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Abstract

In [15],[16] Kreisel introduced the no-counterexample interpretation (n.c.i.) of Peano

arithmetic. In particular he proved, using a complicated ε-substitution method (due to

W. Ackermann), that for every theorem A (A prenex) of first-order Peano arithmetic

PA one can find ordinal recursive functionals ΦA of order type < ε0 which realize the

Herbrand normal form AH of A.
Subsequently more perspicuous proofs of this fact via functional interpretation (com-

bined with normalization) and cut-elimination where found. These proofs however do

not carry out the n.c.i. as a local proof interpretation and don’t respect the modus
ponens on the level of the n.c.i. of formulas A and A → B. Closely related to this

phenomenon is the fact that both proofs do not establish the condition (δ) and – at

least not constructively – (γ) which are part of the definition of an ‘interpretation of a

formal system’ as formulated in [15].

In this paper we determine the complexity of the n.c.i. of the modus ponens rule for

(i) PA-provable sentences,

(ii) for arbitrary sentences A,B ∈ L(PA) uniformly in functionals satisfying the

n.c.i. of (prenex normal forms of) A and A→ B, and

(iii) for arbitrary A,B ∈ L(PA) pointwise in given α(< ε0)-recursive functionals

satisfying the n.c.i. of A and A→ B.

∗Basic Research in Computer Science, Centre of the Danish National Research Foundation.
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This yields in particular perspicuous proofs of new uniform versions of the conditions

(γ), (δ).

Finally we discuss a variant of the concept of an interpretation presented in [17] and

show that it is incomparable with the concept studied in [15],[16]. In particular we show

that the n.c.i. of PAn by α(< ωn(ω))-recursive functionals (n ≥ 1) is an interpretation

in the sense of [17] but not in the sense of [15] since it violates the condition (δ).

1 Introduction

Let ∃xA0(x, a) be a Σ0
1-formula in the language L(PL) of first-order predicate logic PL

(a = a1, . . . , ak) are all its free variables).
If

PL ` ∃xA0(x, a)

then by Herbrand’s theorem there are terms t1[a], . . . , tn[a] (built up out of a, a distinguished

object constant 0 and the object and function constants of A0)1 such that
n∨
i=1

A0(ti[a], a) is

a tautology.

This extends to Σ0
n-formulas by introducing so-called index functions. For notational sim-

plicity lets consider n = 4 only

A(a) ≡ ∃x1∀y1∃x2∀y2A0(x1, y1, x2, y2, a).

We replace y1, y2 by fx1, gx1x2, where f, g are new function symbols. If PL ` A then

PL ` ∃x1, x2A0(x1, fx1, x2, gx1x2, a)

and so by Herbrand’s theorem for Σ0
1-formulas there are terms built up from a, f, g, 0 and

the constants of A0(x, a) such that

n∨
i=1

k∨
j=1

A0(ti[a, f, g], f(ti[a, f, g]), sj [a, f, g], g(ti[a, f, g], sj [a, f, g]), a)

is a tautology.
If we allow definition by cases and characteristic functions for quantifier-free formulas we
can avoid the disjunction:

Φ1afg :=



t1, if
k∨
j=1

A0(t1, f(t1), sj , g(t1, sj), a)

t2 if ¬ (case 1) ∧
k∨
j=1

A0(t2, . . .)

...

1Throughout this paper A0, B0, C0, . . . denote quantifier-free formulas.
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Φ2afg :=


s1, if s1 if A0(Φ1afg, f(Φ1afg), s1, g(Φ1afg, s1), a)

s2 if ¬ (case 1) ∧A0(Φ1afg, f(Φ1afg), s2, g(Φ1afg, s2), a)
...

Then
(+) ∀a, f, g A0(Φ1afg, f(Φ1afg),Φ2afg, g(Φ1afg,Φ2afg), a)

holds in a suitable extension of PL.
We say (following Kreisel [15]) that Φ1,Φ2 satisfy the no-counterexample interpretation

of A (short: Φ1,Φ2 n.c.i. A).

If A is no longer logically true but provable in some first-order theory, e.g. PA, then
definition by cases will not be sufficient in general. In the case of PA for instance one needs
all α-recursive functionals for α < ε0 and these functionals are also sufficient. This was

proved firstly in [16] using an ε-substitution procedure based on [1].2 Later Schwichtenberg

[25] gave a proof of this result using a form of cut-elimination (due to [30]) instead.

The cut-elimination procedure does not give a local interpretation of proofs, i.e. given proofs
of A and A → B, a realization of the n.c.i. of B is not computed out of given realizations
for the n.c.i of A and A → B but by a global proof transformation of the proof of B

(which in general will cause a non-elementary increase in the length of this proof).3

The method of ε-substitution can be used (as indicated in the proof of the condition (δ), to

be discussed below, in [16]) to obtain β(< ε0)-recursive functionals satisfying the n.c.i. of B

out of given α(< ε0)-recursive functionals satisfying the n.c.i. of (prenex normal forms

of) A and A → B. This method however (which again in general has a non-elementary

complexity in the logical depth of A) does not yield a uniform procedure (given by func-

tionals of type level 3) which would provide functionals satisfying the n.c.i. of B uniformly
in arbitrary functionals satisfying the n.c.i. of A and A→ B.

A third way to prove the no-counterexample interpretation of PA (by functionals which

are α(< ε0)-recursive) is via Gödel’s functional interpretation (combined with negative

translation) of PA in the calculus T of primitive recursive functionals of finite type (see e.g.

[31]). This (combination of negative translation and) functional interpretation is a local

2A formalization of the method of ε-substitution was given by [29] and used in [20](thm.12).
3One should also mention here Gödel’s discussion of Gentzen’s 1936 consistency proof in his amazing

‘Vortrag bei Zilsel’ from 1938, first published (together with an English translation in [8]). Here Gödel inter-
prets Gentzen’s proof in terms of the no-counterexample interpretation and gives a discussion of the modus
ponens rule in these terms which emphasizes the fact that this rule is decisive for the ordinal exponentiation
indicating even a kind of local treatment of this rule, however without giving any details ([8] pp. 108-110).
See also the illuminating remarks in [27].
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proof transformation but at the level of the functional interpretation (of the negative

translation) of A and A → B and not at the level of their n.c.i.: realizing functionals for

(B′)D can be obtained uniformly in any realizations of (A′)D and ((A→ B)′)D by a simple

typed lambda term (depending only on the logical form of A and B (Here A′ and AD denote

the negative translation and the functional interpretation of A).
The passage through higher types makes it necessary to use a normalization procedure for
T in order to obtain the n.c.i. in terms of α(< ε0)-recursive functionals rather than type 2

functionals defined in terms of primitive recursion in higher types (see e.g [21],[25]).

Instead of functional interpretation one could also use a combination of (negative translation

plus) the Friedman-Dragalin A-translation and a suitable notion of realizability. If one uses

here the so-called ‘minimal realizability’ of [3] one can avoid the use of higher types but the
resulting interpretation again is not local at the level of the n.c.i. but only at the level of the
‘minimal realizability’ interpretation of (the Friedman-Dragalin translation of the negative

translation of) A, A→ B.4

In this paper we calibrate the complexity of performing the modus ponens rule directly on
the level of the n.c.i. without using higher types. It turns out that even for PA-provable

sentences A and A → B with n.c.i. in T0 no fixed subsystem Tn of T suffices:5 for every

n ∈ IN there are PA-provable sentence A,B (B ∈ Π0
2) and functionals in T0 satisfying

(provably in P̂A
ω|\6) the n.c.i. of (arbitrary prenex normal forms of) A and A → B such

that the n.c.i. of B is not satisfied by any function(al) ∈ Tn (since with A and A→ B also

B is provable in PA, it is clear that the n.c.i. of B can be carried out in T ). So already
for PA-provable sentences the modus-ponens-complexity of the n.c.i. is not lower than the
complexity of the n.c.i. of the whole theory PA. If A and A → B are not assumed to
be provable in PA, then even T is not sufficient to solve the n.c.i. of the modus ponens

rule (uniformly in functionals satisfying the n.c.i. of the assumptions) but P̂R
ω

+BR0,1 is,

where BR0,1 is the schema of bar recursion for bar recursion of type 0 (with values of type

1) and P̂R
ω

are all predicative primitive recursive functionals of finite type (in the sense of

[13],[4]).
In special cases we can even solve the n.c.i. of the modus ponens as a unification problem
yielding functionals satisfying the n.c.i. of B by unification (not depending on the quantifier-

free part of A,B but only on the quantifier-prefix of their prenex normal forms): This is

4In connection with [3] one should mention that some of the result obtained in this paper by ‘minimal
realizability’ can in fact be derived (sometimes in much stronger form) using only well-known facts from the
literature ([31],[24]), see [14].

5Tn denotes the fragment of Gödel’s T (see [7]) with Rρ for deg(ρ) ≤ n only.
6P̂A

ω
|\ is the subsystem of PAω based on T0 instead of T and with quantifier-free induction only, see [4]

and section 2 below.

4



true for A ∈ Π0
3 and B ∈ Π0

∞ (but already in this case T is not sufficient). This particular
matter will be studied further in a subsequent paper.

Kreisel introduced his n.c.i. of arithmetic as an instance of his general definition of an
‘interpretation of a system Σ’ which we recall here from [15]:

‘A computable function f(n, a) is called an interpretation of the system Σ if

(α) f(n, a) is the number of a free variable formula An when a is the number of a formula

A of Σ (some Gödel numbering being assumed),

(β) if A is proved in Σ, from the proof we find an n such that An is verifiable,

(γ) if ¬A is proved in Σ, for each n we find a substitution for the (individual and function)
variables of An which makes An false,

(δ) if B is proved from A in Σ, we find a g(n) so that Bg(n) is verifiable if An is verifiable.’

For the n.c.i. of PA by α(< ε0)-recursive functionals (resp. functionals in T ) condition

(α) follows immediately from the fact that the resulting set of free variable formulas is

recursively enumerable. Condition (β) follows from each of the proof-methods discussed

above. The condition (γ) and in particular the condition (δ) however (which are proved

in [16] using the method of ε-substitution) do not follow from the approachs to the n.c.i.

by cut-elimination or functional interpretation (or the Friedman-Dragalin translation plus

realizability). The condition (δ) can be formulated in the case of the no-counterexample

interpretation of PA in T (or, slightly reformulated, for α(< ε0)-recursive functionals) as
follows

(δ) :

 If ΦA n.c.i A is true for ΦA ∈ T and PA ` A→ B.

Then one can construct ΦB ∈ T such that ΦB n.c.i. B is true.

Using (a careful analysis of the computational strength of) bar recursion of type 0 we give
a new prove of Kreisel’s results including a strengthened uniform version of his condition
(δ).

The condition (γ) translates in the case of the n.c.i. of PA at hand into

(γ)


If A ≡ ∃x1∀y1 . . . ∃xk∀ykA0(x1, y1, . . . , xk, yk, a) ∈ L(PA) and PA ` ¬A.

Then constructively it holds that for all closed terms Φ ∈ T (of suitable types)

there are h such that A0(Φ1h, h1(Φ1h), . . . ,Φkh, hk(Φ1h, . . . ,Φkh), a) is false.
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Classically the existence of h satisfying (γ) can be shown quite easily (see remark 4.10). A

constructive proof of (γ) was given in [16], again by the use of the ε-substitution method.

We give a new proof of a uniform strengthening of (γ) in section 4.

Finally we discuss a different definition of interpretation presented in [17] and show that

this definition is incomparable with the definition given in [15]. In particular we show: the

n.c.i. of PAn+1 (the fragment of PA with Σ0
n+1-induction only) in Tn (which holds by [22])

is an interpretation in the sense of [17] but not in the sense of [15] since the condition (δ)
is violated in this case.

2 The modus ponens complexity of the no-counterexample
interpretation for PA-provable sentences

Definition 2.1 Let A :≡ ∃x1∀y1 . . . ∃xk∀ykA0(x1, y1, . . . , xk, yk, a)7 be a formula in the lan-

guage L(PA)of Peano arithmetic PA (which for convenience is assumed to contain symbols
for every primitive recursive function with the corresponding defining equations as axiom of
PA).

The Herbrand normal form AH of A is defined by

AH :≡ ∀h1, . . . , hk∃x1, . . . , xk

AH0 :≡︷ ︸︸ ︷
A0(x1, h1x1, . . . , xk, hkx1 . . . xk, a) .

A tuple Φ(= Φ1, . . . ,Φk) of functionals of type levels ≤ 2 satisfies the no-counterexample

interpretation of A if Φ ah realizes ‘∃x’ (where h := h1, . . . , hk and x := x1, . . . , xk), i.e. if

∀a, hA0(Φ1ah, h1(Φ1ah), . . . ,Φkah, hk(Φ1ah, . . . ,Φkah), a).

In this case we write ‘Φ n.c.i. A’.

In the following PRA denotes primitive recursive arithmetic extended by classical first-
order predicate logic. PAω (resp. HAω) is the classical (resp. intuitionistic) arithmetic
in all finite types with full induction and all primitive recursive functionals in the sense of
Gödel and a quantifier-free rule of extensionality (so in the terminology of [31], HAω is

the system WE-HAω). P̂A
ω|\ (resp. ĤA

ω|\) denotes the fragment of PAω (resp. HAω)
with quantifier-free induction only and the Gödel-recursors Rρ replaced by the predicative

Kleene-recursors R̂ρ (this systems was introduced and studied in [4]). By T and P̂R
ω

we

denote the quantifier-free parts (in the sense on [31](1.6.13)) of PAω and P̂A
ω|\ respectively.

7Here a are all the free variables of A.
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Tn is the fragment of T with Rρ for ρ of level ≤ n only. P̂R
ω

is simply a definitorial extension

of T0 since R0 = R̂0 and R̂ρ for ρ > 0 is definable from R̂0 by λ-abstraction.

The type level or degree deg(ρ) of a type ρ is defined as deg(0) := 0, deg(ρ(τ)) :=

max(deg(τ) + 1, deg(ρ)).

Convention: By the phrase ‘a functional Φ ∈ T(n)’ we always mean ‘a closed term Φ of

T(n)’. Sometimes we only write Φ ∈ T(n) but again always refer to a closed term of T(n)

representing the functional.

Proposition 2.2 For every n ∈ IN there are sentence (i.e. closed formulas) A,B such that

1) A is prenex,

2) B ≡ ∀x∃y B0(x, y) ∈ Π0
2,

3) PRA ` A,

4) PA ` A→ B,

5) A as well as every prenex normal form (A→ B)pr of A→ B has (provably in ĤA
ω|\)

a n.c.i. by suitable functionals in T0, i.e.

ĤA
ω|\ ` ΦA n.c.i. A ∧ Φ(A→B)pr n.c.i. (A→ B)pr

with ΦA,Φ(A→B)pr ∈ T0,

but:

6) there is no function ϕ ∈ Tn which satisfies the n.c.i. of B, i.e. there is no ϕ ∈ Tn for

which ∀xB0(x,ϕx) is true in the standard model of PA.

Proof: Let n ∈ IN be fixed. It is well-known that the provably recursive functions of PA
are just the α(< ε0)-recursive functions. Since the definable functions of type 1 in Tn are

< ωn+1(ω)-recursive (see [21]), there is a Π0
2-sentence B ≡ ∀x∃y B0(x, y) in L(PA) (namely

∀x∃y T (e, x, y) for a certain numeral e) such that PA ` B, but there is no t1 ∈ Tn for which

∀x ∈ INB0(x, tx) is true.

Since PA ` B there are finitely many instances Ã1, . . . , Ãk such that for their universal
closures A1, . . . , Ak

PRA `
k∧
i=1

Ai → B.

7



Let Âi(x, a) be the induction formula corresponding to Ai, where x is the induction variable
and a includes all parameters, i.e.

Ai ↔ ∀a(Âi(0, a) ∧ ∀x(Âi(x, a)→ Âi(x
′, a))→ ∀xÂi(x, a)).

We now define

A :≡ ∀x, a∃y1, . . . , yk

k∧
i=1

(yi = 0↔ Âi(x, a)).

It is clear that

(i) PRA ` A (in fact predicate logic with equality plus the axiom 0 6= S0 suffices),

(ii) PA ` A→ B.

In PRA, the variables x1, . . . , xk, a and the variables y1, . . . , yk can be coded together as
single variables x, y. Although we do not carry out this coding for the sake of better read-
ability we are free to consider these tuples as single variables from now on. As a consequence
we only have to deal with the following prenex normal forms of A→ ∀u∃vB0(u, v)

(1) ∃x, a∀u∃v∀y( . . . )pr,

(2) ∃x, a∀y( . . . )pr,

(3) ∀u∃x, a∀y( . . . )pr,

(4) ∀u∃v, x, a∀y( . . . )pr,

where ( . . . )pr refer to any prenex normal form of the remaining formula in each case.

For i = 1, . . . , 4 the Herbrand normal from (i)H of (i) is implied by the partial Herbrand nor-
mal form where Herbrand index functions are introduced only for the universal quantifiers

in front of ( . . . )pr. So e.g. for (1), (1)H is implied by

(+) ∀f, g∃x, a, v ([u/f(x, a)], [y/g(x, a, v)])pr.

One easily shows by classical logic (and λ-abstraction) that (+) is equivalent to

(∗) ∃g∀x, a(
k∧
i=1

(gixa = 0↔ Ai(x, a))→ ∀u∃vB0(u, v).

8



In fact

(+)⇔

∀f, g(∀x, a, v
k∧
i=1

(gixav = 0↔ Âi(x, a))→ ∃x, a, v B0(fxa, v))⇔

∃g∀x, a, v
k∧
i=1

(gixav = 0↔ Âi(x, a))→ ∀f∃x, a, v B0(fxa, v)⇔

∃g∀x, a, v
k∧
i=1

(gixav = 0↔ Âi(x, a))→ ∀u∃vB0(u, v)⇔

∃g∀x, a
k∧
i=1

(gixa = 0↔ Âi(x, a))→ ∀u∃vB0(u, v).

In a similar way one shows the corresponding result for (2), (3), (4). So put together we
have

(∗)→ (i)H , where i = 1, . . . , 4,

by predicate logic (and λ-abstraction). But (∗) and therefore (i)H is provable in PRA2

which is the extension of PRA by adding function quantifiers to PRA and allowing function
variables to occur in the schema of quantifier-free induction

QF-IA : A0(0) ∧ ∀x(A0(x)→ A0(x′))→ ∀xA0(x).

This follows simply by applying QF-IA to A0(x) :≡ (gixa = 0) which yields Ai and so

∀u∃v B0(u, v).

So PRA2 ` ((A→ B)pr)H for every prenex normal form of A→ B.

However PRA2 has (via negative translation) a functional interpretation and hence a n.c.i.

in ĤA
ω|\ by terms ∈ T0. Thus there are functionals Φ(A→B)pr ∈ T0 such that

ĤA
ω|\ ` Φ(A→B)pr n.c.i. (A→ B)pr

for each prenex normal form of A→ B. The same holds true for A which is even provable
in PRA: there are functionals ΦA ∈ T0 such that

ĤA
ω|\ ` ΦA n.c.i. A,

which concludes the proof of the proposition. 2

Remark 2.3 We can replace ‘ϕ ∈ Tn’, ‘Φ ∈ T0’ in the proposition above by ‘ϕ is α(<

ωn+1(ω))-recursive’ and ‘Φ is primitive recursive in the sense of Kleene’, since the closed

terms t2 ∈ Tn denote just the α(< ωn+1(ω))-recursive functionals (see e.g. [21]). In the
following we only state the Tn-versions of our results explicitly since it is straightforward to
formulate them in terms of ordinal recursive function(al)s as well.
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We now consider the condition (δ) mentioned in the introduction. This condition was

verified for the n.c.i. of PA (by α(< ε0)-recursive functionals) in [16] using the method
of ε-substitution. It does not follow from the proofs of the n.c.i. by cut-elimination or
functional interpretation. In section 4 below we will prove a new strong uniform version of
this condition.

Let PAn be the subsystem of PA with induction restricted to Σ0
n-formulas. In [22] it is

shown that PAn+1 has (via negative translation) a functional interpretation in Tn. Hence
also the n.c.i. of PAn+1-provable formulas can be satisfied in Tn. However as a corollary of
proposition 2.2 we have

Corollary 2.4 The no-counterexample interpretation of PAn+1 in Tn (or – equivalently –

by α(< ωn+1(ω))-recursive functionals) does not satisfy the condition (δ) and hence is not

an interpretation in the sense of [15].

Proof: Choose A,B ∈ L(PAn+1) as in proposition 2.2 and let (A → B)pr be any prenex

normal form of A→ B and Ã be the prenex normal form of A∧(A→ B)pr which results e.g.

by shifting first all A-quantifiers to the front and then all (A → B)pr-quantifiers. Already

by classical logic, Ã implies B and so in particular

PAn+1 ` Ã→ B.

From proposition 2.2 it follows that both A and (A → B)pr have a n.c.i. by functionals

in T0 (i.e. by α(< ωω)-recursive and hence ordinary primitive recursive functionals). From

this one easily constructs functionals in T0 satisfying the n.c.i. of Ã. However, again by
proposition 2.2, B does not have a n.c.i. in Tn (and hence not by an α(< ωn+1(ω))-recursive

function). So Ã and B provide a counterexample to the condition (δ) for the n.c.i. of PAn+1

in Tn. 2

3 The uniform modus ponens complexity of the no-counter-
example interpretation for arbitrary formulasA,B ∈ L(PA)

Definition 3.1 A pair (T ,F) consisting of a theory T and a quantifier-free functional
calculus F ⊂ T suffices for the uniform n.c.i. of the modus ponens rule if for all

(prenex) formulas A,B ∈ Π0
∞ (A,B ∈ L(PA) and every prenex normal form (A→ B)pr of

A→ B there are functionals Ψ ∈ F (i.e. closed terms Ψ of F) such that

T ` ∀ΦA,Φ(A→B)pr

(
(ΦA n.c.i. A) ∧ (Φ(A→B)pr n.c.i. (A→ B)pr)

→ Ψ(ΦA,Φ(A→B)pr ) n.c.i. B
)
.
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Proposition 3.2 There are sentences A,B ∈ L(PA) in prenex normal form such that for

all prenex normal forms (A→ B)pr of A→ B

PAω /̀ ∃ΦA(ΦA n.c.i. A) ∧ ∃Φ(A→B)pr(Φ(A→B)pr n.c.i. (A→ B)pr)→ ∃ΦB(ΦB n.c.i. B).

Moreover we can take A ∈ Π0
3 and B quantifier-free (so that (ΦB n.c.i. B) ↔ B with ΦB

being the empty tuple).

Proof: Let A :≡ ∀x∃y∀z(Txxy ∨ ¬Txxz), where T denotes Kleene’s T -predicate, and

B :≡ (0 = 1). There is only one prenex normal form of A→ B:

∃x∀y∃z(Txxy ∨ ¬Txxz → 0 = 1)

and its n.c.i. requires a functionals Φ1,Φ2 such that

(∗) ∀f(T (Φ1f,Φ1f, f(Φ1f)) ∨ ¬T (Φ1f,Φ1f,Φ2f)→ 0 = 1).

The n.c.i. of A is realized by a functional Φ0 such that

(∗∗) ∀x, g(T (x, x,Φ0xg) ∨ ¬T (x, x, g(Φ0xg)).

We now show that
PAω /̀ ∃Φ0,Φ1,Φ2((∗) ∧ (∗∗))→ 0 = 1.

We have to show that PAω + ∃Φ0,Φ1,Φ2((∗) ∧ (∗∗)) is consistent:

Define Φ0xg :=

 g0, if T (x, x, g0)

0, otherwise.

Then one easily verifies that

PAω ` ∀x, g(T (x, x,Φ0xg) ∨ ¬T (x, x, g(Φ0xg)).

Next we show that

PAω + AC1,0-qf + ∀f1( f is recursive ) `

∃Φ1,Φ2∀f(T (Φ1f,Φ1f, f(Φ1f)) ∨ ¬T (Φ1f,Φ1f,Φ2f)→ 0 = 1).

This however follows from the fact that PAω + ∀f1(f is recursive) proves (using the unde-

cidability of the halting problem)

∀f∃x, z(T (x, x, fx) ∨ ¬T (x, x, z)→ 0 = 1),

11



which implies using AC1,0-qf

∃Φ1,Φ2∀f(T (Φ1f,Φ1f, f(Φ1f)) ∨ ¬T (Φ1f,Φ1f,Φ2f)→ 0 = 1).

The proof is now finished by verifying the consistency of PAω+ AC1,0-qf +∀f1(f is recursive)
which however follows from the fact that

HEO |= PAω + AC1,0-qf + ∀f1(f is recursive ),

where HEO is the type structure of the hereditarily effective operations in all finite types

(the fact that HEO forms a model of PAω is proved in [31]. That it is a model of AC1,0-qf
follows from the fact that one can always find an effective choice functional by unbounded
search since quantifier-free formulas of PAω are decidable).2

Corollary 3.3 (PAω , T ) does not suffice for the uniform n.c.i. of the modus ponens rule.

Remark 3.4 1) The proof above does not exclude the possibility that e.g.

(PAω+ AC0,0
ar , T ) satisfies the uniform n.c.i. of the modus ponens rule which remains

an open problem. Nevertheless we will show below that even (Sω, T ) does not suffice to
solve uniformly the unification problem associated with the n.c.i. of the modus ponens
(which however does not exclude other ways of satisfying the n.c.i. of the modus

ponens)

2) In section 4 below we will show that (PAω, T ) suffices for the pointwise n.c.i. of
the modus ponens in the sense that one can construct functionals of type level 3 in a
genuine extension of T which produce out of given functionals ∈ T which satisfy
the n.c.i. of A, (A→ B)pr functionals ∈ T which satisfy the n.c.i. of B.

We now show that both (ĤA
ω|\ + µ, P̂R

ω
+ µ) and (ĤA

ω|\ + BR0,1, P̂R
ω

+ BR0,1) do

suffice:

Definition 3.5 ([4]) T ω + µ is the extension of T ω obtained by adding a constant µ2

together with the axioms

(µ) : f1x =0 0→ f(µf) =0 0 ∧ µf ≤0 x, f(µf) 6= 0→ µf =0 0.

Definition 3.6 ([28]) T ω + BRρ,τ is the extension of T ω obtained by adding the bar re-

cursor constant Bρ,τ with the axioms

(BRρ,τ ) :

 x(y, n0) < n→ Bρ,τxzuny =τ zny

x(y, n) ≥ n→ Bρ,τxzuny =τ u(λDρ.Bρ,τxzun
′(y, n ∗D))ny,

12



where y is of type 0(ρ0) and u is of type τ(ρ0)(0)(τρ) and

(y, n ∗D)(k0) =ρ


yk, if k < n

D, if k = n

0ρ, otherwise.

Proposition 3.7 Let (T ,F) be either (ĤA
ω|\ + µ, P̂R

ω
+ µ) or (ĤA

ω|\ + BR0,1, P̂R
ω

+

BR0,1). Then (T ,F) suffices for the n.c.i. of the modus ponens (uniformly in functionals

satisfying the n.c.i. any of prenex normal forms of A and A→ B).

Proof: Lets consider the schema of arithmetical choice

AC0,0
ar : ∀x∃y A(x, y)→ ∃f∀x, y A(x, fx),

where A ∈ Π0
∞ (A may contain function parameters).

One easily verifies that

P̂A
ω|\+ AC0,0

ar ` (∃ΦA(ΦA n.c.i. A)) → A

for all prenex formulas A ∈ Π0
∞. Since furthermore

P̂A
ω|\ ` B → BH

for all prenex formulas B ∈ Π0
∞ we have

P̂A
ω|\+ AC0,0

ar `

∃ΦA(ΦA n.c.i. A) ∧ ∃Φ(A→B)pr(Φ(A→B)pr n.c.i. (A→ B)pr)→∀h, a∃xBH
0 (h, x, a)),

where ∀h∃xBH
0 (h, x, a) is the Herbrand normal form BH(a) of B(a) and a are all free

variables of B.

P̂A
ω|\+ AC0,0

ar has (via negative translation) a functional interpretation in T by terms ∈ F .

For (ĤA
ω|\ + µ, P̂R

ω
+ µ) this is proved in [4]. For (ĤA

ω|\ + BR0,1, P̂R
ω

+ BR0,1) this

follows from [28] using the facts that P̂A
ω|\ has an interpretation in P̂R

ω
, that AC0,0

ar is

derivable in P̂A
ω|\+ Π0

1-AC0,0 (note that P̂A
ω|\+ Π0

1-AC0,0 ` Π0
1-CA and so by iteration –

using the presence of function parameters in Π0
1-CA – also P̂A

ω|\+ Π0
1-AC0,0 ` Π0

∞-CA and

therefore P̂A
ω|\+ Π0

1-AC0,0 ` AC0,0
ar ) and that the interpretation of Π0

1-AC0,0 uses only B0,1

and functionals from P̂R
ω
. Note that the crucial lemma 1 from [28] (restricted to B0,1) can

easily be proved in P̂R
ω

+BR0,1.

13



Hence there are functionals Ψ̃ ∈ F such that

(+)

 T ` ∀ΦA,Φ(A→B)pr

(
(ΦA n.c.i. A) ∧ (Φ(A→B)pr n.c.i. (A→ B)pr)

→ ∀h, aBH
0 (h, Ψ̃(ΦA,Φ(A→B)pr , h, a), a)

)
.

Thus Ψ := λh.Ψ̃(ΦA,Φ(A→B)pr , h, a) satisfies the claim made in the proposition. 2

Remark 3.8 1) Similar to Ψ one can also extract ξ, ζ ∈ P̂R
ω

+ BR0,1 realizing the

universal function quantifiers hidden in ‘ΦA n.c.i. A’ and ‘Φ(A→B)pr n.c.i. (A→ B)pr’.

2) In the above proof, (+) can actually be strengthened by not assuming that ΦA (resp.

Φ(A→B)pr) satisfies the no-counterexample interpretation uniformly in the parameters

a of A8, i.e. we can quantify a outside the whole implication in (+) and weaken

(ΦA n.c.i. A) (and likewise also (Φ(A→B)pr n.c.i. (A→ B)pr)) to

∀hA0(ΦA
1 h, h1(ΦA

1 h), . . . ,ΦA
k h, hk(ΦA

1 h, . . . ,Φ
A
k h), a).

I.e. we only require ΦA to satisfy the n.c.i. of A for the fixed parameters a. As in the
proof above we now obtain functionals χ which satisfy the modus ponens uniformly in

h, a and functionals ΦA,Φ(A→B)pr satisfying the n.c.i. for the parameters a.

Corollary to the proof of proposition 3.7: The proof above immediately general-
izes to the case where A and B contain function parameters α, β and yields functionals

Ψ(ΦA,Φ(A→B)pr , α, β) which solve the corresponding modus ponens instance uniformly in

ΦA,Φ(A→B)pr and α, β. This in particular implies that we can solve the modus ponens

problem uniformly in arbitrary formulas A,B in L(PA) of fixed quantifier complexities

since all formulas A ∈ Π0
n can be obtained from ∀x1∃y1 . . . ∀xn∃yn(α(x, y) =0 0) by substi-

tuting the characteristic function of the quantifier-free matrix of A (which can be defined

in P̂R
ω

) for the function variable α.

For A ∈ Π0
3, B ∈ Π0

∞, the functionals Ψ ∈ P̂R
ω

+ BR0,1 solving the n.c.i. of the modus

ponens rule (which exist by 3.7) can be obtained as the solution of a system of functional
equations:

8Lets assume here for simplicity that A and B contain the same parameters a. This can be achieved by
introducing dummy variables if necessary.
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Let A :≡ ∀x∃y∀zA0(x, y, z) and B :≡ ∀u1∃v1B0(u1, v1, . . .). Consider the following prenex
normal form of A→ B

(A→ B)pr :≡ ∃x∀y∃z∀u1∃v1 . . . (A0(x, y, z)→ B0(u1, v1, . . .)).

Then

((A→ B)pr)H ≡ ∀f, h∃x, z, v(A0(x, fx, z)→ B0(h0xz, v1, h1xzv1, v2, . . .)).

So the n.c.i. of (A→ B)pr requires functionals Φ1,Φ2,Ψ1,Ψ2, . . . such that

(∗) ∀f, h(A0(Φ1fh, f(Φ1fh),Φ2fh)→ B0(h0(Φ1fh,Φ2fh),Ψ1fh, . . .)).

Since
AH ≡ ∀g, x∃y A0(x, y, gy),

the n.c.i. of A requires a functional Φ0 such that

(∗∗) ∀g, xA0(x,Φ0gx, g(Φ0gx)).

To perform a modus ponens using (∗), (∗∗) to obtain a solution for the for the n.c.i. of

B we solve the following systems of equations (mp-unification) for x, f, g (uniformly in

h,Φ0,Φ1,Φ2):

(1)


x =0 Φ1fh

f(Φ1fh) =0 Φ0gx

Φ2fh =0 g(Φ0gx).

Let f [h,Φ] be the f -solution for h,Φ0,Φ1,Φ2. Taking then h̃0 := λx, y.u, h̃ixyv1 . . . vi :=

hiv1 . . . vi (for i ≥ 1) and Ψ̃i(u, h1, . . .) := Ψi(f [h̃,Φ], h̃) we obtain that

Ψ̃ n.c.i. B.

Remark 3.9 Note that the system of equation (1) is the same as the one resulting from
the functional interpretation of the double–negation shift

∀x0¬¬∃y0∀z0A0(x, y, z)→ ¬¬∀x∃y∀zA0(x, y, z)

solved by Spector [28] using bar recursion in his functional interpretation of classical analysis

(via negative translation). For completeness we include here the solution.

In our case it suffices in fact to construct an f such that there exists a g so that (1) holds

for x = Φ1fh, since the functionals Ψ̃ do not depend on g.
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In fact we solve (following Spector [28])

(2) ∃f∀n ≤ Φ1fh∃gn(Φ0(gn, n) =0 fn ∧ gn(fn) =0 Φ2fh)

for f . Note that this solves (1) as well: take x := n := Φ1fh and g := gx.

Solution of (2): Define

A(f, n) :≡ n ≤ Φ1fh→ ∃gn(Φ0(gn, n) = fn ∧ gn(fn) = Φ2fh).

We define a functional B ∈ 1(0)(1) which satisfies

(i) ∀i < x(B(f, x;x)(i) = fi),

(ii) ∀n ≥ xA(B(f, x;x), n).

Then B(01, 00) satisfies ∀nA(B(0, 0), n), i.e. solves ‘∃f ’ in (2).

We now define B(f, x;x) by bar recursion:

Case 1): Φ1(f, x)h < x. Take B(f, x;x) := f, x. Then B(f, x;x) trivially satisfies (i) and

because of n ≥ x→ n > Φ1(f, x)h (by the case) also (ii).

Case 2): Φ1(f, x)h ≥ x. By assumption B(f, x ∗ 〈X〉;x′) is defined already such that

(i)’ ∀i ≤ x(B(f, x ∗ 〈X〉;x′)(i) = (f, x ∗ 〈X〉)(i)) and

(ii)’ ∀n ≥ x′A(B(f, x ∗ 〈X〉;x′), n) for all X (Note that f, x ∗ 〈X〉 = f, x ∗ 〈X〉, x′).

Define B(f, x;x) := B(f, x ∗ 〈K〉;x′),
where K := Φ0gxx and gx := λX.Φ2(B(f, x ∗ 〈X〉;x′))h.

By (i)′, (ii)′ we have

∀n ≥ x′A(B(f, x;x), n) and ∀i < x(B(f, x;x)(i) = fi).

So it remains to show A(B(f, x;x), x), i.e.

∃gx(Φ0(gx, x) = B(f, x;x)(x) ∧ gx(B(f, x;x)(x)) = Φ2(B(f, x;x))h) :

B(f, x;x)(x) = B(f, x ∗ 〈Φ0gxx〉;x′)(x)
(i)′
= Φ0(gx, x).

gx(B(f, x;x)(x)) = Φ2(B(f, x ∗ 〈B(f, x;x)(x)〉;x′))h =

Φ2(B(f, x ∗ 〈Φ0(gx, x)〉;x′))h = Φ2(B(f, x;x))h, which concludes the proof. 2

We call the system of equations (1) above the mp-system corresponding to A and
A→ B.

By the reasoning above we have
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Proposition 3.10 For A,B ∈ L(PA) with A ∈ Π0
3, B ∈ Π0

∞ one can construct functionals

Ψ ∈ P̂R
ω

+BR0,1 which uniformly solve the corresponding mp-system.

In a separate paper we intend to investigate in greater generality what types of unification
problems can be solved by (restricted forms of) bar recursion.

The use of bar recursion in proposition 3.10 is crucial as the following proposition shows:

Proposition 3.11 Even for A ∈ Π0
3, B ∈ Π0

0 there are no functionals Ψ ∈ T for which it
is true in Sω that they solve the corresponding mp-system uniformly.

Proof: The mp-system corresponding to A and the unique prenex normal form of A→ B

again is identical to the system of equations emerging from the functional interpretation of
the double negation shift

∀x0¬¬∃y0∀z0A0(x, y, z)→ ¬¬∀x0∃y0∀z0A0(x, y, z).

So if the mp-system would be solvable in T then this double negation shift and consequently

– via negative translation – PAω+ AC0,0
ar would have a functional interpretation by func-

tionals in T (verifiable in Sω). However it is known that all α(< εε0)-recursive functions

are provably recursive in PAω+ AC0,0
ar whereas the definable functions in T are α-recursive

with α < ε0 (see e.g. [4]). 2

In contrast to this result we have

Proposition 3.12 For A ∈ Π0
2, B ∈ Π0

∞ the corresponding mp-system has a trivial solution
by substitution.

Proof: The corresponding system of equations is x =0 Φ1fh,Φ0x =0 fx. Take f := Φ0

and x := Φ1fh. 2.

4 The pointwise mp-complexity for arbitrary formulas A,B ∈
L(PA) and the conditions (δ) and (γ)

In the following we need a slight generalization of a result due to Schwichtenberg [24],[26]9

on the closure of T under the rule of bar recursion of type 0 (and 1):

Proposition 4.1 Let t2[x0, h1] a term of T containing at most the free variables x of type 0

and the variables h of type level 1. Then the functional λx, h, z, u, n, y.B0,τ (t[x, h], z, u, n, y)

is definable in T such that PAω (and even HAω) proves its characterizing equations.

9Compare also remark 3.1 in [11] for a related result.
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Proof: In [26] it is proved that for all closed terms t, s, r of T (of appropriate types)

λn, y.B0,τ trsny is definable in T (formalizable in HAω). Since there is no restriction on the

type τ we can replace r, s by free variables z, u observing that B0,τ tzuny =τ (B0,σtrsny)zu

for suitable closed λ-terms r, s (σ being a corresponding type). Moreover, Schwichtenberg’s
proof immediately relativizes uniformly to the case where t is allowed to contain number
and function parameters yielding a primitive recursive functional (in the sense of T ) in these

parameters and z, u, n, y (to see this one could also use the technique of elimination of free

variables from section 5 of [9]). 2

Proposition 4.2 Let t0τ1...τmρ1...ρlδ1...δk a (closed) term of T1 +BR0,1, where

δ1 = . . . = δk = 0, deg(ρ1) = . . . = deg(ρl) = 1, deg(τ1), . . . , deg(τm) ≤ 3.

Let Φτ1
1 , . . . ,Φ

τm
m be closed terms in T . Then s := λxδ, hρ.t(x, h,Φ1, . . . ,Φm) is definable as

a closed term s̃ in T and HAω +BR0,1 ` s =γ s̃, where γ is the type of s.

Proof: Let t[h]0 be built up from n-ary function variables h, the combinators Π,Σ (of

arbitrary finite type),00, S00, closed terms Φτ1
1 , . . . ,Φ

τm
m ∈ T with deg(τi) ≤ 3 and B0,1. We

show that λh.t[h] can be defined in T (note that this proves the proposition since the type

level of R1 is 3 and R0 has type level 2).
For notational simplicity we assume that τi = 3 for i = 1, . . . ,m. By ‘logical normalization’

we perform all possible Π,Σ-reductions on10 t[h]0 and denote the result by t̂[h]0 (note that

HAω ` t[h] =0 t̂[h]).11 The outmost constant or variable of t̂[h]0 cannot be Π or Σ since

if t̂[h]0 ≡ Πt1t2 . . . ti (resp. Σt1t2 . . . tj) then i ≥ 2 (resp. j ≥ 3) since t̂[h] is of type

0. But this contradicts the fact that all possible Π,Σ-reductions have been carried out

already. Hence t̂[h] ≡ 00, t̂[h] ≡ S(t̃[h]), t̂[h] ≡ Φ3
i (t0[h]), t̂[h] ≡ (hi(t1[h]) . . . (tj [h]))0 or

t̂[h] ≡ B0,1(t1[h]) . . . (t6[h]). By proposition 4.1 (to be used in the last case only), t̂[h]

is primitive recursive (in the sense of T ) in h if t̃[h] or (t0[h]f0)0 or (t1[h])0, . . . , (tj [h])0

resp. (t1[h] f
1
)0, . . . , (t6[h] f

6
)0 are primitive recursive in all of there free variables. Here

f
i

are the (possibly empty) tuples of variables needed to reach the ground type 0 (note

that the type levels of f0, f i are ≤ 1 since all the arguments of B0,1 and Φ3
i have type

levels ≤ 2). We now proceed with these terms instead of t[h] (note that in the case of

t0[h]f0, ti[h]f
i

we again first have to carry out all possible Π,Σ-reductions since in view of

the new arguments f0, f i new reductions may be possible). Eventually we end up with terms

which no longer contain B0,1 and hence are primitive recursive. So λh.t[h] is a primitive

10Here we consider the terms Φτii as primitives, i.e. we don’t carry out Π,Σ-reductions on the Π,Σ-
constants occuring in these terms.

11Here the notation s[h] means that s contains at most free variables from h.
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recursive functional which can be written as a closed term s̃ ∈ T . To see that HAω+BR0,1 `
s̃h =0 t[h] we argue as follows: Consider a term r ≡ B0,1t1[h] . . . t6[h], where t1[h], . . . , t6[h]

do not contain B0,1. By proposition 4.1 we can find a closed term r̃ ∈ T such that r̃hnα

satisfies (provably in HAω) the instance of BR0,1 for t1[h], . . . , t3[h], n, α. Since BR0,1

defines λn,α.B0,1(t1[h], . . . , t3[h], n, α) uniquely in ti[h] (provable using extensionality and

bar induction or – classically – dependent choice) we have r̃hnα =1 B0,1(t1[h], . . . , t3[h], n, α)

for all n0, α1. This can be formalized in e.g. PAω + Π0
∞-DC0 + BR0,1 (where Π0

∞-DC0 is

the axiom schema of dependent choice of type 0 for arithmetical predicates) using the

facts that all primitive recursive functionals of type 2 are HAω-provable extensional (see

[31](2.7.4)) and that =1∈ Π0
1 is arithmetical. Hence PAω + Π0

∞-DC0 + BR0,1 ` r̃hnα =1

B0,1(t1[h], . . . , t3[h], n, α). But PAω+Π0
∞-DC0+BR0,1 = PAω+ AC0,0

ar +BR0,1 = PAω+Π0
1-

AC0,0 +BR0,1 has a functional interpretation in HAω +BR0,1 and hence HAω +BR0,1 `
r̃hnα =1 B0,1(t1[h], . . . , t3[h], n, α). Thus for r̂h :≡ r̃(h, t4[h], t5[h], t6[h]) we have HAω +

BR0,1 ` r̂h =0 B0,1t1[h] . . . t6[h]. The claim now follows inductively by the normalization

argument above using the quantifier-free rule of extensionality of HAω +BR0,1. 2

Remark 4.3 1) Proposition 4.2 is related to a result from [10] (thm.3.2 and remark 1)

which in our terminology states that every term (containing only variables type of level

≤ 1) of type level ≤ 2 in T1 +BR0,1 has computation size strictly less then ε0.

2) Even for closed terms t1 proposition 4.2 is false for P̂R
ω

+ BR1,1 or P̂R
ω

+ BR0,2

instead of T1 + BR0,1: the system P̂A
ω|\ + Σ1

1-DC has12 (via negative translation)

a functional interpretation in P̂R
ω

+ BR1,1. But the system is proof-theoretically

stronger than PA (see e.g. [2] pp. 128-129) and proves more recursive functions

to be total than are definable in T . The counterexample for P̂R
ω

+ BR0,2 follows

from the fact that BR1,1 can be reduced to BR0,2 (see [18],[12]). The essential formal

difference between BR0,1 and both BR1,1, BR0,2 is that the corresponding bar recursor

constant B0,1 is of type level 3 whereas both B1,1 and B0,2 are of type level 4 (see also

[10],appendix 2).

3) Even for closed terms t1 proposition 4.2 is false for T2 +BR0,1 instead of T1 +BR0,1.

This follows from the fact that Rρ with deg(ρ) = 2 (which has type level 4) can be

used to iterate B0,1 as a type-3-level functional which goes beyond α(< ε0)-recursion.

In fact T2 +BR0,1 corresponds to T3,4 in [10] where it is shown that the computation

size of terms in T3,4 is < εωω and that this is optimal.

12Here Σ1
1-DC denotes the schema of dependent choice of type 1 restricted to Σ1

1-formulas.
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Corollary 4.4 1) The same functionals of type level ≤ 2 are definable in T and in

P̂R
ω

+BR0,1 (but there union T +BR0,1 allows to define more functions).13

2) Let P̂A
ω

1 |\ be the extension of P̂A
ω|\ obtained by adding the Gödel recursor R1 for type-

1-recursion with its axioms. Let A := P̂A
ω

1 |\+AC0,0
ar +AC-qf. If A ` ∀xρ∃yτA0(x, y),

where deg(ρ) ≤ 1, deg(τ) ≤ 2 and A0(x, y) quantifier-free with only x, y as free vari-
ables, then one can extract a closed term t ∈ T such that

Sω |= ∀xδA0(x, tx).

3) Besides the usual functional interpretation (combined with negative translation) of

PA in T , PA also has – via PA ⊂ P̂A
ω|\+ AC0,0

ar – a functional interpretation in

P̂R
ω

+BR0,1. Both functional interpretations are faithful w.r.t. the provably recursive

functions of PA whereas the interpretation in their union T +BR0,1 is not.

Proof: 1) By proposition 4.2, every definable functional of type level ≤ 2 is definable in

T . The other direction follows from the facts that the definable function(al)s of types 0

and 1 in T are just the α(< ε0)-recursive ones, that all α(< ε0)-recursive function(al)s of

type level ≤ 2 are provably recursive in P̂A
ω|\+ AC0,0

ar (since the extension PA+ of PA by

function parameters is a subsystem of P̂A
ω|\+ AC0,0

ar ) and that this system has (via negative

translation) a functional interpretation in P̂R
ω

+BR0,1 (see the proof of proposition 3.7).

2) From the fact that A has (via negative translation) a functional interpretation in T1 +

BR0,1 (see again the proof of proposition 3.7) and proposition 4.2 it follows that HAω +

BR0,1 ` ∀xδA0(x, tx) for some closed t ∈ T . The type structure of all continuous set-

theoretical functionals C from [23] (called S by Scarpellini) is a model of HAω + BR0,1.

The conclusion now follows from the facts that C0 = S0 and C1 = S1 and that ∀f ∈
ωω([Φ]Cf = [Φ]Sf) for all closed terms Φ ∈ T of type 2.

3) follows from the proof of 2). 2

Using proposition 3.7 and proposition 4.2 we obtain that PAω, T suffices for a pointwise
n.c.i. of the modus ponens rule:

Proposition 4.5 Let A,B be prenex formulas in L(PA) and (A → B)pr some prenex

normal form of A→ B. Then there are functionals χ ∈ P̂R
ω

+BR0,1 such that:

13Note that each closed term t2 ∈ P̂R
ω

+ BR0,1 represents a functional in Sω (so that the comparison
with the type-2-functionals definable in T makes sense). This can be seen e.g. by interpreting t in the model
of all continuous set-theoretical functionals C from [23] since C1 = ωω.
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If ΦA,Φ(A→B)pr ∈ Sω are continuous14 then also χ(ΦA,Φ(A→B)pr) ∈ Sω are continuous and

if in addition
(1) Sω |= (ΦA n.c.i.A) ∧ (Φ(A→B)pr n.c.i. (A→ B)pr),

then
(2) Sω |= χ(ΦA,Φ(A→B)pr) n.c.i. B.

Furthermore if ΦA,Φ(A→B)pr are closed terms of T then χ(ΦA,Φ(A→B)pr) can effectively be

written as functionals in T .
As in proposition 3.7 this generalizes to the case where A,B contain function parameters
α, β yielding χ as functionals in ΦA,Φ(A→B)pr , α, β with λα, β.χ(ΦA,Φ(A→B)pr , α, β) ∈ T if

ΦA,Φ(A→B)pr ∈ T .

Proof: The first part follows from proposition 3.7 using the fact that the extensional type
structure C of all continuous functionals from [23] (denoted by S in [23]) is a model of
PAω + BR0,1, C1 = S1, C2 ⊂ S2 and the fact that ‘ΦA,Φ(A→B)pr ∈ Sω continuous’ iff

‘ΦA,Φ(A→B)pr ∈ C’ since the type levels of these functionals are ≤ 2.

The second part follows using proposition 4.2 2

Remark 4.6 Note that for every IN-true prenex formula A ∈ L(PA) there are always
continuous functionals ΦA ∈ Sω satisfying the n.c.i. of A: apply unbounded search to find

the least 〈x1, . . . , xk〉 such that A0(x1, h1x1, . . .). Furthermore by bounded search one can

construct uniformly in ΦA functionals Φ∗A such that the implication

(ΦA n.c.i. A)⇒ (Φ∗A n.c.i A) ∧ (Φ∗A are continuous)

holds for all ΦA ∈ Sω.

Proposition 4.5 implies the following result (which does not follow from the approaches to

the no-counterexample interpretation via cut-elimination or functional interpretation)

Corollary 4.7 The n.c.i. of PA in T (or -equivalently – by all α(< ε0)-recursive function-

als) satisfies Kreisel’s condition (δ) in the following sense: Let A,B ∈ L(PA) be prenex.
If

ΦA n.c.i. A is true for some tuple of closed terms ΦA ∈ T
and

PA ` A→ B,

then one can construct ΦB ∈ T such that

ΦB n.c.i. B is true.

14Here we assume that ΦA,Φ(A→B)pr have the appropriate types to make them candidates for the n.c.i.

of A resp. (A→ B)pr.
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Proof: By functional interpretation one extract Φ(A→B)pr ∈ T such that

PAω ` Φ(A→B)pr n.c.i. (A→ B)pr,

where (A → B)pr is any prenex normal form of A → B. The corollary now follows from
4.5. 2.

Remark 4.8 By inspecting carefully the instances of BR0,1 used in the proof of proposition

3.7 for given ΦA,Φ(A→B)pr ∈ T and using the fact that proposition 4.1 can be formalized

in HAω there should be no problem to obtain corollary 4.7 also as a rule w.r.t. to PAω-
provability, i.e.

PAω ` ΦA n.c.i. A⇒ PAω ` ΦB n.c.i. B (even HAω ` ΦB n.c.i. B).

However we will not spell out the details here.

In [17], Kreisel gives a definition of an ‘interpretation of a theory T in a constructive system

F ’ which essentially replaces the condition (δ) from his previous definition in [15] by the
requirement

(δ′) : the interpretation An of A implies A logically.

Kreisel mentions in his discussion in remark 2.2 of [17] that this condition is satisfied for
the n.c.i. of predicate logic as well as of PA only if ‘logically’ is understood in the sense of
(classical) second-order logic, i.e. first-order logic extended by function quantifier and the
axiom of choice schema

∀x∃y A(x, y)→ ∃f∀xA(x, fx).

(δ) does not imply (δ′) since the trivial interpretation mentioned in [15](pp.248-249) satisfies

(δ) but not (δ′). In the other direction (δ′) does not imply (δ) either. E.g. the n.c.i. of

PAn+1 in Tn trivially satisfies (δ′) (again in the sense of second-order logic) but does not

satisfy (δ) by corollary 2.4 above.

In [19] Kreisel formulates both (δ′) and a version of (δ) which reads as follows
‘Having made a guess at A∗, which, in the case of the no-counterexample interpretation
above is A0(F, f), we try to find, for each axiom A, a functional sA such that

P ` A∗(sA, t) for variable t,

and for each rule of inference, deriving A from A and A say, a functor ΦA such that

P ` A∗[ΦA(s1, s2), t] holds provided both P ` A
∗
(s1, t1) and P ` A

∗
(s2, t2) hold (for

variables t1 and t2 of appropriate type)’ (p. 378).

This is stronger than the previous formulation of (δ) from [15] by requiring the existence

of functors which perform the rules pointwise (for provably correct interpretations for A

22



and A) but also weaker by assuming the P-provability of these interpretations. However
the latter does not change the failure of the condition for the n.c.i. of PAn+1 in Tn.

Finally we consider Kreisel’s condition (γ) from his definition of an interpretation as given

in [15]. For the n.c.i. of PA in T this condition spells out as follows

(γ)


If A ≡ ∃x1∀y1 . . . ∃xk∀ykA0(x1, y1, . . . , xk, yk, a) ∈ L(PA) and PA ` ¬A.

Then constructively it holds that for all functionals Φ ∈ T (of suitable types)

there are h such that A0(Φ1h, h1(Φ1h), . . . ,Φkh, hk(Φ1h, . . . ,Φkh), a) is false.

Similar to (δ) also the condition (γ) does not follow from the approach to the n.c.i. via

cut-elimination or functional interpretation. In [16] Kreisel gave a complicated proof of (γ)

using again the method of ε-substitution from [1]. We now prove a new uniform version of

(γ):

Proposition 4.9 Let A :≡ ∃x1∀y1 . . . ∃xk∀ykA0(x1, y1, . . . , xk, yk, a) ∈ L(PA) and PA `
¬A. Then from the proof of ¬A one can extract functionals χ ∈ P̂R

ω
+BR0,1 such that

ĤA
ω|\+BR0,1 ` ∀Φ¬A0(Φ1h, h1(Φ1h), . . . ,Φkh, hk(Φ1h, . . . ,Φkh), a),

where h := χ(a,Φ).

Moreover for Φ ∈ T (and ĤA
ω|\ replaced by HAω) one can construct a function term tΦ ∈ T

such that χ(a,Φ) can be replaced by χ̃(a), where χ̃i(a) := λn.
(
χi(a,Φ)(tΦ(a, χ(a,Φ)))

)
n

and

λa, n.
(
χi(a,Φ)(tΦ(a, χ(a,Φ)))

)
n
∈ T .15

Proof: As in the proof of proposition 3.7 one has

P̂A
ω|\+ AC0,0

ar ` ∃Φ∀hA0(Φ1h, h1(Φ1h), . . . ,Φkh, hk(Φ1h, . . . ,Φkh), a)→ A.

Hence – using PA ` ¬A and the fact that PA ⊂ P̂A
ω|\+ AC0,0

ar – one has

P̂A
ω|\+ AC0,0

ar ` ∀a,Φ∃h¬A0(Φ1h, h1(Φ1h), . . . ,Φkh, hk(Φ1h, . . . ,Φkh), a).

The first part of the proposition now follows from the fact that P̂A
ω|\+ AC0,0

ar has (via

negative translation) a functional interpretation in ĤA
ω|\+BR0,1.

15Here we refer to a standard coding fx := 〈f0, . . . , f(x− 1)〉 of finite sequences.
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For the second part we use that for Φ ∈ T there is a function term tA ∈ T such that

tAa h =0 0↔ ¬A0(Φ1h, h1(Φ1h), . . . ,Φkh, hk(Φ1h, . . . ,Φkh), a).

By [31](2.7.8) tA is continuous in h, provably in HAω with a modulus of pointwise continuity
t ∈ T , i.e.

∀h, h̃(
∧
i

(hi(t(a, h)) =0 h̃i(t(a, h))→ tA(a, h) =0 tA(a, h̃)).

The last claim in the proposition follows from 4.2. 2.

Remark 4.10 Classically one can easily find functions h satisfying (γ) for Φ ∈ T (or for

arbitrary continuous Φ) by unbounded recursive search:

Let Φ ∈ T . Using the continuity argument from the proof above ∃h¬A0(. . . h . . .) (which

classically follows trivially from the assumptions of (γ) as in the proof above) implies

∃x0¬A0(. . . λn.(x1)n, . . . , λn.(xk)n . . .). By unbounded search (recursively in a) one finds x
realizing ∃x.
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