence for any NP problem, by the NP-completeness
of circuit-SAT and standard reductions. The protocol can be based on the existence
of collision-intractable hash functions, i.e., easily computable functions that map in-
puts of (in principle) any length to a fixed length output, and for which it is hard to
find different inputs leading to the same output. Our construction combines three
ingredients:

• The unconditionally hiding multi-bit commitment scheme by Damg̊ard, Ped-
ersen, and Pfitzmann [8, 9], based on any collision-intractable hash function
family H. The receiver of the commitments chooses a hash function h ∈ H
with output length k + 1, where k is a security parameter. (The choice is
made once and for all, and the functions have short descriptions.) An m-bit
string can then be committed to by a commitment of length k + 1 bits and
opened by sending 10(k+1) bits, plus the m bits of the string itself, of course.
The scheme guarantees that a commitment to x only reveals an exponentially
small (in k) amount of Shannon information about x. Moreover, any method

15

for making a commitment and opening it in two different ways easily leads to
a collision for h.

• The BCC protocol [1] for showing that a Boolean circuit is satisfiable. It
works based on any bit commitment scheme for single bits and is a compu-
tational zero-knowledge proof system or a perfect/statistical zero-knowledge
argument, depending on whether the commitments used are computationally
or unconditionally hiding. The basic step in the protocol is that the prover
commits to O(m) bits, where m is the size of the circuit, and depending on
a random challenge from the verifier, the prover either opens all the bits or a
specific subset of them that depends on the satisfying assignment. This basic
step is iterated a number of times.

• The method by Kilian, Micali, and Ostrovsky from [16] for using a multi-bit
commitment scheme in any protocol of a type they call “subset-revealing”,
of which the BCC protocol is an example. The interesting point is that the
method works even if the commitment scheme does not allow opening indi-
vidual bits in a multi-bit commitment. The method replaces each basic step
of the original protocol by a new one which needs 5 messages instead of 3 and
contains 2 commitments to O(m) bits each instead of O(m) commitments to
1 bit each. If the prover could cheat in the old basic step with probability at
most 1/2, he can cheat in the new one with probability at most 3/4 (without
breaking the computational assumption).

Let (P, V) denote the protocol that takes as input a circuit C and a hash function
h ∈ H, and executes one basic step obtained by modifying the basic step of BCC
by the method of [16] and the commitment scheme of [8, 9] using the given hash
function h.

Let R be the relation {(h, (y, y′))| h ∈ H,h(y) = h(y′), y 6= y′}, i.e., the underlying
computational problem of finding collisions. The relation R′ used in Definition 4.2
is then

{((C, h), (y, y′))| C non-satisfiable, (h, (y, y′)) ∈ R}.
It is easy to see that V is a knowledge verifier for R′ with knowledge error 3/4
and a sharp threshold extractor: In the protocol, V chooses at random between a
total of 4 challenges for the prover, and given satisfactory answers to all of them,
one can compute a satisfying assignment for C or break the commitment scheme,
i.e., find a collision for h. It follows immediately that (P, V) is an interactive
argument for Boolean circuit satisfiability with soundness error 3/4 relative to R.
Thus Corollary 5.4 implies that the iterated protocol (Pm, V m) only has soundness
error (3/4)m. Finally, we can apply Proposition 4.3 to the overall protocol (Pm

1 , V
m

1).
We summarize this protocol and the results:

1. The common input is a circuit C of size m.

16

2. V m
1 chooses at random a function h ∈ H with output length m.

3. Run (P, V) on input (C, h) for m iterations. V m
1 accepts if and only if all

iterations were accepting.

Theorem 7.1 Assume that H is a family of collision-intractable hash functions.
Then (Pm

1 , V
m

1) is a statistical zero-knowledge argument for Boolean circuit satisfia-
bility according to Definition 3.1 with the following properties: The protocol requires
communicating O(m2) bits. The subprotocol (Pm, V m) has soundness error (3/4)m

relative to R. Concretely, if any probabilistic polynomial-time prover P ∗ can cheat
with probability ε(m) > (3/4)m in expected time T (m), there is a probabilistic algo-
rithm that finds collisions for the hash function used in expected time dominated by
the term 10T (m)/(ε(m)− (3/4)m).

As briefly mentioned near the definitions, for a protocol of the type we consider,
there are actually a number of parameters, which one may set independently in
practice: the size of the input circuit, say n, the logarithm of the probability with
which we allow the prover to cheat (assuming he cannot break the hash function),
which corresponds to m, and the output length k of the hash function. To simplify,
we have let all parameters be O(m).

Using the BCC protocol based on a 1-bit commitment scheme would give a com-
munication complexity of O(m3) bits. Kilian [14, 15] has found a protocol based on
probabilistically checkable proofs that would, with our choice of parameters, have
a communication complexity of O(m2 logm). However, our protocol would not be
superior to Kilian’s for all choices of parameters – in fact Kilian shows that the com-
munication complexity does not have to depend on the size of circuit at all. Using a
completely different method, Cramer and Damg̊ard [7] obtained an argument that
also has O(m2) complexity. In comparison, their protocol is perfect zero-knowledge
and constant-round, and if one considers the parameters independently, [7] has
asymptotically smaller communication complexity for small soundness error values.
On the other hand, our protocol is computationally more efficient for the concrete
constructions known.

Perhaps even more interesting is the performance in practice. For instance, if
we use SHA-1 as the hash function, which has a 160-bit output, and we set the
soundness error at 2−50, then a circuit consisting of 10000 gates could be proved
satisfiable using about 3 Mbyte of communication.

To assess the computation effort required, it seems reasonable to assume that an
implementation would spend almost all its time hashing. SHA-1 can be implemented
on standard PC’s at speeds around 6-8 Mbyte/sec. This suggests that, at a security
level of 2−50, a real implementation should be able to handle around 20000 gates per
second, assuming that the communication lines can keep up. For instance, a circuit
part for proving that a secret value is a DES key encrypting a certain plaintext
block into a certain ciphertext block can be handled in less than 2 seconds. (The

17

main part of the circuit are 16 times 8 S-boxes. Each S-box is a table with 26 rows
of 4 fixed entries, which can easily be implemented with about 2 gates per row for
addressing and one gate per entry “1”.)

To the best of our knowledge this is the most practical protocol proposed for
circuit satisfiability.

References

[1] G. Brassard, D. Chaum, and C. Crépeau, “Minimum Disclosure Proofs of
Knowledge,” J. Computer and System Sciences, vol. 37, pp. 156-189, 1988.

[2] G. Brassard, C. Crépeau, S. Laplante, and C. Léger, “Computationally Con-
vincing Proofs of Knowledge,” Proc. 8th Annual Symp. Theoretical Aspects of
Computer Science (STACS 91), Berlin: Spinger Verlag, 1991, pp. 251-262.

[3] G. Brassard, C. Crépeau, M. Yung, “Constant-round perfect zero-knowledge
computationally convincing protocols,” Theoretical Computer Science, vol. 84,
no. 1, pp. 23-52, 1991.

[4] M. Bellare and O. Goldreich, “On Defining Proofs of Knowledge”, in Advances
in Cryptology - Proc. CRYPTO ’92, Berlin: Springer-Verlag, 1993, pp. 390-420.

[5] L. Babai and S. Moran, “Arthur-Merlin Games: A Randomized Proof System
and a Hierachy of Complexity Classes”, in JCSS, vol.36, 254-276, 1988.

[6] M. Bellare, R Impagliazzo, and M. Naor, “Does Parallel Repetition Lower
the Error in Computationally Sound Protocols?”, in Proc. 38th IEEE Symp.
Foundations of Computer Science, 1997.

[7] R. Cramer and I. B. Damg̊ard, “Linear Zero-Knowledge - A Note on Efficient
Zero-Knowledge Proofs and Arguments”, in Proc. 29th Annual ACM Symp.
Theory of Computing, 1977, pp. 436-445.

[8] I. B. Damg̊ard, T. P. Pedersen, and B. Pfitzmann, “On the Existence of
Statistically Hiding Bit Commitment Schemes and Fail-Stop Signatures,” in
Advances in Cryptology - Proc. CRYPTO ’93, Berlin: Springer-Verlag, 1994,
pp. 250-265.

[9] I. B. Damg̊ard, T. P. Pedersen, and B. Pfitzmann, Statistical Secrecy and Multi-
Bit Commitments, BRICS report series RS-96-45, Aarhus University, Dept. of
Computer Science, 1996, available at http://www.brics.dk. To appear in IEEE
Trans. Inform. Theory, probably May 1998.

[10] L. Fortnow, “The Complexity of Perfect Zero Knowledge,” in Proc. 19th
Annual ACM Symp. Theory of Computing, 1987, pp. 204-209.

18

[11] O. Goldreich, Foundations of Cryptography (Fragments of a Book),
Dept. of Computer Science and Applied Mathematics, Weizmann In-
stitute of Science, Rehovot, Israel, Feb. 23, 1995, available at
ftp.wisdom.weizmann.acil//pub/oded/bookfrag.

[12] S. Goldwasser and S. Micali, “Probabilistic encryption,” J. Computer and
System Sciences, vol. 28, pp. 270-299, 1984.

[13] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of in-
teractive proof systems,” SIAM J. Computing, vol. 18, no. 1, pp. 186-208,
1989.

[14] J. Kilian, “A Note on Efficient Zero-Knowledge Proofs and Arguments,” in
Proc. 24th Annual ACM Symp. Theory of Computing, 1992, pp. 723-732.

[15] J. Kilian, “Efficient Interactive Arguments,” in Advances in Cryptology - Proc.
CRYPTO ’95, Berlin: Springer-Verlag, 1995, pp. 311-324.

[16] J. Kilian, S. Micali, and R. Ostrovsky, “Minimum resource zero-knowledge
proofs,” in Proc. 30th IEEE Symp. Foundations of Computer Science, 1989,
pp. 474-479.

[17] Secure Hash Standard, Federal Information Processing Standards Publication
FIPS PUB 180-1, 1995.

19

Recent BRICS Report Series Publications

RS-97-50 Ivan B. Damg̊ard and Birgit Pfitzmann. Sequential Iteration of
Interactive Arguments and an Efficient Zero-Knowledge Argu-
ment for NP. December 1997. 19 pp.

RS-97-49 Peter D. Mosses. CASL for ASF+SDF Users. December
1997. 22 pp. Appears inASF+SDF’97, Proceedings of the
2nd International Workshop on the Theory and Practice of
Algebraic Specifications, Electronic Workshops in Comput-
ing, http://www.springer.co.uk/ewic/workshops/ASFSDF97.
Springer-Verlag, 1997.

RS-97-48 Peter D. Mosses.CoFI: The Common Framework Initiative
for Algebraic Specification and Development. December 1997.
24 pp. Appears in Bidoit and Dauchet, editors,Theory and
Practice of Software Development. 7th International Joint Con-
ference CAAP/FASE, TAPSOFT ’97 Proceedings, LNCS 1214,
1997, pages 115–137.

RS-97-47 Anders B. Sandholm and Michael I. Schwartzbach. Dis-
tributed Safety Controllers for Web Services. December 1997.
20 pp. To appear in European Theory and Practice of Soft-
ware. 1st Joint Conference FoSSaCS/FASE/ESOP/CC/TACAS,
ETAPS ’97 Proceedings, LNCS, 1998.

RS-97-46 Olivier Danvy and Kristoffer H. Rose. Higher-Order Rewrit-
ing and Partial Evaluation. December 1997. 20 pp. Extended
version of paper to appear inRewriting Techniques and Appli-
cations: 9th International Conference, RTA ’98 Proceedings,
LNCS, 1998.

RS-97-45 Uwe Nestmann.What Is a ‘Good’ Encoding of Guarded Choice?
December 1997. 28 pp. Revised and slightly extended version
of a paper published in5th International Workshop on Expres-
siveness in Concurrency, EXPRESS ’97 Proceedings, volume 7
of Electronic Notes in Theoretical Computer Science, Elsevier
Science Publishers.

RS-97-44 Gudmund Skovbjerg Frandsen. On the Density of Normal
Bases in Finite Field. December 1997. 14 pp.

RS-97-43 Vincent Balat and Olivier Danvy.Strong Normalization by Run-
Time Code Generation. December 1997.

