
B
R

IC
S

R
S

-97-26
A

ceto
&

Inǵolfsdóttir:A
C

haracterization
ofF

initary
B

isim
ulation

BRICS
Basic Research in Computer Science

A Characterization of Finitary Bisimulation

Luca Aceto
Anna Ingólfsdóttir

BRICS Report Series RS-97-26

ISSN 0909-0878 October 1997



Copyright c© 1997, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/97/26/



A Characterization of Finitary Bisimulation

Luca Aceto∗

BRICS†, Department of Computer Science, Aalborg University

Fredrik Bajersvej 7E, 9220 Aalborg Ø, Denmark

Email: luca@cs.auc.dk

Anna Ingólfsdóttir‡

Dipartimento di Sistemi ed Informatica, Università di Firenze

Via Lombroso 6/17, 50134 Firenze, Italy

Email: annai@dsi2.ing.unifi.it

Keywords and Phrases: Concurrency, labelled transition system with di-
vergence, bisimulation preorder, finitary relation.

1 Introduction

Following a paradigm put forward by Milner and Plotkin, a primary criterion to
judge the appropriateness of denotational models for programming and specifi-
cation languages is that they be in agreement with operational intuition about
program behaviour. Of the “good fit” criteria for such models that have been
discussed in the literature, the most desirable one is that of full abstraction.
Intuitively, a fully abstract denotational model is guaranteed to relate exactly
all those programs that are operationally indistinguishable with respect to some
chosen notion of observation.

Because of its prominent role in process theory, bisimulation [12] has been
a natural yardstick to assess the appropriateness of denotational models for
several process description languages. In particular, when proving full abstrac-
tion results for denotational semantics based on the Scott-Strachey approach
for CCS-like languages, several preorders based on bisimulation have been con-
sidered; see, e.g., [6, 3, 4]. In this paper, we shall study one such bisimulation-
based preorder whose connections with domain-theoretic models are by now
well understood, viz. the prebisimulation preorder . investigated in, e.g., [6, 3].
Intuitively, p . q holds of processes p and q if p and q can simulate each other’s
behaviour, but at times the behaviour of p may be less specified than that of q.

A common problem in relating denotational semantics for process descrip-
tion languages, based on Scott’s theory of domains or on the theory of algebraic
semantics, with behavioural semantics based on bisimulation is that the chosen
behavioural theory is, in general, too concrete. The reason for this phenomenon

∗Partially supported by the Human Capital and Mobility project Express.
†Basic Research in Computer Science, Centre of the Danish National Research Foundation.
‡Supported by a grant from the Danish Research Council.

1



is that two programs are related by a standard denotational interpretation if,
in some precise sense, they afford the same finite observations. On the other
hand, bisimulation can make distinctions between the behaviours of two pro-
cesses based on infinite observations. (Cf. the seminal study [1] for a detailed
analysis of this phenomenon.) To overcome this mismatch between the denota-
tional and the behavioural theory, all the aforementioned full abstraction results
are obtained with respect to the so-called finitely observable, or finitary, part
of bisimulation. The finitary bisimulation is defined on any labelled transition
system thus: p .F q iff t . p implies t . q, for every finite synchronization tree
t.

An alternative characterization of the finitary bisimulation for arbitrary
transition systems has been given by Abramsky in [1]. This characterization is
couched in logical terms, and is an impressive byproduct of Abramsky’s “theory
of domains in logical form” programme. More precisely, Abramsky shows that
two processes in any transition system are equated by the finitary bisimulation
iff they satisfy the same formulae in the finitary version of the domain logic
for transition systems. The existence of this logical view of the finitary bisim-
ulation gives us a handle to work with this relation. However, an alternative,
behavioural view of the finitary bisimulation might be more useful when estab-
lishing results which are more readily shown on the behavioural, rather than
on the logical, side. Examples of such results are complete axiomatizations for
the finitary bisimulation and full abstraction results. A behavioural characteri-
zation of the finitary bisimulation would also provide an easier way to establish
when two processes in a transition system are related by it or not, thus giving
more insight on the kind of identifications made by this relation.

In this study, we offer a behavioural characterization of the finitary bisimu-
lation for arbitrary transition systems (cf. Thm. 3.5). This result may be seen
as the behavioural counterpart of Abramsky’s logical characterization theorem
[1, Thm. 5.5.8]. Moreover, for the important class of sort-finite transition sys-
tems we present a sharpened version of a behavioural characterization result
first proven by Abramsky in [3, Propn. 6.13]. The interested reader may consult
the unpublished report [5] for more results on the finitary bisimulation.

2 Preliminaries

We begin by reviewing a variation on the model of labelled transition systems
[9] that takes divergence information into account. We refer the interested
readers to, e.g., [11] for motivation and more information on this semantic
model for reactive systems. A labelled transition system with divergence (lts)
is a quadruple (Proc,Act,→, ↑), where:

• Proc is a set of processes, ranged over by p, q, r, s, possibly subscripted or
superscripted;

• Act is a set of actions, ranged over by a, b, possibly subscripted;

• →⊆ Proc× Act× Proc is a transition relation. As usual, we shall use the
more suggestive notation p

a→ q in lieu of (p, a, q) ∈→;

2



• ↑⊆ Proc is a divergence predicate, notation p ↑.

We write p ↓, read “p converges”, iff it is not the case that p ↑. Intuitively,
the fact that a process p converges means that its initial behaviour is com-
pletely specified. On the contrary, the divergence of a process signifies that the
information on its initial behaviour is incomplete.

For n ≥ 0 and σ = a1 . . . an ∈ Act∗, we write p
σ→ q iff there exist processes

p0, . . . , pn such that p = p0
a1→ p1

a2→ · · · pn−1
an→ pn = q. For a process p ∈ Proc

and action a ∈ Act we define:

initials(p)
∆
=

{
a ∈ Act | ∃q : p

a→ q
}

sort(p)
∆
=

{
a ∈ Act | ∃σ ∈ Act∗, r, s ∈ Proc : p

σ→ r
a→ s
}

derivatives(p, a)
∆
=

{
q | p a→ q

}
.

Following [3], we say that an lts is sort-finite iff sort(p) is finite for every p ∈ Proc.
A useful source of examples for labelled transition systems with divergence

is the set of countably branching synchronization trees over a set of labels Act,
denoted by ST∞(Act). This is the set of infinitary terms generated by the
inductive definition:

{ai ∈ Act, ti ∈ ST∞(Act)}i∈I∑
i∈I ai : ti[+Ω] ∈ ST∞(Act)

where I is a countable index set, and the notation [+Ω] means optional inclusion
of Ω as a summand. We shall write O for

∑
i∈∅ ai : ti, and Ω for

∑
i∈∅ ai : ti+Ω.

Intuitively, O stands for the one-node synchronization tree, a representation of
an inactive process, and Ω stands for the synchronization tree whose behaviour
is completely unspecified.

The set of terms built using only finite summations, i.e. the finite synchro-
nization trees, will be denoted by ST(Act). The set of synchronization trees
ST∞(Act) can be turned into a labelled transition system with divergence by
stipulating that, for t ∈ ST∞(Act):

• t ↑ iff Ω is a summand of t, and

• t ai→ ti iff ai : ti is a summand of t.

The behavioural relation over processes that we shall study in this paper is that
of prebisimulation [8, 11, 6, 13] (also known as partial bisimulation [3]).

Definition 2.1 Let (Proc,Act,→, ↑) be an lts. Let Rel(Proc) denote the set of
binary relations over Proc. Define the functional F : Rel(Proc)→ Rel(Proc) by:

F (R) = {(p, q) | ∀a ∈ Act

• p a→ p′ ⇒ ∃q′ : q
a→ q′ and p′ R q′

• p ↓⇒
(
q ↓ and

(
q

a→ q′ ⇒ ∃p′ : p
a→ p′ and p′ R q′

))
}

A relation R is a prebisimulation iff R⊆ F (R). We write p . q iff there exists
a prebisimulation R such that p R q.

3



An alternative method for using the functional F to obtain a behavioural pre-
order is to apply it inductively as follows:

.0
∆
= Proc× Proc

.n+1
∆
= F (.n)

and finally .ω ∆
=
⋂
n≥0 .n. Intuitively, the preorder.ω is obtained by restricting

the prebisimulation relation to observations of finite depth. As a standard
example of the relevance of this restriction, consider the processes

p
∆
=

∑
i≥1 a : · · · : a :︸ ︷︷ ︸

i-times

O

+ Ω

q
∆
= p+ aω

where aω denotes an infinite sequence of a actions. Then q 6. p because the
transition q

a→ aω cannot be matched by any a-transition emanating from p.
On the other hand, it is easy to see that q .ω p does hold.

In this paper, we are interested in studying the “finitely observable”, or fini-
tary, part of the bisimulation in the sense of, e.g., [6]. The following definition
is from [3].

Definition 2.2 Let (Proc,Act,→, ↑) be an lts. The finitary bisimulation pre-
order .F over Proc is defined as follows: p .F q iff, for every t ∈ ST(Act),
t . p implies t . q.

The preorders ., .ω and .F are related thus: . ⊆ .ω ⊆ .F . Moreover
the inclusions are strict for infinitely branching lts’s, and collapse to equalities
for finitely branching ones. The interested reader is referred to [3] for a wealth
of examples distinguishing these preorders, and a very deep analysis of their
general relationships and properties.

3 The Behavioural Characterization

Abramsky’s logical characterization of the finitary bisimulation provides one
general, observation-independent alternative view of .F . It can be viewed as
the counterpart of the modal characterization theorems for bisimulation-based
equivalences and preorders which have been so popular and fruitful since the
seminal [11, 7]. However, in order to gain more insight into the exact nature of
the relationships between processes supported by .F , and as a further tool for
the study of this preorder (for example to establish results on full abstraction of
denotational models and complete axiomatizations), it is useful to have purely
behavioural, observation-independent characterizations of it. One such charac-
terization was provided by Abramsky in, e.g., [3, Propn. 6.13]. There Abramsky
shows that in any sort-finite lts that satisfies his axiom scheme of bounded non-
determinacy (BN) (cf. [1, Page 114]), the finitary bisimulation coincides with
.ω. We shall now present a bisimulation-like characterization of the finitary

4



bisimulation for arbitrary transition systems. As a byproduct of our analy-
sis of the finitary bisimulation, we shall be able to improve upon Abramsky’s
behavioural characterization of .F for sort-finite lts’s. (Cf. Propn. 3.6.)

Consider an arbitrary lts (Proc,Act,→, ↑). For every A ⊆ Act, we define

the sequence of relations
{
@
∼
A
n | n ≥ 0

}
thus:

p @∼
A
0 q ⇔ true

p @∼
A
n+1 q ⇔ (1) ∀a ∈ A, p′ ∈ Proc. p

a→ p′ ⇒ ∃q′ : q
a→ q′ and p′ @∼

A
n q
′

(2) If initials(p) ⊆ A and p ↓ then
(2.1) initials(q) ⊆ A and q ↓
(2.2) ∀a ∈ A, q′ ∈ Proc. q

a→ q′ ⇒ ∃p′ : p a→ p′ and p′ @∼
A
n q
′ .

The following proposition collects some basic properties of the relations @∼
A
n

which will be useful in the remainder of this study.

Proposition 3.1 For every n ≥ 0 and A ⊆ Act, the following statements hold:

1. The relation @∼
A
n is a preorder.

2. For p, q ∈ Proc, p @∼
A
n+1 q implies p @∼

A
n q.

3. Assume that A ⊆ B ⊆ Act. Then, for p, q ∈ Proc, p @∼
B
n q implies p @∼

A
n q.

We now define:

p @∼
A
ω q

∆
= ∀n ≥ 0. p @∼

A
n q

p @∼
fin
ω q

∆
= ∀A ⊆fin Act. p @∼

A
ω q

where the notation A ⊆fin Act means that A is a finite subset of Act. Note
that, in light of Propn. 3.1(1), both the relations defined above are preorders.

As initials(p) is contained in Act for every process p ∈ Proc, the preorder @∼
Act
ω

coincides with .ω.
The above definitions are inspired by [8, page 266], where a preorder over

value-passing CCS [10] which uses finite sets of communication capabilities of
processes in a similar manner is presented. Intuitively, p @∼

A
ω q holds for two

processes p and q iff there is no observation, in the sense of [2], of finite depth,
and with actions drawn from the set A, that can distinguish between p and
q. For example, p @∼

∅
ω q holds unless p is a convergent inactive process and q

is either divergent or capable of performing some action. A similar intuition
applies to the relation @

∼
fin
ω , but there observations can only be drawn from

finite sets of actions and are therefore required to have finite width as well as
finite depth. That this is significant is shown by the following example:

Example: Assume that Act = {ai | i ≥ 0}, and that i 6= j implies ai 6= aj.
Consider the synchronization trees p and q given by:

p
∆
=

∑
i≥0

ai : O (1)

q
∆
= p+ Ω . (2)

5



Then p 6.1 q because p ↓ but q ↑. However, p @∼
fin
ω q. In fact, every transition

from p can be matched identically by q, and, for A ⊆fin Act, clause (2) in the
definition of @∼

A
n+1 is always vacuously satisfied because initials(p) = Act, which

is countably infinite.
Indeed, it is also the case that p .F q. In fact, let t ∈ ST(Act) be such

that t . p. We shall now argue that t . q must also hold. First of all, note
that t . p implies that t ↑. (This is easy to see because otherwise the finite
synchronization tree t would have to have Act as its set of initial actions.) Next
we remark that if t

a→ t′ for some action a, then t′ . O. From these two
observations, it follows immediately that t . q. (End of Example)

Let (Proc,Act,→, ↑) be an arbitrary lts. Our aim is to show that .F coincides
with @∼

fin
ω over Proc. We begin by establishing two auxiliary results.

Lemma 3.2 For every t ∈ ST(Act), p ∈ Proc, t . p iff t @∼
fin
ω p

Proof: The ‘only if’ implication is an immediate consequence of the following fact,
which may be easily shown by mathematical induction on n,

∀t ∈ ST(Act), p ∈ Proc, n ≥ 0, A ⊆ Act. t . p ⇒ t @∼
A
n p .

Here we just remark that if t . p, t ↓ and initials(t) ⊆ A, then the definition of . yields
immediately that p ↓ and initials(p) ⊆ A.

In the proof of the ‘if’ implication, we shall make use of the notion of height of a
synchronization tree. This is the ordinal defined thus:

ht(
∑
i∈I ai : ti[+Ω])

∆
= sup {ht(ti) | i ∈ I}+ 1 .

To establish the ‘if’ implication, it is sufficient to prove the following statement:

∀t ∈ ST(Act), p ∈ Proc. t @∼
sort(t)
ht(t)

p ⇒ t . p .

The straightforward proof is by complete induction on ht(t). Here we limit ourselves
to showing that

t @∼
sort(t)
ht(t)

p and t
a→ t′ implies p

a→ p′ for some p′ such that t′ . p′ .

To this end, assume that t @∼
sort(t)
ht(t)

p and t
a→ t′. Under these assumptions, ht(t) > 0

and it follows that p
a→ p′ for some p′ such that t′ @∼

sort(t)
ht(t)−1

p. It is easy to see that

ht(t′) ≤ ht(t) − 1 and sort(t′) ⊆ sort(t). Thus, Propn. 3.1(2)-(3) yields t′ @∼
sort
(
t′
)

ht(t′)
p′.

As ht(t′) < ht(t), the induction hypothesis gives t′ . p′ as required. �

The finitary bisimulation has the property that, for all p, q ∈ Proc,

p .F q iff for every t ∈ ST(Act), t .F p implies t .F q . (3)

This is an immediate consequence of the fact that t . p iff t .F p, for every
finite synchronization tree t and process p. A binary relation over processes
that enjoys property (3) is usually called finitary or finitely approximable [6, 4].

6



Lemma 3.3 The preorder @∼
fin
ω is finitary.

Before proving this lemma, we introduce some intermediate definitions and
results. For every process p ∈ Proc, finite action set A and non-negative integer
n, we define a synchronization tree p(A,n) as follows:

p(A,0) ∆
= Ω

p(A,n+1) ∆
=

∑{
a : q(A,n) | a ∈ A, q ∈ derivatives(p, a)

}
[+Ω | p ↑ or initials(p) 6⊆ A] .

Intuitively, the synchronization tree p(A,n) stands for the approximation of the
behaviour of p of width A and height n+ 1. For example, if we apply the above
definition to derive the approximations of the infinitely branching synchroniza-
tion trees p and q given in (1) and (2), respectively, we obtain that, for every
A ⊆fin Act and n ≥ 0,

p(A,n+1) =
∑

{i|ai∈A}
ai : O(A,n) + Ω = q(A,n+1)

where O(A,n) is Ω if n = 0, and O otherwise. Thus, albeit p is a convergent
synchronization tree, all of its approximations are divergent, and coincide with
the approximations of the behaviour of q.

By a simple induction, we may show that, for every finite set of actions A

and non-negative integer n, the set of synchronization trees
{
p(A,n) | p ∈ Proc

}
is finite. Therefore the synchronization tree p(A,n+1) is finite even when the set
derivatives(p, a) is infinite for some a ∈ A. The fact that the synchronization
trees p(A,n) do behave as approximations of the behaviour of p of width A and
depth n is the import of the following result, which may be easily shown by
mathematical induction:

Lemma 3.4 For every A ⊆fin Act, n ≥ 0,

1. p @∼
A
n p

(A,n), and

2. p(A,n) . p.

We are now in a position to prove statement Lemma 3.3 above, i.e., that the
preorder @∼

fin
ω is finitary.

Proof of Lemma 3.3: We prove that

p @∼
fin
ω q iff ∀t ∈ ST(Act). t @∼

fin
ω p ⇒ t @∼

fin
ω q .

The ‘only if’ implication follows immediately from the fact that @∼
fin
ω is a preorder. To

establish the ‘if’ implication, let us assume that p and q are two processes such that,
for every t ∈ ST(Act),

t @∼
fin
ω p ⇒ t @∼

fin
ω q . (4)

We show that p @∼
A
n q holds for every finite set of actions A and non-negative integer n.

To this end, let A ⊆fin Act and n ≥ 0. We know that p @∼
A
n p

(A,n) . p (Lemma 3.4). As

7



p(A,n) is a finite synchronization tree, it follows that p @∼
A
n p(A,n) @

∼
fin
ω p (Lemma 3.2).

Using (4), we now obtain that p @∼
A
n p

(A,n) @
∼
fin
ω q holds. By the definition of @∼

fin
ω and

the transitivity of @∼
A
n (Propn. 3.1(1)), we finally infer that p @∼

A
n q holds, which was to

be shown. �
Collecting the intermediate results presented so far, we can now establish the
main result of this paper.

Theorem 3.5 For p, q ∈ Proc in any transition system, p .F q iff p @∼
fin
ω q.

Proof: The preorder @∼
fin
ω is finitary (Lemma 3.3), and coincides with .—and thus

with .F—over ST(Act) × Proc (Lemma 3.2). It is immediate to see that two finitary

relations that coincide over ST(Act)× Proc do coincide over the whole of Proc. �

In [3, Propn. 6.13], Abramsky showed that for any sort-finite lts satisfying his
axiom scheme of bounded nondeterminacy (BN) (cf. op. cit. on page 193), the
finitary bisimulation coincides with the ω-iterate of the bisimulation preorder
.ω. Following the proof of our previous characterization theorem, we can now
present a sharpened version of this result, which does not require the lts’s to
satisfy the axiom (BN).

Proposition 3.6 For p, q ∈ Proc in any sort-finite transition system, p .F q
iff p .ω q.

Proof: It is well-known that, in any lts, not necessarily sort-finite, p .ω q implies

p .F q. We are therefore left to show that, for p, q ∈ Proc in any sort-finite transition

system, p .F q implies p .ω q. This statement can be shown by mimicking the proof of

Lemma 3.3 presented above. In fact, it is not too hard to show that, for every process

p in a sort-finite lts, n ≥ 0 and finite set of actions A including sort(p), p .n p(A,n) . p.
In particular, we obtain that p .n p(sort(p),n) . p. If p .F q and sort(p) is finite, it

follows that p .n p(sort(p),n) . q. Using the fact that . is included in .ω, we may

now infer that p .n q holds for every n ≥ 0. We have therefore shown that, if p .F q

and sort(p) is finite, then p .ω q. �

Acknowledgements: We thank the anonymous referees for their constructive
suggestions.

References

[1] S. Abramsky, Domain Theory and the Logic of Observable Properties,
PhD thesis, University of London, 1987. Available on the World Wide
Web at the URL http://theory.doc.ic.ac.uk:80/people/Abramsky/

as file phd.ps.gz.

[2] , Observation equivalence as a testing equivalence, Theoretical Com-
put. Sci., 53 (1987), pp. 225–241.

[3] , A domain equation for bisimulation, Information and Computation,
92 (1991), pp. 161–218.

8



[4] L. Aceto and M. Hennessy, Termination, deadlock and divergence,
J. Assoc. Comput. Mach., 39 (1992), pp. 147–187.

[5] L. Aceto and A. Ingólfsdóttir, On the finitary bisimulation, Research
Report RS–95–59, BRICS (Basic Research in Computer Science, Centre
of the Danish National Research Foundation), Department of Computer
Science, Aalborg University, Nov. 1995. Available by anonymous ftp at
the address ftp.daimi.aau.dk in the directory pub/BRICS/RS/95/59.

[6] M. Hennessy, A term model for synchronous processes, Information and
Control, 51 (1981), pp. 58–75.

[7] M. Hennessy and R. Milner, Algebraic laws for nondeterminism and
concurrency, J. Assoc. Comput. Mach., 32 (1985), pp. 137–161.

[8] M. Hennessy and G. Plotkin, A term model for CCS, in 9th Sympo-
sium on Mathematical Foundations of Computer Science, P. Dembiński,
ed., vol. 88 of Lecture Notes in Computer Science, Springer-Verlag, 1980,
pp. 261–274.

[9] R. Keller, Formal verification of parallel programs, Comm. ACM, 19
(1976), pp. 371–384.

[10] R. Milner, A Calculus of Communicating Systems, vol. 92 of Lecture
Notes in Computer Science, Springer-Verlag, 1980.

[11] , A modal characterisation of observable machine behaviour, in Pro-
ceedings CAAP 81, G. Astesiano and C. Bohm, eds., vol. 112 of Lecture
Notes in Computer Science, Springer-Verlag, 1981, pp. 25–34.

[12] D. Park, Concurrency and automata on infinite sequences, in 5th GI Con-
ference, Karlsruhe, Germany, P. Deussen, ed., vol. 104 of Lecture Notes in
Computer Science, Springer-Verlag, 1981, pp. 167–183.

[13] D. Walker, Bisimulation and divergence, Information and Computation,
85 (1990), pp. 202–241.

9



Recent BRICS Report Series Publications

RS-97-26 Luca Aceto and Anna Inǵolfsdóttir. A Characterization of Fini-
tary Bisimulation. October 1997. 9 pp. To appear inInforma-
tion Processing Letters.

RS-97-25 David A. Mix Barrington, Chi-Jen Lu, Peter Bro Miltersen,
and Sven Skyum. Searching Constant Width Mazes Captures
theAC0 Hierarchy. September 1997. 20 pp.

RS-97-24 Søren B. Lassen.Relational Reasoning about Contexts. Septem-
ber 1997. 45 pp. To appear as a chapter in the bookHigher Or-
der Operational Techniques in Semantics, eds. Andrew D. Gor-
don and Andrew M. Pitts, Cambridge University Press.

RS-97-23 Ulrich Kohlenbach. On the Arithmetical Content of Restricted
Forms of Comprehension, Choice and General Uniform Bound-
edness. August 1997. 35 pp.

RS-97-22 Carsten Butz. Syntax and Semantics of the logicLλωω. July
1997. 14 pp.

RS-97-21 Steve Awodey and Carsten Butz.Topological Completeness for
Higher-Order Logic. July 1997. 19 pp.

RS-97-20 Carsten Butz and Peter T. Johnstone.Classifying Toposes for
First Order Theories. July 1997. 34 pp.

RS-97-19 Andrew D. Gordon, Paul D. Hankin, and Søren B. Lassen.
Compilation and Equivalence of Imperative Objects. July 1997.
iv+64 pp. Appears also as Technical Report 429, University of
Cambridge Computer Laboratory, June 1997. To appear in
Foundations of Software Technology and Theoretical Computer
Science: 17th Conference, FCT&TCS ’97 Proceedings, LNCS,
1997.

RS-97-18 Robert Pollack.How to Believe a Machine-Checked Proof. July
1997. 18 pp. To appear as a chapter in the bookTwenty Five
Years of Constructive Type Theory, eds. Smith and Sambin, Ox-
ford University Press.

RS-97-17 Peter Bro Miltersen. Error Correcting Codes, Perfect Hashing
Circuits, and Deterministic Dynamic Dictionaries. June 1997.
10 pp.


