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First-Order Logic with Two Variables and
Unary Temporal Logic∗

Kousha Etessami† Moshe Y. Vardi‡ Thomas Wilke§

Abstract

We investigate the power of first-order logic with only two variables over
ω-words and finite words, a logic denoted byFO2. We prove thatFO2 can
express precisely the same properties as linear temporal logic with only the
unary temporal operators: “next”, “previously”, “sometime in the future”,
and “sometime in the past”, a logic we denote by unary-TL. Moreover,
our translation fromFO2 to unary-TL converts everyFO2 formula to an
equivalent unary-TL formula that is at most exponentially larger, and whose
operator depth is at most twice the quantifier depth of the first-order formula.
We show that this translation is optimal.

While satisfiability for full linear temporal logic, as well as for
unary-TL, is known to be PSPACE-complete, we prove that satisfiability
for FO2 is NEXP-complete, in sharp contrast to the fact that satisfiability
for FO3 has non-elementary computational complexity. Our NEXP time
upper bound forFO2 satisfiability has the advantage of being in terms of
thequantifier depthof the input formula. It is obtained using a small model
property forFO2 of independent interest, namely: a satisfiableFO2 formula
has a model whose “size” is at most exponential in the quantifier depth of the
formula. Using our translation fromFO2 to unary-TL we derive this small
model property from a corresponding small model property for unary-TL.
Our proof of the small model property for unary-TL is based on an analysis
of unary-TL types.
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1 Introduction

Over the past three decades a considerable amount of knowledge has accumu-
lated regarding the relationship between first-order and temporal logic over both
finite words andω-words: the first-order expressible properties are exactly those
expressible in temporal logic [Kam68, GPSS80, GHR94]; three variables suf-
fice for expressing all the first-order expressible properties [Kam68, IK89]; while
satisfiability for first-order logic with three variables has non-elementary com-
putational complexity [Sto74], the satisfiability problem for temporal logic is
PSPACE-complete [SC85]; moreover, there are classes of first-order formulas
with three variables whose smallest equivalent temporal formulas require non-
elementarily larger size (a consequence derivable from [Sto74]). In computer sci-
ence the importance of this work stems from the practical relevance of temporal
logic, which is used extensively today to specify and verify properties of reactive
systems (see, e.g., [Pnu77] and [MP92]).

In this paper we provide a scaled down study of the relationship between first-
order and temporal logic. Looking at first-order logic with only two variables, we
show that the tight correspondence to temporal logic persists. We prove that first-
order logic with two variables, denoted byFO2, has precisely the same expressive
power as temporal logic with the usual future and past unary temporal operators:
“next”, “previously”, “sometime in the future”, and “sometime in the past”, but
without the binary operators “until” and “since”, a logic we denote by unary-TL.
In other words,FO2 coincides with the lowest level of the combined until/since
hierarchy (which is known to be infinite [EW96]).

By contrast to the quite difficult proofs available for the correspondence be-
tween full first-order logic and temporal logic (cf., e.g., [Kam68, GPSS80, GHR94]),
our proof thatFO2 = unary-TL is an easily understood inductive translation. In
fact, our proof yields the following much stronger assertions: (1)FO2 formulas
can be translated to equivalent unary-TL formulas that are at most exponentially
larger and whose operator depth is at most twice the quantifier depth of the first-
order formula, and (2) the translation can be carried out in time polynomial in the
size of the output formula.

We show that our translation is essentially optimal by exhibiting a sequence of
FO2 formulas that require exponentially larger unary-TL formulas. Thus, while
with just three variables there is already a non-elementary gap between the suc-
cinctness of first-order logic and full temporal logic,FO2 remains more succinct
than unary-TL but not nearly as much: an exponential blowup is exactly what is
necessary in the worst-case.

2



The same result that shows that satisfiability for temporal logic is PSPACE-
complete ([SC85]) also shows that satisfiability remains PSPACE-complete for
unary-TL. We prove on the other hand that satisfiability forFO2 is NEXP-
complete. This again contrasts sharply with the non-elementary complexity of
satisfiability forFO3. Moreover, this is surprising given thatFO2 is exponentially
more succinct than unary-TL, and that satisfiability for unary-TL is PSPACE-
complete, leading one to expect thatFO2 satisfiability will be EXPSPACE-complete.
Indeed, as a consequence of our NEXP bound it follows thatFO2 formulas that re-
quire “large” (exponentially bigger) unary-TL expressions necessarily have mod-
els that are “very small” (subexponential) with respect to the size of their unary-TL
expression. Such “very small” models do not exist in general for unary-TL, as we
can easily express with annO(1) size unary-TL formula a “counter” whose small-
est model has size2n.

An interesting and related aspect of our NEXP upper bound is that the time
bound is only in terms of thequantifier depthof the FO2 formula. This is be-
cause we prove our upper bound using an unusually strong small model property
for FO2, one which states that every satisfiableFO2 formula has a model whose
“size” is at most exponential in the quantifier depth of the given formula, rather
than the size of the entire formula. For large but shallow formulas the gap between
these quantities can make a significant difference.

It should be noted here that in a recent result Gr¨adel, Kolaitis, and Vardi
[GKV97] have shown that satisfiability for two-variable first-order formulas over
arbitrary relational structures is computable in NEXP time. Their results also rely
on a small model property. They prove that every satisfiable two-variable formula
over arbitrary structures has a finite model of size at most exponential in the size
of the formula, improving on a previous doubly-exponential bound obtained by
Mortimer [Mor74]. Despite the similarity between the statement of their result
and ours, the two are essentially incompatible and neither result implies the other.
The reasons for this are two-fold. First, our results hold over words, i.e., over a
unary vocabulary with built-in ordering. In particular, unlike arbitrary structures,
over words we do not have agenuinefinite model property: with two variables one
can say that for every position in the word there is a greater position. Secondly,
our “small” model property (Theorem 4) shows that every satisfiable formula has
a model whose “size” is bounded exponentially by the quantifier depth of the for-
mula, whereas the small model property of [GKV97] depends on the size of the
entire formula. Moreover, the proof techniques used in the two results are com-
pletely different.

Our proof of the “small” model property forFO2 is facilitated by our transla-
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tion. It is enough to prove the same small model property for unary-TL (in terms
of operator depth instead of quantifier depth) because our translation fromFO2 to
unary-TL at most doubles the quantifier/operator depth. The existence of small
models for unary-TL is established by an analysis of unary-TL types; these types
behave quite differently than types for temporal logic in general.

FO2 provides built-in binary predicates for a total order and a successor re-
lation (besides free unary predicates). As further evidence of the robust corre-
spondence between first-order and temporal logic we show that even whenFO2 is
further restricted by removing the successor predicate, the relationship to tempo-
ral logic still persists: the resulting logic has exactly the same power as temporal
logic with temporal operators “sometime in the future” and “sometime in the past”
only. Moreover, we determine the complexity of satisfiability for this further re-
stricted first-order logic, and the corresponding temporal logic, as well as their
difference in succinctness.

All our results hold both for finite words andω-words with only minor techni-
cal changes. In this conference paper we only deal with the more interesting case
of ω-words.

The paper is organized as follows. Section 2 introduces our notation and ter-
minology. Section 3 presents the translation fromFO2 to unary-TL and shows it
is optimal. Section 4 establishes NEXP-completeness of satisfiability forFO2. In
Section 5, we establish the small model property. Section 6 is concerned withFO2

without “successor” and unary-TL without “next” and “previously”. We conclude
in Section 7.

2 Terminology and Notation

We work with first-order logic overω-words, where our vocabulary contains unary
predicates fromρm = {P0, P1, P2, . . . , Pm−1} for somem, and in addition con-
tains the built-in predicates “suc” for “successor” and “<” for “less than”. We
useFO2 to denote the class of properties definable by first-order formulasϕ(x),
where at mostx occurs free, and where at most 2 variables occur in all ofϕ. We
will also informally useFO2 to refer to the set of such formulas. AnFO2 formula
ϕ(x) naturally defines a property ofω-words over the alphabet whose symbols are
subsets ofσm = {p0, . . . , pm−1}, namely the property{α ∈ (2σm)ω | α |= ϕ[0]}.
Hereα |= Pj(i) iff pj ∈ αi for i ≥ 0, j < m.

We use unary-TL to denote the class of properties ofω-words definable by
linear temporal logic formulas built from atomic propositions fromσm, using
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the boolean connectives and the unary temporal operatorsh(“next”), h(“pre-
viously”), (“eventually” or “sometime in the future”), and (“sometime in the
past”). We also use unary-TL to denote the set of such formulas. By convention,
(α, i) |= ϕ if there exists a positionj strictly greater thani such that(α, j) |= ϕ.
The same applies to .

Formulasϕ andψ from FO2 over ρm or unary-TL over σm are said to be
equivalentif (α, i) |= ϕ iff (α, i) |= ψ for all α ∈ (2σm)ω andi ≥ 0. A formulaϕ
fromFO2 overρm or unary-TL overσm is said to besatisfiableif the property over
2σm it defines is non-empty. Let theatomic order formulasbex = y, suc(x, y),
suc(y, x), x < y, andy < x.

The length of a formulaϕ is denoted by|ϕ|, its quantifier (operator) depth by
qdp(ϕ) (respectivelyodp(ϕ)).

3 Unary-TL = FO 2

We prove that the logics unary-TL and FO2 are equally expressive. The non-
trivial direction of this fact follows from the following much stronger statement:

Theorem 1 EveryFO2 formulaϕ(x) can be converted to an equivalentunary-TL
formulaϕ′ with |ϕ′| ∈ 2O(|ϕ| (qdp(ϕ)+1)) andodp(ϕ′) ≤ 2 qdp(ϕ). Moreover, the
translation is computable in time polynomially in|ϕ′|.

The reverse translation is trivial, and linear in both size and operator/quantifier
depth. Note the contrast between the theorem and what follows from the work in
[Sto74]: there is a non-elementary lower bound in terms of blow-up in size for any
translation of first-order formulas with three variables into temporal formulas.

Proof of Theorem 1. Given anFO2 formula ϕ(x) the translation procedure
works a follows. Whenϕ(x) is atomic, i. e., of the formPix, it outputspi. When
ϕ(x) is of the formψ1∨ψ2 or¬ψ—we say thatϕ(x) is composite—it recursively
computesψ′1 andψ′2, orψ′ and outputsψ′1 ∨ψ′2 or¬ψ′. The two cases that remain
are whenϕ(x) is of the form∃xϕ∗(x) or ∃yϕ∗(x, y). In both cases, we say that
ϕ(x) is existential. In the first case,ϕ(x) is equivalent to∃yϕ∗(y) and, viewingx
as a dummy free variable inϕ∗(y), this reduces to the second case.

In the second case, we can rewriteϕ∗(x, y) in the form

ϕ∗(x, y) = β(χ0(x, y), .., χr−1(x, y),

ξ0(x), .., ξs−1(x), ζ0(y), .., ζt−1(y))

5



whereβ is a propositional formula, each formulaχi is an atomic order formula,
each formulaξi is an atomic or existentialFO2 formula withqdp(ξi) < qdp(ϕ),
and each formulaζi is an atomic or existentialFO2 formula with qdp(ζi) <
qdp(ϕ).

In order to be able to recurse on subformulas ofϕ we have to separate theξi’s
from theζi’s. We first introduce a case distinction on which of the subformulasξi
hold or not. Let T and F denote true and false. We obtain the following equivalent
formulation forϕ:∨

γ∈{T, F}s (
∧
i<s

(ξi ↔ γi) ∧

∃y β(χ0, .., χr−1, γ0, .., γs−1, ζ0, .., ζt−1))

We proceed by a case distinction on which order relation holds betweenx andy.
We consider five mutually exclusive cases, determined by the following formulas,
which we callorder types: x = y, suc(x, y), suc(y, x), x < y ∧ ¬suc(x, y),
y < x ∧ ¬suc(y, x). When we assume that one of these order types is true, each
atomic order formula evaluates to either T or F, in particular, each of theχi’s
evaluates to either T or F; we will denote this truth value byχτi . We can finally
rewriteϕ as follows, whereΥ stands for the set of all order types:∨

γ∈{T, F}s (
∧
i<s

(ξi ↔ γi) ∧∨
τ∈Υ

∃y(τ ∧ β(χτ0, .., χ
τ
r−1, γ, ζ)))

Notice now the following. Ifτ is an order type,ψ(x) an FO2 formula, andψ′

an equivalent unary-TL formula, there is an obvious way to obtain a unary-TL
formulaτ [ψ] equivalent toτ ∧ ψ(y), see the following table:

τ τ [ψ]

x = y ψ′

suc(x, y) hψ′

suc(y, x) hψ′

x < y ∧ ¬suc(x, y) h ψ′

y < x ∧ ¬suc(y, x) h ψ′

Our procedure will therefore recursively computeξ′i for i < s andζ ′i for i < t
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and output ∨
γ∈{T, F}s (

∧
i<s

(ξ′i ↔ γi) ∧ (1)∨
τ∈Υ

τ
[
β(χτ0, .., χ

τ
r−1, γ, ζ)

]
) (2)

Now we verify that|ϕ′| andodp(ϕ′) are bounded as stated in the theorem. The
proof is inductive on the quantifier depth ofϕ. The basic observation is that there
are 2s ≤ 2|ϕ| possibilities forγ in the disjuction of line 1 above, and by the
inductive hypothesis each disjunct has length at mostc · |ϕ|2O(|ϕ| (qdp(ϕ))), for a
constantc. The stated bound for|ϕ′| follows by induction. Thatodp(ϕ′) ≤
2 qdp(ϕ) follows from the conversions in the table above.

It is straightforward to verify that our translation toϕ′ can be computed in time
polynomial in|ϕ′|.

An exponential blow-up, as incurred in the translation of Theorem 1, is neces-
sary:

Theorem 2 There is a sequence(ϕn)n≥1 of FO2 sentences overρ1 of sizeO(n2)
such that the shortest temporal logic formulas equivalent toϕn have size2Ω(n).

Proof. We give only a proof for an unbounded vocabulary; in this case the
formulasϕn can be chosen to be of sizeO(n).

The formulaϕn is a formula overρn+1 that defines the following property,
denotedLn: “any two positions that agree onp0, . . . ,pn−1 also agree onpn”. This
is easily defined inFO2 within size linear inn:

ϕn = ∀x∀y(
∧
i<n

(Pix↔ Piy)→ (Pnx↔ Pny)).

As every property (language) defined by any temporal logic formulaϕ (even
with “until” or “since”) is recognized by a non-deterministic B¨uchi automaton
with 2O(|ϕ|) states, see [VW94], it is enough to show that every B¨uchi automaton
for Ln requires at least22n states.

SupposeA recognizesLn. Let a0, . . . ,a2n−1 be any sequence of the2n sym-
bols of the alphabet2σn . For every subsetK of {0, . . . , 2n − 1} let wK be the
word b0 . . .b2n−1 with bi = ai if i ∈ K and elsebi = ai ∪ {pn}. Notice that there
are22n such words. Also,wωK |= ϕ andwKwωK′ 6|= ϕn for K 6= K ′. Therefore,
if K 6= K ′ andqK andqK′ are the states assumed byA in accepting runs forwωK
andwωK′ after2n steps, thenqK andqK′ have to be distinct, i. e.,A needs at least
22n states.
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4 The Complexity of Satisfiability for FO2

We now show that the satisfiability problem forFO2 over ω-words is NEXP-
complete. This is in sharp contrast to the non-elementary lower bound for satis-
fiability of first-order logic with three variables over words which follows from
[Sto74]. Satisfiability for unary-TL remains, as with fullTL, PSPACE-complete
[SC85].

Theorem 3 Satisfiability for anFO2 formula ϕ over ρm is decidable in non-
deterministic time2O(qdp(ϕ)2m), and thus satisfiability forFO2 is in NEXP.

As a main tool for our NEXP upper bound we prove a strong small model
property forFO2 which is of interest in its own right:

Theorem 4 Every satisfiableFO2 formulaϕ over ρm has a model of the form
uvω, where bothu andv have length bounded by2O(qdp(ϕ)2m).

We will prove Theorem 4 in Section 5.
The other ingredient in our NEXP upper bound is the following lemma, which

allows us to find out, given stringsu andv, whetheruvω satisfies anFO2 formula
ϕ by just checkingϕ on the stringuv2d+1, whered is the quantifier depth ofϕ.

Lemma 1 Letϕ(x) be anFO2 formula, and letu andv be words with|v| > 2,
and letd = qdp(ϕ).

1. For r ≥ 0 and0 ≤ s < |v|,

uvω |= ϕ[|u|+ 2d|v|+ s] iff uvω |= ϕ[|u|+ (2d+ r)|v|+ s] (3)

2. In particular, ifϕ(x) = ∃yϕ∗(x, y) anduvω |= ϕ[i] with i < |uv2d+1|, then
there existsj ≤ |uv2d+3| such thatuvω |= ϕ∗[i, j].

Proof. Part 2 follows from the proof of part 1. The proof for part 1 is by induction
on the quantifier depthd.

Base case:Whenϕ(x) is quantifier free, the only thing we can say about the
only variablex is which predicates hold atx, and clearly the predicates that hold
at a positionj = |uv| + q|v| + r are exactly those that hold at|u| + r (simply
because we are at the same position in the wordv).
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Inductive case:Assume true ford, we prove the assertion ford + 1. Our
formulaϕ(x) of depthd + 1 is a boolean combination of formulasϕ′(x) of the
form:

∃yβ(χ1, . . . , χl, ψ1(x), . . . , ψm(x), γ1(y), . . . , γc(y))

whereβ denotes a boolean combination of the given formulas and eachχi(x, y)
is an atomic order relation (i.e., one ofx < y, suc(y, x), etc.). We will argue that
part 1 holds for formulas of the formϕ′ and it will follow that it holds forϕ as
well because the “iff” in part 1 is preserved under boolean combination.

(⇐) Supposeϕ[j] holds forj = |u| + (2(d + 1) + r)|v| + s, wherer ≥ 0
and0 ≤ s ≤ |v|. Then there is a witness fory, namely a positionk at which
β(χ1[j, k], . . . , χl[j, k], ψ1[j], . . . , ψm[j], γ1[k], . . . , γc[k]) holds. We consider sev-
eral cases based on the location ofk in uvω. Let j′d+1 = |u|+ 2(d+ 1)|v|+ s. We
want to show thatϕ[j′d+1] also holds.

1. j ≤ k: In this case we know by the inductive hypothesis thatj′d+1 satisfies
the sameψi’s asj, and thatj′d+1 + (k − j) satisfies the sameγi’s ask, and
thus is a witness forj′d+1 just ask is for j, because their juxtaposition is
exactly the same.

2. |u|+ (2d + 1)|v| ≤ k < j: In this case the exact same argument as in case
1 works, with the roles ofk andj reversed.

3. k < |u|+ (2d+ 1)|v|: In this case, we can fixk as a witness for bothj and
j′d+1 because, given that|v| > 2, the order type of(k, j′d+1) and(k, j) is the
same.

(⇒) Suppose thatϕ[j] holds forj where|uv2d+2| ≤ j < |uv2d+3|. Then the
claim is thatϕ[j′] holds forj′ = j + r|v| and for allr. This is again split into
cases based on the location of the witnessk.

1. j ≤ k: But thenj + r|v| has a witness atk + r|v|.

2. |u| + (2d + 1)|v| ≤ k < j: In this case againj + r|v| hask + r|v| as a
witness.

3. k < |u|+ (2d+ 1)|v|: Now again as in the second case abovek is a witness
for bothj andj + r|v| because, given that|v| > 2, the order types of(k, j)
and(k, j + r|v|) are the same.
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Proof of Theorem 3. The non-deterministic algorithm determines the satisfia-
bility of an FO2 formulaϕ(x) over ρm as follows. It first guessesu andv of
length bounded by2O(qdp(ϕ)2m). It then builds up a table that contains for ev-
ery i < |uv2d+1| and for every subformulaψ(z) of ϕ(x) a bit saying whether
uvω |= ψ[i]. This is done inductively. The entry for an atomic or composite (see
proof of Theorem 1)ψ is easily determined. From Lemma 1, part 2, it follows
that in order to determine whether or not an existential formula (see proof of The-
orem 1) of the form∃y β(χ̄(x, y), ξ̄(x), ζ̄(y)) holds at a positioni < |uv2d+1| it
suffices to consider only positions< |uv2d+3| for y. Whether or not a formula
ζ(y) holds at such a position can be determined by a lookup in the table according
to (3). The algorithm outputs the entry for position 0 andϕ(x).

Now to conclude thatFO2 satisfiability is NEXP-complete, we observe that
it is NEXP-hard. This follows from the work of [Le80, F¨u84]. We sketch the
reduction for completeness:

Theorem 5 ([Le80, F̈u84]) FO2 satisfiability is NEXP-hard. In fact, even satisfi-
ability for FO2 overρ1, as well as satisfiability forFO2 formulas that do not use
“ suc” and “ <” are NEXP-hard.

Proof. We only sketch the proof for showing that satisfiability forFO2 without
either “suc” or “<” is NEXP-hard. We give a reduction from the problem of
determining whether for a given tiling systemT ⊆ {0, 1, . . . , c−1}4 with c colors
and a given initial rowx ∈ T+ of lengthn there exists a tiling of a2n× 2n square
consistent withT and withx occurring in the lower left corner. (Recall that an
element〈c1, c2, c3, c4〉 ∈ T is considered a square tile with left edge colored by
c1, right edge colored byc2, etc. A tiling is consistent if adjacent edges carry the
same color.) This problem is known to be NEXP-complete, see, e. g., [F¨u84]. We
can, with a shortFO2 formula, name the adjacent positions in a tiling (and check
their consistency) by exploiting the fact that addition has poly-sized propositional
formulae. The predicates are used to specify the address coordinates, as well as
tile content, of positions in the tiling.

5 A small model property for FO2

Theorem 1 tells us that everyFO2 formula of depthk can be translated into an
equivalent unary-TL formula of depth2k. Thus in order to prove Theorem 4 it
suffices to prove the same small model property for unary-TL, namely:
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Theorem 6 Every satisfiableunary-TL formula ϕ over σm has a modeluvω

where the sizes ofu andv are bounded by2O(odp(ϕ)2m).

We mention without proof that such a small model property does not hold for
temporal logic in general. In fact, one can prove a non-elementary lower bound
on the size of small models of temporal logic formulas in terms of operator depth.
We also mention that there is a family of satisfiable unary-TL formulasϕn over
σm of depthO(n) where the smallest models have sizeΩ(2mn).

We first sketch a proof of Theorem 6 and then go into details. Letk, k′ ≥ 0.
We say that a unary-TL formulaϕ is of depth (at most)(k, k′) if it is of depth (at
most)k in and depth (at most)k′ in h. Given anω-wordw and a positioni ≥ 0,
the (k, k′) type ofi in w, denotedτwk,k′(i), is the set of all unary-TL formulas of
depth at most(k, k′) that hold inw at i. This means thatw |= ϕ iff ϕ ∈ τwk,k′(0)
for every formulaϕ of operator depth(k, k′). It is thus enough to show that for
everyω-wordw there existu andv of size bounded by2O((k+k′+1)2m) such that
τwk,k′(0) = τw

′
k,k′(0) for w′ = uvω. In order to establish this, we first show that

for everyω-wordw one can findu andv such thatw anduvω agree on the types
of position 0 and such thatu andv are bounded polynomially in the number of
types that occur inw. We then show that the number of types occurring in a given
ω-word is bounded by2O((k+k′+1)2m). (Notice that the number of(0, 0) types
occurring in anyω-word overσm is already inΩ(2m).)

The following lemma establishes that the(k + 1, k′) type of a positioni in a
given wordw is determined uniquely by (1)i’s local neighborhood, (2) the(k, k′)
types that occur to its right, and (3) the(k, k′) types that occur to its left.

Lemma 2 Letw andw′ beω-words andi, i′ ≥ 0.
1. τw0,k′(i) = τw

′
0,k′(i

′) iff wi−k′ . . . wi . . . wi+k′ = w′i′−k′ . . . w
′
i′ . . . w

′
i′+k′ where,

by convention,wj = $ andw′j = $ for j < 0 ($ being a special symbol).
2. τwk+1,k′(i) = τw

′
k+1,k′(i

′) if and only ifτw0,k′(i) = τw
′

0,k′(i
′), {τwk,k′(j) | j < i} =

{τw′k,k′(j) | j < i′}, and{τwk,k′(j) | j > i} = {τw′k,k′(j) | j > i′}.

Proof. Part 1 is clear: A depthk′ formula that uses no operator can describe
completely the content of thek′-neighborhood of the current position, and nothing
more.

To prove part 2 we proceed by induction onk. The base case,k = 0, is
immediate. Assume true fork, we prove the claim fork + 1.

(⇒) If τwk+1,k′(i) = τw
′

k+1,k′(i
′) then in particular(w, i) and(w′, i′) agree on all

depth(0, k) formulas, and thusτw0,k′(i) = τw
′

0,k′(i
′).
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To show{τwk,k′(j) | j > i} ⊆ {τw′k,k′(j) | j > i′}, let τ ′ ∈ {τwk,k′(j) | j > i}.
There are only a bounded number of inequivalent formulas of depth(k, k′) (this
can be proved by a straightforward induction). LetΛk,k′ denote the set of such
formulas. There is thus a formula

γ =
∧
ϕ∈τ ′

ϕ ∧
∧

ψ∈Λk,k′\τ ′
¬ψ

which holds in a word precisely at those positions having(k, k′)-type τ ′. But
then γ is a depth(k + 1, k′) formula that holds at(w′, i′) precisely whenτ ′ ∈
{τw′k,k′(j) | j > i′}. A symmetric proof shows that{τwk,k′(j) | j > i} ⊇ {τw′k,k′(j) |
j > i′}, and thus{τwk,k′(j) | j > i} = {τw′k,k′(j) | j > i′}. A similar proof shows
that{τwk,k′(j) | j < i} = {τw′k,k′(j) | j < i′}.

(⇐) Assume thatτw0,k′(i) = τw
′

0,k′(i
′), {τwk,k′(j) | j < i} = {τw′k,k′(j) | j < i′},

and{τwk,k′(j) | j > i} = {τw′k,k′(j) | j > i′}.
First observe that every unary-TL formulaψ of depth(k, k′) is equivalent to

a formulaψ′ also of depth(k, k′), whereψ′ is in a normal form where allh

have been “moved in”, i.e., appear without anyoperators in their scope. In
other words, every unary-TL formula of depth(k, k′) is equivalent to a boolean
combination of formulas of depth(k, k′) starting with , and formulas of depth
(0, k′). Thus we can restrict our attention to normal form formulas.

Now, letψ be a depth(k + 1, k′) formula in normal form.
If the outermost connective ofψ is h, then it is a depth(0, k′) formula. Thus,

since by assumptionτw0,k′(i) = τw
′

0,k′(i
′), ψ ∈ τwk+1,k′(i)⇔ ψ ∈ τw′k+1,k′(i

′).
If the outermost connective ofψ is thenψ = γ. Now (w, i) |= ψ iff there

exists aj > i such thatγ ∈ τwk,k′(j). Hence, since by assumption{τwk,k′(j) | j >
i} = {τw′k,k′(j) | j > i′}, we haveψ ∈ τwk+1,k′(i)⇔ ψ ∈ τw′k+1,k′(i

′). The case when
ψ = γ is symmetric.

To conclude the proof, note that the “⇔” in the previous two paragraphs is
preserved under boolean combination.

Using Lemma 2, we can now establish the following lemma which shows how
to collapseω-words in order to get “smaller”ω-words without changing the type
structure of theω-word in an essential way. In the following lemmak′ will be
fixed, and we adopt the shorthand notationτwk for τw(k,k′).

Lemma 3 Letw = u0u1u2 . . . be anω-word.

12



1. Assumei and j are positions such thati < j and τwk (i) = τwk (j). Let
w′ = u1 . . . uiuj+1uj+2 . . .

Thenτw
′

k (l) = τwk (l) for l ≤ i andτw
′

k (l) = τwk (l + (j − i)) for l > i.
2. Assumei andj are positions such that

(a) i < j,

(b) τwk (i) = τwk (j),

(c) {τwk (l) | l ≥ 0} = {τwk (l) | l < i}, and

(d) {τwk (l) | i ≤ l < j} = {τwk (l) | ∃ωl′(τwk (l) = τwk (l′))}.

Letw′ = u0 . . . ui(ui+1 . . . uj)
ω.

Thenτw
′

k (l) = τwk (l) for l ≤ i andτw
′

k (i + r(j − i) + s) = τwk (i + s) for
r ≥ 0 and0 ≤ s < j − i.

Proof. We prove part 1 by induction onk. Base case,k = 0. When we cut out
a piece of a word, we don’t change any of the characters we didn’t cut out, and
moreover the characters in thek′-neighborhoods of a point remain the same, thus
we don’t change(0, k′)-types of any point.

Assume true fork. Supposeτwk+1(i) = τwk+1(j). By part 2 of Lemma 2 it
follows that

{τwk (i+ 1), . . . , τwk (j − 1)} ⊆ {τwk (m) | m < i} (4)

{τwk (i+ 1), . . . , τwk (j − 1)} ⊆ {τwk (m) | m > j} (5)

Let π(l) be the mapping defined by:

π(l) =

{
l if l ≤ i
l + (j − i) otherwise

By the inductive hypothesis we know that for alll, τw
′

k (l) = τwk (π(l)).
But then{τw′k (m) | m > l} = {τwk (π(m)) | m > l} = {τwk (m) | m > π(l)},

the last equality following from containment 5. Similarly, using containment 4,
we have{τw′k (m) | m ≤ l} = {τwk (π(m)) | m ≤ l} = {τwk (m) | m ≤ π(l)}.
But then by part 2 of Lemma 2 we haveτw

′
k+1(l) = τwk+1(π(l)), which is what we

wanted to prove.
The proof of part 2 is again by induction onk. Base case,k = 0. For l ≤ i,

given thati andj have the samek′-neighborhood, thek′-neighborhood of position
l in w′ is the same as thek′ neighborhood ofl in w. Also, for l = i+ r(j− i) + s,

13



by the same fact,l has the samek′-neighborhood asi + s. The base case then
follows from part 1 of Lemma 2.

Suppose true fork, we prove the claim fork + 1. First note that(k + 1, k′)-
types constitute a refinement of(k, k′)-types, meaning that two positions with the
same(k + 1, k′)-type have the same(k, k′)-type. Thus, given that (a) through (d)
hold fork + 1, by the inductive hypothesis we know thatτw

′
k (l) = τwk (l) for l ≤ i

andτw
′

k (i+ r(j − i) + s) = τwk (i+ s) for r ≥ 0 and0 ≤ s < j − i.
Thus, in particular, we claim that forl ≤ i, {τw′k (m) | m > l} = {τw(m) |

m > l}. This is so because by(d) the infinitely recurring(k + 1, k′)-types (and
thus also infinitely recurring(k, k′)-types) are precisely those that already occur
at i, i+ 1, . . . , i+ (j − i− 1) = j − 1. In a similar way it follows that{τw′k (m) |
m ≤ l} = {τw(m) | m ≤ l}. Thus, by part 2 of Lemma 2, it follows that
τwk+1(l) = τw

′
k+1(l).

A similar proof shows thatτw
′

k+1(i+ r(j− i) + s) = τwk+1(i+ s), for r ≥ 0 and
0 ≤ s < (j − i).

From this lemma, we conclude:

Lemma 4 Letw be anω-word over2σm andt the number of(k, k′) types occur-
ring in w. There existsw′ of the formuvω such that the length ofu andv is less
than(t+ 1)2 and such thatτwk,k′(0) = τw

′
k,k′(0).

Proof. Part 2 of Lemma 3 immediately implies we can assumew = uvω for some
u andv. We can also assume thatu andv are chosen such that the assumptions of
part 2 of Lemma 3 are given withi = |u| andj = |uv|. Now, letu andv be such
that for every other such pairu′ andv′ we have|uv| ≤ |u′v′|. For contradiction,
assume first|v| ≥ (t+ 1)2. For every(k, k′) typeτ of a positions with i ≤ s < j
pick a positioniτ such thati ≤ iτ < j andτwk,k′(iτ ) = τ . Since|v| ≥ (t+ 1)2, we
can find two positionsl andl′ carrying the same type such thati ≤ l < l′ < j and
eitheriτ < l or l′ < iτ for each of theiτ ’s. Thus, by part 2 of Lemma 3,u′ = u and
v′ = v0v1 . . . vl−|u|vl′−|u|+1 . . . v|v|−|u|−1 would be a smaller pair. If|u| ≥ (t+ 1)2

we obtain a contradiction in a similar way using part 1 of Lemma 3.

We now upper bound the number of types that can occur in a givenω-word:

Lemma 5 The number of(k, k′) types occurring in anyω-word overσm is at
most23((2k′+1)(m+1)+1), i. e., |{τwk,k′(i) | i ≥ 0}| ≤ 23((2k′+1)(m+1)+1) for every
w ∈ (2σm)ω.

14



Proof. The proof is by induction onk. Let w be anyω-word overσm. Let
t(k,k′) be the number of(k, k′) types occurring inw. For the base case, from
Lemma 2, part 1, it is easy to see thatt(0,k′) ≤ 2(2k′+1)(m+1). Now observe that the
sequence({τwk,k′(i) | j < i})i≥0 is an increasing sequence containing at mostt(k,k′)
distinct elements. Similarly, the sequence({τwk,k′(j) | j > i})i≥0 is a decreasing
sequence containing at mostt(k,k′) +1 distinct elements. Therefore, there are only
2t(k,k′) + 1 many distinct pairs of the form({τwk,k′(j) | j < i}, {τwk,k′(j) | j > i}),
and thus, using Lemma 2, part 1,t(k+1,k′) ≤ (2t(k,k′) + 1)2(2k′+1)(m+1), where,
again,2(2k′+1)(m+1) accounts for the number of distinct(0, k′) types. The lemma
follows by induction.

Theorem 6 now follows from Lemma 4 together with Lemma 5; this also
proves Theorem 4.

We also prove a different small model property in terms of formula size (proof
omitted):

Theorem 7 1. Every satisfiableFO2 formulaϕ has a model of size2O(|ϕ|).

2. Satisfiability for anFO2 formulaϕ can also be decided in non-deterministic
time2O(|ϕ|).

6 Further Restricting FO 2 and Unary-TL

It is only natural to further restrictFO2 by allowing< as the only built-in predi-
cate; we denote the resulting logic by FO2[<]. Correspondingly, one can consider
the logical language that is obtained from unary-TL by disallowing the use ofh

and h; we denote this language byTL[ ].
Obviously,TL[ ] can easily be translated into FO2[<]. A slight modification

of the translation fromFO2 to unary-TL described in the proof of Theorem 1
yields the reverse translation, i. e.,TL[ ] = FO2[<]. Corresponding to Theo-
rem 1, we have:

Theorem 8 EveryFO2 formulaϕ(x) can be converted to an equivalentTL[ ]
formulaϕ′ with |ϕ′| ∈ 2O(|ϕ| qdp(ϕ)) andodp(ϕ′) ≤ qdp(ϕ).

As FO2[<] is a sublogic ofFO2, the upper bounds for the complexity of the
satisfiability forFO2 carry over to FO2[<]. Moreover, as we have seen in Theo-
rem 5, even the hardness result carries over:
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Theorem 9 Satisfiability forFO2[<] is NEXP-complete. In fact, satisfiability for
an FO2[<] formulaϕ overρm is decidable in non-deterministic time2O(qdp(ϕ)m)

and also in non-deterministic time2O(|ϕ|).

Note the difference between2O(qdp(ϕ)2m) in Theorem 3 and2O(qdp(ϕ)m) in the
above theorem.

That satisfiability for FO2[<] is no less difficult than satisfiability forFO2

(both are NEXP-complete) contrasts with what happens to satisfiability when
passing from unary-TL to TL[ ]. In [SC85], it was shown that satisfiability for
the temporal logic where the only temporal operator is “at present or sometime in
the future” is in NP. We show that satisfiability forTL[ ] (which now includes
the past operator) remains in NP, and thus is NP-complete. This is obtained by
proving a linear-size model property: for every satisfiableTL[ ] formulaϕ there
existu andv with |u|, |v| ≤ |ϕ| such thatuvω |= ϕ (proof omitted).

7 Conclusion

We have shown that the close correspondence between first-order and temporal
logic over words persists when looking at first-order formulas with only two vari-
ables, and we have presented an easily understood translation of these formulas
into temporal formulas. Our translation is optimal: the formulas incur at most an
exponential blow-up in size and we have proved that this is necessary in the worst
case.

The satisfiability problem for unary-TL is known to remain, as with fullTL,
PSPACE-complete, but we have shown thatFO2 satisfiability is drastically sim-
pler thanFO3 satisfiability: the former is NEXP-complete, while the latter is
known to require non-elementary complexity. Moreover, our NEXP upper bound
for FO2 satisfiability, and the corresponding small model properties forFO2 and
unary-TL, have the advantage of being only in terms of quantifier/operator depth
and the number of propositions in the vocabulary, rather than the size of the entire
formula, a fact that may be of potential use when dealing with large but shallow
formulas.

Some remaining questions: (1) Given a regular languageL (say, as a B¨uchi or
finite automaton), can we decide whetherL isFO2 (and thus unary-TL) definable?
[EW96, TW96b] obtained closely related results, but neither yields this particu-
lar fact. (2) Is theFO2 quantifier alternation hierarchy strict? This question can
also be phrased in terms of operator alternation in unary-TL. (3) Does satisfiabil-
ity remain NEXP-hard for FO2[<] formulas (without successor) over a bounded
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number of predicates? (4) Can the upper bound of the small model property for
FO2 be improved to2O(qdp(ϕ)+m)? This would make (the proof of) Theorem 7
obsolete.
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