
B
R

IC
S

R
S

-97-48
P.D

.M
osses:

C
oF

I:T
he

C
om

m
on

F
ram

ew
ork

Initiative

BRICS
Basic Research in Computer Science

CoFI: The Common Framework Initiative
for Algebraic Specification and Development

Peter D. Mosses

BRICS Report Series RS-97-48

ISSN 0909-0878 December 1997

Copyright c© 1997, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/97/48/

CoFI: The Common Framework Initiative
for Algebraic Specification and Development

Peter D. Mosses?

BRICS,?? Dept. of Computer Science, University of Aarhus
Ny Munkegade bldg. 540, DK-8000 Aarhus C, Denmark

Abstract. An open collaborative effort has been initiated: to design a
common framework for algebraic specification and development of soft-
ware. The rationale behind this initiative is that the lack of such a com-
mon framework greatly hinders the dissemination and application of re-
search results in algebraic specification. In particular, the proliferation
of specification languages, some differing in only quite minor ways from
each other, is a considerable obstacle for the use of algebraic methods in
industrial contexts, making it difficult to exploit standard examples, case
studies and training material. A common framework with widespread ac-
ceptance throughout the research community is urgently needed.
The aim is to base the common framework as much as possible on a
critical selection of features that have already been explored in various
contexts. The common framework will provide a family of specification
languages at different levels: a central, reasonably expressive language,
called CASL, for specifying (requirements, design, and architecture of)
conventional software; restrictions of CASL to simpler languages, for use
primarily in connection with prototyping and verification tools; and ex-
tensions of CASL, oriented towards particular programming paradigms,
such as reactive systems and object-based systems. It should also be pos-
sible to embed many existing algebraic specification languages in mem-
bers of the CASL family.
A tentative design for CASL has already been proposed. Task groups
are studying its formal semantics, tool support, methodology, and other
aspects, in preparation for the finalization of the design.

1 Background

A large number of algebraic specification frameworks have been provided
during the past 25 years of research, development, and applications in
this area.

Table 1 lists the main frameworks, with a rough indication of their chronology.
Some of them are ambitious, wide-spectrum frameworks, equipped with a full

? E-mail: pdmosses@brics.dk
?? Centre for Basic Research in Computer Science, The Danish National Research Foun-

dation

Abel Etl Spectral Spectrum Lpg

Extended-ML Obscure Troll 1990’s
Act-Two Asf+Sdf Rsl

Asl Larch Rap SMoLCS

Asspegique Cold-K 1980’s
Act-One Pluss

Cip Obj

Clear 1970’s
Look

Table 1. Algebraic specification frameworks

software development methodology; others are much more modest, consisting
essentially of a prototyping or verification tool and its associated language. For
references and further details, see the Compass bibliography [3] and Recent
Trends in Data Type Specification [6].

No de-facto standard framework for algebraic specification has emerged.

Although some of the existing frameworks are relatively popular, with substan-
tial communities of users, none has achieved such widespread support as for
example that enjoyed by Vdm and Z in the model-oriented specification com-
munity. (The fact that Vdm and Z have a lot of minor dialects is beside the
point.) Most algebraic frameworks were developed at particular university de-
partments, or by international collaboration between individual researchers, and
each framework tends to be used rather locally. The main exceptions are Larch

and Obj; one might mention here also Act-One/Two, Rsl, and Spectrum.
Not surprisingly, it seems that most frameworks strongly reflect the convictions
held by their originators, which tends to make them less acceptable to those
holding different convictions.

The lack of a common, widely-supported framework for algebraic specifi-
cation is a major problem.

In particular, it is an obstacle for the adoption of algebraic methods for use
in industrial contexts, and makes it difficult to exploit standard examples, case
studies and educational material. But even within academia, the diversity of
explanations of basic algebraic specification notions in text-books, and the lack
of a common corpus of accepted examples, form a significant hindrance to dis-
semination. And the various tools that have been developed for prototyping,
verifying, and otherwise supporting the use of algebraic specifications, are each
generally available only in connection with just one framework. Moreover, the
prospects for continued support and development of locally-developed frame-
works are usually quite uncertain, which discourages their adoption by industry
and investment in training in their use.

2

It is time to agree on the fundamental concepts and constructs that could
form the basis of a common framework.

The various groups working on algebraic specification frameworks have already
had ample opportunity to develop and experiment with their own particular vari-
ations on the theme of algebraic specification. A substantial collective experience
and expertise in the design and use of such frameworks has been accumulated.
If we cannot agree now on what are the essential concepts and constructs, there
would seem to be little grounds for belief that such agreement could ever be
achieved.

This paper presents CoFI: The Common Framework Initiative for al-
gebraic specification and development, explains the (tentative) design of
CASL: The CoFI Algebraic Specification Language, and sketches plans
for the future.

The author is currently the overall coordinator of CoFI. It should be emphasized
that the ideas presented below stem from a voluntary international collaboration
involving many participants (see the Acknowledgements at the end), and it would
be both difficult and inappropriate to accredit particular ideas to individuals.

By the way: CoFI is intended to be pronounced like ‘coffee’, and CASL like
‘castle’.

All the main points in this paper are summarized like this.

The paragraphs following each point provide details and supplementary expla-
nation. To get a quick overview of CoFI and CASL, simply read the main
points and skip the intervening text. It is hoped that the display of the main
points does not unduly hinder a continuous reading of the full text. (This style
of presentation is borrowed from a book by Alexander [1], where it is used with
great effect.)

2 CoFI

The initial idea for a common framework initiative was conceived in June
1994, by members of COMPASS and IFIP WG 1.3.

Compass (1989–96) was an ESPRIT Basic Research WG (3264, 6112) involving
the vast majority of the European sites working on algebraic specification [7].
Ifip WG 1.3 (Foundations of System Specification) was founded in 1992 (origi-
nally with the number 14.3) and has members not only from the major European
sites but also from other continents.

In fact the idea of developing a common algebraic specification framework had
been suggested for inclusion in the original Compass WG proposal in 1988—but
subsequently dropped, as it was considered unlikely to be achievable. By 1994,
however, the area had matured sufficiently to encourage reconsideration of the
idea of a common framework.

3

By September 1995 the main aims had been clarified, and CoFI: The
Common Framework Initiative started.

A joint meeting of Compass and Ifip WG 1.3 at Soria Moria, near Oslo, in
September 1995 decided to set up the Common Framework Initiative, and various
task groups were formed. Since the termination of Compass in April 1996, Ifip

WG 1.3 has taken the sole responsibility for the future of the initiative, and for
approving any proposals that it might make.

The overall aims of CoFI [8] are:

– A common framework for algebraic specification and software development
is to be designed, developed, and disseminated.

– The production of the common framework is to be a collaborative effort,
involving a large number of experts (30–50) from many different groups (20–
30) working on algebraic specifications.

– In the short term (e.g., by 1997) the common framework is to become ac-
cepted as an appropriate basis for a significant proportion of the research
and development in algebraic specification.

– Specifications in the common framework are to have a uniform, user-friendly
syntax and straightforward semantics.

– The common framework is to be able to replace many existing algebraic
specification frameworks.

– The common framework is to be supported by concise reference manuals,
users’ guides, libraries of specifications, tools, and educational materials.

– In the longer term, the common framework is to be made attractive for use
in industrial contexts.

– The common framework is to be available free of charge, both to academic
institutions and to industrial companies. It is to be protected against appro-
priation.

The common framework is to allow and be useful for:

– Algebraic specification of the functional requirements of software systems,
for some significant class of software systems.

– Formal development of design specifications from requirements specifica-
tions, using some particular methods.

– Documenting the relation between informal statements of requirements and
formal specifications.

– Verification of correctness of development steps from (formal) requirements
to design specifications.

– Documenting the relation between design specifications and implementations
in software.

– Exploration of the (logical) consequences of specifications: e.g., rewriting,
theorem-proving, prototyping.

– Reuse of parts of specifications.
– Adjustment of specifications and developments to changes in requirements.
– Providing a library of useful specification modules.
– Providing a workbench of tools supporting the above.

4

In effect, the above list is the requirements specification for the common
framework, avoiding premature design decisions. It provided the starting-point
for the actual design of the common framework.

An early but key design decision was that the common framework should
provide a coherent family of languages, all extensions or restrictions of
some main algebraic specification language.

Vital for the support for CoFI in the algebraic specification community is the
coverage of concepts of many existing specification languages. How could this
be achieved, without creating a complicated monster of a language? And how to
avoid interminable conflicts with those needing a simpler language for use with
prototyping and verification tools?

By providing not merely a single language but a coherent language family,
CoFI allows the conflicting demands to be resolved, accommodating advanced
as well as simpler languages. At the same time, this family is given a clear
structure by being organized as restrictions and extensions of a main language,
which is to be the main topic of the documentation (reference manual, user’s
guide, text book) and strongly identified with the common framework.

z

u u u

u

u

u u

�
��@

@@

@
@@�

��

� CASL

� Restrictions

� Extensions

The main language of the common framework family is required to be
competitive in expressiveness with various existing languages.

The choice of concepts and constructs for the main language was a matter of
finding a suitable balance point between the advanced and simpler languages.
It was decided that its intended applicability should be for specifying the func-
tional requirements and design of conventional software packages as abstract
data types.

Restrictions of the main language are to correspond to languages used
with existing tools for rapid prototyping, verification, term rewriting, etc.

5

These may be syntactic and/or semantic restrictions. The restricted languages
need not have a common kernel—although presumably all restrictions will allow
at least unstructured, single- or many-sorted equational specifications.

Existing tools typically restrict the use of sorts and overloading, allow only
a restricted class of axioms, and may require specifications to be ‘flattened’.

The semantics of a specification in a restricted language may be inherited
from the semantics of the main language, although some simplifications should
usually be possible.

Extensions to the main language are to support various programming
paradigms, e.g., object-oriented, higher-order, reactive.

These are to be obtained from the main language (or perhaps from mildly re-
stricted languages) by syntactic and/or semantic extensions. The extended lan-
guages need not have a common super-language, and indeed, there may be tech-
nical difficulties in combining various extensions.

The semantics ascribed to a specification in the main language by an exten-
sion is required to be essentially the same as its original semantics.

The common framework is also to provide an associated development
methodology, training materials, tool support, libraries, a reference man-
ual, formal semantics, and conversion from existing frameworks.

A framework is more than just a language! Many existing algebraic specification
frameworks have not had sufficient resources to develop all the required auxil-
iary documents, which has severely hampered their dissemination. By pooling
resources in CoFI, this problem may be avoided.

Regarding tools, the aim is to make it possible to exploit existing tools in
connection with the common framework, using an interchange format [2].

One of the attractions of having a common framework is to facilitate building
up a library of useful specifications in a single language. Libraries of specifications
have previously been proposed, but the variety of languages involved was always
a problem.

Conversion from existing frameworks is vital, not only to be able to reuse
existing specifications, but also to encourage users to migrate from their current
favourite framework to the common framework.

The tentative design of the main CoFI Algebraic Specification Language,
called CASL, was completed in December 1996, and is currently under-
going closer investigation by task groups concerned with issues of lan-
guage design, methodology, semantics, and tool support.

It was felt that CoFI participants had sufficient collective expertise and experi-
ence of designing algebraic specification frameworks, and knowledge of existing
frameworks, to allow the rapid development of a tentative design for CASL by
selecting and combining familiar concepts and constructs. (In fact it turned out

6

that collaborative design of a language was a good way of forcing the partici-
pants to understand each other’s views in depth—more reliably than through
the attendance of presentations at conferences.) But then it was felt essential
to allow time for a closer study before finalizing the design, in case any infelici-
ties had crept in. In particular, it should be checked that there are no inherent
semantic problems with the chosen combination of constructs.

Some CoFI task group meetings are to be held just before this paper is
presented at TAPSOFT’97. On the basis of the investigations made by these
groups, a definite complete proposal for the design of CASL will be submitted
to Ifip WG 1.3 for approval at its meeting in June 1997.

CoFI is open to contributions and influence from all those working with
algebraic specifications.

The tentative design of CASL was developed by a varying Language Design task
group, coordinated by Bernd Krieg-Brückner, comprising between 10 and 20 ac-
tive participants representing a broad range of algebraic specification approaches.
Numerous study notes were written on various aspects of language design, and
discussed at working and plenary language design meetings. The study notes and
various drafts of the tentative design summary were made available electronically
and comments solicited via the associated mailing list (cofi-language@brics.dk).

This openness of the design effort should have removed any suspicion of
undue bias towards constructs favoured by some particular ‘school’ of algebraic
specification. It is hoped that CASL incorporates just those features for which
there is a wide consensus regarding their appropriateness, and that the common
framework will indeed be able to subsume many existing frameworks and be seen
as an attractive basis for future development and research—with high potential
for strong collaboration.

All the CoFI task groups welcome new active participants. See the descrip-
tions of the task groups on the CoFI WWW pages [9], and contact the coordi-
nators of the task groups directly.

3 CASL

This section presents the main points of the tentative design of CASL.

The tentative design of CASL is based on a critical selection of the con-
cepts and constructs found in existing algebraic specification frameworks.

The main novelty of CASL lies in its particular combination of concepts and
constructs, rather than in the latter per se. All CASL features may be found (in
some form or other) in one or more of the main existing algebraic specification
frameworks, with a couple of minor exceptions: with subsorts, it was preferred
to avoid the (non-modular) condition of ‘regularity’; and with libraries, it was
felt necessary to cater for links to remote sites.

7

The aim with CASL is to provide an expressive specification language
with simple semantics and good pragmatics.

The reader may notice below that from a theoretical point of view, some CASL

constructs could be eliminated, the same effect being obtainable by combined use
of the remaining constructs. This is because CASL is not intended as a general
kernel language with constructs that directly reflect theoretical foundations, and
where one would need to rely on ‘syntactic sugar’ to provide conciseness and
practicality. By including abbreviatory constructs in the syntax of CASL, their
uniformity with the rest of the syntax may be enforced, and in any case they
add no significant complications at all to the CASL semantics.

CASL is for specifying requirements and design of conventional software
packages.

All CASL constructs are motivated by their usefulness in general algebraic spec-
ification: there are no special-purpose constructs, only for use in special appli-
cations, nor is CASL biased towards particular programming paradigms.

The tentative design of CASL provides the abstract syntax, together
with an informal summary of the intended well-formedness conditions
and semantics; the choice of concrete syntax has not yet been made.

It is well-known that people can have strong feelings about issues of concrete
syntax, and it was felt necessary to delay all discussions of such issues until after
the tentative design of the CASL abstract syntax and its intended semantics had
been decided. Consequently, CASL is at the time of writing without any concrete
syntax at all, which makes it difficult to give accurate illustrative examples of
specifications.

Let us consider the concepts and constructs of so-called basic specifica-
tions in CASL, followed by structured specifications, architectural spec-
ifications, and finally libraries of specifications.

First, here is a concise overview of the complete language. Basic specifications in
CASL denote classes of partial first-order structures: algebras where the func-
tions are partial or total, and where also predicates are allowed. Subsorts are in-
terpreted as embeddings. Axioms are first-order formulae built from definedness
assertions and both strong and existential equations. Sort generation constraints
can be stated. Structured specifications allow translation, reduction, union, and
extension of specifications. Extensions may be required to be persistent and/or
free; initiality constraints are a special case. Type definitions are provided for
concise specification of enumerations and products. A simple form of generic
(parametrized) specifications is provided, together with instantiation involving
parameter-fitting translations. Architectural specifications express that the spec-
ified software is to be composed from separately-developed, reusable units with
clear interfaces. Finally, libraries allow the (distributed) storage and retrieval of
named specifications.

8

The remarks below explain how CASL caters for the various features, and at-
tempts to justify the tentative design choices that have been made. The complete
tentative abstract syntax of CASL is given in an appendix. For a systematic
presentation of the intended semantics of CASL constructs, see the CASL Ten-
tative Design Summary [4], available for browsing on WWW via the CoFI Home
Page [9].

3.1 Basic Specifications

Partiality

Functions may be partial, the value of a function application in a term
being possibly undefined. Total functions may be declared as such.

Although total functions are an important special case of partial functions, the
latter cannot be avoided in practical applications. CASL adopts the standard
mathematical treatment of partiality: functions are ‘strict’, with the undefined-
ness of any argument in an application forcing the undefinedness of the result.
The lack of non-strict functions seems unproblematic in a pure specification
framework, where undefinedness corresponds to the mere lack of value, rather
than to a computational notion of undefinedness. The specification of infinite
values such as streams is not supported in CASL, although presumably it will
be in some extension language.

Signatures of CASL specifications distinguish between partial and total func-
tions, the latter being required to be interpreted in all models as partial func-
tions that happen to be totally-defined. It should be straightforward to define
restricted languages that correspond to the conventional partial and total alge-
braic specification frameworks.

Atomic formulae expressing definedness are provided, as well as both
existential and strong equality.

When partial functions are used, the specifier should be careful to take account
of the implications of axioms for definedness properties. Thus a clear distinction
should be made between existential equality, where terms are asserted to have
defined and equal values, and strong equality, where the terms may also both
have undefined values. The tentative design of CASL includes both existential
and strong equality, as each has its advantages: existential equality seems most
natural to use in conditions of axioms (one does not usually want consequences to
follow from the fact that two terms are both undefined), whereas strong equality
seems ‘safer’ to use in unconditional axioms, e.g., when specifying functions
inductively.

Definedness of a term could be expressed by an existential equality, at the
expense of writing the same term twice. It was deemed important to be able to
express definedness of the value of a term directly by an atomic formula.

The underlying logic is 2-valued.

9

Just because the values of terms may be undefined, one need not let this affect
formulae (although various other frameworks have chosen to do so). In CASL,
a (closed) formula is either satisfied or not, in any particular model. This keeps
the interpretation of the logical connectives completely standard, and avoids a
range of questions for which there do not appear to be any optimal solutions.

Subsorts and Overloading

Functions (and predicates) may be overloaded, the same symbol being de-
clared for more than one sequence of argument sorts. Argument sorts are
related by subsort inclusions, but no ‘regularity’ conditions are imposed
on declarations.

Here, the design of CASL found itself in a dilemma: it was recognized as highly
desirable to provide support for the concept of subsorts and overloading (e.g., to
allow the specification of natural numbers as a subsort of the integers, with the
usual functions on natural numbers being extended to integers), but the notion
of ‘regularity’ of signatures, as adopted in order-sorted algebras [5], was found
to have some drawbacks. Finally, it was decided to put no conditions at all on
the declarations of overloaded functions, but instead to require that any uses
of overloaded functions in terms should be sufficiently disambiguated, ensuring
that different parses of the same term (involving different overloadings) always
have the same semantics. The consequences for parsing efficiency of this tentative
decision are currently being investigated.

Subsort inclusions are represented by embedding functions, whose inser-
tion in terms may be left implicit. The corresponding inverse projection
functions from supersorts to subsorts are partial.

In order-sorted algebra, subsort inclusions are modelled as actual set-theoretic
inclusions between the corresponding carriers, whereas in CASL, they are more
general, being arbitrary embeddings. This extra generality allows one to specify
e.g. that integers are to be a subsort of the approximate real numbers, without
requiring all models to use the same representation of each integer as for the
corresponding approximate real.

Thanks to the possibility of partial functions in CASL, the projection func-
tions from supersorts to subsorts can be given a straightforward algebraic se-
mantics.

Predicative sort definitions allow the concise specification of subsorts that
are determined by the values for which particular formulae hold.

It was realized, during the design of subsorting in CASL, that one may distin-
guish two different uses of subsorts: (i) in the extension of a subalgebra, e.g.,
from natural numbers to integers, and (ii) to indicate the domain of definition of
a partial function, e.g., the even numbers for integer division by 2. In (i) the val-
ues of the subsort(s) are generated implicitly by the declarations of operations of

10

the subalgebra, whereas in (ii) it may be more convenient to characterize them
explicitly by some predicate or formula. To cater for the latter, CASL provides a
construct called a predicative sort definition. This declares a new sort consisting
of those values of another sort for which a particular formula holds—this might
be written {x : s | P [x]}, where P [x] is some formula involving the variable
x ranging over the sort s. (More precisely, the values of the new sort are the
projections of values of sort s.)

Formulae

The usual first-order quantification and logical connectives are provided.

Many algebraic specification frameworks allow quantifiers and the usual logical
connectives: the adjective ‘algebraic’ refers to the specification of algebras, not to
a possible restriction to purely equational specifications, which are algebraic in a
different sense. But of course many prototyping systems do restrict specifications
to (conditional) equations, so as to be able to use term rewriting techniques in
tools; this will be reflected in restrictions of CASL to sublanguages.

Predicates for use in atomic formulae may be declared.

It is quite common practice to eschew the use of predicates, taking (total) func-
tions with results in some built-in sort of truth-values instead. As with restric-
tions to conditional equations, this may be convenient for prototyping, but it
seems difficult to motivate at the level of using CASL for general specification
and verification. Hence predicates may be declared, and combined using the
standard logical connectives.

Sort Generation Constraints

It may be specified that a sort is generated by a set of functions, so that
proof by induction is sound for that sort.

For generality, CASL does not restrict all models to be finitely-generated (i.e.,
reachable). The specifier may indicate that a particular sort (or set of sorts) is
to be generated by a particular set of functions, much as in Larch.

3.2 Structured Specifications

A structured specification is formed by combining specifications in various ways,
starting from basic specifications. The structure of a specification is not reflected
in its models: it is used only to present the specification in a modular style.
(Specification of the architecture of models in CASL is addressed in the next
section.)

11

Translation and Hiding

The symbols declared by a specification may be translated to different
ones, and they may be hidden.

Translation is needed primarily to allow the reuse of specifications with change
of notation, which is important since different applications may require the use
of different notation for the same entities. But also when specifications that have
been developed in parallel are to be combined, some notational changes may be
needed for consistency.

Hiding symbols ensures that they are not available to the user of the specifica-
tion, which is appropriate for symbols that denote auxiliary entities, introduced
by the specifier merely to facilitate the specification, and not necessarily to be
implemented. CASL tentatively provides two constructs for hiding: one where
the symbols to be hidden are listed directly (other symbols remaining visible—
although hiding a sort entails hiding all function and predicate symbols whose
profile involves that sort), the other where only the symbols to be ‘revealed’ are
listed.

Union and Extension

Specifications of independent items may be combined, and subsequently
extended with specification of further sorts, functions, predicates, and/or
properties.

The most fundamental way of combining two independent specifications is to
take their union. Models of the united specification have to provide interpre-
tations of all the symbols from the two specifications. The provision of union
allows independent parts of a specification to be presented separately, thereby
increasing the likelihood that they will be reusable in various contexts. CASL

provides a construct for taking the union of any number of specifications.
Extension of a specification allows the addition of further functions (and

predicates) on already-specified sorts, perhaps adding new sorts as well. It is
also possible with extension to add further properties, either concerning already-
specified symbols or ones being introduced in the extension itself. The CASL

construct for extension allows arbitrary further bits of structured specification
to be added to the union of any number of specifications. In fact union itself is
essentially just an empty extension.

It may be declared whether or not the models of the specifications being
extended are to be preserved.

The case where an extension is ‘conservative’, not disturbing the models of the
specifications being extended, occurs frequently. For example, when specifying a
new function on numbers, one does not intend to change the models for numbers.
For generality, CASL allows the specifier to indicate for each of the extended
specifications whether its models are intended to be preserved or not.

12

The identical declaration of the same symbol in specifications that get
combined is regarded as intentional.

Suppose that one unites two specifications that both declare the same symbol:
the same sort, or functions or predicates with the same profiles. If this is regarded
as well-formed (as it is in CASL) there are potentially (at least) two different
interpretations: either the common symbol is regarded as shared, giving rise to
a single symbol in the signature of the union, satisfying both the given specifica-
tions; or the two symbols are regarded as homonyms, i.e., different entities with
the same name, which have somehow to be distinguished in the signature of the
union.

CASL, following Asl and Larch, takes the former interpretation, since the
symbols declared by a specification (and not hidden) are assumed to denote
entities of interest to the user, and unambiguous notation should be used for
them. This treatment also has the advantage of semantic simplicity. However, due
to the possibility of unintentional ‘clashes’ between accidentally-left-unhidden
auxiliary symbols, it is envisaged that CASL tools will be able to warn users
about such cases. Note that when the two declarations of the symbol arise from
the same original specification via separate extensions that later get united, the
CASL interpretation gives the intended semantics, and moreover in such cases
no warnings need be generated by tools.

Initiality and Freeness

Specifications generally have loose semantics: all models of the declared
symbols that enjoy the specified properties are allowed. However, it may
also be specified that only initial models of the specification are allowed.

In general, initial models of CASL specifications need not exist, due to the
possibility of axioms involving disjunction and negation. When they do exist, the
CASL construct for restricting models to the initial ones can be used, ensuring
reachability—and also that atomic formulae (equations, definedness assertions,
predicate applications) are as false as possible. The latter aspect is particularly
convenient when specifying (e.g., transition) relations ‘inductively’, as it would
be tedious to have to specify all the cases when a relation is not to hold, as well
as those where it should hold.

Specifications with loose and initial semantics may be combined and ex-
tended, and extensions may be required to be free.

For generality, CASL allows specifications with initial semantics to be united
with those having loose semantics. This applies also to extensions: the specifica-
tions being extended may be either loose or free, and the extending part may be
required to be a free extension, which is a natural generalization of the notion
of initiality.

13

Type Definition Groups

A type definition group allows the concise declaration of one or more
sorts together with constructor and selector functions, with some implicit
axioms relating the constructors and selectors.

In a practical specification language, it is important to be able to avoid tedious,
repetitive patterns of specification, as these are likely to be carelessly written,
and never read closely. The CASL construct of a type definition group collects
together several such cases into a single abbreviatory construct, which in many
respects corresponds to a type definition in Standard ML, or to a context-free
grammar in BNF.

A type definition group consists of one or more type definitions (possibly
together with some axioms). Each type definition declares a sort, and lists the
alternatives for that sort. An alternative may be a constant, whose declaration
is implicit; or it may be a sort, to be embedded as a subsort (of the sort of
the type definition); or, finally, it may be a construct—essentially a product—
given by a constructor function together with its argument sorts, each optionally
accompanied by a selector. The declarations of the constructors and selectors,
and the assertion of the expected axioms that relate them to each other, are
implicit.

Special cases of type definitions are enumerations of constants (although
no ordering relation or successor function is provided) and unions of subsorts.
Notice that we now have three distinct ways of specifying subsorts: directly, or
by predicative sort definitions, or by type definitions. (One may also represent
a subsort as a unary predicate, although then it cannot be used in declarations
of function or predicate symbols, nor when declaring the sorts of variables.)

The semantics of a type definition group involves free extension.

The intended semantics is that the only values of the sorts declared by a type
definition group are those that can be expressed using the listed constants, sub-
sort embeddings, and constructor functions. Moreover, different constants or
constructors of the same sort are supposed to have distinct values: there should
be no ‘confusion’. Such properties could (at least in the absence of user-specified
axioms) be spelled out using sort-generation constraints and first-order axioms,
but in fact the intended semantics is precisely captured by the notion of initial
semantics (or, in the case that alternatives involve sorts declared outside the
type-definition group, free extension).

A type definition group may be used as an item of a basic specification.

A type definition group is essentially something like a complete basic specifica-
tion, and can be combined with other specifications in structured specifications.
But especially when specifying ‘small’ type definitions, e.g., enumerations of con-
stants or unions of subsorts, it would often be awkward to have to separate this
part and make an explicit extension of it. Thus CASL allows a type definition
group to be used directly as an item of a basic specification, with semantics
corresponding to the introduction of an implicit extension.

14

Naming and Generics

A (possibly-structured) specification may be given a name; subsequent
references to the name are equivalent to writing out the specification
again.

The naming of a specification in CASL serves two main purposes (apart from
the purely informal one of suggesting the intentions of the specifier!): to avoid
the verbatim repetition of the same specification part within one specification;
and to allow its insertion in a library of specifications, so that the specification
may be reused simply by referring to its name in all subsequent specifications.

A specification may be made generic, by declaring some parameters which
are to be instantiated with ‘fitting’ arguments whenever reference to the
name of the specification is made.

The parameters of a generic specification are simply dummy parts of the speci-
fication (declarations of symbols, axioms) that are intended to be replaced sys-
tematically whenever the name of the generic specification is referred to. The
classic example is the generic specification of lists of arbitrary items: the pa-
rameter specification merely declares the sort of items, which gets replaced by
particular sorts (e.g., of integers, characters) when instantiated. For a generic
specification of ordered lists, the parameter specification would also declare a
binary relation on items, and perhaps insist that it have (at least) the properties
of a partial order.

Note that, in contrast to some other specification languages, the parameter
here is not a bound variable, whose occurrences in the body (if any) should be re-
placed by the argument specification. Such a λ-calculus form of parametrization
would allow the specifier to introduce quite general functions from specifications
to specifications; in CASL, the intention is that one always uses the constructs
described in this section directly when combining specifications. Moreover, the
usefulness of specification functions that ignore their parameter(s) is question-
able; with the CASL form of generics, the parameter is automatically extended
by the generic specification.

A generic specification may have several parameters. Any common symbols
have to be instantiated the same way (the situation is analogous to an extension,
where common symbols declared by the specifications that are being extended
are regarded as identical). Thus if a generic specification is to have two indepen-
dent parameters, say pairs of two (possibly) different sorts of items, one has to
use different symbols for the two sorts. Although this seems to be a coherent de-
sign, CASL does differ in its treatment of parameters from that found in many
previous specification languages, so a careful explanation of this point will have
to be provided in the supporting manuals and guides.

The semantics of instantiation of generic specifications corresponds to a
push-out construction.

15

It is possible to view generic specifications as a particular kind of loose specifica-
tion, with instantiation having the effect of tightening up the specification. Thus
generic lists of items are simply lists where the items have been left (extremely)
loosely specified. Instantiating items to integers then amounts to translating
the entire specification of lists accordingly (so that e.g. the first argument of
the ‘cons’ function is now declared to be an integer rather than an item) and
forming its union with the specification of integers—the CASL treatment of
common symbols in unions dealing correctly with the two declarations of the
sort of integers.

In fact the semantics of instantiation in CASL corresponds closely to the
above explanation. Under suitable conditions, it corresponds to a push-out con-
struction on specifications.

The use of compound identifiers for symbols in generic specifications
allows the symbols declared by instantiations to depend on the symbols
provided by the argument specifications.

The observant reader may have noticed that in the example given above, two
different instantiations of the generic lists (say, for integers and characters) would
declare the same sort symbol for the two different types of lists, causing problems
when these get united. CASL allows the use of compound sort identifiers in
generic specifications; e.g., the sort of lists may be a symbol formed with the
sort of items as a component. The translation of the parameter sort to the
argument sort affects this compound sort symbol for lists too, giving distinct
symbols for lists of integers and lists of characters, thereby avoiding the danger
of unintended identifications and the need for explicit renaming when combining
instantiations.

3.3 Architectural Specifications

The structure of a specification does not require models to have any cor-
responding structure.

The structuring constructs considered in the preceding section allow a large spec-
ification to be presented in small, logically-organized parts, with the pragmatic
benefits of comprehensibility and reusability. In CASL, the use of these con-
structs has absolutely no consequences for the structure of models, i.e., of the
code that implements the specification. For instance, one may specify integers
as an extension of natural numbers, or specify both together in a single basic
specification; the models are the same.

It is especially important to bear this in mind in connection with generic
specifications. The definition of a generic specification of lists of arbitrary items,
and its instantiation on integers, does not imply that the implementation has to
provide a parametrized program module for generic lists: all that is required is
to provide lists of integers (although the implementor is free to choose to use a
parametrized module, of course). Sannella, Soko lowski, and Tarlecki [10] provide
extensive further discussion of these issues.

16

In contrast, an architectural specification requires that any model should
consist of a collection of separate component units that can be composed
in a particular way to give a resulting unit. Each component unit is to be
implemented separately, providing a decomposition of the implementation
task into separate subtasks with clear interfaces.

In CASL, an architectural specification consists of a collection of component
unit specifications, together with a description of how the implemented units
are to be composed. A model of such a specification consists of a model for each
component unit specification, and the described composition.

A unit may be required to provide an extension of other units that are
being implemented separately. The compatibility of implementations of
any common declared symbols in the extended units has to be ensured.

In general, the individual units may be regarded as functions: they correspond
to parametrized program modules that extend their arguments. For example,
one may specify a unit that is to extend any implementation of integers with
an implementation of lists of integers, thus separating the task of implement-
ing integers as a self-contained sub-task, and with the implementation of lists
being allowed to apply the specified functions and predicates on integers. The
specification of a unit consists of the specification of each argument that is to
be extended, and the specification of the extension itself. These argument and
result specifications form the interfaces of the unit.

A unit implementing lists of integers is not allowed to replace the imple-
mentation of integers by a different one! The argument has to be preserved,
i.e., the unit has to be a persistent function. To cater for this, the result signa-
ture of each unit has to include each argument signature—any desired hiding
has to be left to when units are composed. Since each symbol in the union of
the argument signatures has to be implemented the same way in the result as
in each argument where it occurs, the arguments must already have the same
implementation of all common symbols. In CASL, this is built into the seman-
tics of architectural specifications, and the specifier does not have to spell out
the intended identity between parts of arguments, nor between arguments and
results (in contrast to a previous approach to architectural specifications [10]).
The description of the composition of units is only well-formed when it ensures
that units with potentially-incompatible implementations of the same symbols
cannot be combined as arguments.

When the resulting unit is composed, the symbols defined by a unit may
be translated or hidden.

In the example considered above, one may alternatively specify a more general
unit that it is to extend any implementation of arbitrary items (not just imple-
mentations of integers) with lists. Such a unit can then be applied to an imple-
mentation of integers, the required fitting of items to integers being described
as part of the composition of units.

17

Architectural specifications and the specifications of their components
may be named, and subsequently referenced.

Although architectural and component specifications have different semantics
and usage compared to structured specifications, there is a similar need to be
able to name them and reuse them by simply referring to their names.

3.4 Libraries of Specifications

Named specifications of various kinds can be collected in libraries.

As indicated above, CASL allows specifications to be named. An ordered col-
lection of named specifications forms a library in CASL. Linear visibility is
assumed: a specification in a library may refer only to the specifications that
precede it. In fact the possibility of allowing cyclic references in CASL libraries
(as in Asf+Sdf) was considered, but in the presence of translation and instan-
tiation, it seemed that the semantics would not be sufficiently straightforward.

Libraries may be located at particular sites on the Internet, and their
current contents referenced by means of URL’s.

Given that there will be more than one CASL library of specifications (at least
one library per project, plus one or more libraries of standard CASL specifica-
tions) the issue of how to refer from one library to another arises. The standard
WWW notion of a Uniform Resource Locator (URL) seems well-suited for this
purpose: a library may be identified with some index file located in a particular
directory at a particular site, accessible by some specified protocol (e.g., FTP).

A library may require the ‘down-loading’ of particular named specifica-
tions from other libraries each time it is used.

Rather than allowing individual references to names throughout specifications
to include the URLs of the relevant libraries (which might be inconvenient to
maintain when libraries get reorganized), CASL provides a separate construct
for down-loading named specifications from another library. Optionally, the spec-
ification may be given a local name different from its original name, so that one
may easily avoid name clashes; the resemblance of this construct to the familiar
FTP command ‘get’ is intentional. However, a named specification at a remote
library may well refer to other named specifications in that library (or in other
libraries) and it would be unreasonable to require explicit mention of such auxil-
iary specifications, so these get down-loaded implicitly, with special local names
that cannot clash with ordinary names.

The overall effect is that one may use a down-loading construct to provide
access to named specifications located at remote libraries, without having to
worry about anything but the names of the required specifications and the URL
of the library. Notice that no construct is provided for down-loading an entire
library: the names of the specifications required have to be listed. This ensures
that references to names can always be checked for local declaration, before
down-loading occurs.

18

4 Foreground

This section sketches the plans for the immediate future of the Common Frame-
work Initiative. Up-to-date information may be found via the CoFI WWW
pages [9].

The tentative design of CASL will be revised, if necessary, on the basis
of its investigation by the various CoFI task groups.

The main responsibility here is on the Semantics task group, which is currently
making a critical review of the informal explanation of the intended semantics in
the existing CASL language summary, and contemplating what semantic entities
would be needed for a formal semantics. This should reveal any ambiguities and
incompletenesses in the informal explanation, as well as providing grounds for
belief in the existence of a reasonable semantic model for the combined CASL

constructs.

Other task groups are active as well: the Language Design task group is to
test the tentative CASL design by expressing standard examples in CASL—it is
also considering the issue of restrictions and extensions of CASL, for instance to
check that a higher-order extension could be provided without undue difficulty;
the Methodology task group is considering the development of implementations
from CASL specifications; and the Tools task group is working on the issue
of interfacing CASL with existing specification languages and tools, as well as
clarifying what basic tools for CASL will need to be implemented.

The revised design, together with proposals for concrete syntax and tool
support, will be submitted to a meeting of IFIP WG 1.3 in June 1997.

Any problems with the tentative CASL design should have been discovered and
rectified before the revised design proposal is submitted. It is hoped that several
alternative proposals for concrete syntax, with illustrative examples, will have
been made by then; whether it will be so easy to reach agreement on just one
proposal is perhaps not so clear at present.

A lot of work remains to be done. . .

The approval of a CASL design will be just the start of the main CoFI work:
progressing from ideas to their realization in documentation, methodology, and
tools. Although CoFI has already come quite a long way on the basis of vol-
untary effort and local support at various sites, and the expected redirection of
future development towards languages and tools based on CASL should provide
further resources, international funding for CoFI will be needed to allow the
realization of its full potential for industrial applications.

19

Acknowledgements

The following (45) individuals have contributed to the common framework ini-
tiative by commenting on various CoFI documents or attending CoFI meetings:
Egidio Astesiano, Hubert Baumeister, Jan Bergstra, Gilles Bernot, Didier Bert,
Mohammed Bettaz, Michel Bidoit, Pietro Cenciarelli, Maria Victoria Cengarle,
Maura Cerioli, Christine Choppy, Ole-Johan Dahl, Hans-Dieter Ehrich, Hartmut
Ehrig, Jose Fiadeiro, Marie-Claude Gaudel, Chris George, Joseph Goguen, Radu
Grosu, Anne Haxthausen, Jim Horning, Hélène Kirchner, Hans-Jörg Kreowski,
Bernd Krieg-Brückner, Pierre Lescanne, Tom Maibaum, Grant Malcolm, Karl
Meinke, Till Mossakowski, Peter D. Mosses, Peter Padawitz, Fernando Orejas,
Olaf Owe, Gianna Reggio, Horst Reichel, Gerard Renardel, Erik Saaman, Don
Sannella, Giuseppe Scollo, Amilcar Sernadas, Andrzej Tarlecki, Eelco Visser,
Eric Wagner, Micha l Walicki, and Martin Wirsing. (Apologies to anyone who
has been inadvertently omitted.)

Groups at the following sites have generously hosted CoFI meetings (1995–
97): Aarhus, Bremen, Edinburgh, Munich (LMU), Munich (TUM), Oslo, Oxford,
Paris (LIENS/ENS), Paris (LSV/ENS de Cachan). Some CoFI meetings were
much facilitated by support from Compass.

References

1. C. Alexander. A Timeless Way of Building. Oxford University Press, 1979.

2. M. Bidoit, C. Choppy, and F. Voisin. Interchange format for inter-operability of
tools and translation. In Haveraaen et al. [6], pages 102–124.

3. M. Bidoit, H.-J. Kreowski, P. Lescanne, F. Orejas, and D. Sannella, editors. Alge-
braic System Specification and Software Development, volume 501 of Lecture Notes
in Computer Science. Springer-Verlag, 1991.

4. CoFI. CASL: The CoFI algebraic specification language, tentative design: Lan-
guage summary. Notes Series NS-96-15, BRICS, Department of Computer Science,
University of Aarhus, 1996.

5. J. A. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for
multiple inheritance, overloading, exceptions and partial operations. Technical
Report SRI-CSL-89-10, Computer Science Lab., SRI International, 1989.

6. M. Haveraaen, O. Owe, and O.-J. Dahl, editors. Recent Trends in Data Type
Specification, volume 1130 of Lecture Notes in Computer Science. Springer-Verlag,
1996.

7. B. Krieg-Brückner. Seven years of COMPASS. In Haveraaen et al. [6], pages 1–13.

8. P. D. Mosses. CoFI: The common framework initiative for algebraic specification.
Bulletin of the EATCS, June 1996.

9. P. D. Mosses, editor. CoFI: Common Framework Initiative for Algebraic Specifi-
cation, URL: http://www.brics.dk/Projects/CoFI/, 1997.

10. D. Sannella, S. Soko lowski, and A. Tarlecki. Toward formal development of pro-
grams from algebraic specifications: Parameterisation revisited. Acta Inf., 29:689–
736, 1992.

20

Appendix: Tentative Abstract Syntax of CASL

The abstract syntax is presented as a set of production rules in which each entity
is defined in terms of its constituent parts. The productions form a context-free
grammar. The notation X*, X+, X? indicates the repetition of X any number of
times, at least once, and at most once, respectively.

The order in which components of constructs are currently listed does not
necessarily correspond to that to be used in the concrete representation.

Identifiers

ID ::= SIMPLE-ID

SIMPLE-ID -- structure insignificant for abstract syntax

Basic Specifications

BASIC-SPEC ::= basic-spec BASIC-ITEM*

BASIC-ITEM ::= SIG-DECL | VAR-DECL | AXIOM | SORT-GEN

SIG-DECL ::= SORT-DECL | FUN-DECL | PRED-DECL

SORT-DECL ::= sort-decl SORT+

FUN-DECL ::= fun-decl FUN-NAME+ FUN-TYPE

PRED-DECL ::= pred-decl PRED-NAME+ PRED-TYPE

FUN-TYPE ::= fun-type TOTALITY SORT* SORT

TOTALITY ::= total | partial

PRED-TYPE ::= pred-type SORT*

VAR-DECL ::= var-decl VAR+ SORT

AXIOM ::= FORMULA

FORMULA ::= QUANTIFICATION | CONJUNCTION | DISJUNCTION

| IMPLICATION | EQUIVALENCE | NEGATION | ATOM

QUANTIFICATION ::= quantification QUANTIFIER VAR-DECL+ FORMULA

QUANTIFIER ::= forall | exists | exists-uniquely

CONJUNCTION ::= conjunction FORMULA+

DISJUNCTION ::= disjunction FORMULA+

IMPLICATION ::= implication FORMULA FORMULA

EQUIVALENCE ::= equivalence FORMULA FORMULA

NEGATION ::= negation FORMULA

ATOM ::= TRUTH | PREDICATION | DEFINEDNESS | EQUATION

TRUTH ::= true | false

PREDICATION ::= predication PRED-SYMB TERM*

DEFINEDNESS ::= definedness TERM

EQUATION ::= equation QUALITY TERM TERM

QUALITY ::= existential | strong

TERM ::= VAR | APPLICATION | SORTED-TERM

21

APPLICATION ::= application FUN-SYMB TERM*

SORTED-TERM ::= sorted-term TERM SORT

SORT-GEN ::= sort-gen SORT+ FUN-SYMB+

FUN-SYMB ::= fun-symb FUN-NAME FUN-TYPE?

PRED-SYMB ::= pred-symb PRED-NAME PRED-TYPE?

SORT ::= ID

FUN-NAME ::= ID

PRED-NAME ::= ID

VAR ::= SIMPLE-ID

Basic Specifications with Subsorts

SIG-DECL ::= ... | SUBSORT-DECL

SUBSORT-DECL ::= EMBEDDING-DECL | ISO-DECL

EMBEDDING-DECL ::= embedding-decl SORT-LAYER+

SORT-LAYER ::= sort-layer SORT+

ISO-DECL ::= SORT-LAYER

BASIC-ITEM ::= ... | PRED-SORT-DEFN

PRED-SORT-DEFN ::= pred-sort-defn SORT VAR SORT FORMULA

ATOM ::= ... | MEMBERSHIP

MEMBERSHIP ::= membership TERM SORT

TERM ::= ... | CAST

CAST ::= cast TERM SORT

Structured Specifications

SPEC ::= BASIC-SPEC | TRANSLATION | REDUCTION

| UNION | EXTENSION | FREE-SPEC | TYPE-DEFN-GROUP

TRANSLATION ::= translation SPEC SIG-MORPH

REDUCTION ::= reduction RESTRICTION SPEC

RESTRICTION ::= restriction EXPOSURE SYMB+

EXPOSURE ::= hiding | revealing

SYMB ::= SORT | FUN-SYMB | PRED-SYMB

UNION ::= union SPEC+

EXTENSION ::= extension OF-SPEC* SPEC

OF-SPEC ::= PERSISTENT-SPEC | SPEC

PERSISTENT-SPEC ::= persistent-spec SPEC

FREE-SPEC ::= free-spec SPEC

SIG-MORPH ::= sig-morph SYMB-MAP*

SYMB-MAP ::= SORT-MAP | FUN-SYMB-MAP | PRED-SYMB-MAP

SORT-MAP ::= sort-map SORT SORT

FUN-SYMB-MAP ::= fun-symb-map FUN-SYMB FUN-SYMB

PRED-SYMB-MAP ::= pred-symb-map PRED-SYMB PRED-SYMB

22

BASIC-ITEM ::= ... | TYPE-DEFN-GROUP

TYPE-DEFN-GROUP ::= type-defn-group TYPE-DEFN+ AXIOM*

TYPE-DEFN ::= type-defn SORT ALTERNATIVE+

ALTERNATIVE ::= CONSTRUCT | SORT

CONSTRUCT ::= construct FUN-NAME COMPONENTS*

COMPONENTS ::= components FUN-NAME* SORT

Generic Specifications

SPEC-DEFN ::= spec-defn SPEC-NAME GEN-SPEC

SPEC-NAME ::= SIMPLE-ID

GEN-SPEC ::= gen-spec OF-SPEC* SPEC

SPEC ::= ... | SPEC-INST

SPEC-INST ::= spec-inst SPEC-NAME FITTING-ARG* SIG-MORPH?

FITTING-ARG ::= fitting-arg SPEC SIG-MORPH?

ID ::= ... | COMPOUND-ID

COMPOUND-ID ::= compound-id SIMPLE-ID ID+

Architectural Specifications

ARCH-SPEC-DEFN ::= arch-spec-defn SPEC-NAME ARCH-SPEC

ARCH-SPEC ::= arch-spec UNIT-DECL+ RESULT-UNIT

UNIT-DECL ::= unit-decl UNIT-NAME UNIT-SPEC

UNIT-NAME ::= SIMPLE-ID

UNIT-SPEC-DEFN ::= unit-spec-defn SPEC-NAME UNIT-SPEC

UNIT-SPEC ::= SPEC-NAME | UNIT-TYPE

UNIT-TYPE ::= unit-type SPEC* SPEC

RESULT-UNIT ::= result-unit UNIT-DECL* UNIT-TERM

UNIT-TERM ::= UNIT-APPL | UNIT-REDUCT

UNIT-APPL ::= unit-appl UNIT-NAME UNIT-TERM*

UNIT-REDUCT ::= unit-reduct SIG-MORPH UNIT-TERM

Specification Libraries

LIBRARY ::= library URL? LIBRARY-ITEM*

LIBRARY-ITEM ::= SPEC-DEFN | ARCH-SPEC-DEFN | UNIT-SPEC-DEFN

| DOWNLOAD

DOWNLOAD ::= download URL SPEC-NAME-MAP+

SPEC-NAME-MAP ::= spec-name-map SPEC-NAME? SPEC-NAME

URL ::= url SITE? DIRECTORY

SITE -- structure insignificant for abstract syntax

23

Addendum: This paper also appears in TAPSOFT’97: Theory and Practice of Software
Development, 7th International Joint Conference CAAP/FASE, Lille, France, April
1997, Proceedings, volume 1214 of Lecture Notes in Computer Science, pages 115–137.
Springer-Verlag, 1997.

24

Recent BRICS Report Series Publications

RS-97-48 Peter D. Mosses.CoFI: The Common Framework Initiative
for Algebraic Specification and Development. December 1997.
24 pp. Appears in Bidoit and Dauchet, editors,Theory and
Practice of Software Development. 7th International Joint Con-
ference CAAP/FASE, TAPSOFT ’97 Proceedings, LNCS 1214,
1997, pages 115–137.

RS-97-47 Anders B. Sandholm and Michael I. Schwartzbach. Dis-
tributed Safety Controllers for Web Services. December 1997.
20 pp. To appear in European Theory and Practice of Soft-
ware. 1st Joint Conference FoSSaCS/FASE/ESOP/CC/TACAS,
ETAPS ’97 Proceedings, LNCS, 1998.

RS-97-46 Olivier Danvy and Kristoffer H. Rose. Higher-Order Rewrit-
ing and Partial Evaluation. December 1997. 20 pp. Extended
version of paper to appear inRewriting Techniques and Appli-
cations: 9th International Conference, RTA ’98 Proceedings,
LNCS, 1998.

RS-97-45 Uwe Nestmann.What Is a ‘Good’ Encoding of Guarded Choice?
December 1997. 28 pp. Revised and slightly extended version
of a paper published in5th International Workshop on Expres-
siveness in Concurrency, EXPRESS ’97 Proceedings, volume 7
of Electronic Notes in Theoretical Computer Science, Elsevier
Science Publishers.

RS-97-44 Gudmund Skovbjerg Frandsen. On the Density of Normal
Bases in Finite Field. December 1997. 14 pp.

RS-97-43 Vincent Balat and Olivier Danvy.Strong Normalization by Run-
Time Code Generation. December 1997.

RS-97-42 Ulrich Kohlenbach.On the No-Counterexample Interpretation.
December 1997. 26 pp.

RS-97-41 Jon G. Riecke and Anders B. Sandholm.A Relational Account
of Call-by-Value Sequentiality. December 1997. 24 pp. Appears
in Twelfth Annual IEEE Symposium on Logic in Computer Sci-
ence, LICS ’97 Proceedings, pages 258–267.

RS-97-40 Harry Buhrman, Richard Cleve, and Wim van Dam. Quan-
tum Entanglement and Communication Complexity. December
1997. 14 pp.

