
B
R

IC
S

R
S

-97-45
U

.N
estm

ann:
W

hatIs
a

‘G
ood’E

ncoding
ofG

uarded
C

hoice?

BRICS
Basic Research in Computer Science

What Is a ‘Good’ Encoding of
Guarded Choice?

Uwe Nestmann

BRICS Report Series RS-97-45

ISSN 0909-0878 December 1997

Copyright c© 1997, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/97/45/

What is a ‘Good’ Encoding of Guarded Choice?∗

Uwe Nestmann†

BRICS‡Aalborg University, Denmark
uwe@cs.auc.dk

December 1997

Abstract

The π-calculus with synchronous output and mixed-guarded choices is strictly
more expressive than the π-calculus with asynchronous output and no choice. As a
corollary, Palamidessi recently proved that there is no fully compositional encoding
from the former into the latter that preserves divergence-freedom and symmetries.
This paper shows that there are nevertheless ‘good’ encodings between these calculi.

In detail, we present a series of encodings for languages with (1) input-guarded
choice, (2) both input- and output-guarded choice, and (3) mixed-guarded choice, and
investigate them with respect to compositionality and divergence-freedom. The first
and second encoding satisfy all of the above criteria, but various ‘good’ candidates for
the third encoding—inspired by an existing distributed implementation—invalidate
one or the other criterion. While essentially confirming Palamidessi’s result, our study
suggests that the combination of strong compositionality and divergence-freedom is
too strong for more practical purposes.

∗This is a revised and slightly extended version of a paper published in the Proceedings of EXPRESS’97
(5th International Workshop on Expressiveness in Concurrency), volume 7 of Electronic Notes in Theo-
retical Computer Science, Elsevier Science Publishers.
†The work was mainly carried out while the author was supported by a post-doc fellowship from

ERCIM (European Research Consortium for Informatics and Mathematics) and partially supported by
the ESPRIT CONFER-2 WG-21836. The work was revised and completed under a grant from BRICS.
‡Basic Research in Computer Science, Centre of the Danish National Research Foundation.

1

1 Introduction

The invention of the π-calculus [MPW92] by Milner, Parrow, and Walker, has triggered a
wide range of encodings of other calculi into it, due to its well-developed semantic theory,
but also because of the similarities between encodings and actual implementations by the
use of name-passing. Soon the question arose, which operators would be responsible for
this surprisingly expressive power of the original π-calculus. This paper contributes to the
understanding of the role of choice operators for the expressiveness of the π-calculus.

A widely-used method for measuring the relative expressiveness of calculi is by (mutual)
encodings. A calculus is considered more expressive than another, if it represents the target
language of an encoding of the other calculus. The meaningfulness of such propositions
rests on the (syntactic and semantic) properties that are preserved and/or reflected by the
encoding. An example criterion for being a ‘good’ encoding is the popular notion of full
abstraction: in the context of process calculi, it requires that the equivalence of terms is
both preserved and reflected (cf. Sangiorgi [San93]). Of course, the choice of equivalence
is crucial. Weak bisimulation equivalences and congruences have become prominent in
this area, because they permit abstraction from internal steps that might be added by an
encoding, and also because they provide handy proof techniques. Yet, weak bisimulation
is not the only interesting equivalence relation; in particular, it is insensitive to divergence.
Consequently, an encoding that uses infinite loops may nevertheless be fully abstract with
respect to weak bisimulation; for stating that an encoding is divergence-free, we need
additional arguments (or a different equivalence). If full abstraction can not be achieved
for any known equivalences, then the mere preservation of states’ properties like

• deadlock-freedom: it is possible to perform some transition
• livelock-freedom: it is always possible to escape infinite internal computations
• divergence-freedom: there are no infinite internal computations

may also used to argue that an encoding can be accepted as ‘good’.
More traditional methods of measuring the expressiveness of models for concurrency

are by checking the existence of solutions for certain well-known problems, e.g. algorithms
for mutual exclusion [RL94], consensus [Ben83], and leader election [Bou88] in symmetric
distributed systems, or else by checking their Turing power via the construction of random
access machines [BGZ97]. Here, a model (possibly provided by a process calculus) is
considered more expressive than another, if it provides solutions to more problems.

Many variations of the above-mentioned measures have been applied to study the ex-
pressiveness of a whole family of name-passing process calculi. Calculi with asynchronous
name-passing like the ν-calculus [HT92] and the corresponding variant of the choice-free
π-calculus [Bou92] have recently attracted particular interest, since they still have sur-
prisingly expressive power. To study their expressiveness relative to the original π-calcu-
lus [MPW92], the existence of ‘good’ encodings of operators for synchronous output and
guarded choice (we are not concerned with matching operators) is investigated. Figure 1
summarizes the respective results that are known from the literature, on which we comment
in the following paragraphs. The subscripts a and s denote calculi with asynchronous and

2

πmix
s

‖ [Pal97]

��

πsep
s

?�

OO

?

��

πinp
a

. �

==
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

!!

[NP96]

!!C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

πs
0 P

``A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

~~||
|
|
|
|
|
|
|
|
|
|
|
|
|
|

[Bou92, Hon92]

~~||
|
|
|
|
|
|
|
|
|
|
|
|
|
|

πa
0 P

aaC
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C . �

>>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

� �
// : identity embedding
// : uniform & fully abstract
// : uniform & reasonable

‖ // : impossible

πmix
s

‖ [Pal97]

��

πa
?�

OO

Figure 1: Encodings for choice and synchrony in the asynchronous π-calculus

synchronous output, respectively, whereas the superscripts inp, sep, and mix denote, which
kind of guarded choice is contained in the language: input-guarded, separate (choices with
either only input- or only output-guards), or mixed.

Synchronous output can be encoded by means of asynchronous output using explicit
acknowledgement channels: Boudol [Bou92] provided an encoding from πs into πa and
proved its correctness as adequacy (just the reflection part of full abstraction) with re-
spect to Morris-style contextual congruence; Honda [Hon92] gave a more efficient (in terms
of number of low-level steps needed for implementing one high-level step) encoding and
showed correctness as adequacy with respect to some weak bisimulation, and as preserva-
tion of satisfaction for logical formulae via an embedding of a modal logic.

Choice operators play a crucial role in assessing the expressiveness of the original (syn-
chronous) π-calculus and its asynchronous descendants, since they are usually present in
the former, but not [HT92, Bou92] (or only restricted [ACS96]) in the latter. Nestmann
and Pierce showed in [NP96] that at least input-guarded choice can be encoded into πa
and proven to be fully abstract with respect to weak bisimulation [HT92, ACS96] for an
encoding with infinite loops, and fully abstract with respect to coupled simulation for a
divergence-free encoding. However, Palamidessi proved that there is no uniform encoding
from πmix

s into πa that preserves a reasonable semantics. In other words, it is impossi-
ble to encode mixed-guarded choice with only asynchronous name-passing, when imposing
Palamidessi’s criteria:

3

uniform means, according to Palamidessi [Pal97]: for all source terms P , P1, and P2,

[[σ(P)]] = σ([[P]]) (1)

[[P1 |P2]] = [[P1]] | [[P2]] (2)

where σ denotes an injective renaming function. While the first condition merely re-
quires that the candidate encoding be compatible with the renaming of free channels,
the second condition represents the requirement that an encoding of mixed-guarded
choice should be ‘truly distributed’, in the sense that it is not allowed to have a
mediating process M , as in

[[P1 |P2]] = (νx1, . . . , xn) ([[P1]] |M | [[P2]]) (3)

which could monitor parallel activities via the internal names x1, . . . , xn.

reasonable means, according to Palamidessi [Pal97]: “We call reasonable a semantics
which distinguishes two processes P and Q whenever in some computation of P the
actions on certain intended channels are different from those in any computation
of Q.” This includes sensitivity to divergence since an action on an intended channel
in some computation of P is required to happen in any computation of Q, so infinite
loops in computations of Q that do not mention the intended action are detected.

Palamidessi’s impossibility theorem for encodings of mixed choice is a corollary of a formal
separation result between πmix

s and πa (and also πsep
s). Similar to previous work of Bougé

within the setting of CSP [Bou88], it is based on the ability or inability of the calculi to
express leader election algorithms in symmetric networks (here: of π-calculus processes).
Such algorithms require the ability to break symmetries in communication graphs, like the
atomic agreement of two processes between two values (e.g. the process id of the leader).
πmix
s can break such symmetries, e.g. in the parallel composition of ‘symmetric’ choices

P
∣∣ Q def

= y0![0].P0 + y1?[x].P1

∣∣ y0?[x].Q0 + y1![1].Q1 (4)

where symmetry means that the program code of P and Q is identical under structural
congruence and renaming of process id’s modulo 2, we end up with either of the asymmetric
systems P0|Q0{0/x} or P1{1/x}|Q1. In contrast, the above symmetric system could not be
written in πa since mixed-guarded choice is not a part of this lan-
guage. Instead, corresponding systems with concurrently enabled
input- and output-actions (see the diagram aside for a process
which mimics the behavior of the above P) would behave under the
regime of a confluence property. Here, since both P and the corre-
sponding Q would behave confluently, the symmetry of P |Q would
be preserved under computation, i.e. no leader could be elected (an

P
y0![0]

~~}}
}
}
}
}
}
}

y1?[x]

 A
A
A
A
A
A
A
A

P0

y1?[x]
A
A
A
A
A
A
A
A

P1

y0![0]~~}}
}
}
}
}
}
}

P ′

attempt for leader election in πa would go on for an infinite amount of time, while leader
election in πs succeeds in finite time). Since encodings that satisfy Palamidessi’s unifor-

4

mity requirements preserve symmetry of networks, and since ‘reasonable’ semantics are
divergence-sensitive, the impossibility result can be derived.

There has been remarkable interest in concurrent programming languages that include
mixed choice for channel-based synchronous communication, as exemplified with Concur-
rent ML [Rep91] and Facile [TLK96]. Despite Palamidessi’s impossibility result, there
also exist algorithms for the distributed implementation of such languages, and in par-
ticular of mixed choice, e.g. by Bernstein [Ber80], Buckley and Silberschatz [BS83] and
Knabe [Kna93], which all have been proven—although rather informally—to be correct or,
at least, to be deadlock-free.1 The question arises how these practically satisfactory im-
plementations relate to Palamidessi’s impossibility result. It is worthwhile to ask, whether
the criteria of uniformity and reasonableness are adequate or, maybe, too strong in that
the above implementations invalidate them.2

This paper sheds more light on the correctness of distributed implementations of choice
by formally studying choice encodings (apart from uniformity) with respect to the preserva-
tion of deadlock-, divergence-, and livelock-freedom. These properties are tightly related to
Palamidessi’s criteria, but they seem more precise than requiring to ‘preserve a reasonable
semantics’.

Overview of the paper

First, we introduce the formal π-calculus framework for our study (§2). Then, quickly
recalling the uniform encoding of input-guarded choice of [NP96], we extend it to a uni-
form encoding of output-guards in the context of separate choices (§3). For this case,
we show how to prove important ‘reasonable’ properties like deadlock- and divergence-
freedom. By the attempt to smoothly reuse this encoding for the case of choices with
mixed guards (§4), we expose the inherent problems of deadlock by cyclic waiting and ‘in-
cestuous’ self-communication. To overcome these problems, we propose various solutions,
which, however, invalidate either uniformity or reasonableness. One successful possibility
for an encoding of mixed choice is finally suggested by restricting the source and, at the
same time, extending the target language. Finally (§5), we offer some possible interpreta-
tions of our work.

Throughout the paper, we emphasize the exposition of encodings, algorithms, and
trade-offs instead of just presenting the formal proofs, which are rather straightforward
in most cases. Those technicalities that are more interesting, because they require new
theories or admit the application of recent techniques, are assembled in the Appendix.

1It has only recently (14 years after publication) turned out that the algorithm presented by Buckley
and Silberschatz is not deadlock-free [KS97], although otherwise stated [BS83]. This emphasizes the need
for more formal analysis of distributed implementations and, in particular, of guarded choice.

2Note also that all of the previous encodings in Figure 1 satisfy Palamidessi’s criteria, with one excep-
tion: the dotted arrow from πinp

a to πa indicates that one of the encodings studied in [NP96] is uniform
and fully abstract, but not reasonable; this is due to infinite loops that were necessary to achieve full ab-
straction with respect to weak bisimulation, otherwise full abstraction could only be proved with respect
to the weaker notion of coupled simulation.

5

2 Technical Preliminaries

We introduce various polyadic π-calculi [Mil93] as source and target languages. Let N be
a countable set of names, and let x̃ denote a finite tuple x1, · · · , xn of names. The source
languages SΣ with Σ ∈ {mix, sep, inp} are defined by:

P ::= NΣ
∣∣ P |P

∣∣ (νy)P
∣∣ y?∗[x̃].P

Nmix ::=
∑
i∈I
πi.Pi with π ::= y![z̃]

∣∣ y?[x̃]

N sep ::=
∑
i∈I
yi?[x̃i].Pi

∣∣ ∑
i∈I
yi![z̃i].Pi

N inp ::=
∑
i∈I
yi?[x̃i].Pi

∣∣ y![z̃]

where x, y, z ∈ N, and I ranges over finite sets of indices i. The languages SΣ are polyadic
versions of πmix

s , πsep
s , and πinp

a , respectively, of Figure 1.
The informal semantics of parallel composition and restriction is as usual. In choices,

we use an output guard y![z̃].P to denote the emission of names z̃ along channel y before
behaving as P , and an input guard y?[x̃].P to denote the reception of arbitrary names z̃
along channel y and afterwards behaving as P{z̃/̃x}, which denotes the simultaneous substi-
tution of all free occurrences of names x̃ by the received names z̃, while silently performing
α-conversion, wherever necessary. A replicated input guard y?∗[x̃].P denotes a process that
allows us to spawn off arbitrary instances of the form P{z̃/̃x} in parallel by repeatedly re-
ceiving names z̃ along channel y. We use N1+N2 to abbreviate binary choice (commutative
and associative), and 0 to denote empty choice.

Operator precedence is, in decreasing order of binding strength: (1) substitution,
(2) prefixing, restriction, replication, (3) choice, and (4) parallel composition. A term
is guarded when it occurs as a subterm of some guard. In y![z̃] and y?[x̃], y is called
subject, while x̃ and z̃ are called objects. Free and bound names fn(P) and bn(P) of a
process P are defined as usual. Created names are assumed to be fresh, i.e. not occurring
in any other term.

The target language T is then defined as replacing NΣ with just asynchronous output,
i.e. messages, and only single input-prefixes instead of choice

P ::= y![z̃]
∣∣ y?[x̃].P

∣∣ P |P
∣∣ (νy)P

∣∣ y?∗[x̃].P

and, thus, is a polyadic version of πa. Here, 0 can be defined by (νx) (x![]).
For the sake of readability, we use primitive boolean names t, f ∈ B and conditional

operators test y then P else Q for destructively reading and testing the current (boolean)
value on channel y. The above conditional is an abbreviation of y?[x] . if x then P else Q
with the usual meaning of if, which is only defined, if the name received for x is a boolean.
For T with booleans, we require x, y ∈ N, while z ∈ V := N ∪ B. Note that the boolean
primitives can be cleanly encoded into the intended target language T (cf. [Nes96]).

6

Smix, Ssep : (· · ·+y?[x̃].P) | (y![z̃].Q+ · · ·) −→P{z̃/̃x} | Q
Sinp : (· · ·+y?[x̃].P) | y![z̃] −→P{z̃/̃x}
SΣ,T : y?∗[x̃].P | y![z̃] −→P{z̃/̃x} | y?∗[x̃].P

T : if z̃ ⊆ N then y?[x̃].P | y![z̃] −→P{z̃/̃x}
T : test y then P else Q | y![t] −→P

T : test y then P else Q | y![f] −→Q

if P −→P ′ then (νx)P −→ (νx)P ′

if P −→P ′ then Q |P −→Q |P ′

if P ≡ Q −→Q′ ≡ P ′ then P −→P ′

P | Q≡Q | P (νy) (νx)P ≡ (νx) (νy)P

P | (Q|R)≡ (P |Q) | R (νy)P | Q≡ (νy) (P |Q) if y 6∈ fn(Q)

Figure 2: Reduction relation & structural congruence

The formal semantics for the languages SΣ and T is presented in Figure 2 as a re-
duction relation −→ (with reflexive-transitive closure =⇒) on structural congruence classes
(silently including α-conversion). The only difference among the languages is in the rules
for communication, which arise from the different kinds of choices and receptors. With
Milner [Mil93], we assume that all processes are well-typed according to the correct use of
polyadic channels, i.e. matching senders and receivers always have the same expectation
about the arity or the boolean type of transmitted values.

3 Implementing Separate Choice

Intuitively, branches in a guarded choice may be seen as individual, but concurrently
available processes that have to synchronize each others progress by mutual exclusion.
Reminiscent of distributed implementations, we should use parallel composition to express
this concurrent activity of branches.

The encoding scheme in Figure 3 implements choice-states as boolean messages on
private channels l, so-called locks: t means that no branch in the current choice has yet
been chosen, f means the contrary (so the initial value must be t). Whenever (an encoding
of) a branch wants to proceed, it must test its associated lock; it must also explicitly
reset the lock after having tested it in order to enable competing branches to also test
the choices’ state. We use the scheme for several encodings. Instead of presenting them
all at once, and studying their properties afterwards, we proceed stepwise, which allows
us to emphasize their differences. Uniformity [Pal97] is guaranteed by the compositional
encoding of parallel composition and restriction (see Appendix A).

7

[[P1 | P2]]
def
= [[P1]] | [[P2]]

[[(νx)P]]
def
= (νx) [[P]]

[[
∑
i∈I
πi.Pi]]

def
= (νl) (l![t] |

∏
i∈I

[[πi.Pi]]l)

Figure 3: Encoding scheme SΣ → T

3.1 Input-guarded choice

According to [NP96], input-guarded choice can be encoded as shown in Figure 3 and 4.
The only non-trivial case is for input-guards: after receiving a value from the environment,
the name l is used to test whether the current guard is allowed to proceed (by reading t
from l), or whether it has to be aborted (by reading f from l) and obliged to resend the
received value. The encoding obeys strong invariant properties on the use of locks:

• “On each lock, at most one message may ever be available at any time”.
This guarantee implements locking, which enables mutual exclusion.

• “Each reader of a lock eventually writes back to the lock”.
This obligation enables the correct abortion of non-chosen branches.

It is crucial for the correctness that send-requests that do not lead to communication—be-
cause of the receiver being aborted—are resent, i.e. possibly passed on to another receiver
waiting on the same channel. Furthermore, abortion would not be handled correctly, were
we not guaranteed that, once read, lock l eventually becomes available again with message f.
This encoding preserves a ‘reasonable’ semantics since it is fully abstract with respect to
coupled simulation, which implies deadlock-freedom, and it is also divergence-free. (In
fact, a result stronger than full abstraction holds since it was shown that terms and their
encodings are congruent themselves, thus cannot be distinguished by any context.)

[[y![z̃]]]
def
= y![z̃]

[[y?[x̃].P]]l
def
= y?[x̃] . test l then (l![f] | [[P]]) else (l![f] | y![x̃])

[[y?∗[x̃].P]]
def
= y?∗[x̃].[[P]]

Figure 4: Sinp → T

8

3.2 Output-guarded choice

If output is blocking, i.e. guarding some behavior that is only enabled if the output was
successful, then synchronization is no longer local to the receiver’s choice. The idea is
(cf. Figure 5) that a sender asynchronously transmits its values z̃ together with a private
acknowledgement channel a, which can be used just once by some matching receiver to
signal either success or failure, i.e. either enabling the sender’s continuation to proceed, or
to abort it. Since output-guards are also branches in a choice whose state must be tested,
the corresponding lock r is, in addition to z̃ and a, transmitted to some matching receiver
that then performs the required choice-test.

Input-guards, revisited The encoding is more elaborate due to the increased informa-
tion that is transmitted by send-requests. Firstly, there are now two locks that have to be
tested in some order. In Figure 5, we chose to test the local lock l first, and only in the case
of a positive outcome to test the remote lock r. (This particular order is useful in an actual
distributed implementation, where remote communication is usually much more expensive
than local communication.) Secondly, we have to use the acknowledgement channel cor-
rectly, which means that a positive acknowledgement may only be sent if both locks were
tested positively. Thirdly, in the case that the test of sender’s choice-lock was negative, we
must not resend the send-request—instead, and only if the test of the receiver’s choice-lock
was positive, we have to restart the receiver process from the beginning by allowing it to try
other send-requests. In Figure 5, this is implemented by recursively sending a trigger-signal
to a replicated input process on b that represents the receiver-loop’s entry point. In order
to match this protocol of synchronous outputs, the encoding of input-guarded replication
has to check the sender’s lock, and based on its value either to commit and trigger a copy,
or to abort the sender.

[[y![z̃].P]]r
def
= (νa) (y![r, a, z̃] | test a then [[P]] else 0)

[[y?[x̃].P]]l
def
= (νb) (b![] | b?∗[].

y?[r, a, x̃].

test l

then test r

then l![f] | r![f] | a![t] | [[P]]

else l![t] | r![f] | a![f] | b![]
else l![f] | y![r, a, x̃])

[[y?∗[x̃].P]]
def
= y?∗[r, a, x̃].test r then r![f] | a![t] | [[P]] else r![f] | a![f]

Figure 5: Ssep → T

9

Evaluation An encoding is deadlock/divergence-free, if it does not add deadlocks/loops
to the behavior of terms: a deadlock/loop that occurs in (some derivative of) an encoded
term necessarily results from a deadlock/loop already occurring in (some derivative of) the
original term. Note that divergence-freedom implies livelock-freedom.

To prove deadlock-freedom, we take advantage of type information for the channels that
are added in the encoding. We refine channel types according to Kobayashi’s classifica-
tion [Kob97], which distinguishes between reliable and unreliable channels. The following
three types of channels are reliable:

• linear channels, which are used just once (like our acknowledgement channels a),

• replicated input channels, whose input ends must not occur more than once, but
whose output ends may be used arbitrarily often (like our restart channels b), and

• mutex channels, which need to obey the invariants (of our lock channels l) that we
mentioned on page 8; also, a message must be available right after their creation.

Kobayashi also developed a typing system that provides a behavioral property for well-
typed processes: every (immediate) deadlock can only be caused by unreliable channels.
A subject reduction theorem extends the proposition to deadlocks that may ever occur in
derivatives of well-typed processes.

As indicated above, every channel that is added by our choice encodings, is reli-
able. Since we can further show that every encoded term is well-typed with respect to
Kobayashi’s type system (when regarding every source-level channel as unreliable), we
already get the desired proposition:

Proposition 3.2.1. Ssep → T is deadlock-free.

Proof. By type-checking. More details can be found in Appendix B.

Proposition 3.2.2. Ssep → T is divergence-free.

Proof. The only possibility for an encoding to add an infinite loop would be in the trans-
lation of input-guards since it is only there that we use replication. In order to trigger
a copy of this replication, three conditions must be met: (1) the receiver’s lock must
still contain t, (2) a matching send-request must be consumed from the environment, and
(3) this sender’s lock must contain f. However, in this situation, by ‘looping back’ the con-
sumed message will not be given back to the system—in other words, the system’s state
is decreased. This cannot be done infinitely often unless an infinite number of matching
send-requests is produced. This, in turn, is only possible by using replication, e.g. by
(νx) (x![] | x?∗[].(x![] | · · · y![z̃] · · ·)), but then, due to the encoding of replicated input, this
replication of messages must have been already present in the source language. 3

3Note that the presence of output-guarded replication in the source language would not invalidate this
result, since in the encoding, this construct would be translated by mentioning a lock that always carries t
due to the lack of competitors, thus invalidating condition (3) in the proof.

10

4 Implementing Mixed Choice

The näıve attempt is to simply reuse the encoding for separate choices of the previous
section as is for encoding mixed choices. This seems sensible at first, because in both
cases all input- and output-guards are branches in choices, so they should behave similar.
However, we are faced with two sources of potential deadlock in the mixed setting: one is
for the symmetric term P |Q := y0![0].P0 + y1?[x].P1

∣∣ y0?[x].Q0 + y1![1].Q1 of equation 4
in the Introduction, the other is for I := y![z].P + y?[x].Q. The deadlock situations may
become clear from a spatial representation:

y0

!!�

�

	
P

8B �

�

	
Q

x�

�

�

	
I

5?

y
dd

y1

aa

In process [[P |Q]], imagine the situation, where both receivers for y0 and y1 have
input the matching request, and afterwards successfully tested their own choice-lock: here,
both have to wait for their respective sender’s choice-lock to become available again, but
neither of them will do, so both receivers remain blocked forever. This symmetric cyclic-
wait situation is very similar to the classical ‘dining philosophers’ problem [RL94], where
several (in our case: two) processes compete for mutually exclusive access to forks (locks).

In process [[I]], the sender’s request on y could be consumed by the competing receiver
branch, which results in a deadlock situation, because the receiver would try to test the
same lock twice, which is impossible.

Breaking the symmetry In Distributed Computing, one method to resolve cyclic de-
pendencies among processes is by using time-outs or probabilistic algorithms for the at-
tempt to acquire some lock. Then, however, we face the problem of infinite loops, such
that randomized solutions are not ‘reasonable’ [Pal97], although it is known that solutions
exist that guarantee progress with probability 1 [RL94]. If, in such cases, we assume fair
execution schedulers, then divergence is not harmful anymore, as long as there is no danger
for live-locks.

Another method, known from the distributed implementation of concurrent languages,
is exploiting a total order among the threads in the system by, for example, always choos-
ing the lock of the smaller thread first [Ber80, BS83, Kna93], when required to make a
choice. Then, the above symmetric cyclic-wait situation is immediately prevented since
both receivers choose the same thread, i.e. lock, as the first to interrogate. Note also that
under a total order assumption symmetric networks according to [Pal97] do not exist.

In the following subsections, we adapt the methods of randomization (see §4.1) and
total ordering of threads (see §4.2 and §4.3) to our case of encoding mixed choice into the
asynchronous π-calculus, and we evaluate their properties.

11

4.1 A randomized solution

Randomization means removing determinism from an algorithm and adding randomly
possible computation paths. In our case, instead of choosing a fixed order for testing the
locks as in Figure 5, we might allow ourselves to test them nondeterministically in either
order and allow first-phase locks to be given back (cf. [RL94]). Of course, in our target
language we cannot trivially write down “either receive from the second lock, or resend on
the first lock”, because in order to do so, we would need a mixed choice construct. Note
that we can neither use internal choice, because it would only delay potential deadlocks,
which arise when the internal decision favors the branch “waiting for the second lock”.

In Figure 6, we model a randomized solution based on the encoding in Figure 5 by
only supplying a new clause for receivers.4 We use a local state, implemented as a mutex
channel s that carries a tag5 (and a boolean value) that tells, whether none (tag N), the local
(tag L) or the remote (tag R) lock are currently held by the receiver. The tag-information,
initially N (w.l.o.g. with value f), is supplied by two processes, called lock-checkers, waiting
at lcl and rmt, which try to get hold of the local lock l and remote lock r, respectively.
After grabbing a lock, these processes need to read the current state: if the complementary

4A similar solution is used in the implementation of receivers in the join-calculus [FG96].
5We use this special syntax for the sake of readability; since we only need 3 different tags, we can easily

simulate them by 2 boolean tags and use the corresponding if- and test-expressions for matching.

[[y?[x̃].P]]l
def
= (νb)

(
b![]
∣∣ b?∗[].y?[r, a, x̃] .

(νs, lcl, rmt, rnd, bth)
(

lcl ?∗ [] . l?[bL] . s?[tag, b] .

if tag=R then bth![bL, b] | s![N, f] else s![L, bL] | rnd![]∣∣ rmt ?∗ [] . r?[bR] . s?[tag, b] .

if tag=L then bth![b, bR] | s![N, f] else s![R, bR] | rnd![]∣∣ rnd ?∗ [] . s?[tag, b] . (s![N, f] | if tag=L then l![b] | lcl![] else

if tag=R then r![b] | rmt![] else 0)∣∣ bth?[bL, bR] . if bL ∧ bR then l![f] | r![f] | a![t] | [[P]] else

if bL then l![t] | r![f] | a![f] | b![] else

if bR then l![f] | r![t] | y![r, a, x̃]

else l![f] | r![f] | a![f]∣∣ lcl![] | rmt![] | s![N, f]
))

Figure 6: Randomized Ssep → T for use as Smix → T

12

lock is already held, then the two lock values are passed on to the analyzer process waiting
at bth and the state s is initialized; otherwise, the state s is appropriately updated to
announce success for getting the current lock and, in addition to this announcement, a
randomizer process at rnd is started that competes with the lock-checkers for reading the
state. If the randomizer succeeds in reading the state, it resets the state and resends
the lock, while restarting the corresponding lock-checker. If both lock-checkers succeed
reading the state without the randomizer interfering, then s is left with its initial value
and is finally consumed by the active randomizer to terminate the system by resetting the
state without restarting any of the lock-checkers and without restarting the randomizer
itself. Note that after restarting the whole receiver at b in the case of local success (bL=t)
and remote failure (bR=f), a new state will be created, when a new request on y arrives.

Evaluation As the encoding for separate choice, the randomized encoding for mixed
choice in Figure 6 is uniform since restriction and parallelism are encoded purely compo-
sitionally. The randomized encoding is deadlock-free due to the ever present possibility
of backing out, when a second-phase lock is not available: all receivers on the state chan-
nel—both lock-checkers and the randomizer—have equal priority, so in case of a potential
dead-lock, the randomizer can help, since it is triggered, whenever a non-trivial state is set.
(Note that, again, we only use channels of reliable type: b, lcl, rmt, and rnd, are replicated,
bth is linear, and s is mutex. So we can apply Kobayashi’s type system for the proof.)

However, the encoding is not divergence-free, since the randomizer introduces poten-
tially infinite loops. Yet, under fair execution, divergence would be prevented with proba-
bility 1. Furthermore, the encoding is livelock-free—again due to the ever present possibil-
ity of backing out: whenever the randomizer is starting to loop by continuously trying to
reset the state after one of the lock-checkers has proceeded, we know that there is always
a second lock-checker ready and willing to interfere. The liveness of the lock-checker rests
on the fact that lock messages are correctly used according to the obligations of mutex
channels, which have the important property to become available again and again.

4.2 A ‘bakery’ algorithm

The π-calculus itself does not directly provide total ordering information as required for
modelling the choice protocols as used in the distributed implementations mentioned in the
introduction of §4. However, we may program a number server, which can be interrogated
to dynamically provide unique global numbers when required, reminiscent of Lamport’s
bakery algorithm (cf. [Lam74]). Natural numbers as well as comparison operators can be
easily encoded in the π-calculus [Mil93]. For convenience, we add them explicitly: let
if n<m then P1 else P2 be a comparison operator, where m,n ∈ N are integer names, and
let now z ∈ V := N ∪ B ∪ N in the grammar of T.

A single globally accessible channel c suffices to implement a bakery algorithm for
our purposes. However, this channel must not be accessible by external processes, which
might possibly violate the numbering mechanism. Therefore, an encoding according to
this programming scheme (see Figure 7) must appear as a two-level definition: an internal

13

[[[P]]]
def
= (νc) (c![42] | [[P]]c)

[[P1 | P2]]c
def
= [[P1]]c | [[P2]]c

[[(νx)P]]c
def
= (νx) [[P]]c

[[
∑
i∈I
πi.Pi]]

c def
= c?[n].

(
c![n+1]

∣∣ (νl) (l![t] |
∏
i∈I

[[πi.Pi]]
c
n,l)

)
[[y![z̃].P]]cn,l

def
= (νa) (y![n, l, a, z̃] | test a then [[P]]c else 0)

[[y?[x̃].P]]cn,l
def
= (νb) (b![] | b?∗[].

y?[m, r, a, x̃].

if n=m then (y![m, r, a, x̃] | b![]) else

if n<m

then test l

then test r

then l![f] | r![f] | a![t] | [[P]]c

else l![t] | r![f] | a![f] | b![]
else l![f] | y![m, r, a, x̃]

else test r

then test l

then l![f] | r![f] | a![t] | [[P]]c

else l![f] | r![t] | y![m, r, a, x̃]

else r![f] | a![f] | b![])

[[y?∗[x̃].P]]c
def
= y?∗[n, r, a, x̃].test r then r![f] | a![t] | [[P]]c else r![f] | a![f]

Figure 7: A ‘bakery’ solution for Smix → T

compositional encoding (fully compositional according to [Pal97]) that is parameterized
on the global channel, equipped with a top-level context that protects the global counting
mechanism and restricts access to the translations of the original processes. At the top-
level, c is initialized with some integer value and passed on as a parameter to the inner
compositional encoding [[]]c. Essentially, c is only used, when a thread enters a choice point
(our ‘bakery’). There, it is dynamically equipped with a globally unique number n. Imme-
diately incrementing the counter, this number is transmitted as an additional parameter
of the threads’ send requests and used later on in the protocol of the receivers. Figure 7
shows that the corresponding variant of the protocol for separate choice, now adapted to
mixed choice using two different strands of actions based on the ordering of the locks.

14

Evaluation The encoding [[[]]] (with top-level) is not uniform since [[[P |Q]]] 6≡ [[[P]]]|[[[Q]]]
(see also Appendix A), whereas the mere inner encoding [[]]c is uniform. The encoding
is deadlock-free, since we (1) prevent cyclic waiting on locks by using a variant of the
bakery algorithm, and (2) deal with ‘incestuous’ communication by checking equality n=m
of the request’s id’s, such that an unintended send-request is resent and the receiver’s
loop is restarted. Knabe’s graph-based proof sketch [Kna93] for deadlock-freedom of his
implementation could be adapted to the current setting. See Appendix B for a discussion
on an extension of Kobayashi’s typing system [Kob97] to cope with the encoding.

Unfortunately, the encoding is not quite divergence-free due to the way we avoid dead-
locks in the case of ‘incestuous’ self-communication in the n=m clause: a sender’s request
may be re-consumed again and again. Yet, the encoding is still livelock-free, since for every
enabled matching competitor of an incestuous pair of branches it is always, i.e. again and
again, possible to stop the self-communication.

4.3 A ‘practical’ solution

The main theme in this subsection is the approach of changing the source and target
languages of the choice encodings to reflect some phenomena that occur in distributed
implementations. It turns out that the source language can be restricted to shrink the
number of programs that are difficult to cope with. On the other hand, we propose an
extension of the target language that handles total ordering at an abstract level.

Dealing with ‘incestuous’ self-communication A quick solution for the above un-
wanted divergence defines the source language such that ‘incestuous’ self-communication
in mixed choices is allowed, similar to the self-communication in the output prefixes of
Milner’s synchronous π-calculus, as observed by Bellin and Scott [BS94]. So, if we trigger
the continuation processes in the n=m clause of the receiver’s protocol in the case that the
local lock (which is then the same as the remote lock) can be successfully tested, as in

if n=m then (test l then l![f] | a![t] | [[P]] else l![f] | a![f]) else . . .

then we actually get a (still not uniform, but) deadlock- and divergence-free encoding.
In contrast, Knabe’s implementation [Kna93] models a channel as a process that collects

send and receive requests on queues. It only then considers two matching requests as
candidates to enter the communication protocol, if they belong to different choices. Such
implementations are not uniform (see Appendix A), but deadlock- and divergence-free.

Another practically motivated solution is due to the observation that, in distributed
systems, it is often the case that receivers are localized, i.e. on each channel there is only
one receiver waiting. This can be exploited for both for implementation and reasoning; see
the work on the join-calculus [FG96, Ama97], where such forms of locality are guaranteed
either syntactically or by a simple type system, and also the work on linear receptive-
ness [San97]. We also profit from a unique-receiver property: ‘incest’ can then be avoided
without divergence by simply throwing away the critical send-request; no other receiver
could be waiting for it. This is the approach taken in Figure 8 (see the line for n=m).

15

[[P1 | P2]]
def
= [[P1]] | [[P2]]

[[(νx)P]]
def
= (νx) [[P]]

[[
∑
i∈I
πi.Pi]]

def
= (κn)(νl) (l![t] |

∏
i∈I

[[πi.Pi]]n,l)

[[y![z̃].P]]n,l
def
= (νa) (y![n, l, a, z̃] | test a then [[P]] else 0)

[[y?[x̃].P]]n,l
def
= (νb) (b![] | b?∗[].

y?[m, r, a, x̃].

if n=m then b![] else

if n<m

then test l

then test r

then l![f] | r![f] | a![t] | [[P]]

else l![t] | r![f] | a![f] | b![]
else l![f] | y![m, r, a, x̃]

else test r

then test l

then l![f] | r![f] | a![t] | [[P]]

else l![f] | r![t] | y![m, r, a, x̃]

else r![f] | a![f] | b![])

[[y?∗[x̃].P]]
def
= y?∗[n, r, a, x̃].test r then r![f] | a![t] | [[P]]c else r![f] | a![f]

Figure 8: πmix,1
s → πκa

Bakery primitive Here, we recall the idea of deriving a total order among threads
(light-weight processes) from some distribution order among the nodes and processors and
processes’ creation ids for finer identification [Ber80, BS83, Kna93]. For the π-calculus, we
choose an abstract view, that captures the idea syntactically. Let us assume an extended
target language πκa with a binding primitive (κn)P for creating totally ordered identifiers n
in process P , then our bakery algorithm can be programmed in a ‘uniform’ way without the
need of a top-level: in the encoding of choice in Figure 8 (see line 3) the actual identity of n
is not important—it only matters that every pair n,m of different identifiers is ordered.

With the ‘bakery primitive’ in the target (πκa) and a unique-receiver property in the
source (πmix,1

s), we get the encoding in Figure 8. It is similar to Knabe’s distributed
implementation [Kna93], but replaces channel managers by assuming unique receivers.

16

Evaluation The encoding in Figure 8 gets rid of the problem of possible self-commu-
nication by exploiting uniqueness, and is deadlock-free—and also divergence-free—by ex-
ploiting the inherent total-order. Note that such encodings do not preserve the symmetry
of networks, as necessary for Palamidessi’s impossibility argumentation, because the target
language is intrinsically asymmetric due to the totally ordering ‘bakery’ primitive. Since
such languages allow for fully compositional encodings of mixed-guarded choice, while the
standard (symmetric) asynchronous π-calculus only allows for ‘semi-compositional’ encod-
ings, this can be interpreted as a separation between symmetric and asymmetric calculi.

5 Conclusion

The encodings presented in this paper should exhibit how to abstractly model distributed
implementations of guarded choice within the asynchronous π-calculus. Prompted by Pala-
midessi’s work [Pal97], we emphasized the problematic case of mixed choice by developing
first the quite simpler encoding for separate choice. Whereas this case satisfies all of Pala-
midessi’s required properties, the transition to encodings for mixed choice bears all of the
awkwardnesses. Two sources of potential deadlock are identified: cyclic waiting on lock
channels and ‘incestuous’ self-communication. In order to cope with them, we pointed out
that either uniformity or divergence-freedom must be dropped, if we want to stay within
the chosen framework, thus confirming Palamidessi’s negative result. Furthermore, we mo-
tivated that slight changes to the framework would allow us to overcome the impossibility.

Since our encodings of mixed choice and the proposed variants in §4 can be seen as ab-
stractions of practically ‘good’ distributed implementations [Kna93], one interpretation of
our work might be an evaluation of whether Palamidessi’s criteria are too strong for practi-
cal purposes. It was pointed out quite early [RL94] that probabilistic solutions—with diver-
gence, but without livelock and with progress probability 1—might be practical, although
they are not reasonable in [Pal97]. On the other hand, the standard way of implement-
ing channel managers as autonomous threads [Kna93, LT95] contradicts the requirement
of uniformity, if open systems are considered. As our work shows, relaxing uniformity
by admitting a top-level context or relaxing reasonableness to admit some fair degree of
well-behaved divergence turns many practically motivated encodings theoretically ‘good’.

In the spirit of Bougé’s informal notion of symmetry “there is no priority or any other
form of externally specified static partial ordering among processes” [Bou88], we may note
that none of the branches in choices is statically assigned priority over its competitors by
the encoding in Figure 7—the symmetry is broken only dynamically by taking a totally-
ordered ticket when entering the ‘bakery’. In accordance with Rabin and Lehmann [RL94],
we needed (only) one small piece of global memory : the protected message on channel c.

Acknowledgements

Cédric Fournet, Kohei Honda, Naoki Kobayashi, Catuscia Palamidessi, Benjamin Pierce,
Davide Sangiorgi, Martin Steffen, and Nobuko Yoshida for many fruitful discussions.

17

A Channel managers are not uniform

Distributed implementations of channel-based communication usually employ so-called
channel manager processes CHAN(y) for mediating between the activities of senders and
receivers on channel y. Often, this is done by collecting send- and receive-requests in
queues that are attached to channel managers; the synchronization protocol for a partic-
ular channel is then only started when a pair of complementary requests (from different
choices) can be found in the respective queue [Kna93, LT95].6

In π-calculus encodings, the creation of channel managers would have to take place at
the moment the corresponding channel name is created:

[[(νy)P]]
def
= (νy)

(
[[P]] | CHAN(y)

)
However, free names in process terms would, in their encoding, have to be supplied explic-
itly with their managers at the top-level of encodings:

[[[P]]]
def
= [[P]]

∣∣∣ ∏
x∈fn(P)

CHAN(x)

This, in turn, conflicts with Palamidessi’s requirement of uniformity, since the equation
[[[P]]] | [[[Q]]] = [[[P | Q]]] does not hold in general, because a free name shared by P and Q
would be provided with two competing managers on the left side, but only one (as intended)
on the right side. For this reason, e.g. encodings with ‘centralized’ channel managers are
not uniform. Consequently, if we want to stick to ‘uniformity’, we either have to restrict
ourselves to closed process terms with no observable behavior at all (i.e. no free names),
or we have to leave the encoding of restriction as

[[(νy)P]]
def
= (νy) [[P]]

and distribute the functionality of channel managers, if possible, over all places where
channels are used, as is exemplified in the encodings of §3 and §4.

B Type-checking partial deadlock-freedom

This section provides a quick overview of Kobayashi’s type system for deadlock-freedom.
Since it would be too space-consuming to present all the necessary formal definitions and
theorems from [Kob97], we assume the more interested reader to have a copy of that
paper at hand. We then provide the ingredients for carrying out the formal proof for an
application of this type system to the encoding of separate choice as in Figure 5.

6In a distributed system, channel managers need to reside at some particular location, the choice of
which may heavily influence the efficiency of computations: it decides whether individual communica-
tions are either local or remote. Consequently, a big advantage is the unique-receiver property (see §4.3
and [FG96]), because it allows the implementer to statically choose just the location of the unique receiver
as the residence of the channel manager process.

18

B.1 Types for reliable channels

We sketch Kobayashi’s [Kob97] non-recursive channel types pm[T1, . . . , Tn]t with

• polarity p ⊆ {I, O} known from Pierce and Sangiorgi [PS96] for denoting input and
output capabilities (with abbreviations | := {}, ↑:= {O}, ↓:= {I}, and l:= {I, O}),
• multiplicity m ∈ {1, ∗,M, ω} for classifying channels,
• arity n ∈ N0 known from Milner’s polyadic π-calculus [Mil93], and
• time tag t ∈ T?, which we explain below.

The multiplicity of a channel constrains its usage according to capabilities and obligations:
linear (1) channels must eventually be used once for input and output, after they become
active; replicated-input (∗) channels must be used in exactly one replicated input-prefix
immediately after creation, but they can be used arbitrarily often for sending; mutex (M)
channels have to be supplied with some value immediately after creation, and a reader of
some mutex channel is obliged to eventually resend some value, thus, at any time, there
is at most one message in the system; unreliable (ω) channels can be used arbitrarily with
the exception of replicated input-prefixes. A channel is also called reliable if it is not
unreliable; basically, every process that communicates on a reliable channel will eventually
find its communication partner.

Kobayashi introduces a type system for a calculus very similar to our target language T
with boolean primitives (B as base type, and if instead of test) and a typed restriction op-
erator, which also introduces fresh time tags. (For some proof strategies, it also convenient
to introduce additional time tags with input variables, which then have to match the tags
of the communicated values.) Time tags t are used within the typing rules to express
constraints on the order of using reliable channels (unreliable channels as well as replicated
input channels always carry the tag ? which is both smaller and greater than any other
tag): basically, s≺t means that obligations according to the type of a channel associated
with t may (not must) be delayed until the completion of some communication on the chan-
nel associated with s. Example obligations are, for example, that a linear channel needs to
be find the complementary partner, once it has become active; with mutex channels, only
the sender half represents an obligation: if the channel associated with tag t is a mutex
channel, then the (re-) sending on channel may be blocked by some communication on the
channel associated with tag s. Clearly, deadlocks may arise when the ordering among the
channels indicates cyclic waiting, where an obligation might, by transitivity, be blocked by
its own fulfillment. Thus, an ordering ≺ is indicating deadlock-freedom, if its transitive
closure ≺+ is a strict partial order on T×T (i.e. ignoring the ?).

Kobayashi then specifies partial deadlock-freedom of terms by means of his classification
of channels: only the reliable channels are expected to be satisfy deadlock-freedom proper-
ties. For explanation, let us assume a process P 6→ with no more reductions. Let us further
regard P in normal form, i.e. P ≡ (νw̃)

∏
Nj where N are either a message y![z̃], a single

input y?[x̃].Q, or a replicated input y?∗[x̃].Q. Whether N is interpreted as a deadlocked
sub-process in P , depends on the type of its channel y:

19

• According to the intuition of replicated and mutex channels, mutex messages and
replicated receivers are not counted as regards deadlock, because they are meant to
be always (for mutex: always eventually) present after channel creation. On the other
hand, mutex receivers and replication triggers indicate unwanted deadlock, since they
are meant to always find their counterpart, so N should be neither of them.

• With respect to linear channels, N must be seen in context. If its channel y is
restricted in P , then we regard N as causing deadlock, since it was never used after
it has become active; if this y is free in P , then its complement might still be supplied
from the outside, and then y is called half-used.

• If N ’s channel y is unreliable, then it is not interpreted as ill-behaved since we have
not required it to behave reliably in any sense.

Let Γ be a list of typing assumptions for names, and ≺ a tag ordering, where ≺+ is a strict
partial order. A typing judgement Γ,≺ ` P intuitively means

1. P uses only the capabilities specified in Γ,
2. P fulfills all the obligations specified by Γ, and
3. P obeys the ordering specified in ≺ in fulfilling the obligations.

There are two strategies for using Kobayashi’s type system:

(A) One uses Kobayashi’s two-phase type-checking algorithm: the first-phase is building
up a type derivation tree witnessing the correct use of arities, polarities, and multi-
plicities, while collecting up constraints on time tags according to the applied rules;
the second phase tries to solve the tag constraints and checks whether the transitive
closure of the resulting tag ordering, if it exists, is a strict partial order.

(B) One supplies an appropriate candidate for a time tag ordering from the beginning
and directly type-checks the terms under investigation in one single phase including
the conditions on time tag required by the applied rules.

For well-typed processes, we have the following useful properties concerning partial dead-
lock-freedom [Kob97], which we present here in a weaker, but simplified version:

Theorem B.1.1 (Subject reduction).
If Γ,≺ ` P and P → P ′, then there are Γ′,≺′ with Γ′,≺′ ` P ′.

Theorem B.1.2 (Immediate deadlock). Suppose Γ,≺ ` P and P 6→, then pending
communications in P are (1) on some unreliable channel, (2) on some linear channel that
is half-used according to Γ, or (3) are either a mutex message or a replicated input.

Together, the two theorems guarantee that during reduction of well-typed processes no
partial deadlock, as specified by the classification of reliable channels, can ever occur.

20

B.2 Separate choice

In this subsection, we prove deadlock-freedom for the encoding of separate choice in Fig-
ure 5 via Kobayashi’s type system in the following sense: since we use only reliable channels
for encoding choice, and if we regard all high-level channels as unreliable, then the typa-
bility of translated terms implies that the encoding does not add deadlocks. This is true,
because all of these reliable channels—especially the linear acknowledgement channels—are
restricted, so only the cases (1) and (3) of Theorem B.1.2 apply. Since mutex messages and
replicated inputs of case (3) can be regarded as garbage, the only remaining deadlocked
subprocesses are on high-level channels. Since these have been translated in a 1−1 fashion,
we know that the deadlock must have been present already in the source term.

According to the above idea, we first assume a simple polyadic type system for the
source language as a non-recursive structural variant of Milner [Mil93], extended with
boolean-typed names. This system can be seen as Kobayashi’s system by stripping off po-
larity, multiplicity, and time tags, or else by having only one polarity l, one multiplicity ω,
and one time tag ?, such that [T] := lω[T]?, where T is either the type boolean B or a
finite tuple T̃ . Let us assume that we have typing statements of the form {ỹ : T̃} =: T ` P
in S, and that all source terms under investigation are well-typed, accordingly.

Next, we propose a tag ordering that we are going to apply for type-checking translated
terms (i.e. we are following proof strategy B). It is intuitively derived from the encoding’s
algorithmic idea. Let T ⊇ Tl]Tr]Ta distinguish three pairwise disjoint subsets of tags,
where the indices of the tag sets indicate the channels they are going to be associated with.

≺ def
= (Tl ×Ta) ∪ (Tr ×Ta) ∪ (Tr ×Tl)

defines the tag ordering that corresponds to the use of mutex and linear channels in the
encoding: a communication on the linear acknowledgement channels a may be delayed by
both a communication a receiver-lock l (Tl×Ta) or on a sender-lock r (Tr×Ta), whereas
the resending of the mutex message for the receiver-lock l may be blocked by a reception
for the sender-lock r (Tr×Tl), but not the other way around. The latter blocking actually
happens only if the receiver-lock carried t, so only then it will not be resent until the
sender-lock has also been checked. The following important fact holds by definition:

Lemma B.2.1. ≺+ is a strict partial order.

With this ordering, we can now provide a typed encoding [[]]T for separate choice,
assuming that we only consider well-typed source terms. In Figure 9, each of the channels
that are added by the encoding is given a reliable type and is associated the respective time
tag, where tl ∈ Tl, tr ∈ Tr, and ta ∈ Ta. In contrast, every high-level channel is regarded
as unreliable (note y’s multiplicity ω), and its type is appropriately translated to carry
additional information according to its use in encoded terms: a low-level send-request on
a high-level channel y carries the input-end for some mutex channel (↓M [B?]tr) and the
output-end for some linear acknowledgement channel (↑1[B?]ta) as additional parameters.
With [[B]]T := B?, let us also extend the typed encoding on types componentwise to type
environments T of the source language by [[∅]]T := ∅ and [[T , y : T]]T := [[T]]T, y : [[T]]T.

21

l : lM [B?]tl r : lM [B?]tr a : l1[B?]ta b : l∗[]?

y : [[[T̃]]]T
def
= lω[↓M [B?]tr , ↑1[B?]ta , [[T̃]]T]? in T, if y : [T̃] in S

Figure 9: Types for Ssep → T

On terms, the typed encoding [[]]T is then defined by simply adding the types proposed
in Figure 9 for a, b, l and r, to the restriction occurrences in Figure 5, where each occurrence
gets a fresh time tag. We further translate the typed restriction (νx : T)P for high-level
channels in the source language into the enhanced typed restriction (νx : [[T]]T) [[P]]T in
the target language. For type-checking, we expand out test-expressions by using if-forms
instead, and we also add time-tags in the case of the encoding of (replicated) inputs, so
let us choose occurrences of tag variables sr ∈ Tr and sa ∈ Ta and attach them to the
respective occurrences in the encoding of Figure 5. The third parameter of translations of
high-level inputs x̃ is, according to Figure 9, implicitly tagged with ?.

Lemma B.2.2.
(
{[tr,ta]/[sr,sa]}

)
≺ ⊆ ≺

The order of the time tags t of the received channels r and a is always sufficient for the
required order on the time tags s of the corresponding input variables. This lemma is
needed, whenever we derive low-level communications on high-level channels y.

Lemma B.2.3. {tr, ta} 6≺6� {sr, sa}
Note that tr ≺ sl ≺ sa (and sr ≺ sl ≺ ta), but that tr 6≺ sa (and sr 6≺ ta), since ≺ is not
transitive. This lemma is needed in the proof of in-rules.

Since we interpret all high-level channels as unreliable, we face the problem, for the
type-checking of typed translations, that rule T-In of Kobayashi [Kob97] is not applicable,
when trying to use it for a high-level replicated input. So, we need to assume an addi-
tional typing rule T-Urin (unreliable replicated input), which is defined just like T-In of
Kobayashi [Kob97], but allows the conclusion for replicated input syntactically. This rule
does not change the deadlock-properties of the well-typed processes, if we only allow its
application for channels that we explicitly regard as unreliable. Finally, we get the main
property, where ≺↓I([[S]]T) denotes ≺ with all ordered pairs mentioning inner tags I([[S]]T)
of the translated term, i.e. those introduced as sr and sa above, removed.

Proposition B.2.4 (Preservation of typing).
Let S ∈ Ssep. If T ` S, then

(
[[T]]T ∪ {t, f : B?}

)
,≺↓I([[S]]T) ` [[S]]T .

Proof. By induction on the structure of S.

The intuition of well-typed processes is that deadlocks can only be caused by unreliable
channels, so we also know that deadlocks can only be caused by high-level channels: every
deadlock in some derivative originates from some deadlock present in the source language.

Corollary B.2.5. Ssep → T is deadlock-free.

22

B.3 Mixed choice

In analogy to the discussion on cyclic waiting (§4), the type-checker (strategy A) for
deadlock-freedom fails, when reusing the encoding for separate choice in the case of mixed
choice. In type-checking the example [[P |Q]], there is no ordering for the use of the two
choice-locks that can be used consistently on both sides of the parallel composition (cf. proof
sketch of Proposition B.2.4). Although Kobayashi’s system is not complete, i.e. it rejects
processes that are deadlock-free, in our case the rejection is correct as indicated in §3.

Similar to the approach in the previous section, we can provide a tag ordering for the
randomized solution of Subsection 4.1: the pairs are given by ts≺tb≺tl, tr, ta, where we
again indicate the ordering among (sets of) tags by their associated channel names. The
state channels s associated with tags ts are never delayed since resending on s is always
immediate, according to the encoding in Figure 6. With Kobayashi, we may say that
well-typed terms never get into a deadlock, however they might fall into an infinite loop.

If we wanted to use Kobayashis’s system to type-check the ‘bakery’ encoding for mixed
choice in Figure 7, we would need to extend the system to deal with natural numbers.
Then, we would need rules for checking consistency of the constraints on the time tag
ordering on critical channels with the occurrences of the conditional operator: in contrast
to Kobayashi’s rules, we would need to allow the two strands of a conditional to be typed
according two different time tag orderings. The study of the feasibility of such a system is
left for future work.

C Full abstraction?

In the following subsections §C.1 and §C.2, we summarize a few useful observations that
highlight the inherent problems of stating full abstraction properties for some choice en-
codings in this paper. In Subsection §C.3, we then state a rather restricted full abstraction
result, which could be interpreted as: ‘programming with choice’ is implemented correctly.

C.1 Separate choice

For the same reason that the encodings πs → πa (see Figure 1) are not fully abstract with
respect to weak bisimulation [Hon92], also the encoding for the π-calculus with separate
choice is not: the atomicity of guarding outputs is visibly broken into a send-request
and an acknowledgement reception. Consequently, whereas the processes y![].y![].0 and
y![].0 | y![].0 are weakly bisimilar, their translations are not. (In contrast, the breaking
up of atomicity into two low-level steps in the encoding of input-guarded choice was not
visible since the second step was always internally bound, thus not visible to the outside.)

Nevertheless, it is instructive to formalize some notion of bisimulation-like equivalence
that is suitable for dealing with, i.e. equating, derivatives of intuitively equivalent encoded
terms. The main problem is that after simulating the choice for branch k, as depicted in
Figure 10, with a sequence of low-level steps (indicated as [[πk]]) there is some active non-
chosen ‘garbage’ Gk (indicated above as the underlined remainder of the encoded choice

23

∑
πi.Pi

πk //
_

��

Pk
_

��[[∑
πi.Pi

]]
[[πk]]

+3[[Pk]] |
((∑

πi.Pi

))
k

?� [[Pk]]

Figure 10: Simulation of a choice term, committing to branch k

after choosing k) in the system that is running in parallel with the intended encoding [[Pk]]
of the continuation of the chosen branch. For the encoding of input-guarded choice [NP96],
we have found that an asynchronous observation principle [HT92, ACS96] yields the ap-
propriate notion since it allows us to garbage-collect processes that do nothing else than
resending (after a while) every message that they consume, so Gk ≈ 0 holds in this case.
With output-guards, however, non-chosen branches may still perform asynchronously visi-
ble outputs, which—according to their lock-information—are not valid, so Gk exhibits too
much observable behavior in that case.

In order to ‘bend’ weak bisimulation for our application, we motivate a variant of
barbed congruence [MS92] that captures a notion of observation that is more adequate for
encodings of separate and mixed choice. As usual, it consists of reduction bisimulation,
the formulation of an observation predicate and a closure under contexts. Note that every
visible activity of a term P that is reachable via reduction from some term [[S]] is on
some high-level channel, since the use of low-level channels l, r, a, b is restricted. Next, as
in [NP96], we only rely on the observation of outputs. However, not every output on a
high-level channel for P is ‘valid’ since its choice might already be resolved. Every receiver
of such an output will eventually know the state f of the choice and, thus, discover this
invalidity. For the above example Gk, no output at all is valid. By analysis of the encoding,
we get that every possible output (of some derivative of some [[S]]) is of the form

P ≡ (νl, a, x̃) (y![l, a, z̃] | Ṗ)
(νl,a,x̃∩z̃) y![l,a,z̃]−−−−−−−−−−−−−→ (νx̃−(x̃ ∩ z̃)) Ṗ

and, furthermore, for every such output we can always find a message on the mutex chan-
nel l that is mentioned in the output such that we can syntactically check by Ṗ ≡ l![b] | P̂ ,
whether the output was valid (b = t) or not (b = f). We define Σ-barbs

P↓Σ
y if P ≡ (νl, a, x̃) (y![l, a, z̃] | l![t] | P̂)

for some P̂ , and P⇓Σ
y if P =⇒ P ′↓Σy for some P ′. Since the internal names l, a become free

after an observed output on some high-level channel, we need to require that a context
behaves according to the protocol of the encoded terms. As in [VP96], we cannot expect
correct behavior within alien contexts, so we enforce the requirements to Σ-contexts only,
i.e. contexts occurring in [[]]-encodings of Ssep-terms.

24

Definition C.1.1. A relation R is a Σ-barbed simulation, if (P,Q) ∈ R implies

• If P −→ P ′, then there is Q =⇒ Q′ with (P ′, Q′) ∈ R.
• If P↓Σy , then Q⇓Σ

y .

and vice versa. Two processes are Σ-barbed bisimilar, written P
•
./ Q, if there is some

symmetric Σ-barbed simulation with (P,Q) ∈ R; they are Σ-barbed congruent, written P ./

Q, if C[P]
•
./ C[Q] for all Σ-contexts C.

It would be interesting to investigate, whether some form of typed observation could replace
the somewhat delicate notion of Σ-barb and Σ-context. Basically, it should be captured by
the notion of well-typed context composition whether some context respects an expected
protocol and whether some output of some process is considered valid. However, the
expected protocols for our choice encodings not only require that the pure typing aspects
of Kobayashi’s reliable channels are respected, but also that the boolean values on the lock
channels are correctly handled by some reader of a lock in the context. More precisely, a
reader of a lock not only must eventually send back some boolean value—in addition, it
may never change the lock’s value from f to t, but only from t to f, or leave it unchanged.
This means that value-dependencies, although of a rather simple nature, would have to be
included in the ‘type’ system. Work in that direction is not yet known to the author, but
some extension of [Kob97, Yos96] seems worth pursuing.

As a first promising step towards full abstraction, we have:

Lemma C.1.2 (Garbage).
((∑

πi.Pi

))
k
./ 0

Yet, we do not get full abstraction for the standard weak barbed congruence, denoted ≈,
in S and Σ-barbed congruence ./ in T, as

for all S1, S2 ∈ S : S1 ≈ S2 iff [[S1]] ./ [[S2]],

does not hold because atomic commitments in source terms are implemented by gradual
commitments in their translations. At the source-level, when a send-request is consumed
by some receiver, this action also may resolve two choices atomically. At the target-level,
the consumption of a high-level send-request merely means that some receiver has started
its choice protocol; it is not yet decided, in general, that this send-request will win—other
send-requests might join the competition on its way before the choice-lock is actually read.
It is only clear that some request will resolve this choice and, unless that happens, the
losing send-requests in this game will not be available to other receivers in other choices.
So, the best full abstraction result we can expect would be for some Σ-barbed coupled
congruence, i.e. a coupled pair of Σ-closed Σ-barbed simulations (see [NP96] for a very
similar application of coupled simulation [PS92]).

25

C.2 Mixed choice

The definition of barbs of the previous subsection was sufficient, because in the encoding for
separate choice, sender-locks are always checked in the second place: in contrast to receiver-
locks, which might not be available for a couple of reductions, testing a sender’s lock (always
after having successfully tested the receiver’s lock) immediately causes its re-set (Figure 5).
If we changed the order of checking locks in [[]] : πsep

s → T to test r then test l then . . . ,
there would be situations, where the required mutex message is not available.

For example, in [[u?[x].K + y?[x].P | y![z].Q+ w![v].R]] let the sender and receiver on y
have exchanged the send-request and the receiver checked the sender’s lock r. In that
situation, it cannot be observed directly, i.e. from the syntax of the (encoded) term, whether
the possible output on w is valid, or not. It is valid, because its choice has not yet been
resolved in favor of y (since the receivers’ lock l has not yet been checked), but neither is
the necessary lock r available (since it is currently held by the receiver on y), nor can a
state be reached by reduction, where the lock r is available again, without committing to
the communication on y and turning the senders’ lock r to f; the only way to detect the
validity of the output on w would be by supplying a message on u from the outside and
observing that the communication on u could preempt the pending communication on y,
thus resulting in resending the required lock r with state information t. An appropriate
notion of barb may therefore be given by observing processes within ‘saturating’ contexts,
but this remains to be investigated.

The same arguments as for the encoding of separate choice with reversed order of
testing also hold for the encoding of mixed choice as of Figure 7, because sender-locks are
not always the second lock to be tested, as would happen with the above example, when
the order determines the sender-lock as smaller than the receiver-lock.

C.3 Restricted full abstraction

Let us explicitly introduce single prefixes into the source language and let us also distinguish
the channels within the source language according to their syntactic usage as single (appear
as subject in single prefixes) or selectable (appear as subjects in choice-branches). Let us
restrict the source language such that communication on selectable channels is always
restricted and let us forbid the passing of selectable channels as objects such that their
scope is never extruded; then the only use of selectable channels is as subject of branches
in choice expressions and as bound variable in restriction (never in object position of either
input or output). Let us furthermore choose a target language with synchronous output,
such that output on single channels may then be encoded trivially and, thus, it is no longer
possible to observe a broken atomicity in that case.

With all these purely syntactic conditions and the additional clause for single output
prefixes, we can simply rephrase the very same definitions for all uniform choice encodings
in this paper, except that we need to give two different definitions for replicated inputs: one
for single, and one for selectable channels. From the outside, source terms that internally
might use selectable channels in choice expressions can then not be distinguished at all

26

from their translations, because a context can never interfere on these selectable channels
due to the above conditions. Formally, within this very restricted setting, we can get full
abstraction results as a simple corollary of the indistinguishability

for all S ∈ S : S ≈s [[S]]

where ≈s is even the standard synchronous weak bisimulation, i.e. with observable inputs.
Intutively, we may say that ‘programming with choice’ can be implemented correctly.

References

[ACS96] R. M. Amadio, I. Castellani and D. Sangiorgi. On Bisimulations for the Asynchronous π-Calculus.
In U. Montanari and V. Sassone, editors, Proceedings of CONCUR ’96, volume 1119 of LNCS,
pages 147–162. Springer, 1996.

[Ama97] R. M. Amadio. An Asynchronous Model of Locality, Failure, and Process Mobility. In Proceedings
of COORDINATION ’97, 1997. Extended version as Rapport Interne LIM Marseille and Rapport
de Recherche RR-3109, INRIA Sophia-Antipolis, 1997.

[Ben83] M. Ben-Or. Another Advantage of Free Choice: Completely Asynchronous Agreement Protocols
(Extended Abstract). In Proceedings of PODC ’83, pages 27–30. ACM, August 1983.

[Ber80] A. Bernstein. Output Guards and Nondeterminism in “Communicating Sequential Processes”.
ACM Transactions on Programming Languages and Systems, 2(2):234–238, Apr. 1980.

[BGZ97] N. Busi, R. Gorrieri and G. Zavattaro. On The Turing-Equivalence of Linda Coordination
Primitives. In C. Palamidessi and J. Parrow, editors, Proceedings of EXPRESS ’97, volume 7 of
ENTCS. Elesevier Science Publishers, 1997.

[Bou88] L. Bougé. On the Existence of Symmetric Algorithms to Find Leaders in Networks of Communi-
cating Sequential Processes. Acta Informatica, 25(2):179–201, 1988.

[Bou92] G. Boudol. Asynchrony and the π-calculus (Note). Rapport de Recherche 1702, INRIA Sophia-
Antipolis, May 1992.

[BS83] G. Buckley and A. Silberschatz. An Effective Implementation for the Generalized Input-Output
Construct of CSP. ACM Transactions on Programming Languages and Systems, 5(2):223–235,
Apr. 1983.

[BS94] G. Bellin and P. Scott. On the π-Calculus and Linear Logic. Theoretical Computer Science, 135:11–
65, 1994. Also published as LFCS report ECS-LFCS-92-232, LFCS, University of Edinburgh.

[FG96] C. Fournet and G. Gonthier. The Reflexive Chemical Abstract Machine and the Join-Calculus.
In Proceedings of POPL ’96, pages 372–385. ACM, Jan. 1996.

[Hon92] K. Honda. Notes on Soundness of a Mapping from π-calculus to ν-calculus. With comments
added in October 1993, May 1992.

[HT92] K. Honda and M. Tokoro. On Asynchronous Communication Semantics. In M. Tokoro, O. Nier-
strasz and P. Wegner, editors, Object-Based Concurrent Computing 1991, volume 612 of LNCS,
pages 21–51. Springer, 1992.

[Kna93] F. Knabe. A Distributed Protocol for Channel-Based Communication with Choice. Computers
and Artificial Intelligence, 12(5):475–490, 1993.

[Kob97] N. Kobayashi. A Partially Deadlock-Free Typed Process Calculus. In Proceedings of LICS ’97,
pages 128–139. Computer Society Press, July 1997. Full revised version from http://web.yl.

is.s.u-tokyo.ac.jp/members/koba/publications.html, University of Tokyo.

27

[KS97] D. Kumar and A. Silberschatz. A Counter-Example to an Algorithm for the Generalized Input-
Output Construct of CSP. Information Processing Letters, 61:287, 1997.

[Lam74] L. Lamport. A New Solution of Dijkstra’s Concurrent Programming Problem. Journal of the
ACM, 17(8):453–455, 1974.

[LT95] L. Leth and B. Thomsen. Some Facile Chemistry. Formal Aspects of Computing, 7(3):314–328,
1995. A Previous Version appeared as ECRC-Report ECRC-92-14.

[Mil93] R. Milner. The Polyadic π-Calculus: A Tutorial. In F. L. Bauer, W. Brauer and H. Schwicht-
enberg, editors, Proceedings of Logic and Algebra of Specification, International NATO Summer
School (Marktoberdorf, Germany, 1991). Springer, 1993.

[MPW92] R. Milner, J. Parrow and D. Walker. A Calculus of Mobile Processes, Part I/II. Information
and Computation, 100:1–77, 1992.

[MS92] R. Milner and D. Sangiorgi. Barbed Bisimulation. In W. Kuich, editor, Proceedings of ICALP
’92, volume 623 of LNCS, pages 685–695. Springer, 1992.

[Nes96] U. Nestmann. On Determinacy and Nondeterminacy in Concurrent Programming. PhD thesis,
Universität Erlangen, November 1996. Arbeitsbericht IMMD-29(14).

[NP96] U. Nestmann and B. C. Pierce. Decoding Choice Encodings. In U. Montanari and V. Sassone,
editors, Proceedings of CONCUR ’96, volume 1119 of LNCS, pages 179–194. Springer, 1996.
Revised full version as report ERCIM-10/97-R051, European Research Consortium for Informatics
and Mathematics, 1997.

[Pal97] C. Palamidessi. Comparing the Expressive Power of the Synchronous and the Asynchronous
π-calculus. In Proceedings of POPL ’97, pages 256–265. ACM, Jan. 1997.

[PS92] J. Parrow and P. Sjödin. Multiway Synchronization Verified with Coupled Simulation. In
R. Cleaveland, editor, Proceedings of CONCUR ’92, volume 630 of LNCS, pages 518–533.
Springer, 1992.

[PS96] B. C. Pierce and D. Sangiorgi. Typing and Subtyping for Mobile Processes. Mathematical Struc-
tures in Computer Science, 6(5):409–454, 1996.

[Rep91] J. Reppy. CML: A Higher-Order Concurrent Language. In Proceedings of PLDI ’91, pages 293–
259. ACM, June 1991. In SIGPLAN Notices 26(6).

[RL94] M. O. Rabin and D. Lehmann. On the Advantages of Free Choice: A Symmetric and Fully
Distributed Solution to the Dining Philosophers Problem. In A. W. Roscoe, editor, A Classical
Mind: Essays in Honour of C.A.R. Hoare, chapter 20, pages 333–352. Prentice Hall, 1994. An
extended abstract appeared in Proceedings of POPL’81, pages 133–138.

[San93] D. Sangiorgi. Expressing Mobility in Process Algebras — First-Order and Higher-Order
Paradigms. PhD thesis, LFCS, University of Edinburgh, 1993. Report ECS-LFCS-93-266.

[San97] D. Sangiorgi. The Name Discipline of Uniform Receptiveness (Extended Abstract). In P. Degano,
R. Gorrieri and A. Marchetti-Spaccamela, editors, Proceedings of ICALP ’97, volume 1256 of
LNCS, pages 303–313. Springer, 1997.

[TLK96] B. Thomsen, L. Leth and T.-M. Kuo. A Facile Tutorial. In U. Montanari and V. Sassone, editors,
Proceedings of CONCUR ’96, volume 1119 of LNCS, pages 278–298. Springer, 1996.

[VP96] B. Victor and J. Parrow. Constraints as Processes. In U. Montanari and V. Sassone, editors,
Proceedings of CONCUR ’96, volume 1119 of LNCS, pages 389–405. Springer, 1996.

[Yos96] N. Yoshida. Graph Types for Monadic Mobile Processes. In V. Chandru and V. Vinay, editors,
Proceedings of FSTTCS ’96, volume 1180 of LNCS, pages 371–386. Springer, 1996.

28

Recent BRICS Report Series Publications

RS-97-45 Uwe Nestmann.What Is a ‘Good’ Encoding of Guarded Choice?
December 1997. 28 pp. Revised and slightly extended version
of a paper published in5th International Workshop on Expres-
siveness in Concurrency, EXPRESS ’97 Proceedings, volume 7
of Electronic Notes in Theoretical Computer Science, Elsevier
Science Publishers.

RS-97-44 Gudmund Skovbjerg Frandsen. On the Density of Normal
Bases in Finite Field. December 1997. 14 pp.

RS-97-43 Vincent Balat and Olivier Danvy.Strong Normalization by Run-
Time Code Generation. December 1997.

RS-97-42 Ulrich Kohlenbach.On the No-Counterexample Interpretation.
December 1997. 26 pp.

RS-97-41 Jon G. Riecke and Anders B. Sandholm.A Relational Account
of Call-by-Value Sequentiality. December 1997. 24 pp. Appears
in Twelfth Annual IEEE Symposium on Logic in Computer Sci-
ence, LICS ’97 Proceedings, pages 258–267.

RS-97-40 Harry Buhrman, Richard Cleve, and Wim van Dam. Quan-
tum Entanglement and Communication Complexity. December
1997. 14 pp.

RS-97-39 Ian Stark.Names, Equations, Relations: Practical Ways to Rea-
son about ‘new’. December 1997. ii+33 pp. This supersedes the
earlier BRICS Report RS-96-31. It also expands on the paper
presented in Groote and Hindley, editors,Typed Lambda Cal-
culi and Applications: 3rd International Conference, TLCA ’97
Proceedings, LNCS 1210, 1997, pages 336–353.

RS-97-38 Michał Hánćkowiak, Michał Karo ński, and Alessandro Pan-
conesi. On the Distributed Complexity of Computing Maxi-
mal Matchings. December 1997. 16 pp. To appear inThe
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’98.

RS-97-37 David A. Grable and Alessandro Panconesi.Fast Distributed
Algorithms for Brooks-Vizing Colourings (Extended Abstract).
December 1997. 20 pp. To appear inThe Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’98.

