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Abstract

We show how to use high-level synchronization constraints, written

in a version of monadic second-order logic on �nite strings, to synthe-

size safety controllers for interactive web services. We improve on the

naïve runtime model to avoid state-space explosions and to increase

the �ow capacities of services.

1 Introduction

An Interactive Web Service consists of a global state (typically a database)

and a number of distinct sessions that each contain some local state and a

sequential, imperative action. A web client may invoke an individual thread

of one of the given session kinds. The execution of this thread may interact

with the client and inspect or modify the global state.

To alleviate laborious low-level encodings of such services, the Mawl lan-
guage [6, 2] has been suggested as a high-level notation that is compiled

∗Basic Research in Computer Science,
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service {
global counter: int = 0;
document ThePage { You are visitor number <var name="num">. };
session ReadMe {

counter:=counter+1;
show ThePage[num← counter]

}
}

Figure 1: A simple Wig service.

into low-level CGI-scripts. It directly provides programming constructs cor-

responding to global state, dynamic document, sessions, local state, imper-

ative actions, and client interactions. This system shows great promise to

facilitate the e�cient production of reliable web services.

While Mawl thus o�ers automatic synthesis of many advanced concepts,

it still relies on standard low-level semaphore programming for concurrency

control. We have designed a variation of Mawl, called Wig, on which we are

currently performing a number of experiments. One of these is to synthesize

the concurrency control from a high-level notation that is designed to be

simple and intuitive. Our notation is based on second-order monadic logic

on �nite strings, M2L-Str.
As an example of a Wig service, consider the example in Fig. 1, which

provides a counter for a page. The intended behavior should be clear. By

default Wig provides exclusive write-access to components of the global state,

but this is clearly not enough even for this simple example, where the updates

of the counter variable must be atomic, which requires some sort of critical

region.

Larger web services often require quite complicated concurrency control,

which is hard to implement and maintain (and not the kind of issue on which

most web programmers want to spend their time).

The web programming environment, with rapidly changing code, fast

machines, and slow networks seems an ideal niche for a radical approach

of synthesizing �nite-state controllers from high-level speci�cations without

su�ering an unacceptable performance loss compared to hand-written code.

This paper provides the foundations for these ideas.

2



2 Labeled Services

Before presenting the actual high-level notation for concurrency control we

need to make one important extension to the basic language for writing

service code. The high-level notation for concurrency control needs a way of

referring to points in the service code. For this purpose we add the possibility

of having labels in the code. As an example it might very well later turn out

to be advantageous to be able to refer to, say, the beginning and the end of

a critical region.

With labels in the service code, a run of a service gives rise to the sequence

of labels that are passed in turn during the run. We have the basic assumption

that no two labels are passed at exactly the same time. In the absence of

this assumption, we should replace the word sequence by pomset, partially

ordered multi-set. Later, though, we do consider independence models in

order to avoid the state explosion problem and to increase parallelism.

In addition to the labels added by the programmer, the following labels

are generated automatically because standard safety requirements almost

always involve these labels.

• For each global variable X we generate the labels take-X and give-X.
These labels are put in just before and just after each assignment to

the global variable X. They will make us able to ensure that global

variables can only be updated by one session thread at a time.

• For each session de�nitionA we generate labels start-A and end-A. They
are put at the beginning and at the end of session A, respectively.

The kind of sequences that a run of a service S gives rise to will thus be

strings over the alphabet ΣS given by

ΣS = labels(S) ∪ { take-X | X ∈ globals(S) } ∪ { give-X | X ∈ globals(S) }
∪ { start-A | A ∈ sessions(S) } ∪ { end-A | A ∈ sessions(S) },

where labels, globals, and sessions are the functions that given a service S
evaluates to the names of the labels, global variables, and sessions of S,
respectively. Where obvious from the context we will drop the subscript S.

An automaton is a structure A = (Q, q̂,Σ,→, F ), where Q is a set of

states with initial state q̂ ∈ Q, Σ is a set of labels, →⊆ Q × Σ × Q is the

transition relation, and F ⊆ Q the set of acceptance states. We shall use

q1
σ→ q2 as notation for (q1, σ, q2) ∈→.

3
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Figure 2: Overview of the setup.

A string w = σ0σ1 . . . σn−1 ∈ Σ∗ is said to be accepted by the automaton A
if there exists a run of A that reads the string w and ends up in an accepting

state q, i.e., if there exist q1, . . . , qn−1 ∈ Q and q ∈ F , such that

q̂
σ0→ q1

σ1→ . . .
σn−2→ qn−1

σn−1→ q.

We shall denote by L(A) the language recognized by an automaton, i.e.,

L(A) = {w ∈ Σ∗ | A accepts w }.

One can observe that a service S induces � in a natural way � an in�nite

state automaton with alphabet ΣS, transitions corresponding to passing a

label during execution, and F = Q, where the language accepted by the

induced automaton will then be the set of (�nite pre�xes of) possible runs of

that service. We shall denote by AS = (QS, q̂S,ΣS,→S, FS) the automaton

induced by S. Again we may omit the subscript S.

3 Safety Requirements

While programming a service, one often needs to make sure certain properties

hold. We o�er a way of synthesizing runtime controllers from static safety

requirements. These requirements � written in a dialect of M2L-Str � can

together with the service code be compiled into executable code containing

a runtime system that automatically ensures that the safety requirements

are met, namely by compiling the safety requirements into a runtime safety

controller. For a diagram of the overall compilation process see Fig. 2.
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M2L-Str is a very expressive logic in which several other logics can be

encoded, e.g., interval logic and all sorts of linear time temporal logics. For

an introduction to and a discussion of M2L-Str see [4]. The speci�c high-

level notation built on top of M2L-Str for writing Wig safety requirements is

called the Wig service logic (WSL). The speci�cs of WSL are dealt with later

in this paper. One might argue in favor of other speci�cation formalisms,

e.g., Colored Petri Nets or Message Sequence Chart Diagrams. One of the

reasons why we have chosen M2L-Str is that we have a very well functioning

tool available for doing computations in this logic [4]. Also, since we do not

aim for traditional model checking, but rather for synthesizing controllers to

be run on fast machines in slow networks, we are in the fortunate position to

choose whatever logic provides the most succinct and intuitive syntax. All

in all, M2L-Str is very powerful and yet just simple enough to actually allow

calculations.

A formula φ in M2L-Str over the alphabet Σ will � when interpreted

over a �nite string w � either evaluate to true or to false and we shall write

w |= φ or w 6|= φ, respectively. The language associated with φ is

L(φ) = {w ∈ Σ∗ | w |= φ }.

We shall denote by pre(φ) the pre�x closure of L(φ).
We will use M2L-Str formulae as safety requirements as follows. Given

a safety requirement φ we want to restrict the execution of the service S to

allow only runs σ = σ0σ1σ2 · · · ∈ Σω for which

{ σ0 . . . σn−1 ∈ Σ∗ | n ≥ 0 } ⊆ pre(φ).

That is, we only allow a run σ if all its �nite pre�xes, ε, σ0, σ0σ1, σ0σ1σ2, . . . ,
are in the pre�x closure of the language associated with φ.

Example 1 A safety requirement formula might look as follows.

∀time t,t�: (t<t� ∧ start-A(t) ∧ start-A(t�))
=⇒ ∃time t': t<t'<t� ∧ end-A(t').

The formula will ensure that at most one session A thread will be allowed to

execute at a time.

The above formula will occur automatically once per global variable X
with start-A and end-A replaced by take-X and give-X respectively. This will

5



ensure that only one session thread can update a given global variable at a

time. One might argue that this could be implemented by simply using a

semaphore for each global variable. True, but what we are dealing with here

is just one speci�c safety requirement. Our technique can uniformly handle

all safety requirements expressible in M2L-Str, i.e., errors are less likely to

occur. Furthermore we will argue later that the technique handles speci�c

requirements like critical regions as e�ciently as if implemented directly, e.g.,

by means of a semaphore.

It has been known since the late sixties that M2L-Str characterizes reg-
ularity [8]. The Mona system provides an algorithm for translating M2L-Str
formulae into minimal deterministic �nite state automata (mdfa). Further-
more, regularity is preserved under pre�x closure. Thus we have a method

for producing from the safety requirements an mdfa that will function as our

safety controller.

Example 2 The minimal safety controller corresponding to the requirement

of Example 1 will thus be

//?>=<89:;76540123q̂

start-A
**

��

?>=<89:;76540123q1

end-A

ii

��

start-A
// ?>=<89:;q2

��

with the convention that non-labeled transitions are implicitly labeled by Σ
minus the labels that occur on other outgoing transitions from that state.

As can be seen, it is not possible to start a new session A thread if an A
thread is already running.

4 Labeled Services with Safety Requirements

Given a service S with induced automaton AS and a safety controller Ac we
can quite precisely de�ne the restricted behavior that we expect from the

composite system. First a de�nition.

We de�ne the product automaton A1 × A2 of two automata A1 and A2,

Ai = (Qi, q̂i,Σ,→i, Fi) to be

A1 × A2 = (Q1 ×Q2, (q̂1, q̂2),→, F1 × F2),

6



where

(q1, q2)
σ→ (q′1, q

′
2) i� qi

σ→i q
′
i for i = 1, 2.

Thus the restricted behavior that we want our composite system to have is

that of AS × Ac. For a product A1 × A2 of two systems A1 and A2 we have

L(A) = L(A1) ∩ L(A2). Thus the product of the service and the controller

will allow � among the possible runs of the service � exactly those that

also meet the safety requirements.

4.1 Implementing the Naïve Runtime System

The service does not constitute a �nite state automaton. Therefore we cannot

produce the full runtime system (the combined system consisting of both the

service AS and the controller Ac) by simply computing the product automa-

ton at compile time. What we will do instead is to implement the implicit

synchronization of the product automaton directly as part of the runtime

system. The runtime system will then consist of three parts:

• a safety controller Ac,

• for each label σ ∈ Σ a run-time queue rtq(σ), and

• the current session threads of the service.

All session threads and the controller run in parallel having the queues as

shared resources.

• The code for the sessions will then be compiled such that each time a

session thread wants to pass a label σ it pushes its session thread id onto

rtq(σ) and then waits for permission to continue. When permission

later is granted by the controller it will pass the label σ and continue

its execution.

• The safety controller will be looping while doing the following. Check

if any of the queues corresponding to the enabled transitions are non-

empty. In case it �nds a non-empty queue, say rtq(σ), it

1. removes a session thread id from rtq(σ),

2. changes its state corresponding to making the enabled σ-transition,
and
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Safety Controller Queues Session Threads
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...
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ee

Figure 3: Sketch of the runtime system.

3. wakes up the session thread corresponding to the removed id .

This way the runtime system will behave as the product of the service and

the controller. A diagram of a simple runtime system can be found in Fig. 3.

5 Improvements on the Runtime System

In the following section we will present two major improvements on the run-

time system. Since the service part of the runtime system is very hard to

reason about at compile time, our improvements will concentrate on the

safety controller (which is just a �nite automaton) and the shared queues.

Both improvements are achieved by using the notion of distributed automata.

• The �rst improvement concerns the avoidance of the state explosion

problem.

• The second improvement increases parallelism of the system by infer-

ring independence information.

First let us de�ne the notion of distributed automata. A distributed alpha-

bet Σ̃ = (Σ1, . . . ,ΣK) with K ≥ 1 is a �nite collection of �nite, non-empty

alphabets. We will denote by Loc the set {1, . . . , K} and by Σ the union of
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the not necessarily disjoint alphabets Σi. By loc(σ) we will denote the set of
locations where σ occurs, i.e., loc(σ) = { i ∈ Loc | σ ∈ Σi }.

A distributed automaton over Σ̃ is a structure A = (A1, . . . , AK) consist-
ing of �nite state automata A1, . . . , AK , with Ai = (Qi, q̂i,Σi,→i, Fi). The

derived behavior of A will be as the behavior of the �nite state automaton

A = (Q1 × · · · ×QK , (q̂1, . . . , q̂K),Σ,→, F1 × · · · × FK),

where (q1, . . . , qK)
σ→ (q′1, . . . , q

′
K) if and only if

� when i ∈ loc(σ) then qi
σ→i q

′
i and

� if i 6∈ loc(σ) then qi = q′i.

We will denote by L(A) the language recognized by the distributed automa-

ton A which is just the language recognized by A, i.e., L(A) = L(A).
Note that given a distributed automaton A = (A1, . . . , AK) over Σ̃ we

also have

L(A) = {w ∈ Σ∗ | ∀i ∈ Loc : (w|Σi) ∈ L(Ai) },

where w|Σi denotes the projection of the string w onto the ith alphabet Σi.

Note that for K = 1 the notion of a distributed automaton coincides

with the simple notion of a �nite state automaton. The kind of distributed

automata that we will be using in this �rst part to reduce the state space

will be automata over distributed alphabets where Σ1 = · · · = ΣK , i.e., the

derived behavior of the distributed automaton will simply be as the behavior

of the productA1×· · ·×AK . Later on� when we want to increase parallelism

� we will consider general distributed alphabets where the sub-alphabets are

not necessarily equal to each other.

5.1 The State Explosion Problem

In model checking, the state explosion problem occurs very often and there

have been many attempts to avoid it, e.g., by means of a symbolic represen-

tation using BDDs [7, 1]. As a colloquial remark one might mention that we

actually already do use BDDs because of the way the Mona system represents

its data.

Here we attack the state explosion problem by using distributed au-

tomata. The crucial observation that makes it possible to easily use dis-

tributed automata in this context is that safety requirements have the form
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of a big conjunction, i.e., it is a collection of requirements that all have to

be satis�ed. Also, we can build and use the symbolic representation of the

products (the distributed automaton) all the way through when generating

controllers. In model checking, though, one needs at some point to actually

compute the product.

Let C be a set of safety constraints, i.e., a set of conjuncts. Then, given

some partition of C into C1, . . . , CK, we can compile each of the smaller

conjunctions C1, . . . , CK separately into automata A1, . . . , AK . The corre-

sponding distributed automaton A = (A1, . . . , AK) will then behave exactly

as the automaton corresponding to the full set C of conjuncts because

L(C) = L(C1 ∧ · · · ∧ CK)

= L(C1) ∩ · · · ∩ L(CK)

= L(A1) ∩ · · · ∩ L(AK)

= L(A1 × · · · ×AK)

= L(A).

We can thus use A as our safety controller instead. If the partition is chosen

appropriately this will lead to a considerable reduction of the state space.

Example 3 Consider the example of having n global variables X1, . . . , Xn.

In order to obey the requirement of mutual exclusion on assignment to globals

this will automatically generate the following list of safety constraints.

∀time t,t�: (t<t� ∧ take-X1(t) ∧ take-X1(t�))
=⇒ ∃time t': t<t'<t� ∧ give-X1(t');

...
∀time t,t�: (t<t� ∧ take-Xn(t) ∧ take-Xn(t�))

=⇒ ∃time t': t<t'<t� ∧ give-Xn(t');

The corresponding safety controller will have 2n+ 1 states � it will look like

the nth dimensional cube plus the �error state�. If we use the distributed

automaton approach and partition the safety requirements according to the

semicolons then the controller will have only a linear (3n) number of states.
We will have n copies of the three state automaton

//?>=<89:;76540123q̂

take-Xi
**

��

?>=<89:;76540123q1

give-Xi

ii

�� take-Xi
// ?>=<89:;q2

��

10



Safety Controller Queues Session Threads

rtq(take-X1)
Session A

thread id : 47
oo

{{

///.-,()*+��������
take-X1

((
��

/.-,()*+��������

give-X1

hh

�� take-X1
///.-,()*+

��

rtq(give-X1)

...

Session A
thread id : 69

gg

oo

...
...

...
rtq(take-Xn)

Session B
thread id : 117

vv

qq

///.-,()*+��������
take-Xn

((
��

/.-,()*+��������

give-Xn

hh

�� take-Xn
///.-,()*+

��

rtq(give-Xn) ...

}}

vv

nn

gg

Figure 4: Runtime system with distributed automaton.

and the runtime system will then be as illustrated in Fig. 4.

5.2 Inference of Independence Information

It was shown in the previous section that using distributed automata reduces

the state space in frequently occurring cases. In this section we will improve

on the fact that we have a central component � the safety controller �

which can potentially slow down the performance of the service, e.g., if many

session threads are asking for permission to continue at the same time. This

can � in many cases � be avoided by exploiting independence in the safety

requirements.

We shall call a transition q
σ→ q′ state preserving if q = q′. A label σ is

said to be dead if all σ-transitions are state preserving, i.e., if

→ ∩ (Q× {σ} ×Q) ⊆ { q σ→ q | q ∈ Q }.

A σ-transition is dead if σ is dead.

In a distributed automaton A = (A1, . . . , AK) a label or transition is said

to be locally dead in Ai if it is dead in Ai. One can now make the following

observation.
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Proposition 4 Given a distributed automaton A = (A1, . . . , AK). Let A′
be the distributed automaton A where locally dead labels and transitions have

been removed. If Σ′ = Σ then L(A′) = L(A).

That is, if we do not remove the last occurrence of a label in A then removing

locally dead labels and transitions is a language preserving operation.

The above proposition easily extends to a simple algorithm where we iter-

ate through the automata A1, . . . , AK and for each i ∈ Loc remove all locally

dead labels and transitions. Running this algorithm on a distributed automa-

ton A will result in a new distributed automaton A′ with exactly the same

overall behavior, but with minimized requirements regarding synchronization

between the di�erent components.

Now � to improve performance even further � consider the undirected

graph G = (V,E) with nodes

V = {A1, . . . , AK}

and edges

E = { (Ai, Aj) | Σi ∩ Σj 6= ∅ }.

The connected components C1, . . . , Cn of G can � since they are collections

of �nite automata � be considered as distributed automata.

The crucial observation is that � since they have completely disjoint al-

phabets � these distributed automata C1, . . . , Cn can be run completely in

parallel while still guaranteeing all safety requirements to be met. Further-

more, inside each of the distributed automata Ci we still have �nite state

automata that are loosely coupled and thus need very little internal synchro-

nization as well.

A diagram of the runtime system with n global variables, X1, . . . , Xn,

where we have both reduced the state space and exploited independence

information can be found in Fig. 5.

As can be seen, we handle the case of critical regions just as e�ciently

as if we had implemented it using a semaphore, both with respect to space

requirements and with respect to the degree of parallelism. Thus we do not

lose anything by formulating simple safety requirements in this way. What

we gain, however, is a uniform framework in which we can formulate all safety

requirements.

Inference of independence information via search for locally dead labels

and transitions will thus in general lead to a substantial increase of parallelism
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Figure 5: Runtime system with independent distributed automata.

in the controller. This increase of parallelism will improve on the overall

performance of the runtime system, i.e., on the �ow capacities of the provided

service.

6 Beyond Regularity

In general one can have any number of session A threads. This can of course

be constrained to any �xed maximal number by use of safety requirements,

e.g., the controller

//?>=<89:;76540123q̂

start-A
**

��

?>=<89:;76540123q1

end-A

ii

�� start-A
** ?>=<89:;76540123q2

end-A

jj

��

start-A
// ?>=<89:;q3

��

will guarantee that at any time there will be at most two session A threads.

But very often one has requirements like: I only want to enter this part

of the code, e.g., pass label foo, if there are no session C threads � without

putting a bound on the maximal number of session C threads. This cannot

be expressed in M2L-Str. The positions at which there are no session C
threads are those where the number of start-C and end-C labels occurring
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before that position are the same but the standard example of a non-regular

language is { anbn | n ≥ 0 } thus the property is not regular and therefore

cannot be expressed in M2L-Str.
In order to accommodate the need for these kind of requirements we will

introduce the notion of a counter. We could declare the counter last-A as

follows.

counter last-A : #start-A − #end-A;

This would have the e�ect that an extra label, last-A, would be added to

the alphabet. The extra label would be passed implicitly every time the

right-hand side of the counter declaration reaches zero, i.e., in this case every

time the last session A thread has passed its end-A label. Thus, we produce

a controller that only allows runs that both pass the safety requirements

and furthermore have the property that last-A occurs exactly at positions

following occurrences of end-A that results in a pre�x that has the same

number of start-A and end-A occurrences.

So in principle we want to make an intersection of a regular and a context

free language which in general of course is non-regular. We still want to

implement the controller as a �nite state (distributed) automaton but this is

no longer possible. However, if we equip the automaton with integer variables

� one for each counter � then we will have enough machinery to recognize

the intersection of the two languages. More speci�cally, consider the three

step loop in the description of the controller in the naïve runtime system:

The safety controller will be looping while doing the following. Check if

any of the queues corresponding to the enabled transitions are non-empty.

In case it �nds a non-empty queue, say rtq(σ), it

1. removes a session thread id from rtq(σ),

2. changes its state corresponding to making the enabled σ-transition,
and

3. wakes up the session thread corresponding to the removed id .

Apart from the fact that there are now several of these controllers each having

a subset of labels to take care of, we must add the following conditional as a

fourth step.

If σ occurs on the right-hand side of a counter declaration, cnti, then incre-

ment or decrement the variable associated with that counter. If it reaches

zero then change the state corresponding to taking the cnti-transition.

14



By using the counter last-A we thus

• add the label last-A and

• in the controller we intersect with the language where last-A occurs

after the termination of the last session A thread.

Therefore, one can now write a safety requirement ensuring that there are

no active A sessions. E.g., the predicate

zero-A(t�) ≡ ∃time t: t≤t� ∧ (t=0 ∨ last-A(t)) ∧
∀time t': t≤t'≤t� =⇒ ¬start-A(t')

will only evaluate to true at positions where there are no active A sessions.

Example 5 We can now formulate the (non-regular) requirement from the

beginning of this section, �I only want to pass label foo if there are no active
C sessions�, as a safety requirement:

∀time t: foo(t) =⇒ zero-C(t).

7 WSL

The Wig service logic (WSL) is a high-level notation built on top of M2L-Str
suitable for writing safety requirements for Wig service code implementing an

interactive web service. It inherits fromM2L-Str the usual universal and exis-

tential quanti�cations over both �rst order variables (ranging over instances

of discrete time) and monadic second order variables (ranging over sets of

instances of time). Also, it has standard boolean connectives like negation,

conjunction, disjunction, implication, etc., as well as operations on �rst order

terms, e.g., given an instance of time t one can point out its successor (t+1),
operations on second order terms, e.g., taking the union of two sets, plus of

course the basic formula that tests membership of a position in a position

set. Furthermore WSL provides basic formulae to test whether a label LL is

passed at time t: LL(t).

Example 6 Consider some Wig code with a critical region that needs exclu-

sive access to, say, a global resource. The way one makes the region critical

is by �rst adding labels around it.
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Figure 6: A Writing thread and several Reading threads accessing a Database.

. . . code . . .
label begin-crt-region;
. . . critical region . . .
label end-crt-region;
. . . more code . . .

Then, in order to make the code between these labels act as a critical region

the following safety constraint is added to the set of requirements.

∀time beg1, beg2:
((beg1<beg2) ∧ begin-crt-region(beg1) ∧ begin-crt-region(beg2))
=⇒ ∃time end1: (beg1<end1<beg2) ∧ end-crt-region(end1).

Example 7 Another thing that WSL is suitable for is formulating require-

ments regarding priority. We are given some service S with sessions Reading
and Writing (See Fig. 6). Reading threads read data from a Database, display
the data in a proper way, read some more data, display it, and so forth. Writ-
ing threads can only be started by the service administrator. Furthermore,

at most one Writing session thread is allowed at a time. This last condition

can easily be satis�ed, e.g., by the constraint

∀time t: start-Writing(t) =⇒ (t=0 ∨ zero-Writing(t-1)),
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where zero-Writing and later zero-Reading are de�ned as the zero-A predicate

from the previous section.

Of course Writing must not be started unless there are no active Reading
threads and vice versa. This can also be formulated in a straightforward way

using, e.g., the constraint

∀time t: zero-Writing(t) ∨ zero-Reading(t).

But what if it is of great importance that the administrator gets access to the

database as soon as possible? E.g., if the database contains prices of products

that a company sells and corrections have to be made to these prices. Thus,

we want to give Writing priority over Reading. This can be managed in the

following way (excluding the last WSL-formula above). We assume that the

critical regions ofWriting, i.e., those that access the database, are surrounded
by labels start-Crt and end-Crt.

• Then, in order to make sure that as soon as the Writing thread has

started, no more Reading threads will start, we add the constraint

∀time t: start-Reading(t) =⇒ zero-Writing(t).

• Of course, we should still make sure that we have mutual exclusion.

This is done by adding the constraint

∀time t: start-Crt(t) =⇒ zero-Reading(t).

Thus, we make sure that we do not enter any critical region in Writing
unless the last Reading thread has ended its execution.

Using the above approach we satisfy the crucial property of mutual exclusion.

Furthermore, we impose restrictions that will make sure the administrator

gets priority over ordinary users. The corresponding automaton, however, is

rather complex, see Fig. 7. Thus, producing it by hand is cumbersome and

error prone.

Furthermore, our approach is modular in the sense that requirements can

be added and deleted at will without changing the existing requirements.

In the automata world small changes can result in extensive changes of the

automaton. Solutions using semaphores lack in a similar fashion the property

of being modular.
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Figure 7: Automaton corresponding to the Writing/Reading setup.

8 Related Work

Mawl has already been mentioned as an example of a domain-speci�c lan-

guage for describing sequential transaction-oriented Web applications. The

techniques available for doing synchronization when dealing with concur-

rency in Mawl is limited to working with critical regions, though. Our work

on service logic extends this to working with arbitrary safety constraints.

In general, there are increasingly many systems for doing web-programming,

e.g., [6, 5, 3], but so far none of seem of them seem to support proper handling

of safety requirements.

The area of control theory is of course huge. We are only dealing with

control of discrete systems, though. Ramadge and Wonham give in [9] a good

survey on �The Control of Discrete Event Systems�. Many of the notions

presented here are similar to those of [9].

Distributed automata are simply a special case of the product automata

of [10]. They again are a special case of the non-cellular asynchronous au-

tomata of [11].

9 Future Work

Writing Wig services results in generation of highly concurrent code which

needs lots of synchronization. The implementation of the ideas presented
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here is in preparation and once we can do experiments writing and using

safety constraints, evaluation of the usefulness of our technique can be taken

further. The important question is of course: how much do these ideas

improve on the quality of the services?

When dealing with inference of independence information, the important

part is that of choosing the right partition of the safety requirement. We plan

to do static analyses on the safety requirements and combine the achieved

information with appropriate heuristics to obtain hopefully good results. In-

tuitively, the formulae of the safety requirements implicitly say something

about which requirements are closely related and which are not.

The idea of having a central controller is proving useful for other aspects

of web services. We plan to include support for various kinds of event han-

dling and database locking. Also, the controller may drive an automatically

generated service monitor, allow maintenance and performance statistics.
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