
B
R

IC
S

R
S

-97-38
H

ánćkow
iak

etal.:
O

n
the

D
istributed

C
om

plexity
ofC

om
puting

M
axim

alM
atchings

BRICS
Basic Research in Computer Science

On the Distributed Complexity of
Computing Maximal Matchings

Michał Hańćkowiak
Michał Karo ński
Alessandro Panconesi

BRICS Report Series RS-97-38

ISSN 0909-0878 December 1997

Copyright c© 1997, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/97/38/

On the distributed complexity of

computing maximal matchings

Micha l Hańćkowiak

Dept of Math and CS

Adam Mickiewicz University

Poznań, Poland

Micha l Karoński

Dept of Math and CS

Adam Mickiewicz University

Poznań, Poland

&
Dept of Math and CS

Emory University

Atlanta, Georgia, USA

Alessandro Panconesi∗

BRICS

University of Århus

8000 Århus C, Denmark

1 Introduction

One of the fascinating questions of computer science is whether and
to what extent randomization increases the power of algorithmic proce-
dures. It is well-known that, in general, randomization makes distributed
algorithms more powerful, for there are examples of basic coordination
tasks in asynchronous systems which cannot be solved by determinis-
tic procedures but admit simple randomized solutions. Randomization
is also demonstrably more powerful in synchronous systems, as shown
by the important example of oblivious routing in the hypercube (see,
for instance, [13, 18]). In this paper we are interested in this question
in the context of distributed graph algorithms, where a synchronous,
message-passing network without shared memory is to compute a func-
tion of its own topology, and focus on the problem of computing maxi-
mal matchings. We show that maximal matchings can be computed in
polylogarithmically-many communication rounds by deterministic dis-
tributed algorithms. So, as far as maximal matchings are concerned,
randomization is not necessary to go over the sub-linear “divide”. To

∗This research was done when visiting the Adam Mickiewicz University thanks to the financial
support of the Alexander von Humboldt foundation.

1

put our work into perspective we review some of the relevant facts and
literature.

In a distributed network or architecture without shared memory the
cost of sending a message between two nodes is proportional to their
distance in the network. Since sending messages to far-away nodes is
expensive, it is desirable that computation be based only on information
available locally. This locality constraint can be quite severe when one is
to compute a global function of input data which are spread across the
network and represents a challenge from the point of view of algorithmic
design. This communication problem is completely neglected in the
popular pram model. There, the existence of a shared memory which
can be accessed in unit time allows fast collection and dissemination of
data among the processors. Once this assumption is removed and the
cost of communication is taken into consideration, several computational
problems which were easily solvable suddenly become hard or unsolvable
efficiently, especially if one is seeking deterministic solutions.

The study of distributed graph algorithms goes back to (at least)
the work of Linial [14] where an Ω(log∗ n) lower bound for computing
maximal independent sets (MIS’s) in the ring is given. Together with
the O(log∗ n) upper bound given by a beautiful algorithm of Cole and
Vishkin, this is one of the all too rare examples in complexity theory
where the complexity of a computational problem can be determined
exactly (modulo constants). Interestingly, it can be shown that random-
ization does not help [19].

Generalizing from rings to bounded degree graphs one sees that sev-
eral classical graph structures of both theoretical and practical interest,
including MIS’s, maximal matchings, (∆ + 1)- and even ∆-vertex col-
orings, can be computed in polylogarithmic time [1, 2, 7, 23]. In fact,
many of these algorithms are very satisfactory because they are both
quite simple and really of low complexity, i.e. with small exponents and
no hidden large constants.

Further generalizing from bounded degree graphs to general topolo-
gies has proven elusive, in spite of several efforts [1, 2, 15, 20, 23, 24]. The
situation here is, more or less, as follows. For a reasonably large class of
graph structures, the asymptotically best deterministic algorithm known
to date uses O(nε(n)) rounds, where ε(n) is a function which (very slowly)
goes to 0 as n, the size of the network, grows. These solutions are mainly
of theoretical interest, since the protocols are quite cumbersome and their
implementation would probably be prohibitively expensive. On the other

2

hand, once randomization is allowed, the same graph structures can be
computed in O(polylog(n)) rounds. Furthermore, these randomized al-
gorithms are usually extremely simple and their actual complexity is very
low. For instance, (∆ + 1)–vertex coloring and MIS can be computed in
O(logn) rounds with high probability by exceedingly simple protocols
[16, 17, 21]. Another important case is that of (O(logn), O(logn))–
decompositions, a very interesting type of graph decomposition with
many applications, which can be computed in O(log2 n) rounds [15]. In
fact, there exist non-trivial functions, such as nearly optimal edge colour-
ings, that can be computed, with high probability, by extremely simple,
indeed trivial, randomized algorithms in o(logn) (little-oh of n) rounds or
even, under suitable degree assumptions, in as few asO(log logn) rounds
[8].

The question then is whether, in the context of distributed graph
algorithms, randomization is necessary in order to obtain protocols which
run in polylogarithmically-many rounds in the size of the network.

In an attempt to gain some insight into this problem, we show that
for a non-trivial and important graph structure, maximal matchings,
randomization is not needed. Matchings are important structures from
a theoretical point of view but might also be of practical interest,
since, in some situations, they correspond to a set of operations, say,
data transfers, that can be performed simultaneously without mutual
interferences. We note that maximal matching is a special case of the
difficult open problem of determining whether MIS’s can be quickly
computed deterministically in spite of the locality constraint. The
complexity of the protocol presented in this paper is quite high–O(log7 n)
rounds– but it should be remembered that even in the erew-pram

model the best asymptotic complexity for computing maximal matchings
is O(log4 n) [9].1

Our solution hinges on a distributed procedure which, for almost all
vertices in the graph, cuts the degree of a vertex almost perfectly in half.
This approximate degree splitter might be useful in other contexts.

To our knowledge, maximal matchings are one of the very few ex-
amples of non-trivial graph functions which can be computed determin-
istically in polylogarithmically-many communication rounds in the dis-
tributed model, without additional assumption on the input network.
Other notable exceptions are the so-called ruling forests of [1] and the k-

1We remark that we are now in possession of a somewhat simpler algorithm of lower complexity–
O(log6 n) rounds. Unfortunately lack of space (and time!) denies us the possibility of including this
solution in this extended abstract and we refer the reader to the full paper.

3

dominating sets of [12] both of which, however, are not “classical” graph
structures.

We end this section by spelling out our model of computation, the
synchronous, message-passing distributed network. Here, a distributed
network (or architecture) is modelled as an undirected graph. The
vertices of the graph correspond to processors and edges correspond to
bi-directional communication links. The network is synchronous in the
sense that computation takes place in a sequence of rounds; in each round,
each processor reads messages sent to it by its neighbours in the graph,
does any amount of local computation, and sends messages back to each
of its neighbours. The time complexity of a distributed algorithm is then
given by the number of rounds needed to compute the desired function.
Each node of the network has a unique identifier (id) and knows it. We
assume that the id’s of the network are the integers from 1 to n.

The problem we study is this: A distributed network is to compute
a maximal matching of its own (unknown) topology.

2 The algorithm: overview and analysis

The starting point of our solution is the NC algorithm for computing
maximal matchings, henceforth abbreviated as MM’s, due to Israeli and
Shiloach [9]. Their algorithm is based on the concept of spanner (the
terminology is ours). A spanner for a set A of vertices in a given graph
G is a subgraph of G of constant degree that contains all vertices of A
and only vertices of A. Since a MM in a constant degree graph matches
a constant fraction of the vertices, all edges incident on vertices of A can
be matched by repeated computations of spanners for A and MM’s in
the spanner. In this fashion one can first match all edges incident on
vertices whose degree is in the interval [∆,∆/2], then all edges incident
on vertices of degree in the interval [∆/2,∆/4], and so on, until a MM
for the whole graph is computed in O(log ∆) such stages.

Israeli and Shiloach show how to generate these spanners by means of
a splitting procedure that cuts the degree of the vertices almost perfectly
in half; if d denotes the old degree of a vertex, the new degree after
the split will be between d/2 and (d/2) + 1. We shall refer to such
splitters as perfect splitters. Perfect splits can be computed by means
of Euler tours, which with a pram can be computed efficiently. So,
effectively the problem of computing maximal matchings is reduced to
that of computing Euler tours.

In implementing the above plan in a distributed setting one immedi-

4

ately faces difficulties of a fundamental character. Namely,

Fact 2.1. [22] Neither perfect splitters nor Euler circuits can be com-
puted in o(n) rounds in the synchronous, message-passing model of com-
putation.

Nevertheless we shall show that the Israeli-Shiloach framework can
still be made to work, with some important modifications. In particular,
we shall replace the perfect splitters with approximate splitters. Our
approximate splitter relaxes the splitter of Isreali and Shiloach in three
different ways. First, we do not insist that the degree of all vertices
be cut in half. Rather, we will be willing to tolerate the loss of a very
small fraction of vertices who might lose lots or even all of the edges
incident on them. In this way, the final spanner will contain a constant
fraction of the initial set of interest, rather than the whole of it. Second,
the approximate spanner will not only contain vertices of the initial set
under consideration, but also some of their neighbours. These however
shall form an independent set, so that computing a MM in the spanner
will still match a large fraction of the initial set of vertices. Third, we do
not insist that the split be perfect; rather we will require that, for most
of the vertices, the new degree be in the range (1 ± o(1))d/2, where d
denotes the old degree. The error however will be so small that even after
O(logn) many iterations the distance from the perfect splitting rate will
be (1± o(1)).

We now describe the protocol. The first step of our solution is to
use an idea from [10] to reduce the problem of computing MM’s in
general graphs to that of computing MM’s in bipartite graphs. This
is an important step because our approximate splitter cannot deal with
odd cycles. The reduction is done by the following recursive procedure,
which is also the top level of the overall algorithm.

Procedure Match

1. Each vertex u, in parallel, enters a set even or odd depending on
whether the i-th bit of its id is even or odd, where i is the current
level of the recursion.

2. Procedure BipartiteMatch, which computes a MM in the bi-
partite graph induced by the even and odd vertices, is invoked.
Matched edges are added to the solution computed so far.

5

3. All matched edges and the edges incident on them are removed
from the graph. If a vertex remains isolated it removes itself.

4. In parallel, procedure Match is invoked recursively on the two
vertex disjoint graphs induced, respectively, by the remaining even
and odd vertices.

It is apparent that all decisions of the algorithm can be made locally,
provided the vertices somehow know which edges are matched. The
complexity of the algorithm is

T (Match, n) =

O(logn×(2.1)

T (BipartiteMatch, n)).

As the name suggests, the procedure BipartiteMatch computes a
maximal matching in the bipartite graph induced by the sets of even and
odd vertices. BipartiteMatch deals with high and low degree vertices
separately. Here, “high” means of degree higher than any arbitrary
constant parameter t ≥ 17. The maximum degree of the bipartite graph
input of BipartiteMatch is denoted by D. Since the vertices have
unique id’s, an upper bound on n, and hence on D is known. For the
sake of clarity of exposition we shall assume that the value of D is known
globally.

Procedure BipartiteMatch

1. For i := 0 to k = O(logD) do:

(a) Procedure HighDegreeMatch is invoked to compute a
MM in the graph induced by the edges incident on the set
Hi = {u : D/2i+1 ≤ d(u) ≤ D/2i}. Matched edges are added
to the solution computed so far.

(b) All matched edges and those incident on them are removed
from the graph. If a vertex remains isolated it removes itself
from the graph.

2. Procedure LowDegreeMatch is invoked to compute a MM in the
graph induced by the vertices whose degree is at most t. Matched
edges are added to the solution computed so far.

6

3. All matched edges and those incident on them are removed from
the graph. If a vertex remains isolated it removes itself from the
graph.

The complexity is

T (BipartiteMatch, n) =

O(T (LowDegreeMatch, t) +(2.2)

logD × T (HighDegreeMatch, D)).

Notice that all decisions are based on local information. It is clear that if
HighDegreeMatch works as advertised, at the end of the for-loop all
vertices whose degree is higher than t have disappeared from the graph.

One way to implement procedure LowDegreeMatch would be to
resort to a distributed algorithm of Awerbuch et al. for (t + 1)-vertex
colouring graphs of max degree t which runs in O(t logn) rounds [1]. In
our setting however, we can take advantage of the particular structure
of the graphs under consideration and use a more direct and efficient
approach using O(t) rounds, i.e. constant many rounds. Recall that
LowDegreeMatch operates inside a bipartite graph and that the
vertices know which side of the bipartition, even or odd, they belong
to. Since we shall use this subroutine in different places for graphs of
different max degree, we shall endow it with an input parameter t, which
in all cases will be known to all vertices executing the procedure.

Procedure LowDegreeMatch(t)

1. Repeat t times:

(a) Each vertex belonging to the even partition, in parallel, selects
any arbitrary edge incident upon itself and proposes it to the
other endpoint.

(b) Each vertex belonging to the odd partition, in parallel,
arbitrarily selects one of the proposed edges incident upon
itself (if they exist). The selected edge is matched.

(c) All matched vertices and the edges incident on them are
removed from the graph. Isolated vertices remove themselves
too.

The complexity is

T (LowDegreeMatch, t) = O(t)

7

because each even vertex will lose at least one incident edge per round.
Next in our top-down description is HighDegreeMatch. Let in(A)

denote the set of edges incident on vertices of a set A and recall that
Hi is the set of vertices whose degree is between D/2i+1 and D/2i.
The task of HighDegreeMatch is to find a maximal matching in
G[in(Hi)], the graph induced by the set of edges incident on vertices
in Hi. HighDegreeMatch invokes another procedure computing a
suitable “approximate” spanner in G[in(Hi)].

Definition 2.1. An (α, d)-spanner w.r.t. a graph G and a set H ⊆
V (G) is a subgraph G′ of G[in(H)] such that:

• for every v ∈ V (G′), 1 ≤ degG′(v) ≤ d

• |V (G′) ∩H| ≥ α|H|.

Notice that G′ might contain vertices not in H but that these form an
independent set.

So an (α, d)-spanner is a subgraph of max degree d with no isolated
vertices which spans an α-fraction of vertices of H. In the next section
we shall show that d = 16. The easy proof of the following fact is omitted
from this abstract.

Fact 2.2. For any constants α and d, a maximal matching in an (α, d)-
spanner w.r.t. G and H matches a constant fraction of vertices of H.

Thus, all edges incident on vertices of H can be matched in O(log |H|)
rounds as follows.

Procedure HighDegreeMatch(D)

1. Let H = {u : D/2 ≤ d(u) ≤ D}.

2. For k := 1 to O(logn) do:

(a) Invoke the procedure Spanner, which computes an (α, 16)-
spanner of G[in(H)].

(b) Invoke LowDegreeMatch to compute a MM in the (α, 16)-
spanner.

(c) The matched edges are added to the current partial solution,
and all matched edges, the edges incident on them and isolated
vertices are removed from the graph.

8

Since LowDegreeMatch works in a constant degree graph its com-
plexity is constant. Therefore,

T (HighDegreeMatch, n) =(2.3)

O(logn× T (Spanner, n)),

where n is the number of vertices of the input setH. As we shall see in the
next section, the running time of procedure spanner is O(logD log3 n)
rounds. Putting together Equations (2.1) through (2.3), the overall
complexity of the algorithm is

T (Match, n) = O(log2D log5 n) = O(log7 n).

As the above discussion makes clear, the crux of the matter is how to
efficiently compute an (α, d)-spanner, for constant d. The next section
explains how this can be achieved.

3 The spanner

In this section we shall show how to compute an (α, d)-spanner in a given
graph G[in(H)] induced by the edges incident upon vertices of a set H.
We start with some preliminaries.

Given a set of edges F , consider a decomposition of G[F] into a
collection of cycles and paths computed as follows. Each vertex of
G[F], in parallel, splits itself into vertices of degree two (pairing any
two adjacent edges) and perhaps one vertex of degree one (if the degree
of the original vertex is odd). The new vertices are called siblings and
the original vertex is called the parent. So, we get a new graph with at
least |F | vertices and exactly |F | edges and such decomposition is called
here a 2-decomposition. Note that this can be done in constant time
in the distributed model of computation.

We classify all components of a 2-decomposition into two groups.
A component is called long if its length is at least ` := log2 n and
short otherwise. Next we partition all long components (paths and
cycles) into shorter segments , i.e., sub-paths of length at least ` but at
most ` log n. Vertices which separate component into segments will be
called border vertices. Such partitions can be computed distributively in
O(` logn) time using the (`,` logn)-Ruling Sets of [1] and will be referred
to as segment decompositions (details omitted from this abstract).
Roughly speaking one should remove exactly one edge incident on each
sibling which in turn would result in slashing the parent’s degree perfectly
in half (except for an extra edge in case of odd degree). The degree of

9

degree-2 siblings can be cut in half as follows. In each short even cycle
we compute a perfect matching (PM) while in paths and long even cycles
we might be forced to settle for near PM’s (nPM’s). Henceforth we will
refer to both PM’s and nPM’s with the latter acronym. The matched
edges can be then removed from the graph. For sake of clarity we shall
say that the edges are marked rather than removed. These nPM’s can
be computed by resorting to a centralized approach like, say, electing a
leader and devolving to it the task. This takes O(` logn) communication
rounds since the segment decomposition is made of pieces– segments and
short components– of length at most ` logn. Computing these nPM’s
in segments and short paths needs a bit of care and will be done as
follows; starting from one of the two endpoints, every second edge will
be matched. Again, this takes time proportional to the length of the
segments, i.e. O(` logn) rounds.

In this fashion we will be able to cut in half the degree of “most” of
the siblings so that “very few” parents have “lots” of bad siblings. The
trouble makers are border vertices which may be matched or unmatched
from each “side” at the same time, and siblings of degree one. The latter
present no real problem however, because each parent has at most one
of them and, if the segments are long enough, there can’t be too many
border vertices either. This motivates the following definitions. We call
an edge adjacent to a border vertex a bad edge. Otherwise an edge is
called good. Notice that edges adjacent to ends of paths are good. A
parent v is called pliable if it is adjacent to at most d(v)/p bad edges
resulting from a segment decomposition. The value of p, the coefficient of
pliability, is p := logn. All parents which are not pliable are called nasty.
We comment on the need for operating only inside bipartite graphs. In
an odd cycle there is always going to be one sibling whose both edges
are unmatched. In a distributed model we have no control over the way
a 2-decomposition is going to look like; it is possible that this be made
of many short cycles so that that “lots” of parents will have “lots” of
bad siblings or, using the above terminology, that “lots” of parents will
be nasty. On the other hand, short even cycles are great since a perfect
matching can be computed in them, and long even cycles and paths are
also good, since only border siblings can create trouble.

We are ready to present our main procedure, called Spanner, to-
gether with a subroutine ApxSplitter. Spanner has input parameter
D which is used by the nodes of the network to define the graph in-
side which an (α, d)-spanner must be computed. This graph is G[in(H)]

10

where
H = {u : D/2 ≤ d(u) ≤ D}.

Notice that, given D, vertices can decide whether they belong to H

locally. A bird’s eye view of the algorithm is as follows. Starting from
P0 := H, the algorithm computes a segment decomposition of G[in(P0)],
and nPM‘s in the resulting segments. Afterwards both matched and
bad edges are removed (marked). This defines a new set P1 of pliable
vertices which, intuitively, are those whose degree has been split well.
Then, a new segment decomposition of G[in(P1)] is produced and again
nPM’s are computed in the segments and thrown away (marked) together
with the new set of bad edges, and so on. This defines a sequence
P0 ⊇ P1 ⊃ . . . ⊇ Pi of sets of pliable vertices. We will show that after
k = O(logD) stages: (a) the size of Pk is a constant fraction that of P0,
and (b) the degree of each vertex u in Pk is (1±o(1))d(u)/2k, where d(u)
is the degree of u prior to the invocation of Spanner.

Procedure Spanner(D)

1. Let P0 := {u : D/2 ≤ d(u) ≤ D}. Let d0(u) := d(u) for each
vertex in P0.

2. For j := 0 to k = O(logD) do:

(a) invoke procedure ApxSplitter to mark edges of G[in(Pj)];

(b) each vertex of Pj , in parallel, enters the set Pj+1 if it has
less than dj(u)/p bad edges. Let dj+1(u) be the number of
unmarked edges incident on u.

Procedure ApxSplitter acts on Pj , the current set of pliable vertices,
by computing nPM’s in a segment decomposition of G[in(Pj)] and
marking the resulting matched and bad edges.

Procedure ApxSplitter

1. let P be the current set of pliable vertices. Each vertex of P , in
parallel, generates its siblings, giving raise to a 2-decomposition of
G[in(P)];

2. a segment decomposition is computed in the 2-decomposition;

3. edges incident on border vertices– i.e. vertices separating two
segments– enter the set of bad edges;

11

4. nPM’s are computed in the segments;

5. all matched and bad edges are marked.

In the next two facts we shall describe the behaviour of degrees of
pliable vertices and the cardinality of the set of such vertices in a single
call of the subroutine ApxSplitter. In the sequel we shall keep the
same notation as in the above procedures and use the following notation.
By Gj we denote the graph G[in(Pj)], and by ∆j and δj the maximum
and minimum degree of vertices in Pj (we do not care about the min
degree of vertices V (Gj)− Pj and, as shown by the next fact, their max
degree is upper bounded by ∆j).

The degree of u ∈ Gj is denoted by dj(u). The first fact says that
the degree of pliable vertices is split almost perfectly.

Fact 3.1. For all v ∈ Pj,

1

2

((
1− 2

log n

)
dj−1(v)− 1

)
≤ dj(v) ≤ 1

2
(dj−1(v) + 1) ,

where j is any iteration of the for-loop of procedure Spanner. The right-
hand-side inequality holds for all v ∈ V (Gj).

Proof. Let e+ and e− denote the number of good and bad edges incident
on a parent v, respectively. To bound dj(v) from above, note that the
worst case occurs when v has no bad edges incident on itself. Therefore,
when the dj(v) is odd and its unique degree-1 sibling has no marked edge,

dj(v) ≤ 1

2
(e+ + 1) =

1

2
(dj−1(v) + 1).

This holds for all v ∈ V (Gj).
For the lower bound, notice that a pliable parent v looses the largest

number of edges if all of its siblings incident on bad edges have just one
bad edge incident on them and have the other edge marked, so that both
edges will be lost. Then, when v has odd degree,

dj(v) ≥ 1

2
(e+ − e− − 1) ≥ 1

2

((
1− 2

logn

)
dj−1(v)− 1

)
,

since e− ≤ dj−1(v)/ logn by definition of pliable parent.

12

The next fact says that most vertices remain pliable from one iteration
to the next.

Fact 3.2. For all iterations j = 1, . . . , k of procedure Spanner,

|Pj| ≥ |Pj−1|
(
1− 4

log n

∆j−1

δj−1

)
Proof. Let Nj be the set of nasty vertices at the end of iteration j − 1
and let be[Nj] be the number of bad edges incident onto Nj . Notice that
|Pj| = |Pj−1| − |Nj|.

A lower bound for be[Nj] follows from the fact that vertices in Nj

have, by definition, at least δj−1/ logn bad edges. Hence,

be[Nj] ≥ |Nj|
δj−1

2 logn
.

Recall that our graph is bipartite and so all cycles (and in particular
the short ones) of the 2-decomposition are of even length. Therefore all
bad edges arise from segments in long components (paths and cycles)
only.

We can bound the number of bad edges incident on Nj by the the
total number of bad edges in Gj−1. Since |E(Gj−1)| ≤ ∆j−1|Pj−1|, and
since each segment has length at least ` = log2 n and contributes at most
two bad edges,

be[Nj] ≤
2|Pj−1|∆j−1

log2 n

and the fact follows.

Finally, we shall present the analysis of the procedure Spanner.

Theorem 3.1. An invocation of procedure Spanner with parameter D
computes an (α, 16)-spanner w.r.t to G and the set H := {v ∈ V (G) :
D/2 ≤ degv(G) ≤ D}, where α > 0 is some constant.

Proof. We shall check whether the output graph of our procedure fulfills
the two conditions it has to satisfy to be a spanner (see Definition 2).
First we show that the degrees of vertices in the output graph belong to
the interval [1, 16].

13

Fix k ≥ 1 and note that D/2 ≤ d0(v) ≤ D. By an easy induction,
using Fact 3.1, we have that, for all v ∈ Pk,

qk
(
D

2
+ 1

)
− 1 ≤ dk(v) ≤

(
1

2

)k
(D − 1) + 1,

where q = (1− 2/logn)/2.
Now if we set k = logD − c ,

qk
(
D

2
+ 1

)
− 1 > 2c−1e−2(1+ 2

logn
) − 1,

and (
1

2

)k
(D − 1) + 1 < 2c + 1

Hence, choosing c = 4, vertices from the set Pk all have degrees belonging
to the interval [1, 16], for large enough n.

Finally, we have to show that the second condition which determines
the spanner holds. That is,

|Pk| ≥ α |H|

Applying repeatedly the inequality established in Fact 3.2, we get

|Pk| ≥ |H|
k−1∏
j=0

(
1− 4

log n

∆j

δj

)
.

However
∆j

δj
≤ 2−j(D − 1) + 1

qj(D/2 + 1)− 1
≤ 16,

since the last fraction is an increasing function of j, for j ≤ k.
Therefore, for some constant α and n large enough,

|Pk| ≥ |H|
(
1− 64

log n

)logn
≥ e−64(1+ 64

logn
)|H| ≥ α|H|.

Acknowledgments

The third author would like to thank the hospitality of the Adam
Mickiewicz University, where much of this work was done, and the
financial support of the Alexander von Humboldt foundation.

14

References

[1] B. Awerbuch, A.V. Goldberg, M. Luby, and S. Plotkin, Network
decomposition and locality in distributed computing, in Proceedings of
the 30th Symposium on Foundations of Computer Science (FOCS 1989),
pages 364-369, IEEE, Research Triangle Park, North Carolina.

[2] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg, Fast network decom-
positions, in Proceedings of the 1992 ACM Symposium on Principles of
Distributed Computing (PODC 92), pp.169-177

[3] N. Alon, J. Spencer, and P. Erdős, The Probabilistic Method, Wiley–
Interscience Series, John Wiley & Sons, Inc., New York, 1992.

[4] B. Bollobás, Graph Theory, Springer Verlag, New York, 1979.
[5] B. Bollobás, Chromatic number, girth, and maximal degree, Discrete

Math.. 24 (1978), 311–314.
[6] S. Chaudhuri and D. Dubhashi, Probabilistic recurrence relations revis-

ited, Theoretical computer Science, to appear.
[7] A.V. Goldberg, S.A. Plotkin and G.E. Shannon, Parallel symmetry-

breaking in sparse graphs, SIAM J. Disc. Math. Vol.1, No. 4, November
1988, pp. 434-446

[8] D.A. Grable and A. Panconesi, Nearly optimal distributed edge colouring
in O(log log n) rounds, Random Structures and Algorithms, 10(3):385-
405, May 1997. Preliminary version in Proceedings of the Eight Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 97), New Or-
leans.

[9] A. Israeli and Y. Shiloach, An improved algorithm for maximal matching,
Information Processing Letters, 22(2):57-60, 18 January 1986

[10] H.J. Karloff and D.B. Shmoys, Efficient parallel algorithms for edge
coloring problems, J. Algorithms, 8 (1987), pp. 39-52

[11] R. M. Karp, Probabilistic recurrence relations, in proceedings of the 23rd
Annual ACM Symposium on Theory of Computing (STOC 91), pages
190–197, New Orleans, Louisiana.

[12] S. Kutten and D. Peleg, Fast distributed construction of k-dominating
sets and applications, in Proceedings of the 1995 ACM Symposium on
Principles of Distributed Computing (PODC 95), Ottawa, Ontario, pp.
238–249

[13] N. Lynch, Distributed Algorithms, Morgan-Kaufmann, San Francisco.
[14] N. Linial, Locality in distributed graph algorithms. SIAM Journal on

Computing, 21(1):193-201, February 1992.
[15] N. Linial and M. Saks, Low diameter graph decomposition, Combinator-

ica (1993), Vol. 13 (4)
[16] M. Luby, A simple parallel algorithm for the maximal independent set

15

problem. In Proceedings of the 17th Annual ACM Symposium on Theory
of Computing (STOC 85), pages 1-10, Providence, Rhode Islands.

[17] M. Luby, Removing randomness in parallel without processor penalty,
Journal of Computer and System Sciences, 47(2):250-286, October 1993

[18] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge
University Press, 1995.

[19] Moni Naor, A lower bound on probabilistic algorithms for distributive
ring coloring, SIAM J. Disc. Math., Vol. 4, No. 3, pp. 409-412, August
1991

[20] M. Naor and L. Stockmeyer, What can be computed locally? SIAM
Journal on Computing, 24(6):1259-1277, December 1995.

[21] Ö. Johansson, personal communication.
[22] Alessandro Panconesi, Lecture Notes in Distributed Algorithms, Solution

Sheet # 4. Available from the author. E-mail:ale@brics.dk
[23] A. Panconesi and A. Srinivasan, The Local Nature of ∆-coloring and Its

Algorithmic Applications, Combinatorica 15 (2) 1995, 255-280.
[24] A. Panconesi and A. Srinivasan, On the complexity of Distributed

Network Decomposition, Journal of Algorithms 20, 356–374 (1996).

16

Recent BRICS Report Series Publications

RS-97-38 Michał Hánćkowiak, Michał Karo ński, and Alessandro Pan-
conesi. On the Distributed Complexity of Computing Maxi-
mal Matchings. December 1997. 16 pp. To appear inThe
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’98.

RS-97-37 David A. Grable and Alessandro Panconesi.Fast Distributed
Algorithms for Brooks-Vizing Colourings (Extended Abstract).
December 1997. 20 pp. To appear inThe Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’98.

RS-97-36 Thomas Troels Hildebrandt, Prakash Panangaden, and Glynn
Winskel. Relational Semantics of Non-Deterministic Dataflow.
December 1997. 21 pp.

RS-97-35 Gian Luca Cattani, Marcelo P. Fiore, and Glynn Winskel. A
Theory of Recursive Domains with Applications to Concurrency.
December 1997. ii+23 pp.

RS-97-34 Gian Luca Cattani, Ian Stark, and Glynn Winskel. Presheaf
Models for theπ-Calculus. December 1997. ii+27 pp. Appears
in Moggi and Rosolini, editors,Category Theory and Computer
Science: 7th International Conference, CTCS ’97 Proceedings,
LNCS 1290, 1997, pages 106–126.

RS-97-33 Anders Kock and Gonzalo E. Reyes.A Note on Frame Distri-
butions. December 1997. 15 pp.

RS-97-32 Thore Husfeldt and Theis Rauhe.Hardness Results for Dy-
namic Problems by Extensions of Fredman and Saks’ Chrono-
gram Method. November 1997. i+13 pp.

RS-97-31 Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian
Lund. Formal Modeling and Analysis of an Audio/Video Proto-
col: An Industrial Case Study UsingUPPAAL. November 1997.
23 pp. To appear inThe 18th IEEE Real-Time Systems Sympo-
sium, RTSS ’97 Proceedings.

RS-97-30 Ulrich Kohlenbach.Proof Theory and Computational Analysis.
November 1997. 38 pp.

RS-97-29 Luca Aceto, Augusto Burguẽno, and Kim G. Larsen. Model
Checking via Reachability Testing for Timed Automata. Novem-
ber 1997. 29 pp.

