
B
R

IC
S

R
S

-97-49
P.D

.M
osses:

C
A

S
L

for
A

S
F

+
S

D
F

U
sers

BRICS
Basic Research in Computer Science

CASL for ASF+SDF Users

Peter D. Mosses

BRICS Report Series RS-97-49

ISSN 0909-0878 December 1997

Copyright c© 1997, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/97/49/

Casl for Asf+Sdf Users

Peter D. Mosses
pdmosses@brics.dk

Abstract

Casl is an expressive language for the algebraic specification
of software requirements, design, and architecture. It has been
developed by an open collaborative effort called CoFI (Common
Framework Initiative for algebraic specification and development).
Casl combines the best features of many previous algebraic spec-
ification languages, and it is hoped that it may provide a focus
for future research and development in the use of algebraic tech-
niques, as well being attractive for industrial use.

This paper presents Casl for users of the Asf+Sdf frame-
work. It shows how familiar constructs of Asf+Sdf may be
written in Casl, and considers some problems that may arise
when translating specifications from Asf+Sdf to Casl. It then
explains and motivates various Casl constructs that cannot be
expressed directly in Asf+Sdf. Finally, it discusses the rôle that
the Asf+Sdf system might play in connection with tool support
for Casl.

1 Introduction

Casl is an expressive language for the algebraic specification of software
requirements, design, and architecture. It has been developed by an
open collaborative effort called CoFI (Common Framework Initiative for
algebraic specification and development). This paper presents Casl for
users of the Asf+Sdf framework.

� Casl is intended as the main language of a coherent family of
languages.

1

Vital for the support for CoFI in the algebraic specification community
is the coverage of concepts of many existing specification languages. How
could this be achieved, without creating a complicated monster of a lan-
guage? And how to avoid interminable conflicts with those needing a
simpler language for use with prototyping and verification tools?

By providing not merely a single Casl language but a coherent language
family, CoFI will allow the conflicting demands to be resolved, accom-
modating advanced as well as simpler languages. At the same time, this
family is to be given structure by being organized largely as restrictions
and extensions of Casl.

Restrictions of Casl are to correspond to languages used with existing
tools for rapid prototyping, verification, term rewriting, etc. Extensions
to Casl are to support various programming paradigms, e.g., object-
oriented, higher-order, reactive. Apart from such languages, the common
framework is also to provide an associated development methodology,
training materials, tool support, libraries, a reference manual, formal
semantics, and conversion from existing frameworks.

� Casl is required to be competitive in expressiveness with various
existing languages.

The choice of concepts and constructs for Casl was a matter of finding
a suitable balance point between advanced and simpler languages, tak-
ing into account its intended applicability: for specifying the functional
requirements and design of conventional software packages as abstract
data types.

The design of Casl is based on a critical selection of the concepts and
constructs found in existing algebraic specification frameworks. The
main novelty of Casl lies in its particular combination of concepts and
constructs, rather than in the latter per se. Almost all Casl features
may be found (in some form or other) in one or more of the main exist-
ing algebraic specification frameworks.

� The Casl design has been tentatively approved by IFIP WG 1.3.

The design proposal for Casl [LD97b] was submitted to IFIP Working
Group 1.3 (Foundations of System Specification) in May 1997. The pro-
posal provided the abstract syntax of the proposed language, together
with an informal summary of the intended well-formedness conditions

2

and semantics [LD97e]; the choice of concrete syntax had not been fi-
nalized. Accompanying documents gave the rationale for CoFI [CoF97]
and for the Casl design [LD97c], and a draft formal semantics for Casl

[Sem97].

The design was tentatively approved at the IFIP WG 1.3 meeting in Tar-
quinia, June 1997, subject to reconsideration of some particular points
[LD97a] and the development of a satisfactory concrete syntax. The ab-
stract syntax and informal summary are currently being finalized [LD97d],
after which the formal semantics will be adjusted accordingly. Tools and
methodology for Casl are being developed. The concrete syntax of Casl

has still not been finalized—that used in the present paper is tentative,
and subject to change!

� CoFI is open to contributions and influence from all those working
with algebraic specifications.

The design of Casl has been developed by a varying Language Design
task group, coordinated by Bernd Krieg-Brückner, comprising between
10 and 20 active participants representing a broad range of algebraic
specification approaches (the CoFI Rationale [CoF97] lists the names
of all contributors to CoFI). Numerous study notes have been written
on various aspects of language design, and discussed at working and
plenary language design meetings. The study notes and various drafts of
the design summary were made available electronically and discussed on
the associated mailing list (cofi-language@brics.dk).

The openness of the design effort should have removed any suspicion of
undue bias towards constructs favoured by some particular ‘school’ of
algebraic specification. It is hoped that Casl incorporates just those
features for which there is a wide consensus regarding their appropriate-
ness, and that the common framework will indeed be able to subsume
many existing frameworks and be seen as an attractive basis for future
development and research—with high potential for strong collaboration.

So much for the background of Casl.

� Readers of this paper are assumed to be familiar with the Asf+

Sdf language and system.

For an introduction to Asf+Sdf, see [vDHK96].

3

Plan

First we consider the intersection of Asf+Sdf and Casl: those con-
cepts and constructs that are common to both languages. For each such
Asf+Sdf construct, we see how it might be expressed in Casl, using a
tentative concrete syntax.

Then we list the remaining constructs of Asf+Sdf: those that cannot
(straightforwardly) be expressed in Casl. We motivate the omission of
these constructs from Casl.

After that, we list those constructs of Casl that cannot (straightfor-
wardly) be expressed in Asf+Sdf, and motivate their inclusion in Casl.

We finish the presentation of Casl by summarizing its constructs, and
by giving a few simple examples of Casl specifications. Finally, we
consider the rôle that the Asf+Sdf system and its users might play in
connection with providing tool support for Casl.

� All the main points in this paper are displayed like this.

The paragraphs following each point provide details and supplementary
explanation. To get a quick overview, simply read the main points and
skip the intervening text. It is hoped that the display of the main points
does not unduly hinder a continuous reading of the full text. (This style
of presentation is borrowed from a book by Alexander [Ale79], where it
is used with great effect.)

2 Asf+Sdf ∩ Casl

� Asf+Sdf and Casl have a significant number of features in com-
mon.

Here we consider the intersection of Asf+Sdf and Casl: those con-
cepts and constructs that are common to both languages. For each such
Asf+Sdf construct, we see how it might be expressed in Casl, using a
tentative concrete syntax.

� Both frameworks support the basic notions of many-sorted algebra
with total functions.

4

A specification determines a signature (which gives the declared sorts
and operation symbols, the latter coming together with the specified ar-
gument and result sorts) and the class of those models over the signature
that satisfy the specified properties. Each model provides an algebra,
i.e., a carrier set for each sort, and a function between carrier sets for
each operation symbol.

Asf+Sdf and Casl both allow arbitrary overloading, where the same
operation symbol can declared with different argument and/or result
sorts in the same specification.

In Casl the declaration of sorts S1, . . . , Sn is written:

sorts S1, . . . , Sn

The declaration of a total function symbol f is written:

op f : S1 × · · · × Sn → S

omitting the arrow for constants:

op c : S

� Asf+Sdf and Casl both allow implicit injections from subsorts.

In Casl the declaration of a subsort S of a sort S ′ is written:

sort S < S ′

Overloaded functions are required to commute with subsort injections (is
this the case in Asf+Sdf?).

� Asf+Sdf and Casl both allow infix, prefix, postfix, and general
mixfix notation, as well as the conventional notation for function
application.

In Casl the notation to be used for application is indicated by the use
of placeholders ‘ ’ in the declared function symbol. E.g., infix notation
for applying ‘+’ is specified by declaring the symbol + . If no place-
holders are given, the conventional notation f(x, y, z) is used (omitting
the parentheses when applying a constant c).

� Asf+Sdf and Casl both allow the declarations of sorts, opera-
tions, and variables to occur in any order.

5

In Casl the scope of declarations of sorts, operations, and variables is the
entire enclosing list of such items. The declarations are written separated
by semicolons, and the keywords introducing subsequent declarations of
the same kind may be omitted:

sorts S ;
S1 < S ;

ops f : S1 × · · · × Sn → S;
g : S1 × · · · × Sn → S

� Asf+Sdf and Casl both allow declarations of sorts and opera-
tions to be hidden.

In Casl the hiding of sort and operation symbols declared in a specifi-
cation SP1 and used in SP2 is written (tentatively):

local SP1 in SP2

� Asf+Sdf and Casl both allow declarations of hidden variables.

In Casl variables are implicitly hidden, their scope always being the
enclosing list of declarations and assertions. The declaration of variables
V1, . . . , Vn of sort S is written:

vars V1 ,. . . ,Vn : S

� Asf+Sdf and Casl both allow it to be specified which functions
are constructors.

In Casl the constructors (i.e., generators) for some sorts are indicated
by grouping them all together in a so-called sort generation constraint:

generated sorts . . . ; ops . . . end

This constraint eliminates the possibility of “junk” in the carriers for
the specified sorts, thereby making structural induction a sound proof
principle for them.

� Asf+Sdf and Casl both allow conditional equations and inequa-
tions as axioms.

In Casl conditional equations between terms T, T ′, Ti, T
′
i are written:

6

T1 = T ′1 ∧ . . . ∧ Tn = T ′n ⇒ T = T ′

or:

T = T ′ if T1 = T ′1 ∧ . . . ∧ Tn = T ′n

An inequation is written:

¬ T = T ′

Axioms are introduced by the keyword axioms and separated by semi-
colons.

� Asf+Sdf and Casl both allow specifications to be named and
reused.

In Casl a specification named N extending specifications named N1 , . . . ,Nm

(corresponding to a module with imports in Asf+Sdf) is written (ten-
tatively):

spec N = enrich N1 ,. . . ,Nm by SP

� Asf+Sdf and Casl both allow informal comments, and the la-
belling of individual axioms.

In Casl the concrete syntax for comments and labels has not yet been
decided, but it seems likely that end-of-line comments will start with
‘%%’, and that labels will be written ‘%[...]’.

� Asf+Sdf and Casl both support formatting of specifications us-
ing mathematical symbols.

In Casl a declared symbol is displayed exactly as input in plain text
(ISO Latin-1 character set) unless an explicit display annotation has
been given for it. The concrete syntax for display annotations has not
yet been decided, but it is expected to allow specification of separate
display formats for plain text, LATEX, HTML, and RTF.

7

3 Asf+Sdf \ Casl

� The features of Asf+Sdf that have been left out of Casl mainly
concern lexical syntax and parsing.

These features are primarily of use when specifying the exact concrete
syntax of existing languages. This was not regarded as a requirement for
a general-purpose specification language for software, since the notation
is here chosen by the specifier.

� Casl does not allow the specification of lexical syntax rules for
literal constants, nor for declared variables.

The lack of lexical syntax in Casl precludes declaring the conventional
notation for input of character strings, "..." (although display anno-
tations should allow such notation to be used when formatting Casl

specifications). Standard numerical notation for integer and real numer-
ical constants can be declared in Casl, albeit somewhat tediously.

In Casl each variable has to be declared explicitly. It is not possible
to declare an infinite family of variables of the same form, as one can in
Asf+Sdf. Since variables are never exported from a specification (mod-
ule) in Casl, this omission does not seem to be particularly significant.

� Casl does not allow variable declarations to be exported.

This restriction reflects the semantics of Casl specifications (variables
are not included in signatures), as well as the conventional treatment of
scopes of variables in algebraic specifications.

� Casl does not provide built-in list structures.

The list structures provided in Asf+Sdf allow the declaration of oper-
ations with arbitrary numbers of arguments. Such operations are partic-
ularly useful when specifying the concrete syntax of existing languages,
but they do not seem to be needed when specifying software, so they
have been excluded from Casl, in the interests of simplicity. Asf+Sdf

specifications that exploit list structures will require auxiliary sorts and
operations for lists when translated to Casl.

8

� Casl does not allow the specification of priority or associativity
for functions.

The Casl concrete syntax (tentatively) adopts a fixed priority scheme
for user-declared operations: the infix operations have the lowest prior-
ity, then come the prefix operations, and finally the postfix operations.
Moreover, infix operations always associate to the left. This would be
inadequate for reflecting the concrete syntax of existing languages, but
seems to be a reasonable compromise in a software specification lan-
guage, since it is easy to remember and requires rather few additional
parentheses for disambiguation in typical axioms.

� Casl does not distinguish functions used for bracketing.

Casl provides ordinary parentheses for use in grouping.

� Casl does not provide “otherwise” equations.

Such equations, which cater concisely for default cases, seem closely
linked to assumptions of initial semantics and term rewriting implemen-
tation for Asf+Sdf, which do not apply to Casl.

� Casl does not allow cyclic module imports.

This unusual feature of Asf+Sdf can indeed be useful, for instance
when dividing a context-free grammar for the syntax of a programming
language into modules—although the cycles can always be eliminated
at the expense of introducing some auxiliary modules. The designers of
Casl were unable to give a satisfactory semantics for cyclic references
between Casl specifications, due primarily to complications caused by
the presence of translation and instantiation—hence the restriction.

� Casl could be extended with some of the above features.

Recalling that Casl is intended as the basis for extensions and restric-
tions, one might consider providing an extension of Casl including the
above-mentioned features. One could also provide the restriction of Casl

to the features that it shares with Asf+Sdf. A combination of exten-
sion and restriction of Casl would be needed to provide a language in
the Casl family with exactly the features of Asf+Sdf.

9

4 Casl \ Asf+Sdf

� The features of Casl that are missing from Asf+Sdf include ex-
plicit treatment of partiality, general first-order axioms, some con-
venient abbreviations, and constructs for structuring specifications
and implementations.

Adding some of these features to Asf+Sdf (e.g., first-order axioms)
would prohibit rapid-prototyping of specifications using term rewriting;
others could probably be added without significant problems.

� Casl allows partial functions.

Although total functions are an important special case of partial func-
tions, the latter cannot be avoided in practical applications. Casl adopts
the standard mathematical treatment of partiality: functions are ‘strict’,
with the undefinedness of any argument in an application forcing the
undefinedness of the result. The lack of non-strict functions seems un-
problematic in a pure specification framework, where undefinedness cor-
responds to the mere lack of a value, rather than to a computational no-
tion of undefinedness. The specification of infinite values such as streams
is not supported in Casl, although presumably it will be in some exten-
sion.

A partial function declaration is written (tentatively):

op f : S1 × · · · × Sn →?S

Partial constants can be declared too:

op c :?S

� Casl provides atomic formulae expressing definedness, as well as
both existential and strong equality.

When partial functions are used, the specifier should be careful to take
account of the implications of axioms for definedness properties. Thus
a clear distinction should be made between existential equality, where
terms are asserted to have defined and equal values, and strong equality,
where the terms may also both have undefined values. Casl includes
both existential and strong equality, as each has its advantages: existen-
tial equality seems most natural to use in conditions of axioms (one does

10

not usually want consequences to follow from the fact that two terms are
both undefined), whereas strong equality seems ‘safer’ to use in uncon-
ditional axioms, e.g., when specifying functions inductively.

Tentatively, a strong equation is written:

T1 = T2

and an existential equation as:

T1 =!T2

Definedness of a term is written:

T defined

� Casl allows declarations of predicates.

It is quite common practice to eschew the use of predicates, taking (to-
tal) functions with results in some built-in sort of truth-values instead.
As with restrictions to conditional equations, this may be convenient
for prototyping, but it seems difficult to motivate at the level of using
Casl for general specification and verification. Hence predicates may be
declared in Casl, tentatively:

op p : pred(S1 × · · · × Sn)

� Casl allows definitions of subsorts, functions, and predicates.

Such definitions abbreviate commonly-occurring combinations of decla-
rations and axioms. A subsort definition is written:

sort S = {V : S ′ • F}
and declares S to be the subsort of S ′ consisting of just those values of
the variable V for which the formula F holds. A total function definition
is written:

op f (V1 : S1 ; . . . ; Vn : Sn) : S = T

and a constant definition as:

op c : S = T

Casl also provides similar constructs for defining partial functions and
predicates.

11

� Casl allows axioms to be interspersed with declarations.

Why not?

� Casl provides concise notation for declaring datatypes with con-
structors and (optional) selectors.

In a practical specification language, it is important to be able to avoid
tedious, repetitive patterns of specification, as these are likely to be care-
lessly written, and never read closely. The Casl construct of a datatype
declaration collects together several such cases into a single abbreviatory
construct, which in some respects corresponds to a type definition in
Standard ML, or to a context-free grammar production in BNF.

A datatype declaration is written (tentatively):

sort S > A1 | · · · |An

It declares a sort, and lists the alternatives Ai for that sort. An alterna-
tive may be a constant c, whose declaration is implicit; or it may be a
list of sorts, written sorts S1 , . . . , Sn , to be embedded as a subsort; or,
finally, it may be a ‘construct’—essentially an indexed product—written
f (. . .× fi : Si × . . .), given by a constructor function f together with its
argument sorts Si , each optionally accompanied by a selector fi . The
declarations of the constructors and selectors, and the assertion of the
expected axioms that relate them to each other, are left implicit. When
the > above is replaced by =, the specified sort is constrained to be gen-
erated by the specified constants, embedded subsorts, and constructor
functions.

� Casl allows all formulae of first-order logic.

In fact many algebraic specification frameworks allow quantifiers and
the usual logical connectives: the adjective ‘algebraic’ refers to the spec-
ification of algebras, not to a possible restriction to purely equational
specifications, which are algebraic in a different sense.

Universal quantification in Casl is written ∀V : S • F . Existential
quantification is written using ∃, and ∃1 abbreviates a formula expressing
existence of a unique value for which F holds.

The standard logical connectives are written F1 ∧F2 , F1 ∨F2 , F1 ⇒ F2

(alternatively F2 if F1), F1 ⇔ F2 , and ¬F ; the atomic formulae true
and false are provided too.

12

� Casl allows specification of both loose and initial classes of models.

In general, initial models of Casl specifications need not exist, due to
the possibility of axioms involving disjunction and negation. When they
do exist, the Casl construct for restricting the models of a specification
SP to the initial ones:

freely SP

can be used, ensuring reachability—and also that atomic formulae (equa-
tions, definedness assertions, predicate applications) are as false as pos-
sible. The latter aspect is particularly convenient when specifying (e.g.,
transition) relations ‘inductively’, as it would be tedious to have to spec-
ify all the cases when a relation is not to hold, as well as those where it
should hold.

� Casl allows specifications to be combined and extended, and ex-
tensions may be required to be free.

For generality, Casl allows specifications with initial semantics to be
united with those having loose semantics. This applies also to extensions:
the specifications being extended may be either loose or free, and the
extending part may be required to be a free extension, which is a natural
generalization of the notion of initiality.

Union of specifications in Casl is written (tentatively):

SP1 and. . . and SPn

and (ordinary) extension as:

enrich SP by SP ′

� Casl allows it to be specified that an extension is intended to be
conservative.

The case where an extension is ‘conservative’, not disturbing the mod-
els of the specifications being extended, occurs frequently. For exam-
ple, when specifying a new function on numbers, one does not intend
to change the models for numbers. Conservative extension in Casl is
written:

enrich conservatively SP by SP ′

13

� Casl allows declared symbols to be translated and/or hidden.

Translation is needed primarily to allow the reuse of specifications with
change of notation, which is important since different applications may
require the use of different notation for the same entities. But also when
specifications that have been developed in parallel are to be combined,
some notational changes may be needed for consistency. Translation in
Casl is written (tentatively):

SP renaming (. . . , SYi ⇒ SY ′i , . . .)

Hiding symbols ensures that they are not available to the user of the spec-
ification, which is appropriate for symbols that denote auxiliary entities,
introduced by the specifier merely to facilitate the specification, and not
necessarily to be implemented. Casl tentatively provides two constructs
for hiding: one where the symbols to be hidden are listed directly (other
symbols remaining visible—although hiding a sort entails hiding all func-
tion and predicate symbols whose profile involves that sort):

SP hiding (. . . , SYi , . . .)

the other where only the symbols to be ‘revealed’ are listed:

SP revealing (. . . , SYi , . . .)

� In Casl the identical declaration of the same symbol in specifica-
tions that get combined is regarded as intentional.

Suppose that one unites two specifications that both declare the same
symbol: the same sort, or functions or predicates with the same profiles.
If this is regarded as well-formed (as it is in Casl) there are potentially
(at least) two different interpretations: either the common symbol is
regarded as shared, giving rise to a single symbol in the signature of the
union, satisfying both the given specifications; or the two symbols are
regarded as homonyms, i.e., different entities with the same name, which
have somehow to be distinguished in the signature of the union.

Casl (following Asl and Larch) takes the former interpretation, since
the symbols declared by a specification (and not hidden) are assumed to
denote entities of interest to the user, and unambiguous notation should
be used for them. This treatment also has the advantage of semantic sim-
plicity. However, due to the possibility of unintentional ‘clashes’ between
accidentally-left-unhidden auxiliary symbols, it is envisaged that Casl

14

tools will be able to warn users about such cases. Note that when the two
declarations of the symbol arise from the same original specification via
separate extensions that later get united, the Casl interpretation gives
the intended semantics, and moreover in such cases no warnings need be
generated by tools.

� Casl allows generic specifications, with instantiation affecting com-
pound identifiers.

The parameters SPi of a generic specification, which is written:

spec N [. . . ,SPi ,. . .] = SP

are simply dummy parts of the specification (declarations of symbols,
axioms) that are intended to be replaced systematically whenever the
name N of the generic specification is referred to in an instantiation,
which is written:

N [. . . ,SP ′i ,. . .] where (. . . , SYj ⇒ SY ′j , . . .)

The classic example is the generic specification of lists of arbitrary items:
the parameter specification merely declares the sort of items, which gets
replaced by particular sorts (e.g., of integers, characters) when instanti-
ated. For a generic specification of ordered lists, the parameter specifi-
cation would also declare a binary relation on items, and perhaps insist
that it have (at least) the properties of a partial order.

It is possible to view generic specifications as a particular kind of loose
specification, with instantiation having the effect of tightening up the
specification. Thus generic lists of items are simply lists where the items
have been left (extremely) loosely specified. Instantiating items to in-
tegers then amounts to translating the entire specification of lists ac-
cordingly (so that e.g. the first argument of the ‘cons’ function is now
declared to be an integer rather than an item) and forming its union with
the specification of integers—the Casl treatment of common symbols in
unions dealing correctly with the two declarations of the sort of integers.

� Casl allows the use of compound identifiers for symbols in generic
specifications.

The observant reader may have noticed that in the example described
above, two different instantiations of the generic lists (say, for integers
and characters) would declare the same sort symbol for the two different

15

types of lists, causing problems when these get united. Casl allows the
use of compound sort identifiers of the form:

SY [. . . ,SYi ,. . .]

in generic specifications; e.g., the sort of lists may be a symbol formed
with the sort of items as a component, say List [Elem]. The translation of
the parameter sort to the argument sort affects this compound sort sym-
bol for lists too, giving distinct symbols such as List [Int], List [Char]for
lists of integers and lists of characters, and thereby avoiding the danger
of unintended identifications and the need for explicit renaming when
combining instantiations.

� Casl provides architectural specifications, for specifying the struc-
ture of models (which is generally not affected by the structure of
the specification).

The structuring constructs considered above allow a large specification
to be presented in small, logically-organized parts, with the pragmatic
benefits of comprehensibility and reusability. In Casl, the use of these
constructs has absolutely no consequences for the structure of models,
i.e., of the code that implements the specification. For instance, one
may specify integers as an extension of natural numbers, or specify both
together in a single basic specification; the models are the same.

It is especially important to bear this in mind in connection with generic
specifications. The definition of a generic specification of lists of arbitrary
items, and its instantiation on integers, does not imply that the imple-
mentation has to provide a parametrized program module for generic
lists: all that is required is to provide lists of integers (although the im-
plementor is free to choose to use a parametrized module, of course).
Sannella, Soko lowski, and Tarlecki [SST92] provide extensive further dis-
cussion of these issues.

In contrast, an architectural specification requires that any model should
consist of a collection of separate component units that can be composed
in a particular way to give a resulting unit. Each component unit is to
be implemented separately, providing a decomposition of the implemen-
tation task into separate subtasks with clear interfaces.

In Casl, an architectural specification consists of a collection of com-
ponent unit specifications, together with a description of how the im-

16

plemented units are to be composed. A model of such a specification
consists of a model for each component unit specification, and the de-
scribed composition.

� Casl allows libraries to be distributed across sites on the Internet.

An ordered collection of named specifications forms a library in Casl.
Linear visibility is assumed: a specification in a library may refer only to
the specifications that precede it.

� Libraries may be located at particular sites on the Internet, and
their current contents referenced by means of URL’s.

Given that there will be more than one Casl library of specifications (at
least one library per project, plus one or more libraries of standard Casl

specifications) the issue of how to refer from one library to another arises.
The standard WWW notion of a Uniform Resource Locator (URL) seems
well-suited for this purpose: a library may be identified with some index
file located in a particular directory at a particular site, accessible by
some specified protocol (e.g., FTP).

� A library may require the ‘down-loading’ of particular named spec-
ifications from other libraries each time it is used.

Rather than allowing individual references to names throughout speci-
fications to include the URLs of the relevant libraries (which might be
inconvenient to maintain when libraries get reorganized), Casl provides
a separate construct for down-loading named specifications from another
library. Optionally, the specification may be given a local name differ-
ent from its original name, so that one may easily avoid name clashes;
the resemblance of this construct to the familiar FTP command ‘get’ is
intentional.

5 Casl Overview and Examples

This section gives a concise overview of all the main Casl features, cov-
ering both that are in common with Asf+Sdf as well as those that are
not.

17

� Basic specifications in Casl list declarations, definitions, and ax-
ioms.

Functions are partial or total, and predicates are allowed. Subsorts
are interpreted as embeddings. Axioms are first-order formulae built
from definedness assertions and both strong and existential equations.
Sort generation constraints can be applied to groups of declarations.
Datatype declarations are provided for concise specification of enumera-
tions, unions, and products.

� Structured specifications in Casl allow translation, reduction, union,
and extension of specifications.

Extensions may be required to be conservative and/or free; initiality
constraints are a special case. A simple form of generic specification is
provided, together with instantiation involving parameter-fitting trans-
lations that affect compound identifiers.

� Architectural specifications in Casl express implementation struc-
ture.

The specified software is to be composed from separately-developed,
reusable units with clear interfaces.

� Libraries in Casl provide collections of named specifications.

Downloading involves retrieval of specifications from distributed libraries.

18

Asf+Sdf Examples in Casl

spec Bool Example =
sort BOOL;
ops true, false : BOOL;

| , & : BOOL × BOOL → BOOL;
not : BOOL → BOOL;

var Bool : BOOL;
axioms
%% disjunction

%[B1] true | Bool = true;
%[B1] false | Bool = Bool ;

%% etc.

spec Another Bool Example =
sorts BOOL = true | false |

| (BOOL×BOOL) | & (BOOL×BOOL) |
not(BOOL);

ops | , & : BOOL × BOOL → BOOL;
| , & : assoc, comm, idem;
| : unit false;
& : unit true;

var Bool : BOOL;
axioms
%% etc.

generic spec Lists[sort ITEM] =
sorts LIST[ITEM]; ITEM < LIST[ITEM];
ops nil : LIST[ITEM];

./ : LIST[ITEM]×LIST[ITEM]→LIST[ITEM];

./ : assoc, unit nil;
vars i : ITEM; l1 l2 , l3 : LIST[ITEM];
axioms l1 ./ i ./ l2 ./ i ./ l3 = l1 ./ i ./ l2 ./ l3

19

6 Asf+Sdf Support for Casl?

The Common Framework Initiative has already benefited from the par-
ticipation of Asf+Sdf users at CoFI meetings and on the CoFI mailing
lists during the design of Casl. It is not expected (nor even desirable)
that Asf+Sdf users should suddenly switch to being Casl users. They
could, however, help substantially with the future development of Casl

in connection with the following points:

� Asf+Sdf could be used for implementing the proposed concrete
syntax for Casl, and for checking the parsing of example Casl

specifications.

Asf+Sdf is especially well-suited for rapid prototyping of the Casl

concrete syntax, and for checking not only that example specifications
conform to that syntax, but also that they are unambiguous.1

� Asf+Sdf could be used for automating translation between Casl

and other languages, also in connection with the interoperability of
tools that were originally developed for use with different languages.

In particular, translation from (a suitable sub-language of) Casl to
Asf+Sdf would give Casl users access to the rewriting capabilities
of Asf+Sdf.

� The techniques developed for formatting Asf+Sdf specifications
could be applied to Casl.

Display annotations in Casl are for determining the formatting of func-
tion symbols in applications, but they give little direct control of layout.
The Asf+Sdf experience with pretty-printing documents via an inter-
mediate box language seems attractive.

� Some Casl constructs could perhaps be incorporated in the design
of future versions of Asf+Sdf.

This list is not intended to be exhaustive! The author would like to hear
of further ideas for Asf+Sdf support for Casl.

1Straight after the Asf+Sdf Workshop, Mark van den Brand did this for Casl

basic specifications, and it should be straightforward to extend his Asf+Sdf grammar
to generate parsers for structured and architectural specifications.

20

References

[Ale79] Christopher Alexander. A Timeless Way of Building. Oxford
University Press, 1979.

[CoF97] CoFI. CoFI – The Common Framework Initiative for Al-
gebraic Specification and Development – Rationale. CoFI

Document: Rationale. WWW2, FTP3, May 1997.

[LD97a] CoFI Task Group on Language Design. Response
to the Referee Report on Casl. CoFI Document:
CASL/RefereeResponse. WWW4, FTP5, August 1997.

[LD97b] CoFI Task Group on Language Design. Casl – The CoFI

Algebraic Specification Language – Design Proposal. CoFI

Document: CASL/Proposal. WWW6, FTP7, May 1997.

[LD97c] CoFI Task Group on Language Design. Casl – The CoFI

Algebraic Specification Language – Rationale. CoFI Docu-
ment: CASL/Rationale. WWW8, FTP9, May 1997.

[LD97d] CoFI Task Group on Language Design. Casl – The CoFI

Algebraic Specification Language – Summary. CoFI Docu-
ment: CASL/Summary. WWW10, FTP11, May 1997.

[LD97e] CoFI Task Group on Language Design. Casl – The CoFI

Algebraic Specification Language – Summary, version 0.97.
CoFI Document: CASL/Summary-v0.97. WWW12, FTP13,
May 1997.

2http://www.brics.dk/Projects/CoFI/Documents/Rationale/
3ftp://ftp.brics.dk/Projects/CoFI/Documents/Rationale/
4http://www.brics.dk/Projects/CoFI/Documents/CASL/RefereeResponse/
5ftp://ftp.brics.dk/Projects/CoFI/Documents/CASL/RefereeResponse/
6http://www.brics.dk/Projects/CoFI/Documents/CASL/Proposal/
7ftp://ftp.brics.dk/Projects/CoFI/Documents/CASL/Proposal/
8http://www.brics.dk/Projects/CoFI/Documents/CASL/Rationale/
9ftp://ftp.brics.dk/Projects/CoFI/Documents/CASL/Rationale/

10http://www.brics.dk/Projects/CoFI/Documents/CASL/Summary/
11ftp://ftp.brics.dk/Projects/CoFI/Documents/CASL/Summary/
12http://www.brics.dk/Projects/CoFI/Documents/CASL/Summary-v0.97/
13ftp://ftp.brics.dk/Projects/CoFI/Documents/CASL/Summary-v0.97/

21

[Sem97] CoFI Task Group on Semantics. Casl – The CoFI Algebraic
Specification Language (version 0.97) – Semantics. CoFI

Note: S-6. WWW14, FTP15, July 1997.

[SST92] Don Sannella, Stefan Soko lowski, and Andrzej Tarlecki. To-
ward formal development of programs from algebraic spec-
ifications: Parameterisation revisited. Acta Informatica,
29:689–736, 1992.

[vDHK96] Arie van Deursen, Jan Heering, and Paul Klint, editors.
Language Prototyping. An Algebraic Specification Approach.
World Scientific, Singapore, 1996.

Addendum:

This paper also appears in ASF+SDF’97, Proceedings of the 2nd
International Workshop on the Theory and Practice of Algebraic
Specifications, Electronic Workshops in Computing,
http://www.springer.co.uk/ewic/workshops/ASFSDF97.
Springer-Verlag, 1997.

14http://www.brics.dk/Projects/CoFI/Notes/S-6/
15ftp://ftp.brics.dk/Projects/CoFI/Notes/S-6/

22

Recent BRICS Report Series Publications

RS-97-49 Peter D. Mosses. CASL for ASF+SDF Users. December
1997. 22 pp. Appears inASF+SDF’97, Proceedings of the
2nd International Workshop on the Theory and Practice of
Algebraic Specifications, Electronic Workshops in Comput-
ing, http://www.springer.co.uk/ewic/workshops/ASFSDF97.
Springer-Verlag, 1997.

RS-97-48 Peter D. Mosses.CoFI: The Common Framework Initiative
for Algebraic Specification and Development. December 1997.
24 pp. Appears in Bidoit and Dauchet, editors,Theory and
Practice of Software Development. 7th International Joint Con-
ference CAAP/FASE, TAPSOFT ’97 Proceedings, LNCS 1214,
1997, pages 115–137.

RS-97-47 Anders B. Sandholm and Michael I. Schwartzbach. Dis-
tributed Safety Controllers for Web Services. December 1997.
20 pp. To appear in European Theory and Practice of Soft-
ware. 1st Joint Conference FoSSaCS/FASE/ESOP/CC/TACAS,
ETAPS ’97 Proceedings, LNCS, 1998.

RS-97-46 Olivier Danvy and Kristoffer H. Rose. Higher-Order Rewrit-
ing and Partial Evaluation. December 1997. 20 pp. Extended
version of paper to appear inRewriting Techniques and Appli-
cations: 9th International Conference, RTA ’98 Proceedings,
LNCS, 1998.

RS-97-45 Uwe Nestmann.What Is a ‘Good’ Encoding of Guarded Choice?
December 1997. 28 pp. Revised and slightly extended version
of a paper published in5th International Workshop on Expres-
siveness in Concurrency, EXPRESS ’97 Proceedings, volume 7
of Electronic Notes in Theoretical Computer Science, Elsevier
Science Publishers.

RS-97-44 Gudmund Skovbjerg Frandsen. On the Density of Normal
Bases in Finite Field. December 1997. 14 pp.

RS-97-43 Vincent Balat and Olivier Danvy.Strong Normalization by Run-
Time Code Generation. December 1997.

RS-97-42 Ulrich Kohlenbach.On the No-Counterexample Interpretation.
December 1997. 26 pp.

