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Relational Semantics of Non-Deterministic
Dataflow

(Extended Abstract)

Thomas Hildebrandt† Prakash Panangaden‡ Glynn Winskel†

†BRICS∗, University of Aarhus, Denmark
‡McGill University, Canada

Abstract

We recast dataflow in a modern categorical light using profunctors as a
generalization of relations. The well known causal anomalies associated with
relational semantics of indeterminate dataflow are avoided, but still we pre-
serve much of the intuitions of a relational model. The development fits with
the view of categories of models for concurrency and the general treatment
of bisimulation they provide. In particular it fits with the recent categori-
cal formulation of feedback using traced monoidal categories. The payoffs
are: (1) explicit relations to existing models and semantics, especially the
usual axioms of monotone IO automata are read off from the definition of
profunctors, (2) a new definition of bisimulation for dataflow, the proof of
the congruence of which benefits from the preservation properties associated
with open maps and (3) a treatment of higher-order dataflow as a biproduct,
essentially by following the geometry of interaction programme.

1 Introduction

Our background includes work done on presenting models for concurrency as cat-
egories, as summarised in [42]. This enabled a sweeping definition of bisimula-
tion based on open maps applicable to any category of models equipped with a
distinguished subcategory of paths [19]. It also exposed a new space of models.
Presheaf categories possess a canonical choice of open maps and bisimulation, and
can themselves be related in the bicategory of profunctors. This yields a form of
domain theory but boosted to the level of using categories rather than partial orders
as the appropriate domains.

One argument for the definition of bisimulation based on open maps is the
powerful preservation properties associated with it. Notable is the result of [8] that
any colimit preserving functor between presheaf categories preserves bisimulation,

∗BasicResearchin ComputerScience, Centre of the Danish National Research Foundation.
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which besides obvious uses in relating semantics in different models with different
notions of bisimulation is, along with several other general results, useful in estab-
lishing congruence properties of process languages. By understanding dataflow in
terms of profunctors we are able to exploit the framework not just to give a def-
inition of bisimulation between dataflow networks but also in showing it to be a
congruence with respect to the standard operations of dataflow.

A general definition of bisimulation is all well and good but it needs to be tested
and its consequences understood for a range of process languages. Another argu-
ment in favour of the presheaf approach to bisimulation is that when tried against
traditional process languages it yields persuasive results, as in [8, 40, 7]. But still
these are just examples and it is hoped that a more satisfying and conclusive argu-
ment will come from an endeavour to ascertain the operational content of presheaf
models more generally.

One difficulty has been in understanding the operational significance of the
bisimulation which comes from open maps for higher-order process languages
(where for example processes themselves can be passed as values). Another gap,
more open and so more difficult to approach, is that whereas both interleaving
models and independence models like event structures can be recast as presheaf
models, as soon as higher-order features appear, the presheaf semantics at present
reduce concurrency to nondeterministic interleaving. A study of nondeterminis-
tic dataflow is helpful here as its compositional models are forced to account for
causal dependency using ideas familiar from independence models; at the same
time the models are a step towards understanding higher-order as they represent
nondeterministic functions from input to output.

It is notable that the profunctor semantics of dataflow yields automatically the
axioms for monotone port automata used in modelling dataflow [30] in contrast
to the work in [38]. At the same time we have to work to get a correct operation
on profunctors to model the dataflow feedback; “the obvious” choice of modelling
feedback by coend doesn’t account for the subtle causal constraints which plague
dataflow semantics.

The idea that non-deterministic dataflow can be modelled by some kind of gen-
eralised relations fits with that of others, notably Stark in [38, 39]. That dataflow
should fit within a categorical account of feedback accords for instance with [23, 1].
But in presenting a semantics of dataflow as profunctors we obtain the benefits to be
had from placing nondeterministic dataflow centrally within categories of models
for concurrency, and in particular within presheaf models. One of our future aims
is a dataflow semantics of the hardware-description language Verilog HDL [14],
which presently only possesses a noncompositional, operational definition. The
semantics of a language of this richness requires a flexible yet abstract domain
theory of the kind presheaf models seem able to support.
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2 Models for indeterminate dataflow

The Dataflow paradigm for asynchronous parallel computation, originated in work
of Jack Dennis and others in the mid-sixties [21, 10, 11]. The basic idea is that data
flows between autonomous computing agents, that are interconnected by commu-
nication channels. The essential idea is that computation is triggered by the arrival
of data rather than by flow of control. The channels are assumed to act as un-
bounded FIFO-queues. For dataflow networks built from onlydeterministicnodes,
Kahn [21] has argued that their behaviour could be captureddenotationallyin a
very simple and elegant fashion, using elementary domain theory, which is later
shown formally by several authors, e.g. Faustini [13], Lynch and Stark [26]. The
key idea is to model the behaviour of each porta as a stream of values. A node can
then be modelled as a continuous function between such streams and the combined
network as a least fixed point of a set of equations describing the components. In
this sense Kahn’s semantics is compositional. Subsequently, different semantics
have been described as satisfyingKahn’s principlewhen they are built up compo-
sitionally along similar lines. Note that theobservable behaviouris taken to be the
input-outputrelation between completed sequences of values, thus it completely
abstracts away from causal dependencies between values on different ports.

2.1 The need for causality

For indeterminatenetworks, the situation is not so simple. Brock and Ackerman[6]
showed that for networks containing the nondeterministic primitivefair merge, the
input-output relations are not compositional, ie. if we simply choose the input-
output relation as observable behaviour, we cannot define a compositional seman-
tics, which is adequate with respect to the operational semantics. Hence a straight-
forward generalisation of Kahn’s model to get a compositional semantics for these
indeterminate networks fails. Later, Traktenbrot and Rabinovich, and indepen-
dently, Russell showed, that even for the simplest nondeterministic primitive the
ordinarybounded choice(or “unfair merge”), the input-output relation is not com-
positional. We present an example close to that of Traktenbrot and Rabinovich. It
works by giving two simple examples of automataA1 andA2, which have the same
input-output relation, and a context in which they behave differently, pictorially

F

Ai
oo

0176
//

5423
oo

.

The context is a fork processF (a process that copies every input to two outputs),
through which the output of the automataAi is fed back to the input channel.
AutomatonA1 has the following (deterministic) behaviour: It outputs a token;
waits for a token on input and then outputs another token. AutomatonA2 has the
choice between two behaviours: Either it outputs a token and stops,or it waits
for an input token, then outputs two tokens. For both automata, the IO-relation

3



relates empty input to zero or one output token, and non-empty input to zero, one
or two output tokens. But inserted in the context as illustrated above,A1 can output
two tokens, whereasA2 can only output a single token, choosing its first behaviour.
This example shows very clearly that it is necessary to look for a model that records
a more detailed causality relation than the IO-relations.

Jonsson [17] and Kok [25] have independently given fully abstract models for
nondeterminate dataflow. Jonsson’s model is based on trace1 sets, which are sets of
possible interactions between a process and its environment. Kok’s model turned
out to be equivalent. They showed that this model is fully abstract for indeter-
minate dataflow networks with a fair merge primitive, which was then shown by
Russell [35] to hold even for dataflow networks with the weakest nondeterministic
primitive, bounded choice2. Rabinovich and Traktenbrot analyzed the same issues
from the point of view of finite observations and came up with general conditions
under which a Kahn-like principle would hold [32, 33, 34].

3 A Traced Monoidal Category of Kahn Processes

In this section we summarize the basic theory of traced monoidal categories and
then describe a category of Kahn processes as an instance of a traced monoidal
category. The notion of traced monoidal category abstracts the notion of trace of
a matrix from multilinear algebra. However it has emerged in a variety of new
contexts including the study of feedback systems [3], knot theory [16] and recur-
sion [15]. The axiomatization presented below is the definition of Joyal, Street and
Verity [20] but specialized to the context of symmetric monoidal categories so that
the axioms appear simpler; in particular we do not consider braiding or twists. In
this paper the fact that trace models feedback (or iteration) is attributed to Bloom,
but as far back as 25 years ago Bainbridge had been studying trace in the context of
feedback in systems and control theory. Indeed Bainbridge had noticed that there
were two kinds of trace (associated with two different monoidal structures) inRel
and that the powerset functor moves one between these situations. Furthermore he
noted that one of the traces corresponds to feedback in what are essentially memo-
ryless Kahn networks3.

3.1 Traced Monoidal Categories

In this section we give the axioms for a symmetric monoidal category equipped
with a trace. We assume that the reader is familiar with the notion of a symmetric
tensor product. We write⊗ for the tensor product andσXY : X ⊗ Y −→ Y ⊗X
for the natural isomorphism (the symmetry) in this case.

1This word commonly used in the literature unfortunately clashes with “trace” in linear algebra.
Normally this is not a problem but the present paper uses this word in both senses, we hope the reader
will be able to disambiguate from context.

2See [30, 29] for a study of the differences of nondeterminate primitives.
3We are indebted to Samson Abramsky for pointing this reference out to us.
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Definition 1 A trace for a symmetric monoidal categoryC is family of functions

TrUX,Y () : C(X ⊗ U, Y ⊗ U) −→ C(X,Y )

satisfying the following conditions

1. Naturality I: Givenf : Z ⊗ U −→ Y ⊗ U andg : X −→ Z

TrUX,Y (f ◦ (g ⊗ IU)) = TrUZ,Y (f) ◦ g.

2. Naturality II: Givenf : X ⊗ U −→ Z ⊗ U andg : Z −→ Y

TrUX,Y ((g ⊗ IU ) ◦ f) = g ◦ TrUX,Z(f)

3. Dinaturality: Givenf : X ⊗ U −→ Y ⊗ V andg : V −→ U

TrUX,Y ((IY ⊗ g) ◦ f) = TrVX,Y (f ◦ (IX ⊗ g)).

4. Bekic: f : X ⊗ U ⊗ V −→ Y ⊗ U ⊗ V

TrU⊗VX,Y (f) = TrUX,Y (TrVX⊗U,Y⊗U (f)).

5. Yanking: TrUU,U (σUU ) = IU .

6. Superposing: Givenf : X ⊗ U −→ Y ⊗ U andg : W −→ Z

TrUX⊗W,Y⊗Z((IY ⊗ σUZ) ◦ (f ⊗ g) ◦ (IX ⊗ σWU )) = TrUX,Y (f)⊗ g.

The following proposition is an easy consequence of the definitions. It shows
how composition can be defined from trace and tensor.

Proposition 2 Giveng : U −→ Y andf : X −→ U we have

TrUX,Y (σUY ◦ (f ⊗ g)) = g ◦ f.

This could be viewed as a generalization of the yanking condition.

3.2 The Kahn Category

The basic intuitions behind Kahn networks are, of course, due to Kahn [21] and
the formal development of the subject is due to Kahn and McQueen [22]. The
particular axiomatization presented here builds on the ideas of Stark [38] but using
the formalism of traces presented in [29]. No originality is claimed for the trace
model, it was Bengt Jonsson [17] who showed that traces form a fully abstract
model of dataflow networks and there were several others with similar ideas at the
time.
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We have a fixed setV of valuesand a fixed setP of ports. An eventis a triple
〈a, i/o, v〉 wherea ∈ P andv ∈ V. We say that〈a, v〉 is the label of the event
〈a, i/o, v〉. An event of the form〈a, o, v〉 is called anoutput event and one of
the form〈a, i, v〉 is called aninput event. We consider sequences of these events.
If α is a sequence of events we writeα|o for the sequence oflabels of output
events discarding the input events, similarly forα|i. We writeα|A for the sequence
obtained by keeping only the events on the ports inA andα|Ao for the sequence
of labels of all output events onA. We extend these notations to sets of sequences.
We use the notationα ≤ β for the prefix order on sequences. We writeIA for
the setAx{i}xV of all input events on ports inA and similarlyOA for Ax{o}xV.
Finaly, we writeLA for the setAxV of labels on ports inA.

Definition 3 A processof sort (A,B), whereA,B ⊆ P is a prefix closed set of
finite sequences over the alphabetIA ∪ OB. The set of sequences, sayS, satisfies
the following closure properties,α andβ are sequences of events:

1. If α〈b, o, v〉〈a, i, u〉β ∈ S thenα〈a, i, u〉〈b, o, v〉β ∈ S.

2. If α〈b, o, v〉〈b′, o, u〉β ∈ S and if b 6= b′ thenα〈b′, o, u〉〈b, o, v〉β ∈ S.

3. If α〈a, i, u〉〈a′, i, v〉β ∈ S and ifa 6= a′ thenα〈a′, i, v〉〈a, i, u〉β ∈ S.

4. If α ∈ S thenα〈a, i, v〉 for all a ∈ A andv ∈ V.

We callA the input portsandB theoutput portsof the process.

The last condition above is calledreceptivity, a process could receive any data
on its input port; unlike with synchronous processes. Receptivity is the basic reason
why traces suffice to give a fully-abstract model for asynchronous processes; in
calculi with synchronous communication one needs branching information.

The first three conditions express concurrency conditions on events occurring
at different ports. Note an asymmetry in the first condition. If an output occurs
before an input then it could also occur after the input instead. However, if an
output occurs after an input then the pair of events cannot be permuted because
the output event may be in response to the input. Furthermore we are assuming,
again in (1), that the arrival of input does not disable already enabled output. In an
earlier investigation [30] these were calledmonotoneautomata and it was shown
that many common primitives, such as fair merge, timeouts, interrupts and polling
cannot be expressed as monotone automata.

Given processes as sets of sequences we definecompositionas follows. We
begin by defining the shuffle of two sets of sequences.

Definition 4 Given two sets of sequences of events, sayS of sort(A,B) andS′ of
sort (A′, B′), withA∩A′ = ∅ = B ∩B′, we define the setS∆S′ (read,S shuffle
S′) as the set of all sequencesγ of sort (A ∪ A′, B ∪ B′) satisfying the following
conditions
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1. γ|A∪B ∈ S and

2. γ|A′∪B′ ∈ S′.

We then define composition, by picking from the shuffle, the sequences having the
right causal precedence of events on B and then discarding these, now “internal”,
events.

Definition 5 Given processesf : A −→ B andg : B −→ C we define the composite
of f andg by f ; g , S|Ai∪Co , whereS ⊆ f∆g (with ports renamed if necessary
to avoid name clashes) is the the largest set s.t. for anyδ ∈ S

1. δ|Bo = δ|Bi ,

2. ∀δ′ ≤ δ.δ′|Bi ≤ δ′|Bo .

Proposition 6 The composite of two processes does yield a process, i.e. the closure
conditions are satisfied. There is an identity process and composition is associa-
tive.

Definition 7 The categoryKahn of Kahn processes has as objects finite subsets of
P and as morphisms fromA to B, processes withA as the input ports andB as
the output ports. Composition of morphisms is defined by composition of processes
as defined above.

The following proposition has a routine proof but is important to note.

Proposition 8 The following construction defines a monoidal structure. Given
f : A −→ B andf ′ : A′ −→ B′ we definef ⊗ f ′ : A ]A′ −→ B ]B′ asf∆g.

The trace construction is as follows. Givenf : X ] U −→ Y ] U we define
TrUX,Y (f) : X −→ Y as the set of allγ such that there is a sequenceδ ∈ f with

1. δ|Xi∪Yo = γ,

2. δ|Uo = δ|Ui and

3. ∀δ′ ≤ δ.δ|Ui ≤ δ|Uo .

Theorem 9 With the structures given above,Kahn is a traced monoidal category.

The generalized yanking property can be interpreted in this category as saying
that composition can be obtained as a combination of parallel composition (that is,
shuffling) and feedback. This is a well-known fact in dataflow folklore.
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4 Generalising relations

Kahn processes are typical of the solutions to the problem of obtaining a composi-
tional semantics for nondeterministic dataflow, as illustrated by the causal anomaly.
A correct compositional semantics is got by keeping track of the causal dependency
between events. In this section we will describe another solution that comes about
as a natural extension of the IO-relation model.

First let us give a category of Kahn IO-relations. For a processS of sort(A,B)
define its IO-relationRS , { (α|Ai , α|Bo) | α ∈ S} ⊆ L∗AxL∗B. Actually, this de-
fines a relationRS in (L∗A/∼)x(L∗B/∼) whereL∗A/∼ consists of theMazurkiewicz
traces[28] (or the elements in the free partially commutative monoid [12]) of the
trace language(L∗A,LA, IA) whereIA⊆ LAxLA is theindependencerelation de-
fined by〈a, u〉 IA 〈a′, v〉 iff a 6= a′. Recall that as in [42] the traces are equiv-
alence classes of∼, the smallest equivalence relation such thatαw′ wβ∼αww′β
if w IA w′. For α ∈ L∗A, let α denote its Mazurkiewicz trace. The traces can
be partial ordered byα v β iff ∃γ.αγ = β (see Ch.7 of [42]). LetεA (or just ε)
denote the empty trace. In the following, we will letA refer to the partial order
category given byL∗A/∼ and the orderingv and refer to these categories as the
path categories.4

Any IO-relationRS for a Kahn processS is monotone and receptive, i.e. for
α, β ∈ L∗A/∼, if α v β thenαRS ⊆ βRS and forw ∈ LA, if (α, β) ∈ RS then
(αw, β) ∈ RS . Relations of this kind correspond to functorsAxB

op −→ 222, where
222 is the category consisting of two objects0 and1 and only one non-identity arrow
0 → 1. Viewing the relations in this way the composition ofR : A × B

op −→ 222
andR′ : B×C

op −→ 222 can be written as

α(R;R′)γ =
∨
β∈B

αRβ ∧ βR′γ, (1)

where we make use of the obvious join and meet operations on222. Such relations
in fact form the arrows of a traced symmetric monoidal category, but as illustrated
by the example in section 2.1 it cannot possibly be used to give a compositional
and correct treatment of feedback for indeterminate dataflow. We need to be able
to express differences in causal dependencies between input and output. This is
precisely what moving to the bicategory ofprofunctorsProf allows us to do.

4.1 Profunctors

Profunctors, (or bimodules, or distributors [5]) are a categorical generalisation of
sets and relations. The objects ofProf are small categories and arrows are pro-
functors; profunctors are like receptive monotone relations but with the category 222
replaced bySet.

4The traces can also be viewed as a specific kind of pomsets [31] and the path categories as a
subcategory of the category of pomsets given in [19].
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Definition 10 Let P and Q be small categories. A profunctorX : P //+ Q is a
bifunctorX : P×Qop −→ Set. For p, q objects of respectivelyP andQ we will
writeXp

q for the application(Xp)q and similarly for morphisms.

The tensor product is given by the categorical product on objects and set-theoretic
product on arrows.

Definition 11 LetP,P′ andQ,Q′ be small categories andX : P //+ Q,Y : P′ //+ Q′

profunctors. TakingP⊗P′ , P×P′ andX ⊗ Y , X × Y : P⊗P′ //+ Q⊗Q′,
so(X ⊗ Y )p,p

′

q,q′ = Xp
q × Y p′

q′ , defines a symmetric monoidal structure onProf .

The canonical choice of trace onProf (cf. [20]) is to take the trace of a profunctor
X : P⊗U //+ Q⊗U to be given pointwise by thecoend, so

TrUP,Q(X)
p

q
=

∫ u

Xp,u
q,u .

Composition5 is given by

(Y ;Z)pu =

∫ q

Y p
q × Zqu,

for Y : P //+ Q andZ : Q //+ U. This generalises the expression for relational
composition given by equation (1) earlier.

Since we are working with functors intoSet, the coend has an explicit defini-
tion. We have ∫ u

Xp,u
q,u
∼=
⊎
u∈U

{x ∈ Xp,u
q,u}/∼, (2)

where∼ is the symmetric, transitive closure of the relation defined as follows.
Forx ∈ Xp,u

q,u andx′ ∈ Xp,u′

q,u′ , let

x x′ if ∃m : u −→ u′ andy ∈ Xp,u
q,u′ s.t. x y�oo

X
1p,1u
1q,m � //

X
1p,m
1q,1u′

x′.

Like the closely related model of [3], this model doesn’t give an operationally
correct treatment of dataflow as it stands. Taking the trace as given by a coend
suffers from defects similar to those encountered with relations; the coend is too
generous in the behaviour it allows, permitting communications not beginning at
the initial communication. However, as we will see shortly, profunctors contain the
additional causal information that makes an alternative definition of trace possible,
one which like coends can be expressed as a colimit but which this time agrees
with the trace on Kahn processes.

5This defines composition only to within isomorphism, explaining why we get abicategory.
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4.2 An operational reading

To see the connection with Kahn processes we examine the structure of profunctors
more closely. First, we restrict attention topointwise rooted profunctorsbetween
path categories, which intuitively correspond to those profunctors having a unique
initial state.

Definition 12 LetX : A //+ B. If Xα is a rooted presheaf (i.e.Xα
ε is the singleton

set) for anyα object ofA, we say thatX is a pointwise rooted profunctor. We
denote the single element belonging toXε

ε by rX (the root ofX).

It is easy to check that rootedness is satisfied by identities and preserved by com-
position, thus forming a category, which we will refer to asProf⊥, the category
of port profunctors. We writeX : A //⊥ B whenX is a profunctor inProf⊥. The
categoryProf⊥ inherits the symmetric monoidal structure ofProf . Explicitly we
can defineA⊗B = A ]B. The coend fails to preserve rootedness in general.

Similar to the construction in [41], we have an operational interpretation of port
profunctors, which is a slight generalisation of the well-known construction of the
category of elementsof a presheaf.

Definition 13 Let X : A //⊥ B be a port profunctor. Define its(A,B)-port au-
tomatonEl(A,B)(X) , (S, i,−→, E), whereS is the set ofstates, i ∈ S is the
initial state, E is the set ofevents, and−→⊆ SxExS is the transition relation,
given by

• S = {
(
(α, β), x

)
| (α, β) is an object inA×B

op
& x ∈ Xα

β
}

• i =
(
(ε, ε), rX

)
• E = IA ∪ OB

•
(
(α, β), x

) i a,v−→
(
(α〈a, v〉, β), y

)
, if Xm

1β
x = y, for m : α −→ α〈a, v〉 an

arrow ofA.

•
(
(α, β), x

) o b,v−→
(
(α, β〈b, v〉), y

)
, if X1α

m y = x, for m : β −→ β〈b, v〉 an
arrow ofB.

DefineSeq(X) to be the set of finite sequences of events labelling finite sequences
of transitions ofEl(A,B)(X) beginning at the initial state.

As an example, the automata of the profunctors modelling the behaviour of the two
automataA1 andA2 from section 2.1 can be pictured as follows:

A1:

•

•
o

OO

•ioo

i
o

OO

• ioo

o
OO

ioo
OO

ioo
OO

ioo

A2:
•

?
o

OO

• •ioo

i
o

OO

• ioo

o
OO
**o
TT

ioo
OO

OO
TT

oo
oo

oo

,
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repeating the same pattern infinitely to the left.
Remarkably, the axioms of receptivity and monotonicity usually imposed on

monotone port automata [30] and the usual commutativity axiom of asynchronous
transition systems [4, 37] follow simply by functoriality for port automata of pro-
functors.

Proposition 14 LetX : A //⊥ B be a port profunctor. The following axioms hold
for El(A,B)(X) = (S, i,−→, E)

A1. Receptivity:∀e ∈ IA, s ∈ S ∃!s′ ∈ S. s e−→ s′,

A2. Monotonicity:

s

s1
���

o b,v
��

s2
??

? ia,v′

��

uia,v′
��

o b,v
��

⇓

A3. Commutativity:

s

s1
���

e1
��

s2

e2
��

u

???
e2 �� e1��

⇒ ,

for e1, e2 ∈ IA or e1, e2 ∈ OB.

This immediately gives the following corollary.

Corollary 15 LetX : A //⊥ B port profunctor. Then,Seq(X) is a Kahn process.

The failure of the coend definition of feedback is illustrated by the example above:
As expressed by equation (2), the coend “quantifies” over all states on the IO-
diagonal. In the case ofA2, this include the “bad” state?, that cannot be reached
by a path on which output preceeds input. The idea in the definition of the trace
to come, is exactly to restrict this quantification to only the “good” states with the
correct causal precedence.

4.3 A relational model of indeterminate dataflow

We will restrict the port profunctors to those for which the associated port automata
satisfies an additional axiom

A4. Stability: s 6= s2 &

s

s1
���

i a,v
��

u

ia′,v′__

s2

???
i a′,v′

__

ia,v
��

⇒! & a 6= a′.

which amounts to requiring that the profunctors (regarded as functors to sets)
preserve pullbacks in their input arguments. It implies that any output event depend
on a unique sequence of input events (up to commutativity). This property is satis-
fied by identities, and from the results in this section it follows that it is preserved
under composition and tensor. Thus, the stable port profunctors between path cate-
gories form a monoidal sub category ofProf⊥, which we will denote bySProf⊥.
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In the following we will switch freely between elements of a profunctor and states
of the associated port automata, using−→ as a relation between elements. Note
that the relation , defined when giving the explicit definition of the coend, can
be seen as a relation between states of port automata, and understood as a chain of

communicationpairs of the form• ow−→ • iw−→ •. Recall that∼ was defined to be
the symmetric, transitive closure of . For profunctors inSProf⊥ we can prove
a diamond property, which follows from the stability condition.

Lemma 16 LetX : A⊗C //⊥ B⊗C be a stable port profunctor. Ifx1  x3 and
x2  x3, for x1, x2, x3 elements ofX, then there exists an elementx0 such that
x0  x1 andx0  x2.

By induction, this gives us an important corollary.

Corollary 17 LetX : A⊗C //⊥ B⊗C be a stable port profunctor. Ifx ∼ y, for
x, y elements ofX, then there exists an elementz such thatz  ∗ x andz  ∗ y.

We are now ready to give the definition of the restricted trace. Note that the 
transitions by definition maintains the causal precedence of feedback; extending
output first and then input correspondingly.

Definition 18 For X : A⊗C //⊥ B⊗C, defineTrCA,B(X) : A //⊥ B, the trace of

X as follows. For objectsα, β of resp.A andB, let

TrCA,B(X)
α

β
=
⊎
γ∈C

{x ∈ Xα,γ

β,γ
| rX(

A,B−→ ∪ )∗x}/∼,

where
A,B−→=−→ ∩SXx(IA∪OB)xSX . For arrowsm, n of resp.A and B, define

TrCA,B(X)
m

n
to be the map sending[x]∼ to [X

m,1γ
n,1γ

x]∼, for x ∈ Xα,γ

β,γ
.

It follows from functoriality ofX that this indeed is a profunctor and a simple
inspection shows that rootedness is preserved. Preservation of stability follows
from corollary 17.

The trace has an equivalent definition, based on the standard construction of
the subdivision category [27] which allows any coend to be expressed as a colimit.
For a categoryQ its subdivision categoryQ\ is defined as follows. The objects
of Q\ are all symbolsq\ andf \ for q object inQ andf arrow inQ. The arrows
of Q\ are the identity arrows for these objects, plus for each arrowf : q0 −→ q1

in Q two arrowsfi : f \ −→ q
\
i , i = 0, 1. There are no non-trivial compositions.

A profunctorX : A ⊗ C //⊥ B ⊗ C defines a profunctorX\ : A ⊗ C
\ //+ B by

(X\)α,γ
\

β
, Xα,γ

β,γ
and forf : γ −→ δ an arrow ofC, (X\)α,f

\

β
, Xα,γ

β,δ
. On arrows

f0, f1, let (X\)m,f0
n , Xm,1γ

n,f and(X\)m,f1
n , Xm,f

n,1δ
. It is a standard fact that∫ γ∈C

X ∼= Colim
C
\X\.

Now comes the non-standard part, restrictingX\ according to definition 18.
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Definition 19 For X : A⊗C //⊥ B⊗C, defineFbCA,B(X) : A⊗C
\ //+ B as fol-

lows. Forα, β andc objects of resp.A, B andC
\
, let

FbCA,B(X)α,c
β

= {x ∈ (X\)α,c
β
| rX(

A,B⊗C−→ ∪ )∗x},

where
A,B⊗C−→ =−→ ∩SXx(IA ∪ OB⊗C)xSX . For arrows letFbCA,B(X)m,fin ,

(X\)m,fin |
FbCA,B(X)α,f

\

β

.

Actually,Fb(−) extends to a functor between presheaf categories. The trace given
in definition 18 can be expressed as a colimit as follows.

Proposition 20 LetX : A⊗C //⊥ B⊗C andFbCA,B(X) be given as above. Then,

TrCA,B(X) ∼= Colim
C
\FbCA,B(X).

The following propositions are the key ingredients in showing that this indeed
makesSProf⊥ a traced monoidal bicategory. First of all, one gets the usual pro-
functor composition from the trace.

Proposition 21 LetX : A //⊥ B andY : B //⊥ C. Then,

TrBA,C(X ⊗ Y ) ∼=
∫ β

X
β
⊗ Y β.

Next, trace distributes through tensor and simultaneous trace is equivalent to iter-
ated trace.

Proposition 22 LetX : A⊗C //⊥ B⊗C andY : A′ //⊥ B′. Then,

Y ⊗ TrCA,B(X) ∼= TrCA′⊗A,B′⊗B(Y ⊗X).

Proposition 23 LetX : A⊗C⊗D //⊥ B⊗C⊗D. Then,

TrCA,B(TrDA⊗C,B⊗C(X)) ∼= TrC⊗DA,B (X).

The proof of the latter proposition is clearly the most involved.

Theorem 24 With the tensor structure and the trace operator given above,SProf⊥
is a traced monoidal category.

As advertised, the trace indeed gives us the correct observational definition of feed-
back, proven by the existence of a functor fromSProf⊥ to Kahn, preserving the
traced monoidal structure.

Proposition 25 The mapSeq of definition 13 defines the action on arrows of a
traced monoidal functorSeq : SProf⊥ −→ Kahn, on objects simply mapping
path categories to their underlying port set.
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5 Some consequences

We will briefly go through some of the consequences of having this categorical
model of dataflow.

5.1 Bisimulation

The presentation of models for concurrency as categories allows us to apply a gen-
eral notion of bisimulation from spans of open maps proposed in [19]. The general
idea is to identify apath categoryP ↪→ M as a subcategory of the modelM,
with objects representing runs or histories and morphisms compatible extensions
of these. For a presheaf modelP̂ the canonical choice is the categoryP under the
yoneda embeddingy. Identifying the objects ofP with their presheaf undery, the
notion ofopen mapsspecialized to presheaves is defined as follows.

Definition 26 LetX,Y be objects of̂P andf : X −→ Y a morphism. Thenf is
P-openif whenever for two path objectsP,Q of P and mor-

P //
p

��

m

X

��

f

Q //
q

??

h

Y

phismm,p, q such that the diagram commutes, there exists a
morphismh : Q −→ X as indicated by the dotted line, mak-
ing the two triangles commute.

Two objectsX,Y of P̂ are said to beP-bisimilar iff there exists aspan of open
mapsf1, f2:

X Zoo
f1

//
f2

Y.

This gives a notion of bisimulation for profunctors betweenA and B; re-

call thatX : A //⊥ B can be viewed as a presheaf in̂A
op ×B whereA

op × B is
the canonical choice of path category. Viewed as a port-automaton, a path-object
(α, β) looks like

i
iα0−→ • iα1−→ · · · iαn−→ • oβ0−→ • oβ1−→ · · · oβm−→ x,

closed under axiomsA1-A3. As in [41], the bisimulation can be characterised as a
back&forth bisimulation between the states of the associated port automata.

It is important to check that bisimulation onSProf⊥ is a congruence with
respect to the operations tensor and trace. Here we can exploit some general prop-
erties of open maps and so bisimulation on presheaves: the product of (surjective)
open maps in a presheaf category is (surjective) open [18]; any colimit-preserving
functor between presheaf categories preserves (surjective) open maps [8]. The
proof that trace onSProf⊥ preserves bisimulation uses the latter property, ex-
ploiting the fact that trace can be expressed as a colimit; first showing from the
definition thatFb(−) preserves open maps. The proof of the corresponding result
for tensor rests on a construction of tensor from more basic functors. The tensor
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of X1 : P1
//+ Q1 andX2 : P2

//+ Q2 can be expressed as a product of presheaves
overPop

1 ×Q1 ×Pop
2 ×Q2 :

X1 ⊗X2 = (π∗1X1)× (π∗2X2)

where e.g.

π∗1 : ̂Pop
1 ×Q1 → ̂Pop

1 ×Q1 ×Pop
2 ×Q2

is obtained by composition with the projection

π1 : Pop
1 ×Q1 ×Pop

2 ×Q2 → Pop
1 ×Q1,

so(π∗1X1)p1,p2
q1,q2 = X1

p1
q1 . For general reasonsπ∗1 has a right adjoint (constructed as

a right Kan extension—see [27, 19]). Thusπ∗1 and, similarly,π∗2 are left adjoints
and so preserve (surjective) open maps. Combined with the similar fact about
product of presheaves we deduce that⊗ preserves (surjective) open maps, and so
bisimulation.

5.2 Higher types via Geometry of Interaction

The geometry of interaction programme can be seen as a method of constructing
a compact closed category from a traced monoidal category.6 As such it gives
a method for realizing higher-order constructs in terms of feedback. In our set-
ting one takes the categoriesKahn andSProf⊥ and constructs compact-closed
categoriesHKahn andHProf⊥ which then serve as the interpretations of higher-
order Kahn processes and Port profunctors.

In this section we give a summary of a categorical presentation of the geom-
etry of interaction construction due to Abramsky [1] and also to Joyal, Street and
Verity [20]. We do not need the full generality of the latter presentation since we
do not consider braiding or twists. Essentially, one obtain a higher-order model
by working with processes with bi-directional “input” and “output”. For dataflow
this can be understood as splitting channels into a positive part and a negative part;
the positive channels carry tokens in the usual direction and the negative in the op-
posite direction. These processes are implemented by uni-directional processes of
the underlying category in the obvious way, regarding negative input channels as
output channels and negative output as input. Below we will use box-diagrams in
the style of [20], using double boxes for morphisms of the higher-order category.

Definition 27 Given a traced monoidal categoryC we define a new categoryG(C)
as follows. The objects ofG(C) are pairs of objects(A+, A−) of C. A morphism
f : (A+, A−) −→ (B+, B−) of G(C) is a C-morphismf : A+⊗B− −→ B+⊗A−,
ie.

foo

A−

//A+
//B+

oo

B−
is implemented by f//

B−

//A+
//B+

//

A−
,

6In Girard’s original treatment this was expressed in terms of traces in the category of Hilbert
spaces. That situation is more complicated because not every morphism has a trace, so the categorical
presentation of geometry of interaction is not the same as the original program.
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where dotted lines indicate channels that play the opposite role inG(C). Com-
position is implemented using composition, trace and symmetries ofC to connect
B-channels with same polarity, ie. forg : (B+, B−) −→ (C+, C−), f ; g is imple-
mented byTrB

−
A+⊗C−,C+⊗A−(σ; (f ⊗ IC−);σ′; (g ⊗ IA−);σ′′), for the appropri-

ate symmetriesσ, σ′ andσ′′.

Note thatC embeds intoG(C) as arrows with no negative flow, mapping objectsA

to (A, I).
A symmetric monoidal structure� is defined on objects by(A+, A−)�(B+, B−) =

(A+⊗B+, B−⊗A−) and for arrowsf , g, we definef � g by σ; f ⊗ g;σ′, where
σ, σ′ are symmetry morphisms ofC, gathering channels of the same polarity. The
symmetry morphism for� is the evident tensor of symmetry morphisms ofC. We
have an obvious duality defined on objects by(A+, A−)∗ = (A−, A+), and on
arrows by swapping the roles of channels

foo

A−

//A+
//B+

oo

B−

( )∗
←−−−→ f∗oo

A−

//A+
//B+

oo

B−
,

defining a contravariant functor(−)∗ : G(C) −→ G(C). Finally, from definition 27
we get internal hom sets by(A+, A−) −◦ (B+, B−) = (B+, B−) � (A+, A−)∗

corresponding to moving all channels to the output side, and changing their roles
accordingly

foo

A−

//A+
//B+

oo

B−
=

f

//

A−

oo A
+

//B+

oo

B−

.

This defines a compact closed structure [24].

Proposition 28 The categoryG(C) is a compact-closed category.

We immediately get, since it preserves tensor and trace, that the functorSeq : SProf⊥
−→ Kahn extends to one between the higher-order categories.

Proposition 29 We have a functorHSeq : HProf⊥ −→ HKahn, defined using
Seq on the base category.

Within HKahn andHProf⊥, the diagonaldX : I −→ X ⊗ X∗ and evaluation
eX : X∗ ⊗ X −→ I maps are essentially “routers”, copying values from in-going
channels to the corresponding out-going ones.

Indeed, forX : I −→ A andY : A −→ B of saySProf⊥,

X

Y

eA

IB
//B

hh A

//
A

//B

when imbedded intoHProf⊥ and internalized we get
(Y ⊗ X) : I −→ (B ⊗ A,A) as illustrated to the left,
and the application(Y ⊗X); (IB ⊗ eA) : I −→ B simply

corresponds to pluggingX into Y in SProf⊥. The same goes for higher-order
evaluation.
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Summa summarum: We have two genuine higher-order calculi of dataflow, ex-
plicitly related to each other and based on a low-level implementation such that
application simply corresponds to plugging networks together, combining wires
using feedback.

6 Concluding remarks

It remains to systematically explore the full family of models for dataflow, relating
automata, event structure and traces-based models to the relational model, follow-
ing the pattern set in [42]. Work is underway on a bicategory of port automata
to close a gap in [36]. This will provide further operational back up to the trace
on port profunctors and help in the understanding of independence at higher-order.
The higher-order models should be compared to the related, but clearly different,
work in [2]. It remains to incorporate fairness into the profunctor model; it is
hoped to exploit independence along the lines in [9]. A compositional semantics
of Verilog, or perhaps an interesting fragment, feels within reach.
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Checking via Reachability Testing for Timed Automata. Novem-
ber 1997. 29 pp.

RS-97-28 Ronald Cramer, Ivan B. Damg̊ard, and Ueli Maurer. Span Pro-
grams and General Secure Multi-Party Computation. November
1997. 27 pp.

RS-97-27 Ronald Cramer and Ivan B. Damg̊ard. Zero-Knowledge Proofs
for Finite Field Arithmetic or: Can Zero-Knowledge be for Free?
November 1997. 33 pp.
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