
B
R

IC
S

R
S

-97-28
C

ram
er

etal.:S
pan

P
rogram

s
and

G
eneralS

ecure
M

ulti-P
arty

C
om

putation

BRICS
Basic Research in Computer Science

Span Programs and General
Secure Multi-Party Computation

Ronald Cramer
Ivan B. Damgård
Ueli Maurer

BRICS Report Series RS-97-28

ISSN 0909-0878 November 1997

Copyright c© 1997, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/97/28/

Span Programs and General Secure Multi-Party
Computation

Ronald Cramer (ETH Zurich ∗)
Ivan Damg̊ard (Aarhus University † & BRICS ‡)

Ueli Maurer (ETH Zurich §)

Abstract
The contributions of this paper are three-fold. First, as an abstraction of previ-

ously proposed cryptographic protocols we propose two cryptographic primitives: ho-
momorphic shared commitments and linear secret sharing schemes with an additional
multiplication property. We describe new constructions for general secure multi-party
computation protocols, both in the cryptographic and the information-theoretic (or se-
cure channels) setting, based on any realizations of these primitives.

Second, span programs, a model of computation introduced by Karchmer and Wigder-
son, are used as the basis for constructing new linear secret sharing schemes, from which
the two above-mentioned primitives as well as a novel verifiable secret sharing scheme
can efficiently be realized.

Third, note that linear secret sharing schemes can have arbitrary (as opposed to
threshold) access structures. If used in our construction, this yields multi-party pro-
tocols secure against general sets of active adversaries, as long as in the cryptographic
(information-theoretic) model no two (no three) of these potentially misbehaving player
sets cover the full player set. This is a strict generalization of the threshold-type adver-
saries and results previously considered in the literature. While this result is new for
the cryptographic model, the result for the information-theoretic model was previously
proved by Hirt and Maurer. However, in addition to providing an independent proof,
our protocols are not recursive and have the potential of being more efficient.

1 Introduction and Related Work
The main goal of this paper is to propose new efficient secure multi-party com-

putation protocol constructions based on generic primitives and to show that these
primitives can be realized by using linear secret sharing schemes based on span
programs. It is our hope that this link between span programs and multi-party

∗Dept. of Computer Science, ETH Zurich, CH-8092 Zurich, Switzerland. Email: cramer@inf.ethz.ch.
†Maths. & Comp. Sc. Dept., Ny Munkegade, Aarhus, Denmark. Email: ivan@daimi.aau.dk
‡Basic Research in Computer Science, Center of the Danish National Research Foundation
§Dept. of Computer Science, ETH Zurich, CH-8092 Zurich, Switzerland. Email: maurer@inf.ethz.ch.

Supported by the Swiss National Science Foundation.

computation can be the basis for the discovery of further relations between these
two areas that have recently received a lot of attention.

Secure multi-party computation can be defined as the problem of n players to
compute an agreed function of their inputs in a secure way, where security means
maintaining correctness of the output while keeping the players’ inputs private, even
in the presence of adversarial behavior by some of the players.

One can distinguish between passive and active cheaters: passive cheaters follow
the protocol but pool their information in order to violate the other players’ privacy.
Active cheaters can use an arbitrary joint strategy in order to violate the correct-
ness and/or privacy of the computation. Usually, this is modeled by assuming the
existence of a passive or active adversary who can monitor or control some subset
of the players. It is (at least initially) unknown to the correct players which subset
is affected.

Two basic models have been considered in the literature. In the cryptographic
model, all players are assumed to have access to messages exchanged between play-
ers, and hence privacy and correctness can only be guaranteed in a cryptographic
sense, i.e. assuming that the adversary cannot solve some computational problem.
Privacy here means that an adversary’s entire view of the protocol can efficiently
be simulated in a manner indistiguishable from a real execution of the protocol.
In the information-theoretic (also called secure channels) model, it is assumed that
the players can communicate pairwise over secure channels, and the privacy as well
as the correctness can then be guaranteed even when the adversary has unbounded
computing power. Privacy here means that an adversary’s view, when given the
output of the computation, is statistically independentent of the other player’s in-
puts and hence gives no Shannon information about them. We consider both the
cryptographic and the information-theoretic models, assuming synchronous com-
munication and static adversaries1.

The classical results for the information-theoretic model due to Ben-Or, Gold-
wasser and Wigderson [4] and Chaum, Crépeau and Damg̊ard [8] state that every
function can securely be computed if and only if less than n/2 passive or less than
n/3 active cheaters are present. These result were generalized by Hirt and Mau-
rer [15] who considered as the potential adversaries general sets of subsets of the
player set, not necessarily specified by their cardinality.

Using terminology from secret sharing and from [15], we call a set of subsets
of the players a structure and we consider security (privacy and correctness) of a
protocol with respect to an adversary structure, meaning that the protocol remains
secure even when an arbitrary set in the structure happens to be controlled by an
adversary (which may be passive or active). Let Q2 (and Q3) be the conditions on
a structure that no two (no three) of the sets in the structure cover the full player
set. Note that the threshold situations considered in [4], [8], [14] and [20] are special

1In the information-theoretic model, our results also hold for adaptive (dynamic) adversaries, i.e. when an
adversary decides adaptively which players to corrupt.

2

cases, where the adversary structure would contain all sets of size less than n/2 or
n/3.

The result of [15] can then be stated as follows: secure multi-party computation
is possible in the information-theoretic scenario, while tolerating a passive (active)
adversary, if and only if the adversary structure satisfies Q2 (Q3). One - perhaps
somewhat surprising - consequence of this is that in some situations, a majority of
passive cheaters can be tolerated, provided we do not have to tolerate any dishon-
est majority. The protocols proposed in [15] rely on applying a protocol for the
threshold case (e.g. [4]) recursively, so that subsets of players together run thresh-
old protocols to simulate virtual players in higher level protocols. In general, the
emphasis in [15] was on existence of protocols rather than on efficiency.

In this paper, we present protocols that directly and perhaps more naturally
implement protection against any Q2 passive or any Q3 active adversary in the
information-theoretic scenario. The Q2 and Q3 conditions arise directly from a
natural condition on the underlying secret sharing schemes, and this also leads to
a potentially more efficient solution than that of [15]. In particular, the complexity
of our protocols is directly related to the size of a monotone span program [16] that
rejects all potentially misbehaving player sets and accepts their complements and
enjoys a special multiplication property2. One ”spin-off” from our results that may
be of independent interest is a new construction that builds from a monotone span
program a verifiable secret sharing scheme for the information-theoretic scenario
tolerating any Q3 active adversary (the multiplication property is not needed here).
Like in [4] and [15], our protocols have zero probability of successful cheating by an
active adversary.

In the cryptographic model with an active adversary, the most general previ-
ous result was shown by Goldreich, Micali and Wigderson [14] who proved that
any minority of active cheaters can be tolerated, assuming that trapdoor one-way
permutations exist. In this paper, we show that any Q2 active adversary can be
tolerated, assuming that one-way group homomorphisms with specific extra proper-
ties exist. Particular assumptions sufficient for this include: the RSA assumption,
hardness of discrete log in prime order groups, or polynomial security of Diffie-
Hellman encryption. To the best of our knowledge, this is the first result for the
cryptographic model that goes beyond the threshold case. It can be generalized to
rely only on the existence of trapdoor one-way permutations, but only with loss of
efficiency.3

2Span program are the most powerful known method for designing linear secret sharing schemes (combine
the results of [3] and [16]).

3Even for the threshold case, our protocol yields substantial efficiency improvements over earlier proposals:
if the computation is specified as an arithmetic circuit of size m operations over GF (q), where q is a k-bit
prime, then with security parameter value k, our protocol has communication complexity O(kmf(n)2) bits,
when based on the most efficient implementations of the primitives, and where f(n) is the size of the monotone
span program we need for the particular adversary structure considered. In particular, if we want to tolerate
any minority of active cheaters, we will have f(n) = n.

3

This paper draws on three ideas appearing in [13]: the observation that in [4] the
product of two shared values is defined as a linear function of the products of the
shares, the idea (independently discovered in the course of our research) of using
homomorphic cryptographic commitments to build verifiable secret sharing, and
the idea of using a specialized zero-knowledge proof for proving correctness of mul-
tiplied commitments. One of the achievements of this paper is to show how general
linear secret sharing schemes (not only Shamir’s polynomial threshold scheme as
in [13]) can be applied in multi-party computation, both in the cryptographic and
information-theoretic setting.

2 The Tools: Shared Commitments and Secret Sharing
In this section we introduce some notation and state, at an abstract level, the

required properties for our two main tools used in both the cryptographic and the
information-theoretic model. Shared commitments (often also simply called com-
mitments in this paper) are a generalization of conventional cryptographic commit-
ments, which are in fact used as the implementation of shared commitments in the
cryptographic scenario.

We use the following notation throughout the paper. The set of players is denoted
{P1, ..., Pn}. In all models, we consider a particular monotone set A of subsets of
{P1, ..., Pn}, called the adversary structure, as potential adversaries, and every set
in A is called an admissible adversary. The set A usually satisfies the Q2 or the Q3
condition. When considering one particular adversary A in A, then we refer to the
players not in A as correct players. The function to be computed is assumed to be
defined as an arithmetic circuit C over some finite field K.

2.1 Notation and Required Properties for Shared Commit-
ments

To protect against active adversaries in a given adversary structure A, we will need
a commitment scheme for elements in K. A shared commitment scheme consists of
two protocols, Commit and Open. Both of these are initiated by one of the players,
called the committer, in order to commit to or reveal a value a ∈ K, respectively.
During Commit the committer distributes some information to the other players,
possibly also involving interaction between the players. By the commitment, we
mean the total information distributed to the correct players. We need the following
basic properties:

1. Binding: For any committer and any admissible adversary, some value a is
uniquely determined from the commitment, and an execution of Open based
on this commitment results either in all correct players retrieving a, or in all
correct players rejecting the outcome of Open.

2. Hiding: If the committer is a correct player and commits to value a, any
admissible adversary learns nothing about a from his view of the Commit

4

protocol. Moreover, executing Open based on this commitment always results
in all correct players retrieving a.

In the information-theoretic (cryptographic) scenario, both properties hold uncon-
ditionally (relative to some complexity assumption).4

We will need the following extra properties, where the Multiplication Protocol is
only needed in case of an active adversary:

• Homomorphic: From commitments A and B containing a ∈ K and b ∈ K,
respectively, the players can, without communicating, compute a commitment
containing a+ b ∈ K, or compute one containing a− b ∈ K. Motivated by the
particular known realizations of homomorphic cryptographic commitments,
we will denote these commitments by A·B and AB−1, respectively. This prop-
erty also implies that without communication, constants can be multiplied or
added into commitments. We will let Ac, cA, cA−1 denote commitments to
ca, c + a, c − a, as computed from A. Each new commitment computed in
this way can be opened by the committer, but we require that opening A ·B
reveals no information about a and b other than a + b (and similar for the
other operations).

• Multiplication Protocol: This protocol allows a player Pi who has previously
committed to values a and b by commitments A and B to commit to a value
c using commitment C, such that:

1. For any Pi and any admissible adversary, either c = ab or all correct
players reject the outcome of the protocol (for the cryptographic scenario,
a superpolynomially small error probability, taken over the coin flips of
correct players, is allowed).

2. If Pi is a correct player, the protocol always results in c = ab, and
any admissible adversary learns nothing about c except that c = ab.
Moreover, opening C reveals no information about a and b other than
ab.

2.2 Notation and Required Properties for Secret Sharing
A secret sharing scheme can be defined as a probabilistic polynomial time algo-

rithm which takes as input an element s in K and outputs n shares s1, ..., sn. The
share si will be a di-vector of elements in K, and in the course of our protocols,
the share si will be given to Pi (but will initially be unknown to all other players).
Let d = d1 + ... + dn. For C ⊆ {P1, . . . , Pn} we call a vector of length

∑
i:Pi∈C di

a dC-vector. For any t and any t-vectors u,v, the t-vector u ∗ v will denote the

4In the information-theoretic setting, and without the uniqueness condition on the committed value, this
corresponds to Weak Secret Sharing defined in [20, 19].

5

coordinatewise product of u and v. The standard inproduct of u and v is denoted
by 〈u,v〉.

There is a monotone collection of qualified subsets of players, called the access
structure. Any qualified set can efficiently reconstruct the shared secret while any
non-qualified set has no information about the secret (perfect secrecy). A set of
values that can be interpreted as the shares of a secret s of a qualified set in a secret
sharing sheme will be said to consistently determine s.

In our protocols, the set of non-qualified subsets (the complement of the access
structure) will coincide with A, the subsets of players that may potentially be under
the adversary’s control. Because we are dealing with only Q2 or Q3 adversary
structures, the set of correct players is always qualified.

We will need the following extra properties from our secret sharing schemes, where
the strong multiplication property is only required in the case of an active Q3-
adversary:

• Linearity: If values s, s′ ∈ K have been shared resulting in sets of shares
s = (s1, . . . , sn) resp. s′ = (s′1, . . . , s

′
n), then the set (s1 + s′1, . . . , sn + s′n)

is a consistent set of shares uniformly chosen among those that determine
s + s′. As for commitments, this property implies that players can, without
communicating, also compute from a sharing of s a set of shares determining
cs or c+ s, for any constant c ∈ K.

• Multiplication property: assume values s, s′ ∈ K have been shared resulting
in sets of shares s resp. s′. Note that these sets of shares can be viewed as
d-vectors. We require that there exists a fixed d-vector r, called the recombi-
nation vector5 such that 〈r, s ∗ s′〉 = ss′.

• Strong multiplication property: With respect to an adversary structure A,
the following additional property holds: let C be any set of players with
C = {P1, . . . , Pn}−A for some A ∈ A. Let (s ∗ s′)C be the dC-vector obtained
by extracting from s ∗ s′ the coordinates corresponding to players in C. We
then require that there exists a dC-vector rC such that 〈rC, (s ∗ s′)C〉 = ss′.

2.3 The Commitment Distribution Protocol
This protocol is only required in the case of an active adversary and is defined

relative to an adversary structure A and with respect to a secret sharing scheme for
which A consists of the non-qualified sets. It allows a player Pi who has committed
to a value s ∈ K by commitment C to share s among the players P1, . . . , Pn such
that in the presence of any adversary in A,

5The definition of this property was motivated by an observation of M. Rabin described in [13], and it can
in fact be seen as an abstraction or generalization of the multiplication trick described in [13].

6

1. Either each player Pj for 1 ≤ j ≤ n is committed to (the coordinates of) a
dj-vector sj, such that s1, ..., sn is a set of shares consistently determining s;
or all correct players reject the outcome of the protocol6.

2. If Pi is a correct player, any admissible adversary learns nothing about s.

Any commitment distribution protocol can be used to realize verifiable secret
sharing (VSS).7 This is achieved by having the dealer first commit to the secret s
and then use the commitment distribution protocol. Reconstruction is immediate
by having each Pj open the commitments to sj: incorrect players cannot contribute
false shares, and shares will be available from at least the correct players, which is
a qualified set.

3 Multi-Party Computation: The Main Protocol
In this section, we give a bird’s eye view of our multi-party computation protocol

based on the tools8 of Section 2. This view will be valid both in the information-
theoretic and the cryptographic scenario.

A remark on broadcast is appropriate here. Note that we may assume throughout
that players can broadcast information. This is trivial in the cryptographic scenario,
and can be simulated through a protocol in the information-theoretic scenario. This
is non-trivial only with an active Q3-adversary. In this case a solution follows from
using the result of [15]. We conjecture that an alternative solution is to use the
protocol of Feldman and Micali [11] together with our VSS protocol described below,
but at the time of writing, this has not yet been completely investigated.

Our main protocol has the same overall structure as many known multiparty
computation protocols. There are three main parts: the Input distribution, Com-
putation, and Output reconstruction phases. We note that the description is for the
case of an active adversary. A (much simpler) description for the case of a passive
adversary can be obtained by removing the commitments and subprotocols that
force players to act correctly.

After the input distribution phase, each input value x to the computation is
represented by a set of shares x1, ...,xn, such that each Pi has committed to (the
coordinates of) his share xi. During the computation phase, we work our way
through the circuit C one field operation (multiplication or addition) at a time.
Finally, the outputs can be reconstructed since each output value will be represented
in the same way as the inputs.

Here follows a more concrete description:9

6for the cryptographic scenario, a superpolynomially small error probability, taken over the coin flips of
correct players, is allowed.

7A VSS can be seen as a shared commitment for which it is additionally guaranteed that the secret can
efficiently be reconstructed by the players.

8In case of a passive adversary, the Commitment Distribution Protocol, the Strong Multiplication for
Secret Sharing and the Multiplication Protocol for Commitments are not needed.

9This protocol draws on ideas in [13] (see also the end of the introduction) and [8].

7

1. For each player Pi and each input value x to be chosen by Pi, Pi commits to
x and uses the Commitment Distribution Protocol to ensure that each Pj is
committed to a valid share xj of x.

If a player Pi fails to execute this phase correctly, he is clearly corrupt, and
the correct players assume default values for his inputs and shares.

2. For the computation phase, we maintain an invariant stating that whenever
y is an input value or an intermediate result in C that has already been com-
puted, each Pi is committed to a valid share yi of y (initally, no intermediate
results are computed).

Let x, y be input values to an operation to be done in C, where both x, y are
either inputs or already computed intermediate results. This means that each
Pi is committed to valid shares xi,yi of x, y by two vectors of commitments
Xi,1, ..,Xi,di and Yi,1, .., Yi,di. Let, as before, x and y denote the full sets of
shares in x and y, and define z = xy.

If the operation is addition, the players now locally compute for each i the
vector of commitments Xi,1 · Yi,1, . . . ,Xi,di · Yi,di. This commits Pi to xi + yi
using linearity of commitments. By linearity of the secret sharing, this set of
shares consistently determines x+ y.

If the operation is a multiplication, each Pi uses for j = 1 . . . di the Multiplica-
tion Protocol with inputs Xi,j, Yi,j to produce a commitment Wi,j to the j-th
coordinate of xi ∗ yi. For each j = 1 . . . di, player Pi now uses the Commit-
ment Distribution Protocol with input Wi,j to have each Pk commit to (the
coordinates of) a valid share in the j-th coordinate of xi ∗ yi.

3. The following only applies when the previous operation was a multiplication.
If the secret sharing scheme has only the standard multiplication property,
and some Pi fails to complete his multiplication step correctly, he is deemed
corrupt, the players make public all the information sent to him so far, and
simulate him openly after this point (this tells the adversary nothing he did
not already know). Thus we proceed as if Pi still participated in the protocol.
If the scheme has the strong multiplication property, a player Pi failing to
complete his multiplication step correctly, is simply deemed corrupt and is
ignored for the rest of the protocol.

Now, each player does the following (our description is for strong multipli-
cation; in the other case, read C as the full player set, dC as d, and rC as
r).

Let C be the set of participants that still participate at this point. Suppose
(x ∗y)C (defined as in Section 2.2) is a dC-vector. Now, for every Pk ∈ C and
every l = 1 . . . dk, m = 1 . . . dC , player Pk has made a commitment Zk,l,m to
the l-th coordinate of a share zk,m in the m’th coordinate of (x∗y)C. Each Pk

8

now privately computes zk = r1zk,1 + ...+ rdCzk,dC , and the players compute,

for l = 1 . . . dk, the commitments Zk,l = Zr1
k,l,1 · . . . ·Z

rdC
k,l,dC

to the l-th coordinate
of zk, where rC = (r1, ..., rdC) is the recombination vector guaranteed by the
strong multiplication property.

Note that by the properties of the secret sharing, zk is a valid share of z = xy,
and so we have built a correct representation of z.

4. For the output reconstruction phase, we may assume that each output value
is represented by a set of d commitments, containing a full set of shares of
the value. Reconstruction is therefore straightforward by opening all these
commitments, ignoring values that are not opened correctly.

4 Span Programs and Secret Sharing

4.1 Notation and Definitions
Let f : {0, 1}n −→ {0, 1}, f 6≡ 0, 1, be a monotone function. A min-term x of

f is a string with f(x) = 1 such that no x′ < x (usual Boolean ordering) satisfies
f(x′) = 1. A max-nonterm y of f is a string with f(y) = 0 and for no y′ > y satisfies
f(y′) = 0. Its dual f ∗ : {0, 1}n −→ {0, 1} is defined by f ∗(x) = f(x⊕ 1)⊕ 1 for all
x ∈ {0, 1}n, where 1 denotes the all-one bit string and ⊕ denotes bit-wise xor. A
function f is called self-dual if f = f ∗. Let A denote a subset of {1, . . . , n}. By abuse
of notation we shall take f(A) to mean f(IA), where IA is bit string characterizing
A, i.e. the i-th bit of IA is set to 1 if i ∈ A and set to 0 otherwise. If f(A) = 1, we
shall say that A is qualified. Otherwise, A is non-qualified. Hence, the min-terms
of f correspond to minimal qualified sets of the associated access structure and the
max-nonterms correspond to the maximal non-qualified sets.

If V is a finite dimensional vector space over a field K then dimKV denotes its
dimension. If W is a subspace, then W⊥ denotes the orthogonal complement of W
in V . Relative to a standard basis, 〈x,y〉 denotes the inproduct of x,y ∈ V . For
example for V = Kd, x = (x1, . . . , xd) ∈ V and y = (y1, . . . , yd) ∈ V , x ∗ y denotes
(x1y1, . . . , xdyd) ∈ V .

If M is a matrix with entries in K then Mt denotes the transpose of M (we will
sometimes use cols(M) and rows(M) to refer to the number of rows and columns
of a matrix M , respectively). The image of M is denoted Im M and its kernel
(null-space) by Ker M . Finally, a useful fact from elementary linear algebra is that
Im Mt = (Ker M)⊥.

4.2 Monotone Span Programs
Span programs were introduced by Karchmer and Wigderson [16] as a linear

algebraic model of computation. In this paper, we will consider only monotone
span programs. Karchmer and Wigderson also described how span programs give
rise to secret sharing schemes.

9

4.2.1 Definition

Let K be a finite field and let M be a matrix with entries in K, having d rows and
e columns.10 We assume that M is labelled in the sense that each row is indexed
by some integer i with 1 ≤ i ≤ n, for some n, where every index i between 1 and
n occurs at least once as the index of a row. Finally, let a ∈ Ke \ 0 be given. A
monotone span program is a triple (K,M,a), defined as above.11 Sometimes we will
treat M just as a matrix, ignoring the labelling.

Let i ≤ n be a positive integer. By Mi we denote the matrix consisting of the
rows in M indexed by i. For each 1 ≤ i ≤ n, write di for the number of rows in Mi.
Similarly, for ∅ 6= A ⊂ {1, . . . , n}, MA denotes the matrix consisting of all rows in
M indexed with elements j ∈ A, and dA denotes the number of rows in MA. For a
vector s = (s1, . . . , sd) ∈ Kd, we define si and sA similarly.

Let f : {0, 1}n −→ {0, 1} be a monotone function. If for all ∅ 6= A ⊂ {1, . . . , n}

f(A) = 1 ⇐⇒ a ∈ Im Mt
A,

then the monotone span program (K,M,a) is said to compute f .
We note that any given monotone span program computes a monotone Boolean

function in a natural way. Namely, it computes the monotone Boolean function f
defined f(x1, . . . , xn) = 1 if and only if a ∈ Im Mt

A where A = {1 ≤ i ≤ n|xi = 1}.
Furthermore, it is well known that any monotone Boolean function can be computed
by a monotone span program.

4.2.2 A Secret Sharing Scheme

Let f(x1, . . . , xn) be a monotone Boolean function and let (K,M,a) be a monotone
span program computing it. Wlog we may assume that a = (10 · · · 0) (by applying
a suitable linear transformation on the rows). A perfect secret sharing scheme for
f is now constructed as follows [16] (notations as above).

Share Distribution:
(K,M,a) is public knowledge. Let s ∈ K be the secret. The dealer chooses
ρ1, . . . , ρe−1 ∈ K at random and puts b← (s, ρ1, . . . , ρe−1). For i = 1 . . . n, he
sends the share si, computed as si ← Mib, privately to player i. Note that
si ∈ Kdi.

Reconstruction:
Let A ⊂ {1, . . . , n} satisfy f(A) = 1, and let λA satisfy Mt

AλA = a. Then we
have s = 〈λA, sA〉, where sA denotes the superposition of the si with i ∈ A.
Note that λA, sA ∈ KdA, where dA =

∑
i∈A di.

10We may assume wlog that e ≤ d. Keeping only a collection of columns (including the first) that span the
column space does not affect the multiplication property defined later.

11Note that the labelling of M is only implicit in this definition.

10

For completeness, we prove the scheme correct and secure. Correctness: For A
with f(A) = 1 we have s = 〈a,b〉 = 〈Mt

AλA,b〉 = 〈λA,MAb〉 = 〈λA, sA〉. Privacy:
Observe that when f(A) = 0 a 6∈ Im Mt

A implies that, by our choice of a and by
the fact that Im Mt

A = (Ker MA)⊥, Ker MA contains a vector with non-zero first
coordinate. Hence, the equation MAb′ = sA, which has solution space equal to
b + Ker MA, has the same number of solutions for each possible choice of a secret
s′. The argument is completed by noting that the ρi’s appearing in the definition
of b have been chosen at random by the dealer.

As a final remark, if we do not take a = (10 · · · 0), then the dealer chooses b at
random s. t. 〈a,b〉 = s. The changes for reconstruction and the proof are trivial.

4.3 Span Programs with Multiplication
Recall the definition of the (strong) multiplication property for linear secret shar-

ing schemes from Section 2.2. For completeness, we now give a formal definition in
terms of monotone span programs.

Definition 1 We say that (K,M,a, r) is a monotone span program with multipli-
cation if (K,M,a) is a monotone span program and the recombination vector r has
the property that for all b,b′ we have

〈r,Mb ∗Mb′〉 = 〈a,b〉 · 〈a,b′〉.

Strong multiplication is defined analogously.
We state a property of the recombination vector that we will use later. Let

f(x1, . . . , xn) be the monotone Boolean function computed by (K,M,a, r). Say r =
(r1, . . . , rn), and define sup r = {1 ≤ k ≤ n|rk 6= 0}. Then we have f(sup r) = 1.
It is easy to see that f(sup r) = 0 would imply that the non-qualified set sup r
could compute the secret in any execution of the secret sharing scheme, which is a
contradiction.12

4.4 Constructions of Span Programs
We characterize the monotone Boolean functions f computable by monotone span

programs with multiplication. We also give an upper bound of the minimal achiev-
able size of the monotone span program in terms of certain logical formulae com-
puting f .

Definition 2 Let f : {0, 1}n → {0, 1} be a monotone function. We say [15] that
f is Q2-monotone if for all A,A′ ⊂ {1, . . . , n} with f(A) = f(A′) = 0 we have
A ∪A′ 6= {1, . . . , n}.

12Furthermore, by elementary linear algebra, it is easy to show that the multiplication property is preserved
under linear transformations on the rows of the monotone span program.

11

By the above definition, f(A) = f(Ac) = 0 is impossible. Also, let f(B) = 1 and
f(A)=0. Then Ac∩B = ∅ would imply B ⊂ Ac. Hence, f(Ac) = 1, a contradiction.
We have the following lemma.

Lemma 1 For any Q2-monotone function f , and for any B with f(B) = 1 and A
with f(A) = 0, we have f(Ac) = 1 and Ac ∩B 6= ∅.

Proposition 1 Let (K,M,a, r) be a monotone span program with multiplication
computing the monotone Boolean function f . Then f is Q2-monotone.

Proof. Suppose not. Then there exists a non-empty set A such that f(A) =
f(Ac) = 0. This implies that there exists a vector κ whose first coefficient is equal
to 1, such that MAcκ = 0 (assuming wlog that a = 10 · · · 0). Then we have for each
b (write s for its first coefficient) that 〈r,Mκ ∗Mb〉 = 1 · s. But since MAcκ = 0,
s must be computable from r (public information) and MAb. But this contradicts
the security of the secret sharing scheme from Section 4.2. 4

We will also prove that the converse is true. To this end we first address how to
construct new monotone span programs (with or without multiplication) from old.
Let f , g1, . . . , gn be any monotone Boolean functions such that each of them can
be computed by span programs with multiplication. Say that f reads n bits, and
the gi’s read mi bits (i.e. f and the gi’s have n and mi literals, respectively). Write
(K,F,a, r0), (K,Gi,a, ri), i = 1 . . . n, for their respective span programs (assume
wlog that for each of these programs a denotes the first unit vector in each of their
respective vector spaces of definition). Write Fi for the rows of F that correspond
to the i-th literal of f (i.e. indexed by i). The following proposition is proved in the
Appendix.

Proposition 2 f(g1, . . . , gn) is computable by a monotone span program (K,M,a, r)
with multiplication. Furthermore, rows(M) ≤ ∑n

i=1 rows(Fi) · rows(Gi).

Remark. The claim in our result also holds if we disregard the multiplication prop-
erty. Viewed in that way, our result is a slight improvement for the monotone span
program complexity upper bound given in [18], Theorem 3.4, 4-th claim. However,
our main goal is to incorporate multiplication.

Definition 3 Let the threshold function 13 ft,n : {0, 1}n → {0, 1} output 1 if and
only if the input string has Hamming-weight at least t. We call ft,n majority ac-
cepting if 2t ≤ n+ 1. If 3t ≤ n+ 2, we call ft,n 1/3-accepting.

Lemma 2 Let ft,n be an arbitrary threshold function. Then ft,n can be computed by
a monotone span program (K,M,a) having n rows, provided that |K| > n if t > 1.
If additionally ft,n is majority accepting, then the monotone span program is with
multiplication.

13Note that in general the dual of a threshold function ft,n is the threshold function fn−t+1,n.

12

Proof. The first part of the claim (not dealing with multiplication) is well-
known. If t = 1, we have the trivial monotone span program (K, 1, 1). Else, let
Mt,n denote a Vandermonde matrix (over a field K with |K| > n) with n rows
and t columns, the i-th row being of the form 1, αi, . . . , α

t−1
i and αi 6= αj if i 6= j.

It is easy to see that Mt,n can be viewed as a span program computing ft,n, with
root a = (10 · · · 0). In this case the associated secret sharing scheme (as defined in
Section 4.2) is identical to Shamir’s [21].

To see that (K,Mt,n,a) has multiplication, observe that the product h = f ·g of any
two polynomials f, g ∈ K[X], both of degree at most t−1, can be interpolated given
n points if 2t ≤ n+1. In particular, if we are given distinct values P1, . . . , Pn ∈ K\0,
and the evaluations h(P1), . . . , h(Pn), we can reconstruct the coefficients of h by
linear operations (coefficients only depending on the Pi’s) on the h(Pi)’s. This
holds in particular for the lowest order coefficient of h, which is the product of the
secrets distributed by f and g in an execution of Shamir’s scheme with threshold
(t, n). This part of the claim is due to M. Rabin [13]. We cast it here in our model.

4

Proposition 3 The class of Q2-monotone Boolean functions coincides with the
class of functions computable by Boolean formulas consisting of majority accepting
gates.

Proof. Let Φ be a formula consisting of majority accepting gates. Suppose that
(the monotone function computed by) Φ is not Q2. Then there is a set A with
Φ∗(A) = Φ∗(Ac) = 1. But in each gate of Φ∗ (obtained by dualizing the gates
of Φ), the threshold is larger than in the corresponding gate of Φ. Thus Φ∗(A)
implies Φ(A) = 1, a contradiction. The other direction of the proof is given in the
Appendix. 4

Definition 4 The size |Φ| of a logical formula Φ is defined as the number of input
wires to Φ. For any monotone Boolean function f , the size of the smallest formula
computing f and consisting of any threshold gates ft,n is denoted φ(f). If f is
computable by a formula with majority accepting gates (resp. 1/3-accepting gates),
then φma(f) (resp. φ1/3(f)) is defined similarly to φ(f).

We are now ready to prove the main claims for this section.

Theorem 1 A monotone Boolean function f has a span program with multiplica-
tion if and only if f is Q2-monotone. Any Q2-monotone function f can be computed
by a monotone span program with multiplication, having at most φma(f) rows and
over any field K with14 |K| > φma(f).

14It is sufficient that |K| > N , where N is the largest fan-in among the gates with threshold greater than
1.

13

Proof. Proposition 1 takes care of one direction of the first claim. Now if f is
Q2-monotone, it can be computed by a formula Φ with majority accepting gates
by Proposition 3. By applying Proposition 2 recursively (applying Lemma 2 to the
gates of Φ and choosing the field K large enough), we obtain a span program with
multiplication computing the same function as Φ, having as many rows as Φ has
input wires. 4

If we only consider ordinary monotone span programs (not caring about mul-
tiplication), then we have from Proposition 2 and the well-known fact that any
monotone function can be computed by a monotone span program over any finite
field:

Proposition 4 Every monotone Boolean function f can be computed by a mono-
tone span program with at most φ(f) rows, over any field K with |K| > φ(f).

Finally, we define Q3-monotone functions, a subclass of the Q2-monotone func-
tions. These functions are important for our results in Section 5.

Definition 5 Let f : {0, 1}n → {0, 1} be a monotone function. We say [15] that
f is Q3 if for all A,A′, A′′ ⊂ {1, . . . , n} with f(A) = f(A′) = f(A′′) = 0 we have
A ∪A′ ∪A′′ 6= {1, . . . , n}.

Proposition 5 The class of Q3-monotone functions coincides with the class of
functions computable by Boolean formulas consisting of 1/3-accepting gates.

Proof. Let Φ = ft,m(Φ1, . . .Φm) where 3t ≤ m + 2 and the Φj’s are formulas
with 1/3-accepting gates. Note that ft,m is Q3. By induction on the number of
gates, we prove that Φ is Q3. Say Ai, i = 1, 2, 3, contradict the claim. Then for
each Ai, Φ∗(Ac

i) = 1. Let Wi = {j|Φ∗j(Ac
i) = 1}. We have |Wi| ≥ m − t + 1. But

since 3t ≤ m + 2, the intersection W of the Wi’s is non-empty. Let j ∈ W . Then
Φj(Ai) = 0, i = 1, 2, 3, and the Ai cover the literals read by Φj. A contradiction.
The other part of the proof is quite similar to that of Proposition 3, using f1,2-,
f1,3-, and f2,4-gates (in the recursion, use f3,4-gates and replace them by f2,4-gates
afterwards). 4

The following theorem is proved in the Appendix.

Theorem 2 A monotone Boolean function f has a monotone span program with
strong multiplication if and only if f is Q3-monotone. Any Q3-monotone function
f can be computed by a monotone span program with strong multiplication, having
at most φ1/3(f) rows and over any field K with |K| > φ1/3(f).

14

5 Multi-Party Computation in the Information-Theoretic
Scenario

5.1 Passive Adversaries
Let f(x1, . . . , xn) be a Q2-monotone Boolean function and let (K,M,a, r) with

multiplication be a monotone span program computing it. We show how a multi
party computation in the secure channels setting among n players allows them to
securely compute the product of s and s′. Refer to Section 3 for the the general
description of the protocol.

Let Mi denote the di rows in M (with d rows and e columns) that are associated
with xi, and let Ri denote their indices, i = 1, . . . , n. For any s, s′ ∈ K and for any
σ,σ′ ∈ Ke−1, let s = (s1, . . . , sd) denote M(s,σ) and let s′ = (s′1, . . . , s

′
d) denote

M(s′,σ′). Let t = (t1, . . . , td) denote s∗s′. Let r = (r1, . . . , rd) be the recombination
vector. Each player i initially holds si = Mi(s,σ) and s′i = Mi(s

′,σ′), i = 1, . . . , n.
Each player i does the following

Re-Sharing: For each k ∈ Ri choose ρk ∈ Ke−1 at random. Then, for each 1 ≤ j ≤
n, compute ukj ←Mj(tk,ρk), and send ukj privately to player j.

Recombination: Each player i computes
vi ←

∑d
k=1 rkuki.

Product-Reconstruction: Each player i broadcasts vi.

As for its correctness, note that:
(v1, . . . ,vn) = (

∑d
k=1 rkuk1, . . . ,

∑d
k=1 rkukn)

= (
∑d
k=1 rkM1(tk,ρk), . . . ,

∑d
k=1 rkMn(tk,ρk))

=
∑d
k=1 rkM(tk,ρk) = M(ss′,

∑d
k=1 rkρk).

As to security, let A be a non-qualified set, i.e. f(A) = 0. The situation for A is
equivalent to the following. The passive collusion A receives MA(s,σ), MA(s′,σ′)
and MA(ss′,

∑d
k=1 rkρk), where the ρj with j ∈ A are chosen by the players in A.

First, by the observations in Section 4.3 there exists k such that rk 6= 0 and the
k-th row of M does not belong to any of the players in A. Hence, from the point
of view of A the latter is just a random (independent from anything else) sharing.
The sharings of s and s′ are random as well. Hence, right after the re-sharing stage,
the players in A have no information about s, s′ or ss′. Finally, after the product-
reconstruction, the players in A indeed learn ss′. But since the sharings of s and s′

are independent of that of ss′, they learn nothing beyond the product of s and s′.

5.2 Active Adversaries
5.2.1 How to Do Commitments

We first present a generic transformation that converts a span program secret
sharing scheme 15 (see Section 4.2) into another such scheme. Schemes of this

15The multiplication property for monotone span programs is not needed here.

15

new type will serve as the basis of our commitment and commitment distribution
protocols. They are in fact robust against cheaters when the dealer is honest, but
this will not be needed here. The proofs are given in the Appendix.

Let f(x1, . . . , xn) be a Q3-monotone function and let (K,M,a) be a a monotone
span program computing f , where M has d rows and e columns.

Share Distribution:
(K,M,a) is public knowledge. Let s ∈ K be the secret to be distributed.
The dealer chooses at random a symmetric e by e matrix R over K, subject
to the constraint that the upper-left corner of R contains s. For i = 1 . . . n,
the dealer puts Ui ← MiR, and sends the matrix Ui privately to player i.
The actual share si of player i is defined as the first column of Ui. Note that
si = Mib, where b is the first column of R (whose first entry is s).

Reconstruction:
Each player i broadcasts Ũi (supposedly what the dealer sent). Let s̃i denote
the first column of Ũi. Let G be the n by n (0,1)-matrix whose (i, j)-entry

is 1 if and only if MjŨi
t

= (MiŨ
t
j)
t. Let Bi = {j : G(i, j) = 0} and B =

{i : f(Bi) = 0}. Then f(B) = 1 and s̃i = si for all i ∈ B. Hence, s can be
recovered as in Section 4.2.

Proposition 6 The transformed scheme is a secret sharing scheme for f as well.
For each i, j, we have MiUj

t = UiM
t
j . Moreover, the scheme is robust against

cheaters if the dealer is honest.

We will now extend the above scheme such that even with a faulty dealer, correct
players are guaranteed to receive consistent shares of a secret. Note that MiU

t
j =

(MjU
t
i)
t can be computed by player i. Hence, by sending MjU

t
i to player j, player

i demonstrates that he has shares in share sj belonging to player j.
The protocol for distributing and checking shares is defined as follows.

Step 1: Let s ∈ K be the secret to be distributed by the dealer. Privately to each
player i, the dealer sends the matrix Ui. The actual share si of player i is
again defined as the first column of Ui.

Step 2: Each player i puts, for j = 1 . . . n, checkij ← UiM
t
j , and sends the matrix

checkij privately to player j, who verifies that checkij = MiU
t
j . Note that

checkij has di rows and e columns. If player i did not receive Ui of the right
format, player i sends ε (representing the empty string) to player j.

Step 3: For each player j, if player j finds disagreements in values received from a
qualified set of players, he broadcasts an accusation against the dealer, asking
him to make public all information sent to player j (since he can now conclude
that the dealer must be faulty). If there are only disagreements with values

16

received from a non-qualified set, player j broadcasts a complaint, asking the
dealer to make public those checkij for which he received a wrong value from
player i.

Step 4: In response to the complaints and accusations broadcast, the dealer must
make public all values asked for. All players check what they received against
the information made public, and accuse the dealer if there is a disagreement.
Now, the dealer must make public everything he sent to the new accusing
players. This process goes on until no new accusations are made.

Step 5: If at this point a qualified set has accused the dealer, or if the information
made public by the dealer contradicts itself, the players take a fixed default
set of shares to represent the dealers secret (in this case the dealer is clearly
faulty). Otherwise, the complaining players take the public information as
their shares.

The following two theorems are proved in the Appendix.

Theorem 3 If the dealer is a correct player, the adversary learns nothing about s,
and the shares held by correct players consistently determine s.

Theorem 4 For any dealer and any active adversary, the above protocol results in
the correct players holding consistent shares si of some secret s.

These two theorems enable us to establish the commitments we need. The COM-
MIT protocol works as follows. To commit to value a, we execute the above share
distribution protocol for s = a where the committer acts as the dealer. From this
phase, the players only need to remember the actual shares (s1, . . . , sn) that they
received.

As to the OPEN protocol, to open a commitment the committer broadcasts a,
s′1, . . . , s

′
n, and claims that a is the value committed to. Each player i checks whether

the set of s′j’s consistently determines a and whether s′i = si. If any of these
verifications fail, player i broadcasts a complaint. If all but a non-qualified set of
players agree, the opening is accepted, otherwise it is rejected.

Theorems 3, 4, and the Q3 property trivially implies the hiding and binding
properties required, and the linearity of the span program used directly translates
into the homomorphic property we need for commitments: to add committed values,
the players add their shares. The multiplication protocol required is described
below.

5.2.2 Commitment Distribution Protocol

A dealer be commited to value z ∈ K by commitment Z.

Step 1: The dealer makes shares z1, ..., zn of secret z (using the underlying secret
sharing scheme) and commits to each of them using the commitment protocol.

17

Step 2: For i = 1, . . . , n, the commitment to zi is opened to Pi, and all players send
their own share of (each coordinate of) zi to Pi. We now do the following
stages to verify that Pi agrees with all correct players on the values received
from the dealer:

1. Pi compares what the dealer sent with the shares received from the players.
If there is disagreement w.r.t. a qualified set, Pi asks the dealer to open the
commitments to zi publically. Otherwise Pi asks the dealer to make public
the shares for which there was disagreement.

2. The dealer broadcasts the requested information. If this contradicts itself,
or is incomplete, the dealer is deemed corrupt. Otherwise, if Pi finds that the
public information contradicts his own, he accuses the dealer, who must then
open the commitments to zi publically. Again, the dealer is deemed corrupt,
if the openings fail, oherwise the players take whatever is now public to be
their share of zi.

Step 3: At this point each Pi knows a correct share zi, he knows all shares of
(coordinates of) zi distributed, and agrees with all correct players on these
values. The only missing thing is that we don’t know if the set of zi’s is
consistently determining z. However, a set of zi’s is consistent precisely if
some set of linear combinations of them are all zero. The coefficients of these
combinations can be computed from the span program matrix.

Therefore, using the linearity property, the players compute the corresponding
linear combinations of the commitments to the zi’s, and the dealer has to
open all of the resulting commitments as zero. If this fails, the dealer is
deemed corrupt. Finally we compute a linear combination of commitments
to a qualified set of zi’s, which should reconstruct a commitment C to z.
We check that Z and C contain the same value by computing a commitment
containing the difference of values in C and Z, which the dealer must open to
reveal 0.

It is straightforward to verify that this protocol has the properties required in
Section 2. Details are left to the reader.

5.2.3 Muliplication Subprotocol

Lemma 3 Suppose values s, s′ have been shared with sets of shares s, resp. s′, using
span program matrix M , with root vector (1, 0, ...0). Consider the vector s∗s′. Then
this is a set of shares of the value ss′ in a new span program based secret sharing
scheme, with matrix M ′ and root vector (1, 0, ..., 0), where M ′ can be computed from
the span program matrix M that we started from. Moreover, if M has the strong
multiplication property, then any potential set of correct players is qualified w.r.t.
M ′.

18

Proof. Let v = (v1, ..., ve) be any e-vector over K. Define the (e2 + e)/2-vector
ṽ by:

ṽ = (v1v1, v1v2, ..., v1ve, v2v2, v2v3, ..., v2ve, ..., veve)

Also, for any two e-vectors a,b, let

a � b = (a1b1, a1b2 + a2b1, .., a1be + aeb1,

a2b2, a2b3 + a3b2, ..., a2be + aeb2,, aebe)

It is now straightforward to check that

〈v,a〉 · 〈v,b〉 = 〈ṽ,a � b〉
Now, let v1, ...,vd be the rows of M . Define M ′ by letting its rows be ṽ1, ..., ṽd.

The lemma now follows by direct inspection. 4
We are now ready to give the multiplication protocol, for which we are given

commitments A,B made by Pi to values a, b

Step 1: Pi uses the commitment distribution protocol twice with inputs A, resp.
B, so that now each Pj is committed to shares aj,bj of a, b.

Step 2: Pi makes a vector of commitments to aj ∗ bj, for j = 1..n. These com-
mitments are opened to Pj, i.e. all shares involved in committing to aj ∗ bj
are sent to Pj, and Pi sends the values he claims for all these shares. If Pj
finds that a qualified set of players disagrees with the values received from Pi,
or if the commitments did not contain the right values (aj ∗ bj), Pj accuses
the dealer and proves his case by opening publically his own commitments to
aj,bj. Pi must now open the commitments to aj ∗ bj in public; if this is not
correct, he is deemed corrupt.

Step 3: Let D be vector of all commitments made by Pi in step 2. D should contain
a consistent set of shares in generated from span program matrix M ′, by the
above lemma. This can be checked by verifying that some fixed set of linear
combinations of the entries in D all equal 0. The coefficients of these linear
combinations can be computed from the matrix of M ′. Hence Pi can prove
that the shares committed to in D are consistent by opening a number of
commitments to reveal 0. Finally we compute a linear combination of the
commitments in D using the entries in the recombination vector of M as
coefficients. The resulting commitment, C is the output of the protocol (and
is guaranteed to contain ab).

This protocol has the required properties, since by the consistency check in step 3,
Pi has distributed in D consistent shares of some secret s using matrix M ′. But
by step 2, Pi must in fact distribute aj ∗ bj to each correct Pj, or be disclosed as
corrupt. And since the set of correct players is qualified inM ′, we must have s = ab.
It is also straightforward to check that if Pi is correct, C is a random commitment
with the only constraint that it contains ab.

19

6 Cryptographic Multi-Party Computations
Let f be any Q2-monotone Boolean function. We will prove that in the crypto-

graphic setting, one can perform general multiparty computations tolerating any
single non-qualified (w.r.t. f) set of active corrupted players. This is what Hirt
and Maurer [15] prove to be the tolerance against passive adversaries in the secure
channels setting.

According to Section 3 and given the results in Section 4, it is sufficient to describe
the necessary commitment scheme and the Commitment Distribution Protocol.

6.1 How to Do Commitments
We will use the cryptographic commitment schemes from [10], which are based on

q-one-way group homomorphisms (q-OWGH). These commitments satisfy the re-
quirements from Section 2.1, i.e. they are homomorphic and have a zero-knowledge
multiplication subprotocol. The RSA, DL or Diffie-Hellman assumptions are suf-
ficient for efficiently realizing these commitments. In some implementations, the
prime q can be chosen independently of the security parameter for the commitment
scheme.

We will assume that commitments are unconditionally binding, i.e. the value com-
mitted to is uniquely determined from the commitment. In [10], also commitments
that are unconditionally hiding are proposed. We may also use that type of commit-
ments to support our protocol, but this requires a somewhat different set-up phase
and is ommitted here for lack of space.

Each of the n players in the multiparty computation protocol generates his own
instance of the commitment scheme (but all for the same q) and all broadcast the
“public key” of their instances: this amounts to fixing, for i = 1 . . . n, a (probabilis-
tic) commitment function φi,i.e., player i commits to a value a ∈ ZZq by broadcasting
C ← φ(α, a), where α is a random string.

We note that a slight variation of the multiplication sub-protocol guaranteed by
[10] can be used to show in zero-knowledge that one knows how to open a given
commitment, or that two commitments contain the same value, even if the public
keys involved differ.

Finally, these zero knowledge protocols require random challenges to be generated
such that they are unpredictable by the prover. This can for instance be done by
straight-forward multi-party coin-flipping based on the commitment schemes.

6.2 Commitment Distribution Protocol
We build a commitment distribution protocol generalizing Pedersen’s non-interactive

verifiable secret sharing scheme [17]. A related construction for the threshold case
was independently discovered in [13]. Our scheme works for any Q2-monotone func-
tion instead of “minority” only and is based on the existence of any q-homomorphic
commitment scheme.

20

We will assume that each player initally publishes a public key for a (polynomially)
secure public-key encryption system. Existence of such a system follows from any
of the particular assumptions we can base our commitments on. In some cases, such
as when commitments are based on Diffie-Hellman encryption, this public key can
be the same as the one for commitments, i.e. φi can be used as encryption function
when sending messages to player i. In such a case, the description below can be
simplified considerably.

For technical reasons (i.e. to be able to prove security of our protocol by a
simulation argument), we assume that whenever a player commits to a value or
sends an encryption in the protocol below, he also proves in zero-knowledge that he
knows the committed or encrypted value.

Let f(x1, . . . , xn) be Q2-monotone and say that (GF (q),M,a) is a monotone span
program computing f . Wlog a = (10 · · · 0). As usual M has d rows and e columns.
The (i, j)-th entry of M is represented by an integer mij with 0 ≤ mij ≤ q − 1.
Suppose we are given a q-homomorphic commitment scheme. Let C denote the
collection of all possible commitments. Then M induces a map MC from Ce to Cd
as follows. Let C = (C1, . . . , Ce) ∈ Ce. For i = 1, . . . , d the i-th coordinate of MCC
is equal to

∏e
j=1C

mij

j .
The Commitment Distribution Protocol is as follows, where C = φi(α, a) is the

input to the protocol:

Distribution: Player i chooses ρ2, . . . , ρe ∈ GF (q) at random, puts b← (a, ρ2, . . . , ρe),
and computes (s1, . . . , sd)←Mb.

For j = 2 . . . e, he chooses αj as a random string and puts C← (C,C2, . . . , Cn),
where Cj ← φi(αj, ρj) for j = 2, . . . n.

Finally, for j = 1, . . . , d he computes some strings βj satisfying that MCC =
(φi(β1, s1), . . . , φi(βd, sd)). It follows by definition of the commitments in Sec-
tion 2.1 (when viewed as cryptographic commitments) that computation of
these βj is feasible.
For j = 1 . . . n, he puts sj ← (·, . . . , sk, · · · , ·)k∈Rj and tj ← (·, . . . , βk, . . . , ·)k∈Rj ,
where Rj is the set of rows in M associated with player j as in Section 5.1.
Finally, player i broadcasts C, and for j = 1 . . . n, he sends sj and tj privately
to player j, using secure public key encryption.

Verification: Each player j verifies that MC
j C = (·, . . . , φi(βk, sk), . . . , ·)k∈Rj . If

there is an inconsistency, broadcast a complaint. The dealer must then make
public sj and tj, and open the encryption sent to Pj in the previous step. If
this is correct and consistent, Pj takes sj as his share, otherwise the dealer is
deemed corrupt.

Finally, Pj makes commitments to each value in sj using his own function
φj and new independently chosen random input. He then proves (in zero-
knowledge) that these new commitments contain the same values as MC

j C.

21

The analysis of this scheme is essentially the same as that of Pedersen’s, taken into
account that we work with a secret sharing scheme based on span programs for a
Q2-monotone function and abstract q-homomorphic commitments, instead of with
Shamir’s secret sharing scheme and homomorphic commitments based on discrete
logarithms.

Acknowledgements
We would like thank Anna Gál, Rosario Gennaro, Martin Hirt, Tal Rabin, and

Markus Stadler for interesting discussions and comments. Michael Ben-Or inspired
us by showing us an unpublished threshold-type multiplication subprotocol for the
information-theoretic scenario.

References

[1] S. B. Akers: Logical Design with Three-Input Majority Gates, Computer Design,
March/April/May/June 1963.

[2] L. Babai, A. Gál, J. Kollár, L. Rónyai, T. Szabó, A. Wigderson: Extremal Bipartite Graphs
and Superpolynomial Lowerbounds for Monotone Span Programs, Proc. ACM STOC ’96, pp.
603–611.

[3] J. Benaloh, J. Leichter: Generalized Secret Sharing and Monotone Functions, Proc. of Crypto
’88, Springer Verlag LNCS series, pp. 25–35.

[4] M. Ben-Or, S. Goldwasser, A. Wigderson: Completeness theorems for Non-Cryptographic Fault-
Tolerant Distributed Computation, Proc. ACM STOC ’88, pp. 1–10.

[5] E. F. Brickell: Some Ideal Secret Sharing Schemes, J. Combin. Maths. & Combin. Comp. 9
(1989), pp. 105–113.

[6] R. Canetti: Studies in Secure Multiparty Computation and Applications, Ph. D. thesis, Weizmann
Institute of Science, 1995.

[7] R. Canetti, U. Feige, O. Goldreich, M. Naor: Adaptively Secure Multi-Party Computation, Proc.
ACM STOC ’96, pp. 639–648.

[8] D. Chaum, C. Crépeau, I. Damg̊ard: Multi-Party Unconditionally Secure Protocols, Proc. of
ACM STOC ’88, pp. 11–19.

[9] B. Chor, S. Goldwasser, S. Micali, B. Awerbuch: Verifiable Secret Sharing and Achieving Simul-
taneity in the Presence of Faults, Proc. IEEE FOCS ’85, pp. 383–395.

[10] R. Cramer, I. Damg̊ard: Zero Knowledge for Finite Field Arithmetic or: Can Zero Knowledge
be for Free?, manuscript, June 1997.

[11] P. Feldman, S. Micali: An Optimal Probabilistic Protocol for Synchronous Byzantine Agreement,
SIAM J. Comp. Vol. 26, No. 4, pp. 873–933, August 1997.

[12] R. Gennaro: Theory and Practice of Verifiable Secret Sharing, Ph.D. thesis, MIT, 1996.
[13] R. Gennaro, M. Rabin, T. Rabin, Simplified VSS and Fast-Track Multiparty Computations with

Applications to Threshold Cryptography, submitted to STOC’98.
[14] O. Goldreich, S. Micali and A. Wigderson: How to Play Any Mental Game or a Completeness

Theorem for Protocols with Honest Majority, Proc. of ACM STOC ’87, pp. 218–229.
[15] M. Hirt, U. Maurer: Complete Characterization of Adversaries Tolerable in General Multiparty

Computations, Proc. PODC ’97.
[16] M. Karchmer, A. Wigderson: On Span Programs, Proc. of Structure in Complexity, 1993.
[17] T. P. Pedersen: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing,

Proc. CRYPTO ’91, Springer Verlag LNCS, vol. 576, pp. 129–140.

22

[18] P. Pudlák, J. Sgall: Algebraic Models of Computation and Interpolation for Algebraic Proof
Systems Proc. Feasible Arithmetic and Proof Complexity, Springer Verlag LNCS series.

[19] T. Rabin: Robust Sharing of Secrets when the Dealer is Honest or Cheating, J. ACM, 41(6):1089-
1109, November 1994.

[20] T. Rabin, M. Ben-Or: Verifiable Secret Sharing and Multiparty Protocols with Honest majority,
Proc. ACM STOC ’89, pp. 73–85.

[21] A. Shamir: How to Share a Secret, Communications of the ACM 22 (1979) 612–613.

Appendix

Proof of Proposition 2. Write h = f(g1, . . . , gn). Think of the following secret
sharing scheme for h. Let s be a secret to be distributed. Then first distribute s
using the matrix F to get shares s1, . . . , sn. Second, for i = 1 . . . n, take the share
si and distribute its coordinates one by one and independently using the matrix
Gi. The matrix M to be defined hereafter captures exactly this linear map. With
this image in mind, it is not so difficult to convince onseself that the multiplication
property is also satisfied.

Let xil denote the l-th literal of gi, for i = 1 . . . , n, l = 1 . . .mi. Let (·, . . . , ·, . . . , ·)
be a vector whose first location we number 0 and subsequent locations (i, k) with
1 ≤ i ≤ n and 1 ≤ k ≤ rows(Fi) (hence there are 1 + rows(F) locations). The rows
of M will be vectors whose locations are indexed as above. Next, let i, j, k be any
integers satisfying 1 ≤ i ≤ n, 1 ≤ j ≤ rows(Gi), 1 ≤ k ≤ rows(Fi).

The rows of M will consist of vectors mijk to be defined hereafter. Consider
(wijvik,wij), where vik is the k-th row of Fi, and (wij,wij) is the j-th row of Gi (i.e.
wij is the first coordinate of that row and wij collects the remaining coordinates).
The row mijk of M is constructed as follows. Place wijvik in the first location and
wij in location (i, k). Fill up all other locations with 0. The dimensions of vectors
placed in specific locations should be clear from the context. Note that the rows in
M corresponding to the l-th literal xil of function gi are exactly those mijk where j
is the index of a row in Gi associated with xil.

Let A ⊂ {x11, . . . , x1m1
, . . . , xn1, . . . , xnmn

} be a collection of literals, and assume
that the span of the rows in M associated with the literals in A contains (10 · · · 0).
For fixed (i, k) define zik as the contribution (in the linear comination that yields
(10 · · · 0)) of the rows mijk associated with the xil ∈ A. Then zik is of the form
(wivik,0, . . . ,wi,0, . . .) where wi is in location (i, k), (wi,wi) ∈ Im Gt

i and vik is a
multiple of the k-th row of Fi. By the choice of the locations we must have wi = 0,
since the sum over all zik is equal to (10 · · · 0) and the other contributions have 0
in location (i, k). Note that if zik 6= 0, we must have gi(A) = 1, since in this case
the span of the rows in Gi corresponding to the xil ∈ A contains (wi, 0 . . . , 0) and
wi 6= 0.

For each i define zi as the sum over the contributing zik’s. Then zi is of the
form (vi,0, . . .) where vi ∈ Im Fi. Note that the sum over the zi’s is (10 · · · 0).
Let B denote the collection of i such that zi 6= 0. For i ∈ B, there must exist a

23

contributing zik 6= 0. Then clearly we must have f(B) = 1. Similarly we conclude
that gi(A) = 1 when i ∈ B, by the remarks above. Hence (K,M,a) computes h.

As to the multiplication property, keep in mind the workings of the secret sharing
scheme sketched at the beginning of this proof. Let (t1, . . . , tn) and (t′1, . . . , t

′
n) de-

note Mb and Mb′, respectively, for arbitrary b and b′. Denote the first coordinates
of b and b′ by s and s′, respectively. Here, ti and t′i stand for the union of the
shares (in s and s′ respectively) “given” to the literals xil for l = 1 . . .mi. For a
proper fixed ordering of the coordinates of ti and t′i, we have

〈 r0, (〈r′1, t1 ∗ t1〉, . . . , 〈r′n, tn ∗ tn〉) 〉 = ss′,

where for i = 1 . . . n, r′i denotes the repetition of ri rows(Fi) times. The recombi-
nation vector r is now easily obtained from this expression.

Proof of Proposition 3 (second part). We have show that any Q2-monotone
function can be computed by a formula with three-input majority gates (f2,3-gates)
and OR-gates (f1,2-gates).

We first describe an induction step that works for any monotone f . LetM denote
any collection of f ’s qualified sets such that M’s monotone closure coincides with
the collection of all qualified sets of f (in particular, M can consist of all minimal
qualified sets). Define three smaller subsets Mi of M such that each member of
M occurs in two of the Mi’s. For i = 1, 2, 3, let fi be the monotone function
corresponding to the monotone closure of Mi. Define Φ = f2,3(f1, f2, f3). We
have Φ = f . Indeed, by construction f(A) = 1 implies Φ(A) = 1. If f(A) = 0,
then clearly fi(A) = 0, i = 1, 2, 3. So Φ∗(Ac) = f ∗2,3(f

∗
1 (Ac), f ∗2 (Ac), f ∗3 (Ac)) =

f2,3(1, 1, 1) = 1. Apply this inductively. Note that if any of the f2,3-gates thus
constructed is satisfied, the complete formula is satisfied. Eventually, there will be
Mi’s with one or two members and the induction can no longer be applied.

Now we will apply the above to a Q2-monotone function f (if f ≡ xi we are
done). Let M consist of all minimal qualified sets of f and all complements of
maximal non-qualified sets of f and carry out the above recursion. At any point
in the recursion where we have (M1,M2,M3) with, say wlog, M1 having one or
two members, do the following. If M1 has one member, say A, let i ∈ A and put
f2,3(xi, ·, ·). Else, say it contains B,B′, if neither B nor B′ is the complement of a
max-nonterm of f , let i ∈ B and j ∈ B′, and put f2,3(f1,2(xi, xj), ·, ·). In the other
cases, by Lemma 1, there is an i with i ∈ B ∩B′. Then put f2,3 = (xi, ·, ·). Now we
have a formula Φ consisting of f2,3- and f1,2-gates, where clearly for all C, f(C) = 1
implies Φ(C) = 1. But does f(A) = 0 imply Φ(A) = 0? We may assume that
A is maximal. By the way we treated inputs of the form Ac with f(A) = 0, the
values produced by the f1,2-gates “do not influence” the value of Φ(Ac). And since
all other gates are self-dual, we have Φ∗(Ac) = Φ(Ac) = 1. Hence, Φ(A) = 0. Note
that if f is self-dual, the f2,3-gates suffice and no f1,2-gates are needed. In this case
our proof is similar to a method given in [1].

24

Proof of Theorem 2. Similar argument as in the proof of Proposition 1 yields
the first part of the first claim: let disjoint, non-qualified sets A, B, C contradict
the claim, and let κ (with first coordinate 1) satisfy MBκ = 0. Let r be the
recombination vector for the complement of C (the coordinates corr. to C are 0).
Then 〈(Mκ ∗ r)A,MAb〉 = s for all b, contradicting f(A) = 0 as before. Thus f is
Q3.

Next, let f be Q3 and let Φ be a formula with 1/3-accepting gates computing f .

Denote by Φ̂ the formula obtained from Φ by replacing each gate ftk,nk by f2tk−1,nk.
From the proof of Lemma 2, one easily sees that a single 1/3-accepting gate ft,n has
a monotone span program with strong multiplication, and that by extending the
rows one can easily construct a monotone span program for f2t−1,n. Let (K,MΦ,a)

and (K,M Φ̂,a), wlog a = (10 · · · 0), be the respective monotone span programs by
applying Proposition 2.

By induction one can show that for all b, b′ there exists c such that MΦb∗MΦb′ =

M Φ̂c and ss′ = t, where s, s′ and t′ are the respective secrets. Now let Φ(A) = 0.
Then Φ∗(Ac) = 1. But in each gate of Φ∗, we have nk − tk + 1 ≥ 2tk − 1 since

3tk ≤ n + 2. Hence Φ̂(Ac) = 1 and a linear combination of the coordinates of
MΦ

Acb ∗MΦ
Acb

′ yields ss′.

Proof of Proposition 6. First observe that MiU
t
j = Mi(MjR)t = MiRM

t
j =

UiM
t
j . Next, we argue that a non-qualified set gets no information about s before

the reconstruction. Let the set A satisfy f(A) = 0, and let MA denote the rows of M
corresponding to the players i ∈ A. We show that MAR, which is the information
players Pi with i ∈ A get from the dealer, contains no information about s. Let X
be any symmetric matrix satisfying the equation MAX = MAR, and say that X
has s̃ ∈ K in its upper-left corner. From our assumption on A, there exists a vector
µ = (µ1, . . . , µe) ∈ KerMA with µ1 = 1 (see Section 4.2). Let µ⊗µ denote the e by
e matrix whose i-th column is µiµ. Note that it has 1 in its upper left corner and
that it is symmetric. Then X+ (s− s̃)µ⊗µ satisfies the equatione as well, and has
s in its upper left corner and is symmetric. Hence, for each possible s̃, the number
of different solutions X with s̃ in the upper left corner is the same.

Now we prove the claims from the reconstruction. First note that if c and c′ (both
from Ke) have different first coordinates c and c′, then Mic = Mic

′ for at most a
non-qualified set of players i (call this set D). Indeed, we have MD(c − c′) = 0.
But c− c′ 6= 0 implies that a 6∈ Im Mt

D, and hence f(D) = 0. Next, it is important
to note that for all i, j, MjU

t
i = UjM

t
i can be viewed as a collection of shares for

player j in the coordinates of si (“shares of shares”). Thus, if a corrupted player i
broadcasts any Ũi such that s̃i 6= si, the set of players j for which MjŨ

t
i = UjM

t
i

(the original Uj) is non-qualified. But since the corrupted players A control the Ũj
with j ∈ A, the i-th row contains 1-entries corresponding to at most the union of
two non- qualified sets. Then, since f is Q3, we must have f(Bi) = 1. Note that if

25

player i is uncorrupted, we trivially have that f(Bi) = 0 and that s̃i = si. Hence,
bad shares s̃i are detected, and there are always sufficient ones to reconstruct 16 the
secret s (at least those corresponding to the players in Ac).

Proof of Theorem 3. The remarks about the modified secret sharing scheme
assuming an honest dealer suffice up to Step 2. The set of values that bad players
receive from correct ones in Step 3 could already be computed from the information
that they got from the dealer earlier. Finally note that correct players will only
receive incorrect values from bad players, and so will never accuse the dealer. At
most they will complain about values received from bad players. This means that
the dealer will only have to broadcast information sent to bad players, so that they
learn nothing new from this phase. It is also clear that the good players all agree
on the values sent by the dealer, in particular their shares consistently determine
the secret s the dealer meant to share.

Proof of Theorem 4. By assumption the set A of corrupted players is non-
qualified. The theorem is clearly true in case the protocol ends with the players using
the default set of shares. Otherwise, only some non-qualified set B of players have
complained. This means that the set C of non-complaining uncorrupted players
must be qualified since A, B and C together form the complete player set (f is Q3).

Consider the matrix H whose (i, j)-entry is what the dealer claims is the correct
checkij (state of affairs as in Step 5). The correct players agree on the entries in
those rows and columns of H (note that H is “matrix-valued”) that correspond to
them, either because they agreed from the start, or because the dealer was forced
to make the values public.

Consider an arbitrary player j ∈ C. From the dealer he has received Uj, and
since j ∈ C, he has been able to verify that the j-th column of H is of form
(M1U

t
j , ...,MnU

t
j), and that the j-th row of H is of form (UjM

t
1, ..., UjM

t
n).

Hence, for each j ∈ C, the j-th column of H forms consistent sets of shares,
where the secrets are the elements in the first column of Uj (call these sj). And
those entries in the j-th column of H corresponding to the players in C are sufficient
for reconstructing those secrets. Thus, there exists a vector λC (only depending on
C) such that for each j ∈ C, 〈λC,MCU

t
j〉 = UjM

t
CλC = sj ∈ Kdj , where MC denotes

the superposition of those rows j of M with j ∈ C (note that Mt
Cλ ∈ Ke).

Now observe that for each j ∈ C we have sj = UjM
t
CλC = MjU

t
CλC, where

UC is the superposition of the Uj with j ∈ C. Hence, the sj thus computed form a
consistent set of shares for the players in C in the secret sharing scheme. To complete
these to a fulll set of shares, note that for j 6∈ C we can define sj = MjU

t
CλC as well

(which can be computed from the entries (i, j) in H with i ∈ C and j 6∈ C). Hence

16It is easy to show that the scheme from Section 4.2 already has the right error correction property if f is
Q3. But there, the cost of recovery may be superpolynomial in the size of the span program (as opposed to
our modified scheme here).

26

(s1, . . . , sn) is a collection of consistent shares in the secret sharing scheme.
Note also that an uncorrupted player k not in C will be able to determine the

correct share from the entries in his column: he agrees with the players in C on
the entries in the columns corresponding to C and the rest of the entries must
be consistent with this, either because the dealer made the entire column public
without causing more complaints, or because some selected values were complained
about and corrected by the dealer to player k’s satisfaction.

27

Recent BRICS Report Series Publications

RS-97-28 Ronald Cramer, Ivan B. Damg̊ard, and Ueli Maurer. Span Pro-
grams and General Secure Multi-Party Computation. November
1997. 27 pp.

RS-97-27 Ronald Cramer and Ivan B. Damg̊ard. Zero-Knowledge Proofs
for Finite Field Arithmetic or: Can Zero-Knowledge be for Free?
November 1997. 33 pp.

RS-97-26 Luca Aceto and Anna Inǵolfsdóttir. A Characterization of Fini-
tary Bisimulation. October 1997. 9 pp. To appear inInforma-
tion Processing Letters.

RS-97-25 David A. Mix Barrington, Chi-Jen Lu, Peter Bro Miltersen,
and Sven Skyum. Searching Constant Width Mazes Captures
theAC0 Hierarchy. September 1997. 20 pp.

RS-97-24 Søren B. Lassen.Relational Reasoning about Contexts. Septem-
ber 1997. 45 pp. To appear as a chapter in the bookHigher Or-
der Operational Techniques in Semantics, eds. Andrew D. Gor-
don and Andrew M. Pitts, Cambridge University Press.

RS-97-23 Ulrich Kohlenbach. On the Arithmetical Content of Restricted
Forms of Comprehension, Choice and General Uniform Bound-
edness. August 1997. 35 pp.

RS-97-22 Carsten Butz. Syntax and Semantics of the logicLλωω. July
1997. 14 pp.

RS-97-21 Steve Awodey and Carsten Butz.Topological Completeness for
Higher-Order Logic. July 1997. 19 pp.

RS-97-20 Carsten Butz and Peter T. Johnstone.Classifying Toposes for
First Order Theories. July 1997. 34 pp.

RS-97-19 Andrew D. Gordon, Paul D. Hankin, and Søren B. Lassen.
Compilation and Equivalence of Imperative Objects. July 1997.
iv+64 pp. Appears also as Technical Report 429, University of
Cambridge Computer Laboratory, June 1997. To appear in
Foundations of Software Technology and Theoretical Computer
Science: 17th Conference, FCT&TCS ’97 Proceedings, LNCS,
1997.

