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Practical Ways to Reason about new

Ian Stark
BRICS∗, Department of Computer Science

University of Aarhus, Denmark

December 1997

Abstract

The nu-calculus of Pitts and Stark is a typed lambda-calculus, extended with state
in the form of dynamically-generated names. These names can be created locally,
passed around, and compared with one another. Through the interaction between
names and functions, the language can capture notions of scope, visibility and
sharing. Originally motivated by the study of references in Standard ML, the nu-
calculus has connections to local declarations in general; to the mobile processes
of the π-calculus; and to security protocols in the spi-calculus.

This paper introduces a logic of equations and relations which allows one to
reason about expressions of the nu-calculus: this uses a simple representation
of the private and public scope of names, and allows straightforward proofs of
contextual equivalence (also known as observational, or observable, equivalence).
The logic is based on earlier operational techniques, providing the same power but
in a much more accessible form. In particular it allows intuitive and direct proofs
of all contextual equivalences between first-order functions with local names.

This supersedes the earlier BRICS Report RS-96-31. It also expands on the paper

presented in Typed Lambda Calculi and Applications: Proceedings of the Third

International Conference TLCA ’97, Lecture Notes in Computer Science 1210,

Springer-Verlag 1997.

∗Basic Research in Computer Science, a centre of the Danish National Research Foun-
dation.





1 Introduction

Many convenient features of programming languages today involve some no-
tion of generativity : the idea that an entity may be freshly created, dis-
tinct from all others. This is clearly central to object-oriented programming,
with the dynamic creation of new objects as instances of a class, and the
issue of object identity. In the study of concurrency, the π-calculus [20] uses
dynamically-generated names to describe the behaviour of mobile processes,
whose communication topology may change over time. The spi-calculus of
Abadi and Gordon [1] uses generative names to model cryptographic keys
in the verification of security protocols. In functional programming, the
language Standard ML [21] extends typed lambda-calculus with a number
of features, of which mutable reference cells, exceptions and user-declared
datatypes are all generative; so are the structures and functors of the mod-
ule system. More broadly, the concept of lexical scope rests on the idea that
local identifiers should always be treated as fresh, distinct from any already
declared.

Such dynamic creation occurs at a variety of levels, from the run-time
behaviour of Lisp’s gensym to resolving questions of scope during program
linking. Generally, the intention is that its use should be intuitive or even
transparent to the programmer. Nevertheless, for correct implementation
and sound design it is essential to develop an appropriate abstract under-
standing of what it means to be new.

The nu-calculus was devised to explore this common property of gener-
ativity, by adding names to the simply-typed lambda-calculus. Names may
be created locally, passed around, and compared with one another, but that
is all. The language is reviewed in Section 2; a full description is given by
Pitts and Stark in [28, 29], with its operational and denotational semantics
studied at some length in [35, 36]. Central to the nu-calculus is the use of
name abstraction: the expression νn.M represents the creation of a fresh
name, which is then bound to n within the body of M . So, for example, the
expression

νn.νn′.(n = n′)

generates two new names, bound to n and n′, and compares them, finally
returning the answer false. Functions may have local names that remain
private and persist from one use of the function to the next; alternatively,
names may be passed out of their original scope and can even outlive their
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creator. It is precisely this mobility of names that allows the nu-calculus to
model issues of locality, privacy and non-interference.

Two expressions of the nu-calculus are contextually equivalent1 if they
can be freely exchanged in any program: there is no way in the language
itself to distinguish them. Contextual equivalence is an excellent property
in principle, but in practice often hard to work with because of the need to
consider all possible programs. As a consequence a number of authors have
made considerable effort, in various language settings, to develop convenient
methods for demonstrating contextual equivalence.

Milner’s context lemma [19], Gordon’s ‘experiments’ [9], and the ‘ciu’
theorems of Mason and Talcott [15, 37], provide one such approach. These
show that instead of all program contexts, it is sufficient to consider only
those in some particular form. For the nu-calculus, a suitable context lemma
is indeed available [35, §2.6] and states that one need only consider so-called
‘argument contexts’. However even this reduced collection of contexts is still
inconveniently large, a problem arising from the imperative nature of name
creation.

Alternatively, one can look for relations that imply contextual equiva-
lence but are easier to work with. One possibility is to define such relations
directly from the operational semantics of the language, as with the applica-
tive bisimilarity variously used by Abramsky [2], Howe [13], Gordon [9], and
others. Denotational semantics provides another route: if two expressions
have equal interpretation in some adequate model, then they are contextu-
ally equivalent. For the nu-calculus, such operational methods are developed
and refined in [28, 29], while categorical models are presented in [36]. Both
approaches are treated at length in [35].

In principle, methods such as these do give techniques for proving con-
textual equivalences. In practice however, they are often awkward and can
require rather detailed mathematical knowledge. The contribution of this
paper is to take two existing operational techniques, and extract from them
a straightforward logic that allows simple and direct reasoning about contex-
tual equivalence in the nu-calculus.

The first operational technique, applicative equivalence, gives rise to an
equational logic with assertions of the form

s,Γ `M1 =σ M2 .

1The same property is variously known as {operational/observational/observable}
{equivalence/congruence}.
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If such an assertion can be proved using the rules of the logic, then it is certain
that expressions M1 and M2 are contextually equivalent (here s and Γ list
the free names and variables respectively). This equational scheme is simple,
but not particularly complete: it is good for reasoning in the presence of
names, but not so good at reasoning about names themselves.

The technique of operational logical relations refines this by considering
just how different expressions make use of their local names. The correspond-
ing logic is one of relational reasoning, with assertions of the form

Γ `M1 Rσ M2 .

Here R is a relation between the free names of M1 and M2 that records
information on their privacy and visibility. This logic includes the equational
one, and is considerably more powerful: it is sufficient to prove all contextual
equivalences between expressions of first-order function type.

It is significant that these schemes both build on existing methods; all
the proofs of soundness and completeness work by transferring correspond-
ing properties from the earlier operational techniques. For the completeness
results in particular this is a considerable saving in proof effort. Such in-
cremental development continues a form of ‘technology transfer’ from the
abstract to the concrete: these same operational techniques were in turn
guided by a denotational semantics for the nu-calculus based on categorical
monads.

The layout of the paper is as follows: Section 2 reviews the nu-calculus
and gives some representative examples of contextual equivalence; Section 3
describes the techniques of applicative equivalence and operational logical
relations; Section 4 explains the new logic for equational reasoning; Section 5
extends this to a logic for relational reasoning; and Section 6 concludes.

Related Work

The general issue of adding effects to functional languages has received con-
siderable attention over time, and there is a substantial body of work concern-
ing operational and denotational methods for proving contextual equivalence.
A selection of references can be found in [30, 37], for example. However, not
so many practical systems have emerged for reasoning about expressions and
proving actual examples of contextual equivalence.

Felleisen and Hieb [6] present a calculus for equational reasoning about
state and control features. This extends βv-interconvertibility and is similar
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to the equational reasoning of this paper, in that it is correct and convenient
for proving contextual equivalence, but not particularly complete.

Mason and Talcott’s logic for reasoning about destructive update in Lisp
[16] is again similar in power to our equational reasoning. Moreover, our
underlying operational notion of applicative equivalence corresponds quite
closely to Mason’s ‘strong isomorphism’ [14]. Further work [17] adds some
particular reasoning principles that resemble aspects of our relational rea-
soning, but can only be applied to first-order functions; by contrast, our
techniques remain valid at all higher function types. In a similar vein, the
‘variable typed logic of effects’ (VTLoE) of Honsell, Mason, Smith and Tal-
cott [12] is an operationally-based scheme for proving certain assertions about
functions with state.

The ‘computational metalanguage’ of Moggi [22] provides a general
method for equational reasoning about additions to functional languages.
Its application to the nu-calculus is discussed in [35, §3.3], where it is shown
to correspond closely to applicative equivalence. Related to this is ‘evaluation
logic’, a variety of modal logic that can express the possibility or certainty of
certain computational effects [24, 27]. Moggi has shown how a variety of pro-
gram logics, including VTLoE, can be expressed within evaluation logic [23].

Although the nu-calculus may appear simpler than the languages consid-
ered in the work cited, the notion of generativity it highlights is still of real
significance. Moreover, the relational logic presented here goes beyond all of
the above in the variety of contextual equivalences it can prove: we properly
capture the subtle interaction between local declarations and higher-order
functions.

2 The Nu-Calculus

A full description of the nu-calculus can be found in [35, 36]; this section gives
just a brief overview. The language is based on the simply-typed lambda-
calculus, with a hierarchy of function types σ → σ′ built over ground types
o of booleans and ν of names. Expressions have the form

M ::= x | n | true | false | if M then M else M

| M = M | νn.M | λx:σ.M |MM .

Here x and n are typed variables and names respectively, taken from sepa-
rate infinite supplies. The expression ‘M = M ’ tests for equality between
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s,Γ ` x : σ
(x : σ ∈ Γ)

s,Γ ` n : ν
(n ∈ s)

s,Γ ` b : o
(b = true, false)

s,Γ ` B : o s,Γ `M : σ s,Γ `M ′ : σ
s,Γ ` if B then M else M ′ : σ

s,Γ ` N : ν s,Γ ` N ′ : ν

s,Γ ` (N = N ′) : o

s⊕ {n},Γ `M : σ

s,Γ ` νn.M : σ

s,Γ⊕ {x : σ} `M : σ′

s,Γ ` λx:σ.M : σ → σ′
s,Γ ` F : σ → σ′ s,Γ `M : σ

s,Γ ` FM : σ′

Figure 1: Rules for assigning types to expressions of the nu-calculus

two names. Name abstraction νn.M creates a fresh name bound to n within
the body M ; during evaluation, names may outlive their creator and escape
from their original scope. We implicitly identify expressions which only differ
in their choice of bound variables and names (α-conversion). A useful ab-
breviation is new for νn.n; this is the expression that generates a new name
and then immediately returns it.

Expressions are typed according to the rules in Figure 1. The type asser-
tion

s,Γ `M : σ

says that in the presence of s and Γ the expression M has type σ. Here s is a
finite set of names, Γ is a finite set of typed variables, and M is an expression
with free names in s and free variables in Γ. The symbol ⊕ represents disjoint
union, here in s⊕ {n} and Γ⊕ {x : σ}. We may omit Γ when it is empty.

An expression is in canonical form if it is either a name, a variable, one of
the boolean constants true or false, or a function abstraction. These are to
be the values of the nu-calculus, and correspond to weak head normal form
in the lambda-calculus. An expression is closed if it has no free variables; a
closed expression may still have free names. We define the sets

Expσ(s,Γ) = {M | s,Γ `M : σ }
Canσ(s,Γ) = {C | C ∈ Expσ(s,Γ), C canonical }

5



Expσ(s) = Expσ(s, ∅)
Canσ(s) = Canσ(s, ∅)

of expressions and canonical expressions, open and closed.
The operational semantics of the nu-calculus is specified by the induc-

tively defined evaluation relation given in Figure 2. Elements of the relation
take the form

s `M ⇓σ (s′)C

where s and s′ are disjoint finite sets of names, M ∈ Expσ(s) and C ∈
Canσ(s⊕ s′). This is intended to mean that in the presence of the names s,
expression M of type σ evaluates to canonical form C and creates fresh
names s′. We may omit s or s′ when they are empty.

Evaluation is chosen to be left-to-right and call-by-value, after Stan-
dard ML; it can also be shown to be deterministic and terminating [35,
Theorem 2.4]. In addition to this ‘big step’ semantics, there is an equiva-
lent ‘small step’ version that specifies a reduction relation M →σ M

′. As
usual this factors into redexes within reduction contexts, which highlight the
detailed progress of nu-calculus computation [35, §2.3].

As an example of evaluation, consider the judgement

` (λx:ν.(x = x))(νn.n) ⇓o (n)true .

First the argument νn.n (or new) is evaluated, returning a fresh name bound
to n. This is in turn bound to the variable x, and the body of the function
compares this name to itself, giving the result true. Compare this with

` (νn′.λx:ν.(x = n′))(νn.n) ⇓o (n′, n)false .

Here the evaluation of the function itself creates a fresh name, bound to n′;
the argument provides another fresh name, and the comparison then returns
false.

Notice that for the rule (LOCAL) to evaluate a name abstraction νn.M ,
the identifier n must not occur elsewhere (n /∈ (s⊕ s1)). We can always
ensure this through α-conversion, in the same way that we avoid variable
capture during substitution M [C/x].

Repeated evaluation of a name abstraction will give different fresh names.
Thus the two expressions

νn.λx:o.n and λx:o.νn.n
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(CAN)
s ` C ⇓σ C

C canonical

(COND1)
s ` B ⇓o (s1)true s⊕ s1 `M ⇓σ (s2)C

s ` if B then M else M ′ ⇓σ (s1 ⊕ s2)C

(COND2)
s ` B ⇓o (s1)false s⊕ s1 `M ′ ⇓σ (s2)C ′

s ` if B then M else M ′ ⇓σ (s1 ⊕ s2)C ′

(EQ1)
s ` N ⇓ν (s1)n s⊕ s1 ` N ′ ⇓ν (s2)n

s ` (N = N ′) ⇓o (s1 ⊕ s2)true
n ∈ s

(EQ2)
s ` N ⇓ν (s1)n s⊕ s1 ` N ′ ⇓ν (s2)n′

s ` (N = N ′) ⇓o (s1 ⊕ s2)false
n, n′ distinct

(LOCAL)
s⊕ {n} `M ⇓σ (s1)C

s ` νn.M ⇓σ ({n} ⊕ s1)C
n /∈ (s⊕ s1)

(APP)

s ` F ⇓σ→σ′ (s1)λx:σ.M ′ s⊕ s1 `M ⇓σ (s2)C
s⊕ s1 ⊕ s2 `M ′[C/x] ⇓σ′ (s3)C ′

s ` FM ⇓σ′ (s1 ⊕ s2 ⊕ s3)C ′

Figure 2: Rules for evaluating expressions of the nu-calculus
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behave differently: the first evaluates to the function λx:o.n, with every
subsequent application returning the private name bound to n; while the
second gives a different fresh name as result each time it is applied. The
expressions are distinguished by the program

(λf : o→ ν . (f true = f true)) 〈〈−〉〉

which evaluates to true or false according to how the hole 〈〈−〉〉 is filled.
This leads us to the notion of program context. A formal definition is

given in [35, §2.4]; here we simply note that the form P 〈〈−〉〉 represents a
program P with some number of holes 〈〈−〉〉, and in P 〈〈(~x)M〉〉 these are
filled by an expression M whose free variables are in the list ~x. There is an
arrangement to capture these free variables, and the completed program is a
closed expression of boolean type.

Definition 1 (Contextual Equivalence). If M1,M2 ∈ Expσ(s,Γ) then
we say that they are contextually equivalent, written

s,Γ `M1 ≈σ M2

if for all closing program contexts P 〈〈−〉〉 and boolean values b ∈ {true, false},

( ∃s1 . s ` P 〈〈(~x)M1〉〉 ⇓o (s1)b ) ⇐⇒ ( ∃s2 . s ` P 〈〈(~x)M2〉〉 ⇓o (s2)b ).

That is, P 〈〈−〉〉 always evaluates to the same boolean value, whether the
hole is filled by M1 or M2. If both s and Γ are empty then we write simply
M1 ≈σ M2.

This is in many ways the right and proper notion of equivalence between
nu-calculus expressions. For example to check code transformations, replace
algorithms, or match specification to implementation, contextual equivalence
is the benchmark for correctness. However the quantification over all pro-
grams makes it inconvenient to demonstrate directly; as discussed in the
introduction, the purpose of this paper is to present simple methods for rea-
soning about contextual equivalence without the need to consider contexts
or even evaluation.

Examples.

Up to contextual equivalence unused names are irrelevant, as is the order in
which names are generated:

s,Γ ` νn.M ≈σ M n /∈ fn(M) (1)
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s,Γ ` νn.νn′.M ≈σ νn′.νn.M . (2)

Evaluation respects contextual equivalence:

s `M ⇓σ (s′)C =⇒ s `M ≈σ νs′.C (3)

where νs′.C abbreviates multiple name abstractions. A variety of equiva-
lences familiar from the call-by-value lambda-calculus also hold. For instance
Plotkin’s βv-rule [31]: if C ∈ Canσ(s,Γ) and M ∈ Expσ′(s,Γ⊕ {x : σ}) then

s,Γ ` (λx:σ.M)C ≈σ′ M [C/x]. (4)

Names can be used to detect that general β-equivalence fails, as with

(λx:ν.x = x)new 6≈o (new = new) (5)

which evaluate to true and false respectively. More interestingly, distinct
expressions may be contextually equivalent if they differ only in their use of
‘private’ names:

νn.λx:ν.(x = n) ≈ν→o λx:ν.false . (6)

Here the right-hand expression is the function that always returns false;
while the left-hand expression evaluates to a function with a persistent lo-
cal name n, that it compares against any name supplied as an argument.
Although these function bodies are quite different, no external context can
supply the private name bound to n that would distinguish between them;
hence the original expressions are in fact contextually equivalent.

A range of further examples can be found in earlier work on the nu-
calculus [28, 29, 35, 36]. Among other things, these show how expressions
of higher type can capture finer graduations of privacy and sharing than
that in (6). Analysing such behaviour also demands more complex testing
contexts: for example, the function

νn.νn′.λx:ν.(if x = n′ then n else n′)

must be applied at least twice to extract all the names within it.
Taking this further still, there is a representation of the natural numbers

as functions from names to names: a set of expressions {Fp : ν → ν | p ∈ N}
where each Fp cycles through (p+1) local names [35, §2.5]. This even supports
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an addition operation A with AFpFq ≈ Fp+q. To show however that (p 6=
q ⇒ Fp 6≈ Fq) requires a context that applies the functions at least min(p, q)
times, passing the result of each application in again as the argument of the
next. This is in sharp contrast to PCF or other pure simply-typed lambda-
calculi, where Milner’s context lemma proves that to distinguish two terms
of type σ → σ′ it is only necessary to apply them once, to some term of the
structurally simpler type σ [19].

3 Operational Reasoning

This section describes two operational techniques for demonstrating contex-
tual equivalences in the nu-calculus. Applicative equivalence captures much
of the general behaviour of higher-order functions and their evaluation, while
the more sophisticated operational logical relations highlight the particular
properties of name privacy and visibility. Both are discussed in more detail
in [28] and [35], which also give proofs of the results below.

Definition 2 (Applicative Equivalence). We define two relations, one
between canonical forms and another for general expressions:

s ` C1 ∼can
σ C2 for C1, C2 ∈ Canσ(s), and

s `M1 ∼exp
σ M2 for M1,M2 ∈ Expσ(s).

These are given together by induction over the structure of the type σ, ac-
cording to:

s ` b1 ∼can
o b2 ⇐⇒ b1 = b2

s ` n1 ∼can
ν n2 ⇐⇒ n1 = n2

s ` λx:σ.M1 ∼can
σ→σ′ λx:σ.M2 ⇐⇒ ∀s′, C ∈ Canσ(s⊕ s′) .

s⊕ s′ `M1[C/x] ∼exp
σ′ M2[C/x]

s `M1 ∼exp
σ M2 ⇐⇒ ∃s1, s2, C1 ∈ Canσ(s⊕ s1), C2 ∈ Canσ(s⊕ s2) .

s `M1 ⇓σ (s1)C1 & s `M2 ⇓σ (s2)C2

& s⊕ (s1 ∪ s2) ` C1 ∼can
σ C2.

The intuition behind this definition is as follows.
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• Functions are equivalent if they give equivalent results at all possible
arguments. This includes ones that use additional fresh names, hence
the use of C ∈ Canσ(s⊕ s′).
• Expressions in general are equivalent if they evaluate to equivalent

canonical forms. The use of (s1 ∪ s2) on the last line means that unused
fresh names are discounted (‘garbage collection’).

It is immediate that ∼exp
σ coincides with ∼can

σ on canonical forms; we write
them indiscriminately as ∼σ and call the relation applicative equivalence.2

We can extend the relation to open expressions: if M1,M2 ∈ Expσ(s,Γ) then
we define

s,Γ `M1 ∼σ M2 ⇐⇒ ∀s′, Ci ∈ Canσi(s⊕ s′) i = 1, . . . , n .

s⊕ s′ `M1[ ~C/~x] ∼σ M2[ ~C/~x]

where Γ = {x1 : σ1, . . . , xn : σn}. This says that the open expressions M1

and M2 are applicative equivalent if replacing their variables by any closed
canonical forms, possibly ones that use some extra names s′, gives applicative
equivalent closed expressions M1[ ~C/~x] and M2[ ~C/~x].

Applicative equivalence is based on similar ‘bisimulation’ relations of
Abramsky [2] and Howe [13] for untyped lambda-calculus, and Gordon [10]
for typed lambda-calculus. It is well behaved and suffices to prove contextual
equivalence:

Theorem 3. Applicative equivalence is an equivalence relation and a con-
gruence; it therefore implies contextual equivalence:

s,Γ `M1 ∼σ M2 =⇒ s,Γ `M1 ≈σ M2.

The proof of the theorem centres on the demonstration that applicative
equivalence is a congruence, i.e. it is preserved by all the rules for forming
expressions of the nu-calculus. It is well known that a direct proof of this
fails; the most popular way around is known as ‘Howe’s method’ [13]. Because
the nu-calculus is simply typed though, we can instead use an original and
much simpler method that proceeds via an intermediate relation of ‘logical
equivalence’. The details are in [35, §2.7].

2This is a different relation to the applicative equivalence of [28, Def. 13] and [29,
Def. 3.4] which (rather unfortunately) turns out not to be an equivalence at all.

11



Applicative equivalence verifies examples (1)–(4) above, and numerous
others: a range of contextual equivalences familiar from the standard typed
lambda-calculus, and all others that make straightforward use of names.
What it cannot capture is the notion of privacy that lies behind example (6);
where equivalence relies on a particular name remaining secret.

To address the distinction between private and public uses of names, we
introduce the idea of a span between name sets. A span R : s1 
 s2 is an
injective partial map from s1 to s2; this is equivalent to a pair of injections
s1 � R� s2, or a relation such that

(n1, n2) ∈ R & (n′1, n
′
2) ∈ R =⇒ (n1 = n′1)⇔ (n2 = n′2)

for n1, n
′
1 ∈ s1 and n2, n

′
2 ∈ s2. The idea is that for any span R the bijection

between dom(R) ⊆ s1 and cod(R) ⊆ s2 represents matching use of ‘visible’
names, while the remaining elements not in the graph of R are ‘unseen’
names. The identity relation id s : s
 s is clearly a span; and if R : s1 
 s2

and R′ : s′1 
 s′2 are spans on distinct name sets, then their disjoint union
R⊕R′ : s1 ⊕ s′1 
 s2 ⊕ s′2 is also a span. Starting from spans, we now build
up a collection of relations between expressions of higher types.

Definition 4 (Logical Relations). If R : s1 
 s2 is a span then we define
relations

Rcan
σ ⊆ Canσ(s1)× Canσ(s2)

Rexp
σ ⊆ Expσ(s1)× Expσ(s2)

by induction over the structure of the type σ, according to:

b1 R
can
o b2 ⇐⇒ b1 = b2

n1 R
can
ν n2 ⇐⇒ (n1, n2) ∈ R

(λx:σ.M1) Rcan
σ→σ′ (λx:σ.M2) ⇐⇒
∀R′ : s′1 
 s′2, C1 ∈ Canσ(s1 ⊕ s′1), C2 ∈ Canσ(s2 ⊕ s′2) .

C1 (R⊕R′)can
σ C2 =⇒ M1[C1/x] (R⊕R′)exp

σ′ M2[C2/x]

M1 R
exp
σ M2 ⇐⇒
∃R′ : s′1 
 s′2, C1 ∈ Canσ(s1 ⊕ s′1), C2 ∈ Canσ(s2 ⊕ s′2) .

s1 `M1 ⇓σ (s′1)C1 & s2 `M2 ⇓σ (s′2)C2 & C1 (R⊕R′)can
σ C2.
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The intuition here differs somewhat from that for applicative equivalence:
in general because we now have spans to consider, and at function types in
particular because this is a ‘logical’ rather than an ‘applicative’ relation.

• Functions are related if they take related arguments to related results.
This is the ‘logical’ aspect. Dynamic name creation requires that we
consider arguments using fresh names, hence the extra span R′ : s′1 

s′2.

• Expressions are related if some span can be found between their local
names that will relate their canonical forms.

The operational relations Rcan
σ and Rexp

σ coincide on canonical forms, and we
may write them as Ropn

σ indiscriminately. We can extend the relations to
open expressions: for any M1 ∈ Expσ(s1,Γ) and M2 ∈ Expσ(s2,Γ) define

Γ `M1 R
opn
σ M2 ⇐⇒ ∀R′ : s′1 
 s′2,

∀Cij ∈ Canσj(si ⊕ s′i) i = 1, 2 j = 1, . . . , n .

( &n
j=1 . C1j (R ⊕R′)can

σj
C2j )

=⇒ M1[ ~C1/~x] (R⊕R′)exp
σ M2[ ~C2/~x]

where Γ = {x1 : σ1, . . . , xn : σn}. Again the ‘logical’ form directs this defini-
tion: related open expressions are those that give related closed expressions
under every instantiation of free variables by related canonical forms.

Overall, the intuition is that if Γ `M1 R
opn
σ M2 for some R : s1 
 s2 then

the names in s1 and s2 related by R are public and must be treated similarly
by M1 and M2, while those names not mentioned in R are private and must
remain so. When R is the identity relation id s : s 
 s then all names are
public and we can compare logical relations to contextual equivalence.

Theorem 5. For any expressions M1,M2 ∈ Expσ(s,Γ):

Γ `M1 (id s)
opn
σ M2 =⇒ s,Γ `M1 ≈σ M2. (7)

If σ is a ground or first-order type of the nu-calculus and Γ is a set of variables
of ground type, then the converse also holds:

s,Γ `M1 ≈σ M2 =⇒ Γ `M1 (id s)
opn
σ M2. (8)

Implication (7) says that logical relations are a sound method for proving
contextual equivalence, while implication (8) says that they are also complete
to first order.
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The first step in the proof of soundness is to show that logical relations
are preserved by all the operations of the nu-calculus. For applicative equiv-
alence this was somewhat delicate: here the ‘logical’ quality makes it a fairly
straightforward rule induction. Moving from this congruence property to
soundness itself requires a mild generalisation of contextual equivalence to
contextual R-relations Rcxt

σ , where in particular (id s)
cxt
σ = (≈σ). See [35, §4.1]

for details.
Showing first-order completeness on the other hand is difficult and re-

quires some ingenuity. The proof of is set out in [35, §4.2]: its essence is that
we must exhibit enough testing contexts to show that contextual equivalence
is at least as discriminating as the logical relations.

The following proposition collects various useful results about logical re-
lations. The main proof method is rule induction following the structure of
Definition 4.

Proposition 6.

1. Logical relations are preserved by all the rules for forming expressions
of the nu-calculus.

2. The identity logical relation is reflexive: Γ ` M (id s)σ M . This is the
appropriate Fundamental Theorem for these logical relations.

3. There is a certain transitivity between applicative equivalence and the
logical relations: for any span R : s1 
 s2, if

s1,Γ `M1 ∼σ M2, Γ `M2 R
opn
σ M3 and s2,Γ `M3 ∼σ M4

then it follows that

Γ `M1 R
opn
σ M4.

4. Logical relations subsume applicative equivalence: whenever we have
s,Γ `M1 ∼σ M2 then also Γ `M1 (id s)

opn
σ M2.

Thus logical relations can be used to demonstrate contextual equivalence,
extending and significantly improving on applicative equivalence. They are
not quite sufficient to handle all contextual equivalences (see [35, §4.6]), but
they are complete up to first-order functions; in particular they prove every
example in Section 2 above, and any others where there is a clear distinction
between private and public use of names.
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4 Equational Reasoning

Applicative equivalence is generally much simpler to demonstrate than con-
textual equivalence, and thus it provides a useful proof technique in itself.
However, it is still quite fiddly to apply, and at higher types it involves check-
ing that functions agree on an infinite collection of possible arguments. In
this section we present an equational logic that is of similar power but much
simpler to use in actual proofs.

Assertions in the logic take the form

s,Γ `M1 =σ M2

for open expressions M1,M2 ∈ Expσ(s,Γ). Valid assertions are derived in-
ductively using the rules of Figures 3 and 4. To simplify the presentation we
use here a notion of non-binding univalent context U〈−〉, given by

U〈−〉 ::= 〈−〉M | F 〈−〉 | N = 〈−〉 | 〈−〉 = N ′

| if 〈−〉 then M else M ′

| if B then 〈−〉 else M ′ | if B then M else 〈−〉.

Thus M is always an immediate subterm of U〈M〉, though it may not be the
first to be evaluated. This abbreviation appears in the rules for congruence,
functions and new names.

The first two sets of rules, for equality and congruence, ensure that we
have an equivalence relation, closed under all the operations of the nu-
calculus. The univalent contexts U〈−〉 are simply a convenience; through
transitivity we can easily derive familiar congruence rules like this one for
application:

s,Γ ` F1 =σ→σ′ F2 s,Γ `M1 =σ M2

s,Γ ` F1M1 =σ′ F2M2

.

The rules for functions are more delicate as general β and η-equivalences do
not hold for a call-by-value system such as the nu-calculus. Even so, the four
rules βv, ηv, βid and βU given here still allow considerable scope for function
manipulation. In particular the βU -rule lifts U〈−〉 contexts through function
application; this is a generalisation of Sabry and Felleisen’s βlift [33, Fig. 1].

The rules for booleans precisely capture the properties of true and false,
including the fact that they are the only possible values of type o.
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Equality:

s,Γ `M =σ M

s,Γ `M1 =σ M2

s,Γ `M2 =σ M1

s,Γ `M1 =σ M2 s,Γ `M2 =σ M3

s,Γ `M1 =σ M3

Congruence:

s,Γ `M1 =σ M2

s,Γ ` U〈M1〉 =σ′ U〈M2〉
s⊕ {n},Γ `M1 =σ M2

s,Γ ` νn.M1 =σ νn.M2

s,Γ⊕ {x : σ} `M1 =σ′ M2

s,Γ ` λx:σ.M1 =σ→σ′ λx:σ.M2

Functions:

βv
s,Γ ` (λx:σ.M)C =σ′ M [C/x]

C canonical

ηv
s,Γ ` C =σ→σ′ λx:σ.Cx

C canonical

βid
s,Γ ` (λx:σ.x)M =σ M

βU
s,Γ ` (λx:σ.U〈M〉)M ′ =σ′ U〈(λx:σ.M)M ′〉 (x /∈ fv(U〈−〉))

Figure 3: Rules for deriving equational assertions (first half).
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Booleans:

s,Γ ` (if true then M else M ′) =σ M s,Γ ` (if false then M else M ′) =σ M ′

s,Γ `M1[true/b] =σ M2[true/b] s,Γ `M1[false/b] =σ M2[false/b]

s,Γ⊕ {b : o} `M1 =σ M2

Names:

s,Γ ` (n = n) =o true
(n ∈ s)

s,Γ ` (n = n′) =o false
(n, n′ ∈ s distinct)

s,Γ `M1[n/x] =σ M2[n/x] each n ∈ s
s⊕ {n′},Γ `M1[n′/x] =σ M2[n′/x] some fresh n′

s,Γ⊕ {x : ν} `M1 =σ M2

New names:

s,Γ `M =σ νn.M
(n /∈ fn(M))

s,Γ ` νn.νn′.M =σ νn′.νn.M

s,Γ ` U〈νn.M〉 =σ νn.U〈M〉
(n /∈ fn(U〈−〉))

Figure 4: Rules for deriving equational assertions (second half).
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The most interesting rules of the logic are those concerned with names
and name creation. Two expressions with a free variable of type ν are equal
if they are equal after instantiation with any existing name, and with a single
representative fresh one. Unused names can be garbage collected, and name
abstractions νn.(−) may be moved past each other. They can also move
through contexts U〈−〉, providing that name capture is avoided.

Many of these rules are simplified because evaluation in the nu-calculus
always terminates. For a language with divergence we could follow the same
general scheme but with some finer distinctions: equality s,Γ ` M1 =σ M2

should split into three mutually dependent assertions:

order s,Γ `M1 ≤σ M2, convergence s,Γ `M ↓ and divergence s,Γ `M ↑;

while univalent contexts U〈−〉 must be distinguished according to whether
or not they evaluate their hole 〈−〉. A guideline here is Riecke’s proof system
for value PCF [32].

Proposition 7. This equational theory respects evaluation:

s `M ⇓σ (s′)C =⇒ s `M =σ νs
′.C .

Proof. It is not hard to demonstrate, using the equational theory, that every
rule for evaluation in Figure 2 preserves the property given. Note that the
ambiguity in the multiple name abstraction νs′.C is acceptable because the
equational logic allows name abstractions to be moved past each other.

The corresponding result for the small-step semantics M →σ M
′ is even

simpler to prove: the rules defining→ are a proper subset of those for = and
so

M →σ M
′ =⇒ s `M =σ M

′ for all M,M ′ ∈ Expσ(s)

follows immediately.

We now link the equational theory to the operational reasoning methods
of Section 3.

Theorem 8 (Soundness and Completeness). Equational reasoning can
be used to prove applicative equivalence, and hence also contextual equiva-
lence:

s,Γ `M1 =σ M2 =⇒ s,Γ `M1 ∼σ M2 (9)
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s,Γ `M1 =σ M2 =⇒ s,Γ `M1 ≈σ M2. (10)

Moreover, it corresponds exactly to applicative equivalence at first-order types,
and to contextual equivalence at ground types:

s,Γ `M1 ∼σ M2 =⇒ s,Γ `M1 =σ M2 σ first-order, ground Γ (11)

s `M1 ≈σ M2 =⇒ s `M1 =σ M2 σ ∈ {o, ν}. (12)

Proof. Soundness, implication (9), follows from the fact that every rule of
Figures 3 and 4 for =σ also holds for ∼σ. Theorem 3 gives us the rules for
equality and congruence; every other rule has to be handled individually by
reference to the definition of applicative equivalence. This in turn involves
considering how each expression in a rule may evaluate — which is at least
helped by the fact that the evaluation relation s `M ⇓σ (s′)C is both syntax-
directed and deterministic. The details are straightforward but long-winded.

From (9) we apply Theorem 3, which states that applicative equiva-
lence ∼σ implies contextual equivalence ≈σ. This immediately gives re-
sult (10), that provable equality entails contextual equivalence.

The completeness results (11) and (12) are a little more involved. For
applicative equivalence we follow its definition and work by induction over
types, separating canonical forms from general expressions and treating
closed expressions before open ones. The order of proof is as follows.

• Base case: closed canonical forms of ground type.

s ` C1 ∼can
σ C2 =⇒ s ` C1 =σ C2 σ ∈ {o, ν}.

Here C1 and C2 are necessarily the same ground constant: true, false
or some name n ∈ s.
• Extension to general expressions. If for some type σ we have

s ` C1 ∼can
σ C2 =⇒ s ` C1 =σ C2 for all s, C1, C2

then the same result holds for general expressions:

s `M1 ∼exp
σ M2 =⇒ s `M1 =σ M2 for all s,M1,M2.

Proving this uses the definition of ∼exp
σ from ∼can

σ , Proposition 7 on
evaluation, and the equational rules for manipulating new names.
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• First-order function types. This is the induction step: assuming the
result at ∼exp

σ we prove it for ∼can
o→σ and ∼can

ν→σ. The crucial observa-
tion is that the definition of applicative equivalence at these function
types provides just the hypotheses needed by the equational rules that
introduce free boolean or name variables. For example, suppose that
we have

s ` λb:o.M1 ∼can
o→σ λb:o.M2 .

Expanding the definition of ∼can
o→σ gives

s `M1[true/b] ∼can
σ M2[true/b] & s `M1[false/b] ∼can

σ M2[false/b]

which by the inductive hypothesis entails

s `M1[true/b] =σ M2[true/b] & s `M1[false/b] =σ M2[false/b] .

The boolean variable rule supplies

s, {b : o} `M1 =σ M2

and congruence provides

s ` λb:o.M1 =o→σ λb:o.M2

as required. The argument for names, ∼can
ν→σ, is similar.

• Open expressions. This requires induction on the length of the con-
text Γ. As each variable is of type o or ν, the induction step proceeds
exactly as above for first-order functions, without the need to lambda-
abstract at the end.

The final result to show is that equational reasoning is complete for prov-
ing contextual equivalence at ground types. This follows immediately from
Proposition 7 on evaluation and the observation that:

• two closed boolean expressions are contextually equivalent if and only
if they both evaluate to true, or both to false; and

• two closed name expressions are contextually equivalent if and only if
they both evaluate to the same known name, or both compute some
fresh name.
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These facts are easily established by the construction of some simple testing
contexts.

At ground and first-order function types then, equational reasoning is just
as powerful as applicative equivalence. At higher types applicative equiva-
lence is in principle stronger; but this advantage is an illusion. In fact the only
way to demonstrate it is to use some more sophisticated technique (such as
logical relations) to show that expressions with certain properties can never
be written in the nu-calculus. In practice, the equational logic is much more
direct and convenient for reasoning about higher-order functions.

The sample contextual equivalences (1)–(4) from Section 2 are all con-
firmed immediately by the equational theory. We expand here on two further
examples. First, that full β-reduction can be applied to functions with uni-
valent bodies:

βone s,Γ ` (λx:σ.U〈x〉)M ≈σ′ U〈M〉, (13)

which we deduce from

s,Γ ` (λx:σ.U〈x〉)M = U〈(λx:σ.x)M〉 by βU

= U〈M〉 by βid and congruence.

This extends easily to nested U〈−〉 contexts, showing that β-reduction is
valid for any function whose bound variable appears just once.

Furthermore, if a function makes no use of its argument at all, then it
need not be evaluated:

βzero s,Γ ` (λx:σ.M)M ′ ≈σ′ M if x /∈ fv(M). (14)

In a certain sense then the nu-calculus is free of side-effects. To prove this, we
use the univalent context if true then M else 〈−〉, which is certain to ignore
the contents of its hole. Thus:

s,Γ ` (λx:σ.M)M ′ = (λx:σ.if true then M else M)M ′

= if true then M else ((λx:σ.M)M ′) by βU

= M.

Note that both (13) and (14) may include expressions with free variables of
any type, and are truly higher-order: it matters not at all what is the order
of the final type σ′.
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5 Relational Reasoning

The equational logic presented above is fairly simple, and powerful in that
it allows correct reasoning in the presence of an unusual language feature.
However it is unable to distinguish between private and public names, and
thus cannot prove example (6) of Section 2. The same limitation in the
operational technique of applicative equivalence is addressed by a move to
logical relations; in this section we introduce a correspondingly refined scheme
for relational reasoning about the nu-calculus. As with the equational theory,
the aim is to provide all the useful power of operational logical relations in a
more accessible form.

Assertions now take the form

Γ `M1 Rσ M2

where R : s1 
 s2 is a span such that M1 ∈ Expσ(s1,Γ) and M2 ∈
Expσ(s2,Γ). As with operational logical relations, the intuition is that the
names in s1 and s2 related by R are public and must be treated similarly
by M1 and M2, while those names not mentioned in R are private and must
remain so.

To write these assertions, we first need an explicit language to describe
spans between sets of names. We build this up using the operation of disjoint
sum R⊕R′ : s1 ⊕ s′1 
 s2 ⊕ s′2 over the following basic spans:

−→n : ∅
 {n} ←−n : {n}
 ∅
∅ : ∅
 ∅ n1̂n2 : {n1}
 {n2} nonempty.

In particular, we shall use the derived span:

n̂ = n̂n : {n}
 {n} nonempty.

It is clear that this language is enough to express all finite spans. For example,
consider the two three-element name sets {n1, n2, n3} and {n4, n5, n6}. A
span between them which we might draw as

n1 n4

n2 n5

n3 n6

is written as (n1̂n6)⊕ (n2̂n5)⊕←−n3 ⊕−→n4 .
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Note that the domain and codomain of a span can easily be read off from
this representation.

The rules for deriving relational assertions are given in Figure 5. The
first of these integrates equational results into the logic, so that existing
equational reasoning can be reused and we need only consider spans when
absolutely necessary. This is followed by straightforward rules for congru-
ence and booleans. Note that a trace of logical relations comes through in
the congruence rule for application: related functions applied to related ar-
guments give related results. As usual the most interesting rules are those
concerning names.

To introduce a free variable of type ν requires checking its instantiation
with all related pairs of names, and one representative fresh name. This is a
weaker constraint than the corresponding rule in the equational logic, where
every current name had to be considered; and it is precisely this difference
that makes relational reasoning more powerful.

The final three rules handle the name restriction operator νn.(−), and
capture the notion that local names may be private or public. In combination
with the equational rules for new names, they are equivalent to the following
general rule:

Γ `M1 (R⊕ S)σ M2

Γ ` (νs1.M1) Rσ (νs2.M2)
S : s1 
 s2. (15)

Thus in order to show that two expressions (νs1.M1) and (νs2.M2) are re-
lated it is enough to find some span between their local names under which
the bodies M1 and M2 are related. This matches closely the clause for the
operational relation Rexp

σ in Definition 4.
The search for the right span S here means that relational reasoning

demands a little more creativity than the equational logic. To use the new
name rules successfully requires some insight into how an expression uses its
local names; which if any are ever revealed to a surrounding program.

We now link this relational theory to the operational reasoning methods
of Section 3.

Theorem 9 (Soundness). Relational reasoning can be used to prove the
corresponding operational relations:

Γ `M1 Rσ M2 =⇒ Γ `M1 R
opn
σ M2 .
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Equational Reasoning:

s1,Γ `M1 =σ M2 Γ `M2 Rσ M3 s2,Γ `M3 =σ M4

Γ `M1 Rσ M4
(R : s1 
 s2)

Congruence:

Γ ` x Rσ x
(x : σ ∈ Γ)

Γ ` true Ro true

Γ ` F1 Rσ→σ′ F2 Γ `M1 Rσ M2

Γ ` (F1M1) Rσ′ (F2M2) Γ ` false Ro false

Γ⊕ {x : σ} `M1 Rσ′ M2

Γ ` (λx:σ.M1) Rσ→σ′ (λx:σ.M2)

Γ ` N1 Rν N2 Γ ` N ′1 Rν N
′
2

Γ ` (N1 = N ′1) Ro (N2 = N ′2)

Γ ` B1 Ro B2 Γ `M1 Rσ M2 Γ `M ′1 Rσ M
′
2

Γ ` (if B1 then M1 else M ′1) Rσ (if B2 then M2 else M ′2)

Booleans:

Γ ` (M1[true/b]) Rσ (M2[true/b]) Γ ` (M1[false/b]) Rσ (M2[false/b])

Γ⊕ {b : o} `M1 Rσ M2

Names:

Γ ` n1 Rν n2

( (n1, n2) ∈ R )

Γ ` (M1[n/x]) (R⊕ n̂)σ (M2[n/x]) some fresh n

Γ ` (M1[n1/x]) Rσ (M2[n2/x]) each (n1, n2) ∈ R
Γ⊕ {x : ν} `M1 Rσ M2

New names:

Γ `M1 (R ⊕←−n1)σ M2

Γ ` (νn1.M1) Rσ M2

Γ `M1 (R⊕−→n2)σ M2

Γ `M1 Rσ (νn2.M2)

Γ `M1 (R ⊕ n1̂n2)σ M2

Γ ` (νn1.M1) Rσ (νn2.M2)

Figure 5: Rules for deriving relational assertions.
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By implication (7) of Theorem 5, this can then be used to demonstrate con-
textual equivalence:

Γ `M1 (id s)σ M2 =⇒ s,Γ `M1 ≈σ M2 .

Proof. We need to show that the operational logical relations Ropn
σ satisfy all

the rules of Figure 5. This is reasonably straightforward, by reference to the
various clauses of Definition 4; in particular the congruence rules follow from
the ‘logical’ character of Ropn

σ .
The very first rule is a little different: this integrates relational with equa-

tional reasoning, and corresponds to the transitivity result of Proposition 6(3)
that connects operational logical relations to applicative equivalence. Apply-
ing this here depends in turn on Theorem 8, that provable equality =σ implies
applicative equivalence ∼σ.

Theorem 10 (Completeness). Relational reasoning corresponds exactly
to operational logical relations up to first-order types:

Γ `M1 R
opn
σ M2 =⇒ Γ `M1 Rσ M2 σ first-order, ground Γ.

By implication (8) of Theorem 5, the same result holds for contextual equiv-
alence:

s,Γ `M1 ≈σ M2 =⇒ Γ `M1 (id s)σ M2 σ first-order, ground Γ.

Proof. We follow much the same course as we did in proving the matching
Theorem 8 for the equational logic. Guided by Definition 4 of logical re-
lations, proof is by induction on the size of Γ and the structure of σ; we
distinguish canonical forms from general expressions, and open expressions
from closed ones.

• Base case: closed canonical forms of ground type.

b1 R
can
o b2 =⇒ ` b1 Ro b2

n1 R
can
ν n2 =⇒ ` n1 Rν n2

Expanding the definition of Rcan
o and Rcan

ν respectively, the left hand
sides assert that b1 and b2 are the same boolean constant, and that
names n1 and n2 are related: (n1, n2) ∈ R. In both cases the statement
on the right is then an axiom of the relational logic.
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• Extension to general expressions. If for some type σ we have

C1 R
can
σ C2 =⇒ ` C1 Rσ C2 for all R,C1, C2

then the same result holds for general expressions:

M1 R
exp
σ M2 =⇒ `M1 Rσ M2 for all R,M1,M2.

To show this, suppose that R : s1 
 s2, so Mi ∈ Expσ(si) for i = 1, 2.
Expanding Rexp

σ on the left we have that for some R′ : s′1 
 s′2:

s1 `M1 ⇓σ (s′1)C1 & s2 `M2 ⇓σ (s′2)C2 with C1 (R⊕R′)can
σ C2 .

Applying Proposition 7 to the two evaluations we obtain the equational
assertions

s1 `M1 =σ (νs′1.C1) and s2 `M2 =σ (νs′2.C2) . (16)

By hypothesis, from the relation C1 (R⊕R′)can
σ C2 we can deduce the

judgement ` C1 (R⊕R′)σ C2, and applying the restriction rule (15)
gives

` (νs′1.C1) Rσ (νs′2.C2) . (17)

Taking (16) with (17) and applying the first rule of Figure 5 then proves

`M1 Rσ M2

as required.

• First-order function types. This is the induction step: we assume the
result at Rexp

σ for all R and then prove it for Rcan
o→σ and Rcan

ν→σ. As with
applicative equivalence, the key point is that the definition of logical
relations at function types provides exactly the hypotheses needed for
the rules that introduce free boolean or name variables. For example,
suppose that

(λx:ν.M1) Rcan
ν→σ (λx:ν.M2),

i.e. that for all spans R′ : s′1 
 s′2 and names n1 ∈ s1 ⊕ s′1, n2 ∈ s2 ⊕ s′2
we have

(n1, n2) ∈ R⊕R′ =⇒ (M1[n1/x]) (R⊕R′)exp
σ (M2[n2/x]) .
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Applying the induction hypothesis gives

(n1, n2) ∈ R⊕R′ =⇒ ` (M1[n1/x]) (R⊕R′)σ (M2[n2/x])

and setting R′ to be the spans ∅ : ∅ 
 ∅ and n̂ : {n} 
 {n} for some
fresh n gives just the hypotheses for the rule of Figure 5 introducing
free name variables. Thus we deduce

{x : ν} `M1 Rσ M2

and by congruence

` (λx:ν.M1) Rν→σ (λx:ν.M2)

as required. The argument for booleans, Ro→σ, is similar.

• Open expressions. Apply induction over the length of the context Γ.
Every variable has ground type so the induction step is justified exactly
as for first-order functions above.

This completes the proof of completeness with respect to operational logical
relations. As indicated, we can extend this to contextual equivalence using
the existing result of Theorem 5.

Thus relational reasoning provides a further practical method for reason-
ing about contextual equivalence. Like the equational logic it can be used
freely at higher types and for expressions with free variables. Moreover, be-
cause spans capture the distinction between private and public names, the
relational scheme is significantly more powerful than equational reasoning
alone. Indeed it can prove every contextual equivalence between expressions
of first-order type, thanks to the corresponding (hard) result for operational
logical relations. In particular we obtain a demonstration of the final exam-
ple (6) from Section 2: the crucial closing steps are

x : ν ` (x = n) (←−n )o false

` (λx:ν.(x = n)) (←−n )ν→o (λx:ν.false)

` (νn.λx:ν.(x = n)) ∅ν→o (λx:ν.false)

from which we deduce

νn.λx:ν.(x = n) ≈ν→o λx:ν.false

as required. The span (←−n ) : {n}
 ∅ used here captures our intuition that
the name bound to n on the left hand side is private, never revealed, and
need not be matched in the right hand expression.
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Applicative
equivalence

⊆ Logical
relations

⊆
Contextual
equivalence

Equational
reasoning

⊆

⊆ Relational
reasoning

⊆

⊆

Equal at first-order types

All identical at ground types {o, ν}

Figure 6: Various equivalences between expressions of the nu-calculus

6 Conclusions and Further Work

We have looked at the nu-calculus, a language of names and higher-order
functions, designed to expose the effect of generativity on program behaviour.
Building on operational techniques of applicative equivalence and logical rela-
tions, we have derived schemes for equational and relational reasoning; where
a collection of inductive rules allow for straightforward proofs of contextual
equivalence. We have proved that this approach successfully captures the dis-
tinction between private and public names, and is complete up to first-order
function types.

Figure 6 summarises the inclusions between the five equivalences that
we have considered. For general higher types they are all distinct; at first-
order function types the three right-hand equivalences are identified; and at
ground types all five are the same. Furthermore, as explained after the proof
of Theorem 8, the reasoning schemes of this paper in the bottom row are in
practice just as powerful as the operational methods above them.

One direction for future work is to extend the language from names to
the dynamically allocated references of Standard ML, storage cells that allow
imperative update and retrieval. For integer references, appropriate denota-
tional and operational techniques are already available [35, §5]. These use
relations between sets of states to indicate how equivalent expressions may
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make different use of local storage cells. The idea then would be to make a
similar step in the logic, from name relations to these state relations. For
example, we might replace the span R : s1 
 s2 with a more general predi-
cate φ ⊆ Store(s1)×Store(s2) and construct rules for the relational assertion
Γ `M1 φσ M2.

Recent joint work with Pitts [30] on a language of integer references has
extended previous operational techniques to give logical relations that ex-
actly match contextual equivalence at all types. The innovation is that we
define not only Rcan on canonicals and Rexp on expressions, but also Rcont on
continuations, in a three-way mutually inductive definition. The complete-
ness of this enhanced relational scheme is exciting; however to make full use
of it we need to distill this extra power into new rules for the relational logic.
The aim would be a scheme of rules that precisely characterise contextual
equivalence, while still providing a practical basis for reasoning and proof.

A number of calculi for concurrent and distributed systems make use of
abstract names to keep track of scope or privacy; it seems likely that the
relational logic will adapt to reasoning about some of these. In fact the stan-
dard π-calculus has no function types, so equational reasoning is appropriate
and sufficient [25]; but second and higher-order calculi like CHOCS [38] and
HOπ [34] might benefit from a relational treatment. Other possibilities are
the spi-calculus [1] and the ambient calculus [4], both of which rely explicitly
on the detailed behaviour of names.

Consider for example the spi-calculus, which uses names as a foundation
for reasoning about security protocols. In order to test for authenticity and
secrecy one must verify certain contextual equivalences between processes,
using insight into the visibility of cryptographic keys as represented by local
names. This is exactly the territory over which our relational logic is effective.
Thus where the spi-calculus writes {M}n for expression M encrypted under
key n, we might approximately interpret

{M}n by λx:ν.if x = n then M else ()

for some suitable null expression (). This is a function that will reveal M
only if presented with the correct key n. We can then use relational reasoning
to derive

s ` {M}n (←−n ⊕−→n )ν→σ {M ′}n

for any expressions M andM ′, and it follows that these two encrypted expres-
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sions behave indistinguishably within any process P which does not know n:

s ` (νn.P [{M}n/x]) id s (νn.P [{M ′}n/x]) if n /∈ fn(P ). (18)

This confirms the security of the coding, and captures the fact that P cannot
decipher {M}n without knowing n. The span (←−n ⊕−→n ) used here matches
Abadi and Gordon’s underpinning relation, while equation (18) corresponds
to Proposition 10 of [1] which is essential to their proofs of equivalence be-
tween processes.

Leaving aside such extensions, it should be possible to mechanise the
existing relational logic within a general automated reasoning system like
Isabelle [26] or Coq [3], as Frost and Mason have begun to do for a frag-
ment of VTLoE [7]. This task is aided by the fact that all our definitions
are inductive, and packages to reason about such constructions are by now
fairly common currency among theorem provers. One particularly interesting
aspect is that the nu-calculus uses name abstraction as well as lambda ab-
straction. Reasoning about the latter is still a delicate area — see [5, 11, 18]
for some approaches — and concentrating attention onto pure names may
provide some useful insights. Note that we are not concerned here with
an implementation of the proof that the reasoning system itself is correct
(Theorem 9); what might benefit from machine assistance is the demonstra-
tion that two particular expressions are id s-related, and hence contextually
equivalent.
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